Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

V850ES/Jx3-L

Sample Program (Low-Voltage Detector (LVI))

Reset Generation When Low Voltage Detected

This document summarizes the operations of the sample program and describes how to use the sample program and how to set and use the low-voltage detector (LVI). In the sample program, an internal reset (LVI reset) signal is generated by detecting that V_{DD} is less than V_{LVI} ($V_{LVI} = 2.80 \text{ V}$ (typ.)). With an LVI reset, the LED lighting pattern immediately before the LVI reset is retained and then restored after LVI reset release.

Target devices V850ES/JF3-L microcontroller V850ES/JG3-L microcontroller

CONTENTS

CHAPT	ER 1 OVERVIEW	3
1.1	Initial Settings	4
1.2	Operation of Low-Voltage Detector (LVI)	5
1.3	Enabling Interrupts	5
1.4	Main Loop	5
1.5	Interrupt Servicing	
CHAPT	ER 2 CIRCUIT DIAGRAM	7
2.1	Circuit Diagram	
2.2	Peripheral Hardware	
CHAPT	ER 3 SOFTWARE	_
3.1	File Configuration	
3.2	On-Chip Peripheral Functions Used	
3.3	Initial Settings and Operation Overview	
3.4	Flowchart	
3.5	Differences Between V850ES/JG3-L and V850ES/JF3-L	
3.6	ROMization	
3.7	Security ID	
3.8	Notes on Operating Sample Program When Using MINICUBE2	
	FER 4 SETTING REGISTERS	
4.1	Setting Low-Voltage Detector (LVI)	
	4.1.1 Settings regarding low-voltage detection	
	4.1.2 Setting regarding low-voltage detection level	
4.2	Checking Detection of LVI Reset	
0114-5	4.2.1 Reset source flag register (RESF)	
	FER 5 RELATED DOCUMENTS	
APPEN	NDIX A PROGRAM LIST	23

Document No. U19496EJ1V0AN00 (1st edition)
Date Published January 2009 N

- The information in this document is current as of November, 2008. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

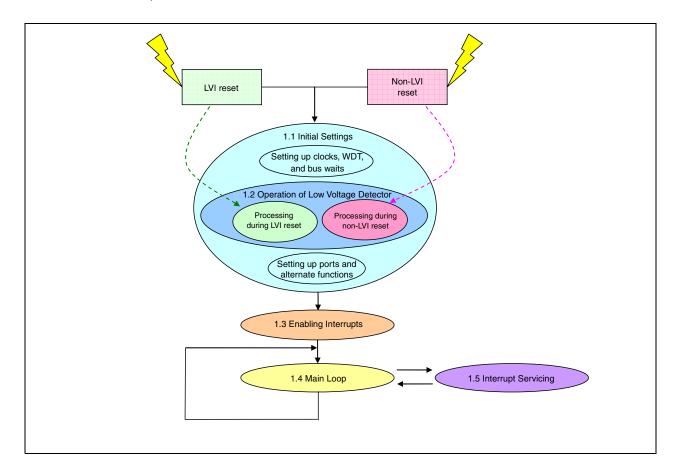
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

CHAPTER 1 OVERVIEW


In this sample program, an example of using the low-voltage detector (LVI) is presented.

The low-voltage detector is used to detect that V_{DD} is less than V_{LVI} ($V_{LVI} = 2.80 \text{ V (typ.)}$), and it is set to generate an internal reset (LVI reset) signal.

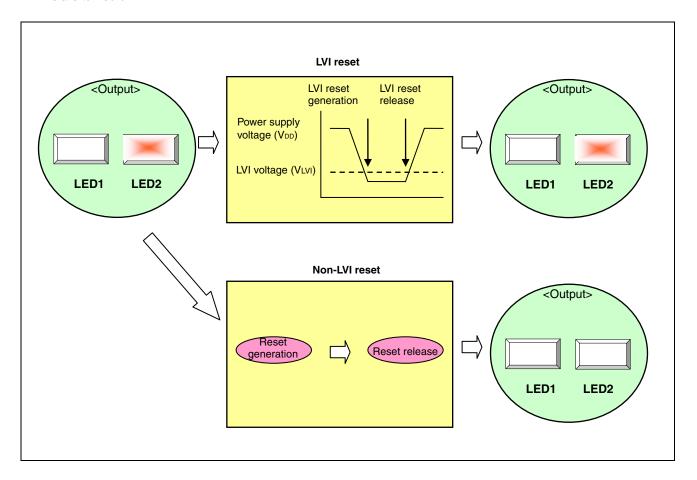
After completion of the initial setup, an LED lighting pattern is displayed according to the number of switch inputs by detecting the falling edge of the switch input and servicing interrupts. (This processing is the same as that described in the V850ES/Jx3-L Sample Program (Interrupt) External Interrupt Generated by Switch Input Application Note.)

When a non-LVI reset is generated, the program is used to initialize the LED lighting pattern data held in the internal RAM. When an LVI reset is generated, the LED lighting pattern data immediately before reset generation is retained and then restored and displayed after the LVI reset is released.

The main software processes are shown below.

1.1 Initial Settings

- <Referencing option byte>
- · Referencing the oscillation stabilization time after releasing reset
- <Settings of on-chip peripheral functions>
- Setting wait operations <wait: 1> for bus access to on-chip peripheral I/O registers
- Setting on-chip debug mode <normal operation mode>
- Stopping the internal oscillator and watchdog timer
- Setting not to divide the CPU clock frequency
- Setting to PLL mode and setting to 20 MHz operation (5 MHz × 4)
- Setting V_{LVI} (low-voltage detection voltage) to 2.80 V (typ.) and setting <reset> operation when low-voltage is detected^{Note}


Note No setting is made when the system is restarted by an LVI reset.

