
 APPLICATION NOTE

R01AN1223JJ0100 Rev.1.00 Page 1 of 18
Jun. 22, 2012

V850E2/ML4
DMA Control

Abstract
This document describes how to set up the DMA (Direct Memory Access) and also gives an outline of the operation

and describes the procedures for using a sample program.

The features of the operation are described below:

Transfer inside of inner RAM.
Transfer between inner RAM and peripheral I/O.
DMAC (Direct Memory Access Controller) transfers by software trigger.
DTFR (DMA trigger factor register) transfers by interrupt signal trigger.

Products
V850E2/ML4

Integrated development environments
CubeSuite+, GHS MULTI V5.1.7D, and IAR for V850 Kickstart V3.80.

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1223JJ0100
Rev.1.00

Jun. 22, 2012

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 2 of 18
Jun. 22, 2012

Contents

1. Specifications .. 3

2. Operation Confirmation Conditions .. 5
2.1 Pin(s) Used ... 6

3. Software.. 7
3.1 Operation Overview... 7
3.2 Required Memory Size .. 8
3.3 File Composition.. 9
3.4 Option-Setting Memory...10
3.5 Function(s) ...11
3.6 Function Specification(s)...12
3.7 Flowchart(s)..14

3.7.1 Main Processing ...14
3.7.2 Initialize DMA..15
3.7.3 Interrupt Processing..17

4. Sample Code ...18

5. Reference Documents..18

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 3 of 18
Jun. 22, 2012

1. Specifications

This application note explains examples using DMAC (Direct Memory Access Controller) and DTFR (DMA Trigger

Factor Register).

Table 1.1 lists the Peripheral Functions and their Applications and Fugure1.1 shows the Example1: transfer inside of
inner RAM by DMAC.

Table 1.1 Peripheral Functions and their Applications

Peripheral Function Application
Ports(P1_4, P1_5, P4_3, P4_4) Connected to LEDs, and light on or off LEDs.
Ports(P0_0..P0_15) Destination of DTFR transfer.

The parameters required for the transfer of data are stored in the DMAC, which transfers data in response to
DMA transfer requests. As an example of software DMA transfer requests, the main points in the operation
of the software to transfer data between locations in internal memory are illustrated below.

Fugure1.1 Example1: transfer inside of inner RAM by DMAC1

1 Mass production of RSK board will start in August, 2012.

Set DMAC

Start DMAC

Wait for end of
transfer

End

Internal RAM

Transfer source

Transfer
destination

: Flow of processing

: Flow of data

Connected by
the emulator

Check if the transferred data
is correct in DMA interrupt
(INTDMACT0), on the
debugger.

RSK board

Copying

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 4 of 18
Jun. 22, 2012

The DTFR (DMA Trigger Factor Register) is used to select the interrupt signal which becomes the
trigger for DMA from among all interrupt signals. Requests from the DTFR for the DMA transfer of data
are handled by the DMAC.

Specifically, the signal to be used as a DMA transfer request is selected from among the 128 input
interrupt signals by the setting in DTFRn (n = 15 to 0). As an example of a hardware DMA transfer
request, the main points in transferring data with a timer interrupt as the trigger are illustrated
below. The data from internal RAM are output via port P0.

Figure 1.2 Example2: transfer between inner RAM and peripheral I/O by DTFR2

2 Mass production of RSK board will start in August, 2012.

: Flow of processing

: Flow of data

Peripheral I/O

Set DMAC

Start DMAC

Await end of transfer

終了

Inner RAM

Set DTFR

Transfer source

Transfer
destination

Copying

Connected by
the emulator

Check if the transferred data
is correct in DMA interrupt
(INTDMA0), on the debugger. RSK board2

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 5 of 18
Jun. 22, 2012

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used V850E2/ML4
Operating frequency 200MHz (PLL multiplies the oscillator input frequency (fX: 10MHz) by 20.)
Operating voltage 3.3V

CubeSuite+ V1.00
GHS MULTI V5.1.7D

Integrated development
environment

IAR for V850 Kickstart V3.80.1
CX V1.20(CubeSuite+), optimization: default
C-V850E 5.1.7 RELEASE(GHS MULTI) , optimization: default

C compiler

IAR C/C++ Compiler for V850 3.80.1 [Kickstart] (3.80.1.30078),
optimization: default

Operating mode Normal operation mode
Sample code version V1.00
Board used RSK board
Device used E1 emulator or MINICUBE
Tool used none

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 6 of 18
Jun. 22, 2012

2.1 Pin(s) Used
Table 2.2 lists the Pins Used and Its Function.

Table 2.2 Pins Used and Its Functions

Pin Name I/O Function
PORT P1_4 output Port mode, output, LED0
PORT P1_5 output Port mode, output, LED1
PORT P4_3 output Port mode, output, LED2
PORT P4_4 output Port mode, output, LED3
PORT P0_0..P0_15 output The destination of DTFR transfer

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 7 of 18
Jun. 22, 2012

3. Software

3.1 Operation Overview
Operation Overview is described in the following figure. The main() function initializes each functions, and waits
interrupt. When DMA transfer completion or transfer count match interrupt has occurred, this sample lights on or off
LED, or clears transfer completion flag.