- <Pin settings>
- · Setting unused pins
- Setting external interrupt pins (edge specification, priority specification, unmasking)
- Setting LED output pins (specifying the value at which LED1 and LED2 are turned off when a non-LVI reset occurs and specifying the output value prior to reset when an LVI reset occurs)
- <ROMization>
- ROMization processing (initialization of variables with initial values)

1.2 Operation of Low-Voltage Detector (LVI)

In this sample program, an internal reset (LVI reset) is generated by the low-voltage detector (LVI) when V_{DD} becomes less than V_{LVI} .

At this time, register values are initialized, but the internal RAM retains the data immediately before the reset. Therefore, the LED lighting pattern immediately before the LVI reset is retained, enabling it to be restored after LVI reset release. When a reset is generated by other than LVI, the program initializes the LED lighting pattern and all LEDs are turned off.

1.3 Enabling Interrupts

• Enabling interrupts by using the EI instruction

1.4 Main Loop

• Executing an infinite loop that executes no processing (waiting for an interrupt generated by switch input)

1.5 Interrupt Servicing

Interrupts are serviced by detecting the falling edge of the INTP0 pin, caused by switch input. In interrupt servicing, the LED lighting pattern is changed by confirming that the switch is on, after about 10 ms have elapsed after the falling edge of the INTP0 pin was detected.

The switch being off, after about 10 ms have elapsed after the falling edge of the INTP0 pin was detected, is identified as chattering noise and the LED lighting pattern is not changed.

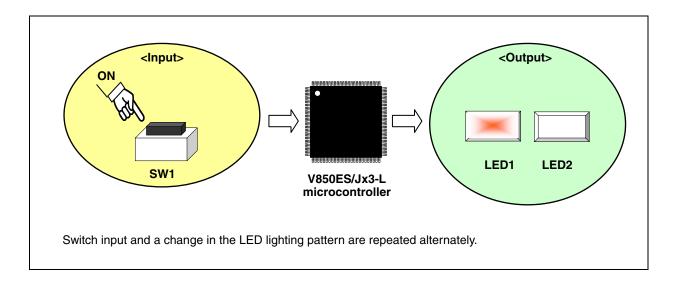


Table 1-1. LED Lighting Patterns

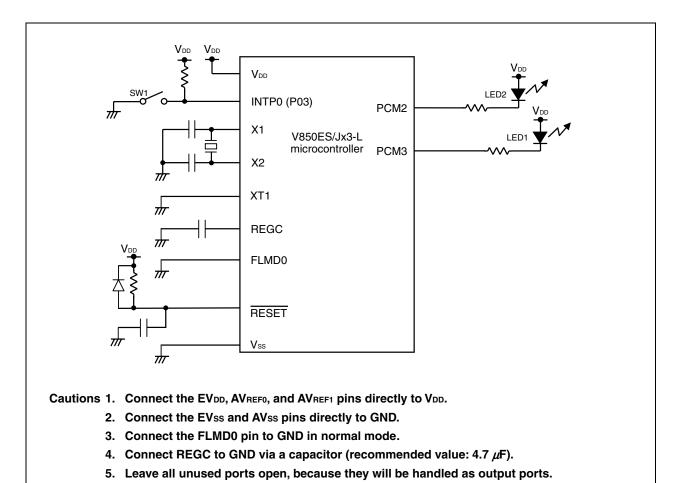
Switch (SW1) Input Count ^{Note}	LED1	LED2
0	OFF	OFF
1	ON	OFF
2	OFF	ON
3	ON	ON

Note Inputs 0 to 3 are repeated from the fourth input.

Caution See the product user's manual (V850ES/Jx3-L) for cautions when using the device.

[Column] Chattering

Chattering is a phenomenon in which the electric signal repeats turning on and off due to a mechanical flip-flop of the contacts, immediately after the switch has been pressed.


Application Note U19496EJ1V0AN

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes the circuit diagram and peripheral hardware to be used in this sample program.

2.1 Circuit Diagram

The circuit diagram is shown below.

2.2 Peripheral Hardware

The peripheral hardware to be used is shown below.

(1) Switch (SW1)

This switch is used as an interrupt input to control the lighting of the LEDs.

(2) LEDs (LED1, LED2)

The LEDs are used as outputs corresponding to the number of switch inputs.

CHAPTER 3 SOFTWARE

This chapter describes the file configuration of the compressed files to be downloaded, on-chip peripheral functions of the microcontroller to be used, and the initial settings and an operation overview of the sample program. A flowchart is also shown.

3.1 File Configuration

The following table shows the file configuration of the compressed files to be downloaded.

[C language version]			
File Name (Tree Structure)	Description	Compressed (*.zip) Files Included	
		200	ВМ 32
c conf crtE.s	Startup routine file ^{Note 1}	_	•
— AppNote_LVI.dir	Link directive file Note 2	•	•
— AppNote_LVI.prj	Project file for integrated development environment PM+	_	•
AppNote_LVI.prw	Workspace file for integrated development environment PM+	_	•
src main.c	C language source file including descriptions of hardware initialization processing and main processing of microcontroller	•	•
— minicube2.s	Source file for reserving area for MINICUBE2	•	•
opt_b.s	Source file for setting option byte	•	•

Notes 1. This is the startup file copied when "Copy and Use the Sample file" is selected when "Specify startup file" is selected when creating a new workspace. (If the default installation path is used, the startup file will be a copy of C:\Program Files\NEC Electronics Tools\CA850\Version used\lib850\r32\crtE.s.)

2. This is the link directive file automatically generated when "Create and Use the Sample file" is selected and "Memory Usage: Use Internal memory only" is checked when "Specify link directive file" is selected when creating a new workspace, and to which a segment for MINICUBE2 is added. (If the default installation path is used, C:\Program Files\NEC Electronics Tools\PM+\Version used\bin\w_data\V850_i.dat is used as the reference file.)

Remark

: Only the source file is included.

: The files to be used with integrated development environment PM+ are included.

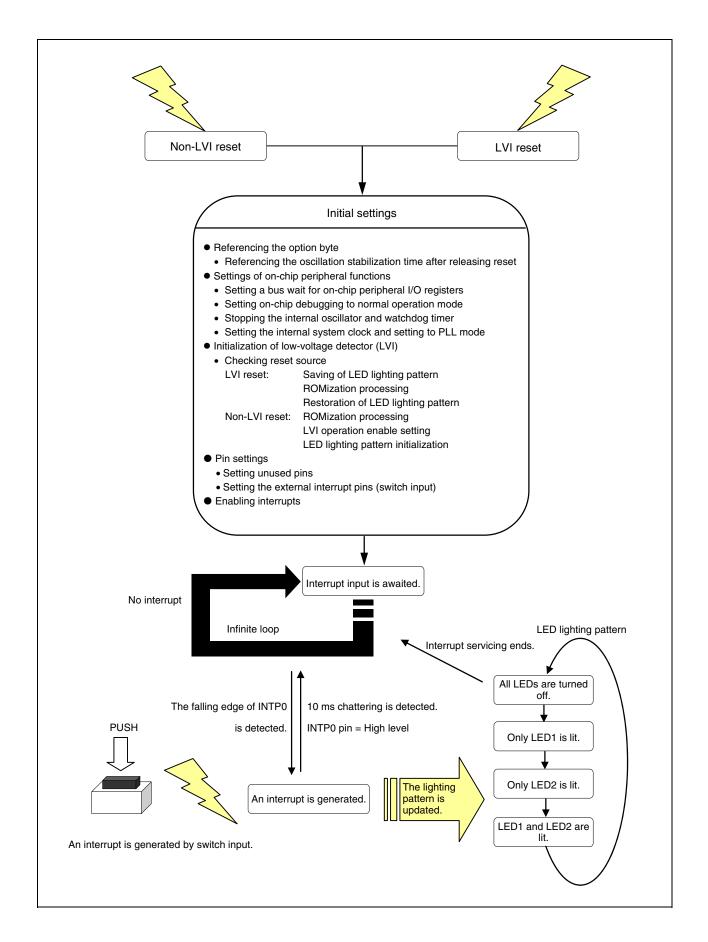
3.2 On-Chip Peripheral Functions Used

The following on-chip peripheral functions of the microcontroller are used in this sample program.

• Low-voltage detector (VDD < VLVI): LVI

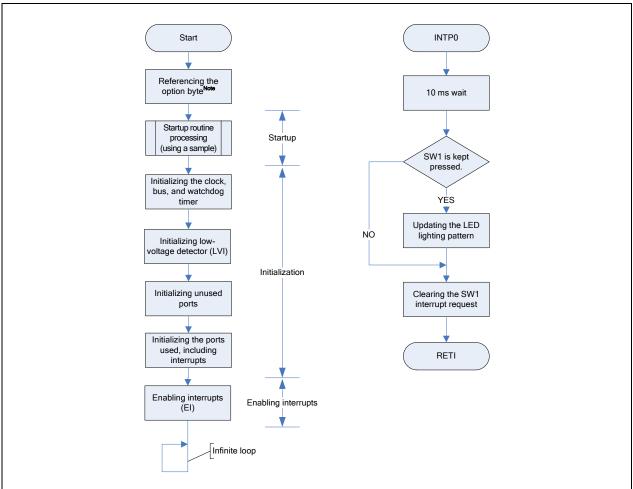
• External interrupt input (for switch input): INTP0 (SW1)

• Output ports (for lighting LEDs): PCM2 (LED2), PCM3 (LED1)

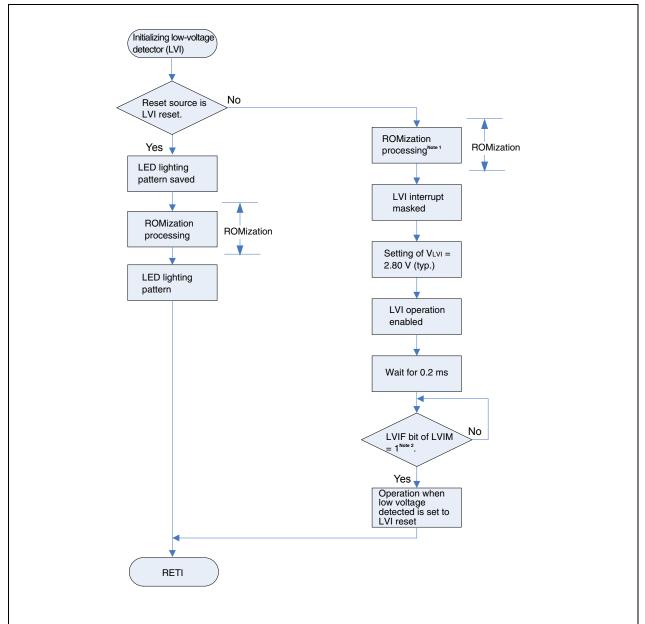

3.3 Initial Settings and Operation Overview

In this sample program, the selection of the clock frequency and settings such as the setting for stopping the watchdog timer, the setting of the I/O ports and external interrupt pins, setting of interrupts, and setting of LVI are performed as the initial settings.

After completion of the initial settings, the lighting pattern of two LEDs (LED1 and LED2) is controlled according to the number of switch (SW1) inputs, by detecting the falling edge of the switch input (SW1) and performing interrupt servicing. (This processing is the same as that described in the V850ES/Jx3-L Sample Program (Interrupt) External Interrupt Generated by Switch Input Application Note.)


In this sample program, variables without initial values are initialized in the startup routine. Therefore, in order to prevent the LED lighting pattern being initialized in the startup routine, the variables in the LED lighting pattern are defined as variables with initial values. If an LVI reset occurs during ROMization processing, the LED lighting pattern immediately before the LVI reset is retained in the internal RAM, enabling it to be restored after LVI reset release. When a reset is generated by other than LVI, the program initializes the LED lighting pattern and all LEDs are turned off.

This is described in detail in the state transition diagram shown on the next page.



3.4 Flowchart

A flowchart for the sample program is shown below.

Note The option byte is automatically referenced by the microcontroller after reset is released. In this sample program, the oscillation stabilization time after releasing reset is set to 6.554 ms with the option byte.

Notes 1. If the reset source is a non-LVI reset, the LED lighting pattern is initialized as part of the ROMization processing.

2. The LVIF bit of LVIM is set when V_{DD} rises to greater than V_{LVI} .

[Column] Contents of the startup routine

The startup routine is a routine that is executed before executing the main function after reset of the V850 is released. Basically, the startup routine executes initialization so that the program written in C language can start operating.

Specifically, the following are performed.

- Securing the argument area of the main function
- Securing the stack area
- Setting the RESET handler when reset is issued
- Setting the text pointer (tp)
- Setting the global pointer (gp)
- Setting the stack pointer (sp)
- Setting the element pointer (ep)
- Setting mask values to the mask registers (r20 and r21)
- Clearing the sbss and bss areas to 0
- Setting the CTBP value for the prologue epilogue runtime library of the function
- Setting r6 and r7 as arguments of the main function
- Branching to the main function

3.5 Differences Between V850ES/JG3-L and V850ES/JF3-L

The V850ES/JG3-L is the V850ES/JF3-L with its functions, such as I/Os, timer/counters, and serial interfaces, expanded.

In this sample program, the port initialization range of P1, P3, P7, P9, and PDH in I/O initialization differs.

See APPENDIX A PROGRAM LIST for details of the sample program.

3.6 ROMization

In this sample program, the ROMization information is copied during initialization of LVI.

For details of ROMization, see the V850ES/Jx3-L Sample Program (Interrupt) External Interrupt Generated by Switch Input Application Note.

3.7 Security ID

The content of the flash memory can be protected from unauthorized reading by using a 10-byte ID code for authorization when executing on-chip debugging using an on-chip debug emulator.

For details of ID security, see the V850ES/Jx3-L Sample Program (Interrupt) External Interrupt Generated by Switch Input Application Note.

3.8 Notes on Operating Sample Program When Using MINICUBE2

When operating the sample program via the on-chip debug emulator, be aware that a program break will occur when an LVI reset is generated. Also, when the operating voltage of MINICUBE2 is less than 2.7 V, MINICUBE2 and the target device may not be able to communicate properly, which may lead to a malfunction.

For a detailed explanation of how to execute a program when using MINICUBE2, see the QB-MINI2 On-Chip Debug Emulator with Programming Function User's Manual and the ID850QB Ver. 3.40 Integrated Debugger Operation User's Manual.

The procedure for checking that an LVI reset has been executed correctly by this sample program when using MINICUBE2 is shown below for reference.

- Procedure for checking LVI reset
 - <1> Check that the power supply voltage is 3.3 V and start the debugger via a reset.
 - <2> Press the switch to light the LEDs.
 - <3> Set the power supply voltage to about 2.75 V^{Note 1}.
 - <4> Check that the LEDs are off.
 - <5> Set the power supply voltage to 3.3 V, check that the debugger is in the stopped state, then start^{Note 2} the debugger.
 - <6> Check that the LED lighting pattern has been restored.
- **Notes 1.** Take care to set a voltage between the value at which the LEDs are turned off when an LVI reset occurs (2.8 V typ.) and the value at which MINICUBE2 remains operating (2.7 V or higher).
 - 2. Be aware that if the debugger is started via a reset here instead of simply started, the LED lighting pattern will not be able to be restored if a non-LVI reset occurs after an LVI reset.

Application Note U19496EJ1V0AN

CHAPTER 4 SETTING REGISTERS

This chapter describes the low-voltage detector (LVI) settings.

For other initial settings, refer to the V850ES/Jx3-L Sample Program (Initial Settings) LED Lighting Switch Control Application Note. For interrupt, refer to the V850ES/Jx3-L Sample Program (Interrupt) External Interrupt Generated by Switch Input Application Note.

Among the peripheral functions that are stopped after reset is released, those that are not used in this sample program are not set.

For how to set registers, see each product user's manual.

- V850ES/JG3-L 32-bit Single-Chip Microcontroller Hardware User's Manual
- V850ES/JF3-L 32-bit Single-Chip Microcontroller Hardware User's Manual

See the following user's manuals for details of extended descriptions in C and assembly languages.

- CA850 C Compiler Package C Language User's Manual
- CA850 C Compiler Package Assembly Language User's Manual

4.1 Setting Low-Voltage Detector (LVI)

The low-voltage detector has the following two types of operation modes.

- Using it as a reset (see [Example 1])
- Using it as an interrupt (see [Example 2])

The low-voltage detector is mainly controlled by the following two types of registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level select register (LVIS)

4.1.1 Settings regarding low-voltage detection

The low-voltage detection register (LVIM) is used to set the low-voltage detection operation mode and control the operation.

In this sample program, the LVIM register is set so that the internal reset signal is generated when a low voltage is detected.

The LVIM register can be read or written in 8-bit or 1-bit units. However, the LVIF flag can only be read.

The value of the LVIM register after reset is 0x82 in the case of a reset generated by the detection of a low voltage, and 0x00 in the case of a reset generated by another source.

Figure 4-1. Format of LVIM Register

Low-voltage detection register (LVIM) Address: 0xFFFFF890

7	6	5	4	3	2	1	0
LVION	0	0	0	0	0	LVIMD	LVIF

LVION	Enabling or disabling of low-voltage detection operation
0	Disables operation
1	Enables operation

LVIMD	Low-voltage detection operation mode selection		
0	The interrupt request signal INTLVI is generated when the power supply voltage drops		
	or rises across the detection voltage value		
1	The internal reset signal LVIRES is generated when the power supply voltage falls		
	below the detection voltage.		

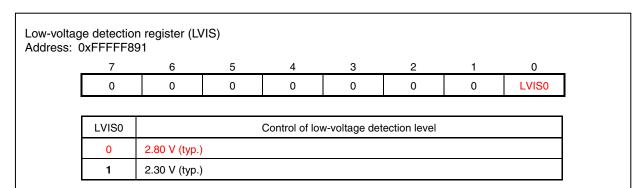
LVIF	Low-voltage detection flag (read only)
0	When power supply voltage > detection voltage or when operation is prohibited
1	When connected power supply voltage < detection voltage

Remarks 1 The red values indicate the setting values used in the sample program.

2. The blue values indicate the bits to be checked in the sample program.

Application Note U19496EJ1V0AN

4.1.2 Settings regarding low-voltage detection level


The low-voltage detection level select register (LVIS) is used to set the low-voltage detection level.

In this sample program, the low-voltage detection level is set to 2.80 V (typ.).

The LVIS register can be read or written in 8-bit or 1-bit units.

The LVIS register retains the value it had immediately before the reset in the case of a reset generated by the detection of a low voltage; in the case of a reset generated by another source, the LVIS register is set to 0x00.

Figure 4-2 Format of LVIS Register

Remark The red values indicate the setting values used in the sample program.

[Example 1] Using the low-voltage detection as a reset by setting the low-voltage detection level (VLVI) to 2.80 V (same content as the sample program)

- Setting procedure
 - <1> Mask the LVI interrupt.
 - <2> Set the detection voltage using the LVIS.LVIS0 bit.
 - <3> Set the LVIM.LVION bit to 1 (operation enabled).
 - <4> Use software to insert a wait of at least 0.2 ms (a wait of 0.25 ms is set in the program example).
 - <5> Check the LVIM.LVIF bit to see if the power supply voltage is higher than the detection voltage.
 - <6> Set the LVIMD bit to 1 (internal reset generated).

Caution Once the LVIMD bit has been set to 1, the LVIM and LVIS registers cannot be changed until a non-LVI reset occurs.

Program example (same content as the sample program)

```
LVIMK = 1;
                      /* Mask the LVI interrupt
                                                                            } <2>
LVISO = 0;
                     /* Set the low-voltage detection level to 2.80 V
/* Enable the low-voltage detector operation */
#pragma asm
   push r10
   mov 0x80, r10
    st.b r10, PRCMD
   set1 LVION
    pop r10
#pragma endasm
/* Wait of 250 μs(0.25 ms) */
for( loop_wait = 0 ; loop_wait < LIMIT_250us_WAIT ; loop_wait++ )</pre>
       __nop();
while( LVIF == 1 );    /* Note that the program enters an infinite
                      /* loop until the power supply voltage rises
                      /* above the detection voltage
/* Setting operation when low voltage is detected to reset operation */
#pragma asm
   push r10
   mov 0x02, r10
    st.b r10, PRCMD
    set1 LVIMD
    pop r10
#pragma endasm
```

[Example 2] Using the low-voltage detection function as an interrupt by setting the low-voltage detection level (V_{LVI}) to 2.80 V.

- Setting procedure
 - <1> Mask the LVI interrupt.
- <2> Set the detection voltage using the LVIS.LVIS0 bit.
- <3> Set the LVIM.LVION bit to 1 (operation enabled).
- <4> Use software to insert a wait of at least 0.2 ms (a wait of 0.25 ms is set in the program example).
- <5> Check the LVIM.LVIF bit to see if the power supply voltage is higher than the detection voltage.
- <6> Clear the interrupt request flag of LVI.
- <7> Release the interrupt mask of LVI

Caution Once the LVIMD bit has been set to 1, the LVIM and LVIS registers cannot be changed until a non-LVI reset occurs.

• Program example

```
LVIMK = 1;
                       /* Mask the LVI interrupt
                                                                                <1>
                       /* Set the low-voltage detection level to 2.80 V
                                                                                <2>
/* Enables the low-voltage detector operation /
#pragma asm
    push r10
   mov 0x80, r10
    st.b r10, PRCMD
    set1 LVION
                                                                                <3>
    pop r10
#pragma endasm
/* Wait of 250 μs(0.25 ms) */
for( loop_wait = 0 ; loop_wait < LIMIT_250us_WAIT ; loop_wait++ )</pre>
                                                                                <4>
       __nop();
while ( LVIF == 1 ); /* Note that the program enters an infinite
                                                                                <5>
                       /* loop until the power supply voltage rises
                      /* above the detection voltage
LVIIF = 0;
                     /* Clear the interrupt request flag of LVI
                                                                                <6>
LVIMK = 0;
                                                                                <7>
                      /* Release the interrupt mask of LVI
```

4.2 Checking Detection of LVI Reset

When an LVI reset occurs, the LVIRF bit of the reset source flag register (RESF) is set. On the other hand, when a reset is generated by an input to the RESET pin, the LVIRF bit is cleared. Therefore, by checking the LVIRF bit after the reset is released, it is possible to ascertain whether the reset source was an LVI reset or an input to the RESET pin.

4.2.1 Reset source flag register (RESF)

The RESF register stores information on which reset signal—the reset signal from which source—generated a reset.

This register can be read or written in 8-bit or 1-bit units.

Note, however, that the RESF register can only be written using a combination of specific sequences.

A reset generated by an input to the RESET pin sets this register to 00H. A reset generated by any other source, such as watchdog timer 2 (WDT2), the low-voltage detector (LVI), or the clock monitor (CLM), sets the flag of the corresponding source (WDT2RF, CLMRF, LVIRF bits); the other source flags hold their previous values.

Figure 4-2. Format of RESF Register

Reset source flag register (RESF)
Address: 0xFFFF888

7 6 5 4 3 2 1 0

0 0 0 WDT2RF 0 0 CLMRF LVIRF

WDT2RF	Occurrence of reset signal from WDT2
0	Did not occur
1	Occurred

CLMRF	Occurrence of reset signal from CLM
0	Did not occur
1	Occurred

LVIRF	Occurrence of reset signal from LVI
0	Did not occur
1	Occurred

Caution The blue values indicate the bits to be checked in the sample program.

Remarks 1. Only 0 can be written to each bit. If writing 0 conflicts with the flag being set (due to the occurrence of a reset), flag setting takes precedence.

2. If watchdog timer 2 (WDT2), the low-voltage detector (LVI), and the clock monitor (CLM) are being used at the same time, the relevant reset source flag must be cleared after checking the reset source.

Application Note U19496EJ1V0AN

[Clearing the reset source flag]

As mentioned in Remark 2 on the previous page, there are cases when the reset source flag has to be cleared after checking the reset source. In this sample program, however, the reset source flag does not have to be cleared because only the low-voltage detector (LVI) is being used.

CHAPTER 5 RELATED DOCUMENTS

Document	English
V850ES/JF3-L Hardware User's Manual	<u>PDF</u>
V850ES/JG3-L Hardware User's Manual	<u>PDF</u>
PM+ Ver.6.30 User's Manual	<u>PDF</u>
CA850 Ver.3.20 C Compiler Package Operation User's Manual	<u>PDF</u>
CA850 Ver.3.20 C Compiler Package C Language User's Manual	<u>PDF</u>
CA850 Ver.3.20 C Compiler Package Assembly Language User's Manual	<u>PDF</u>
CA850 Ver.3.20 C Compiler Package Link Directive User's Manual	<u>PDF</u>
V850ES Architecture User's Manual	<u>PDF</u>
QB-MINI2 On-Chip Debug Emulator with Programming Function User's Manual	<u>PDF</u>
ID850QB Ver. 3.40 Integrated Debugger Operation User's Manual	<u>PDF</u>

APPENDIX A PROGRAM LIST

The V850ES/Jx3-L microcontroller source program is shown below as a program list example.

```
• opt_b.s
  NEC Electronics V850ES/Jx3-L series
#-----
  V850ES/JG3-L JF3-L sample program
#-----
  Reset Generation When Low Voltage Detected
#-----
#[History]
  2008.9.-- Released
#-----
#[Overview]
  This sample program sets the option byte.
#-----
   .section "OPTION BYTES"
   .byte 0b00000101 -- 0x7a (5 MHz: Sets the oscillation stabilization time to 6.554 ms.)
                       \uparrow
   .byte 0b00000000 -- 0x7b
                      1
   .byte 0b00000000 -- 0x7c
   .byte 0b00000000 -- 0x7d 0x00 must be set to addresses 0x7b to 0x7f.
   .byte 0b00000000 -- 0x7e
   .byte 0b00000000 -- 0x7f
```

```
• minicube2.s
 -----
  NEC Electronics V850ES/Jx3-L series
   V850ES/JG3-L JF3-L sample program
#-----
   Reset Generation When Low Voltage Detected
#[History]
   2008.9.-- Released
#[Overview]
   This sample program secures the resources required when using MINICUBE2.
      (Example of using MINICUBE2 via CSIBO)
    -- Securing a 2 KB space as the monitor ROM section
    .section "MonitorROM", const
    .space 0x800, 0xff
    -- Securing an interrupt vector for debugging
    .section "DBG0"
    .space 4, 0xff
    -- Securing a reception interrupt vector for serial communication
    .section "INTCBOR" 🚤
    .space 4, 0xff
    -- Securing a 16-byte space as the monitor RAM section
    .section "MonitorRAM", bss
    .lcomm monitorramsym, 16, 4
```

```
• AppNote_LVI.dir
    Sample link directive file (not use RTOS/use internal memory only)
    Copyright (C) NEC Electronics Corporation 2002
    All rights reserved by NEC Electronics Corporation.
    This is a sample file.
    NEC Electronics assumes no responsibility for any losses incurred by customers or
    third parties arising from the use of this file.
                  : PM+ V6.31 [ 9 Jul 2007]
    Generated
    Sample Version: E1.00b [12 Jun 2002]
    Device
                   : uPD70F3738 (C:\Program Files\NEC Electronics Tools\DEV\DF3738.800)
    Internal RAM
                  : 0x3ffb000 - 0x3ffefff
    NOTICE:
         Allocation of SCONST, CONST and TEXT depends on the user program.
         If interrupt handler(s) are specified in the user program then
         the interrupt handler(s) are allocated from address 0 and
         SCONST, CONST and TEXT are allocated after the interrupt handler(s).
SCONST : !LOAD ?R {
                        = $PROGBITS
                                         ?A .sconst;
        .sconst
};
CONST
        : !LOAD ?R {
        .const
                        = $PROGBITS
                                        ?A .const;
};
TEXT
        : !LOAD ?RX {
        .pro_epi_runtime = $PROGBITS
                                         ?AX .pro_epi_runtime;
        .text
                          = $PROGBITS
                                         ?AX .text;
};
                      0x01F800 for products with
                       128 KB internal ROM
                                                        Difference from the default link directive file
### For MINICUBE2###
                                                        (additional code)
MROMSEG: !LOAD ?R V0x03F800{
      MonitorROM = $PROGBITS ?A MonitorROM;
                                                        A reserved area for MINICUBE2 is
};
                                                       secured.
```

```
SIDATA : !LOAD ?RW V0x3ffb000 {
        .tidata.byte
                         = $PROGBITS
                                          ?AW .tidata.byte;
        .tibss.byte
                                          ?AW .tibss.byte;
                         = $NOBITS
        .tidata.word
                         = $PROGBITS
                                          ?AW .tidata.word;
        .tibss.word
                         = $NOBITS
                                          ?AW .tibss.word;
        .tidata
                         = $PROGBITS
                                          ?AW .tidata;
        .tibss
                         = $NOBITS
                                          ?AW .tibss;
        .sidata
                         = $PROGBITS
                                          ?AW .sidata;
        .sibss
                         = $NOBITS
                                          ?AW .sibss;
};
DATA
        : !LOAD ?RW V0x3ffb100 {
        .data
                         = $PROGBITS
                                          ?AW .data;
        .sdata
                         = $PROGBITS
                                          ?AWG .sdata;
        .sbss
                         = $NOBITS
                                          ?AWG .sbss;
        .bss
                         = $NOBITS
                                          ?AW .bss;
};
                                                       Difference from the default link
                                                       directive file (additional code)
### For MINICUBE2 ###
MRAMSEG : !LOAD ?RW V0x03FFEFF0{
                                                       A reserved area for MINICUBE2 is
        MonitorRAM = $NOBITS ?AW MonitorRAM;
                                                       secured.
};
__tp_TEXT @ %TP_SYMBOL;
```

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

```
• main.c
/*----*/
/* NEC Electronics
                  V850ES/Jx3-L series
/*-----*/
/* V850ES/JG3-L sample program
/*-----*/
/* Reset Generation When Low Voltage Detected
/*----*/
/*[History]
/* 2008.09.-- Released
/*----*/
/* [Overview]
/* This sample program presents an example of using the low-voltage detector (LVI).
/* The low-voltage detector (LVI) is set so that an internal reset (LVI reset) signal
/* is generated when LVI detects that VDD is less than VLVI (2.80 V (typ.)).
/* After completion of the initial settings, interrupt servicing is executed at the
/* falling edge of the switch input and the LED lighting pattern is displayed in
/* accordance with the number of switch inputs.
/* If a reset is generated by other than LVI, the LED lighting pattern held in the
/* internal RAM is initialized. If a reset is generated by LVI, the LED lighting
/* pattern immediately before the LVI reset is retained in the internal RAM and then
/* restored and displayed after the LVI reset is released.
/*
/*
/* Among the peripheral functions that are stopped after reset is released, those that
   are not used in this sample program are not set.
/*
/*
/* <Main setting contents>
/* • Using pragma directives to enable setting the interrupt handler and describing
     peripheral I/O register names
   • Defining a wait adjustment value of 10 ms for chattering
/* • Defining a wait adjustment value of 0.2 ms for setting the low-voltage detection
    register (LVIM)
/* • Performing prototype definitions
/* • Defining the LED lighting pattern table
/* • Setting a bus wait for on-chip peripheral I/O registers, stopping the watchdog
     timer, and setting the clock
/* • Executing low-voltage detector initialization
/* • Initializing unused ports
/* • Initializing external interrupt ports (falling edge) and LED output ports
/* • ROMization
/* <Interrupt servicing>
/* • Updating the LED lighting pattern
/* (Chattering elimination time during switch input: 10 ms)
```

```
/* <Switch input and LED lighting pattern>
/* +------
/* | Switch input count | LED2
                           LED1
    (P03/INTP0) (PCM2)
                            (PCM3)
         0
                 OFF
                            OFF
                 OFF
         1
                           ON
         2
                 ON
                            OFF
         3
                 ON
                            ON
      *Inputs 0 to 3 are repeated from the fourth input.
/*
/*
/*[I/O port settings]
/*
/* Input port : P03(INTP0)
/* Output ports : PCM2, PCM3
/* Unused ports : P02, P04 to P06, P10 and P11, P30 to P39, P50 to P55, P70 to P711,
/*
                P90 to P915, PCM0 and PCM1, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH5,
                 PDL0 to PDL15
                 *Preset all unused ports as output ports (low-level output).
/*----*/
/* pragma directives */
/*----*/
                             /* Enables describing to peripheral I/O registers. */
#pragma ioreg
#pragma interrupt INTPO f_int_intpO /* Specifies the interrupt handler.
                                                                       * /
/*----*/
/* Constant definitions */
/*----*/
#define LIMIT_10ms_WAIT (0x6EE7)
                               /* Defines the constant for a 10 ms wait
                                  adjustment.
#define LIMIT_250us_WAIT (0x2c6)
                               /* Defines the constant for a 250 us (0.25 ms)
                                  wait adjustment */
```

```
/*----*/
/* Prototype definitions */
/*----*/
     void main( void );
                                /* Main function
                                                                * /
      void f_init( void );
static
                                 /* Initialization function
                                                                */
static void f_init_clk_bus_wdt2( void ); /* Clock bus WDT initialization function */
static void f_int_lvi( void );
                                /* Low-voltage detector initialization
                                   function */
static void f_init_port_func( void ); /* Port/alternate-function initialization
                                   function */
/*----*/
/* Setting the LED pattern table */
/*----*/
*/
                                /* LED display pattern 1 [OFF][ON]
                                                                */
                    0 \times 04,
                     0x08,
                                /* LED display pattern 2 [ON] [OFF]
                                                                */
                    0x00 };
                                /* LED display pattern 3 [ON] [ON]
                                                                * /
/*----*/
/* Setting global variables */
/*----*/
Static unsigned char g_led_ptn_cnt = 0; /* Variables for saving LED lighting pattern */
/**********
      Main module
/**********
void main(void)
                                /* Executes initialization.
   f_init();
                                                                * /
   ___EI();
                                 /* Enables interrupts.
                                /* Main loop (infinite loop)
   while (1);
  return;
}
```

```
/*----*/
/* Initialization module
/*----*/
static void f_init( void )
                        /* Sets a bus wait for on-chip peripheral I/O registers,
   f_init_clk_bus_wdt2();
                              stops WDT2, and sets the clock. */
/*
   f_int_lvi();
                              /" Sets LVI
                                                                * /
                             /* Sets the port/alternate function. */
   f_init_port_func();
   return;
}
/*----*/
/* Initializing clock bus WDT2 */
/*----*/
static void f_init_clk_bus_wdt2( void )
{
   VSWC = 0x01;
                              /* Sets a bus wait for on-chip peripheral I/O
                                 registers. */
                              /* Specifies normal operation mode for OCDM. */
#pragma asm
                                 Caution must be exercised
         r0, PRCMD
   st.b
                                 because access to a special
   st.b
          r0, OCDM
                                 register must be described in
#pragma endasm
                                 assembly language.
                              /* Stops the internal oscillator. */
   RSTOP = 1;
                              /* Stops the watchdog timer.
   WDTM2 = 0 \times 00;
                              /* Sets not to divide the clock. */
#pragma asm
  push r10
  mov 0x80, r10
  st.b r10, PRCMD
  st.b r10, PCC
      r10
  pop
#pragma endasm
   PLLCTL = 0x03;
                             /* Sets to PLL mode.
                                                             */
   return;
```

```
}
 /*----*/
    Initializing the low-voltage detector */
 /*____*/
 static void f_init_lvi( void )
 {
    extern unsigned int _S_romp;
                          /* Externally references the ROMization
                                   symbols
                                            * /
    static unsigned char save_led_ptn; /* Variables for saving LED lighting
                                   pattern */
    unsigned int loop_wait;
    /* LVI reset */
    if( RESF.0 == 1 )
       */
       _rcopy( &_S_romp, -1 ); /* Executes ROMization processing
       * /
    }
   /* Reset generated by other than LVI */
   else
    {
       _rcopy( &_S_romp, -1 ); /* Executes ROMization processing
                                                              */
                            /* ↑LED lighting pattern specifications
                              initialized by ROMization
       LVIMK = 1;
                           /* Masks LVI interrupt
       LVISO = 0;
                           /* Sets low-voltage detection level to 2.80 V */
 /* Enabling low-voltage detection operation */
 #pragma asm
   push
        r10
        0x80, r10
   mov
   st.b r10, PRCMD
   set1 LVION
        r10
    pop
 #pragma endasm
```

```
/* Inserting 250 us (0.25 ms) wait */
          for( loop_wait = 0 ; loop_wait < LIMIT_250us_WAIT ; loop_wait++ )</pre>
              __nop();
          }
                                          /* Note that the program enters an infinite loop until the */
          while( LVIF == 1 );
                                          /* power supply voltage rises above the detection voltage */
 /* Setting operation when low voltage is detected to reset operation */
 #pragma asm
     push r10
             0x02, r10
     mov
     st.b
            r10, PRCMD
           LVIMD
     set1
     pop
             r10
 #pragma endasm
     return;
     Setting the port/alternate function */
/*----*/
static void f_init_port_func( void )
          = 0 \times 00;
                                    /* Sets P02 to P06 to output low level.
                                                                                         */
          = 0x8B;
                                    /* Connects P03 to the input latch.
                                    /* Sets INTPO input to PO3.
                                                                                    * /
    PMC0 = 0x08;
                                    /* Sets P10 and P11 to output low level.
                                                                                           * /
          = 0x00;
          = 0xFC;
                       With V850ES/JF3-L, the setting
                                                     With V850ES/JF3-L, only P10 is set.
                       value is 0xFE.
          = 0x0000;
                                    /* Sets P30 to P39 to output low level.
          = 0xFC00;
                         With V850ES/JF3-L, the setting
                                                     With V850ES/JF3-L, P30 to P35, P38, and P39 are set.
          = 0x0000;
    PMC3
                         value is 0xFCC0.
```

}

PΟ

PM0

Р1

PM1

P3

PM3

}

```
#if(0) /* To use P4 as CSIBO when using MINICUBE2,
       /* P4 is not initialized as an unused pin (QB-V850ESJG3L-TB) */
    P4
        = 0x00;
                                    /* Sets P40 to P42 to output low level.
                                                                                            */
    PM4
          = 0xF8;
    PMC4 = 0x00;
#endif
    P5
         = 0x00;
                                    /* Sets P50 to P55 to output low level.
                                                                                            */
         = 0xC0;
    PM5
    PMC5 = 0 \times 00;
                                    /* Sets P70 to P711 to output low level.
    P7H = 0x00;
    P7L
          = 0x00;
                      With V850ES/JF3-L, these are not
    PM7H = 0xF0;
                      set because the registers do not
                                                      With V850ES/JF3-L, P70 to P77 are set.
                      exist.
    PM7L = 0x00;
    P9
          = 0x0000;
                                    /* Sets P90 to P915 to output low level. */
          = 0 \times 00000;
    PM9
                                                         With V850ES/JF3-L, P90, P91, P96 to P99, and P913
    PMC9 = 0 \times 0000;
                        With V850ES/JF3-L, the setting value
                                                         to P915 are set.
                        is 0x1C3C.
    PCM
          = LED_TBL[g_led_ptn_cnt]; /* Sets PCMO and PCM1 to output low level and
                                          values to turn off the LEDs to PCM2 and PCM3. */
    PMCM = 0xF0;
    PMCCM = 0x00;
                                /* Sets PCT0, PCT1, PCT4, and PCT6 to output low level. */
    PCT = 0x00;
    PMCT = 0xAC;
    PMCCT = 0x00;
                                     /* Sets PDH0 to PDH5 to output low level.
    PDH
          = 0x00;
    PMDH = 0xC0;
                         With V850ES/JF3-L, the setting
    PMCDH = 0x00;
                                                      With V850ES/JF3-L, PDH0 and PDH1 are set.
                         value is 0xFC.
    PDL = 0 \times 00000;
                                              /* Sets PDL0 to PDL15 to output low level. */
    PMDL = 0x0000;
    PMCDL = 0x0000;
    /* Setting the interrupt function */
    INTF0 = 0x08;
                                              /* Specifies the falling edge of INTPO.
                                                                                             * /
                                              /* ↓
    INTR0 = 0 \times 00;
    PIC0 = 0x07;
                                              /* Sets the priority of INTPO to level 7
                                                 and unmasks INTPO. */
    return:
```

```
}
/**********
     Interrupt module
/**********
__interrupt
void f_int_intp0( void )
   unsigned int loop_wait;
   /* 10 ms wait for chattering */
   for( loop_wait = 0 ; loop_wait < LIMIT_10ms_WAIT ; loop_wait++ )</pre>
      __nop();
   }
   {
      g_led_ptn_cnt++;
                           /* Changes the lighting pattern (4 types).
                                                                    */
      g_led_ptn_cnt &= 3;
     PCM = LED_TBL[led_ptn_cnt]; /* Sets the updated lighting pattern.
                                                                     * /
   }
   PICO &= (unsigned char)~0x80; /* FailSafe: Clears multiple requests.
                                                                    */
   return;
                            /* Goes to reti due to the __interrupt modifier. */
}
```

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111

Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office Industriestrasse 3

70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France

Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

·

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/