Figure3.1 shows the Sequence.

Figure3.1 Sequence diagram

main.c initial.c

cg_initial()
initialize clock

port_initial()
initialize port

board_initial()
initialize LED

ram_initial()
initialize users’ memory

dma_control.c

dma0_initial()
initialize DMA0(DMAC)

__DI() disable interrupt

__DI() enable interrupt

interrupt.c

int_dmact0() : DMA0 transfer
count match interrupt

main()

hbus_initial()
initialize HBUS

dma1_initial()
initialize DMA1(DTFR)

taua0_control.c

taua0_initia()
initialize timer TAUA0, as a
trigger of DMA1(DTFR) transfer

int_dmact1() : DMA1 transfer
completion interrupt

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 8 of 18
Jun. 22, 2012

3.2 Required Memory Size
Table 3.1 lists the Required Memory Size. (CubeSuite+, optimization=default)

Table 3.1 Required Memory Size

Memory Used Size Remarks
ROM 5100 Shown as ROM area size in map file
RAM 4108 Shown as RAM area size in map file
Maximum user stack usage 4 CubeSuite+ stack estimation tool calculated.
Maximum interrupt stack usage 60 The same as above.
Note: The required memory size varies depending on the C compiler version and its options.

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 9 of 18
Jun. 22, 2012

3.3 File Composition
Table 3.2 lists the File(s) Used in the Sample Code. Files not generated by the integrated development environment

should not be listed in this table.

Table 3.2 File(s) Used in the Sample Code

File Name Outline Remarks
crtE.s Only in the project for CubeSuite+
startup.s

Initialize hardware
Only in the project for GHS MULTI

V850E2ML4.dir Only in the project for CubeSuite+
V850E2_ML4 DMA.ld

Linker directive file
Only in the project for GHS MULTI

vector.s Vector table Only in the project for GHS MULTI
dma.h Declare variables and functions.
df4022_800.h Declare register macros for V850E2/ML4 Only in the project for GHS MULTI
main.c Main routine
initial.c Initialize software
dma_control.c Initialize DMA
taua0_control.c Initialize timer TAUA0
interrupt.c Interrupt routines

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 10 of 18
Jun. 22, 2012

3.4 Option-Setting Memory
This sample does not specify any option-bytes. Specify them if necessary.

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 11 of 18
Jun. 22, 2012

3.5 Function(s)
Table 3.3 lists the Function(s).

Table 3.3 Function(s)

Function Name Outline
void port_initial(void) Sets up ports and their mode.
void cg_initial(void) Initializes the special clock frequency control register.
void hbus_initial(void) Initializes the AHB bus
void board_initial(void) Initializes the LEDs
void ram_initial(void) Sets up the initial state of the user RAM
void dma0_initial(void) Initializes DMA0(DMAC)
void dma1_initial(void) Initializes DMA1(DTFR)
void taua0_initial(void) Initialize timer TAUA0 as a trigger of DTFR
interrupt void int_dmact0(void) DMA0 transfer count match interrupt.
interrupt void int_dma1(void) DMA1 transfer completion interrupt.
void main(void) Calls necessary initialization functions and waits interrupt in infinite

loop.

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 12 of 18
Jun. 22, 2012

3.6 Function Specification(s)
The following tables list the sample code function specification(s).

main()

Outline Main routine
Header －

Declaration void main(void)
Description Calls necessary initialization functions and waits interrupt in infinite loop.
Arguments － －

Return Value －

port_initial()
Outline Sets up ports and their mode.
Header csih.h

Declaration void port_initial (void)
Description Sets up ports in port-mode, output, for controlling LEDs.
Arguments none -

Return Value none

cg_initial()

Outline Initialize clock
Header csih.h

Declaration void cg_initial(void)
Description Initializes the special clock frequency control register.
Arguments none -

Return Value none

hbus_initial()

Outline Initialize H-bus
Header csih.h

Declaration void hbus_initial(void)
Description Initializes AHB-bus
Arguments none -

Return Value none

board_initial()

Outline Initialize board
Header csih.h

Declaration void board_initial(void)
Description Initialize LED on the board.
Arguments － －

Return Value －

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 13 of 18
Jun. 22, 2012

ram_initial()
Outline Initialize users’ memory.
Header csih.h

Declaration void ram_initial(void)
Description Initialize LED on the board.
Arguments － －

Return Value －

dma0_initial()

Outline Initialize DMA0
Header dma.h

Declaration void dma0_initial(void)
Description Initialize DMA0 as software-triggered DMAC.
Arguments － －

Return Value －

dma1_initial()
Outline Initialize DMA1
Header dma.h

Declaration void dma1_initial(void)
Description Initialize DMA0 as hardware-triggered DTFR.
Arguments － －

Return Value －

taua0_initial ()

Outline Initialize timer TAUA0
Header dma.h

Declaration void taua0_initial(void)
Description Initialize TAUA0 as a trigger of DTFR.
Arguments － －

Return Value －

int_dmact0()

Outline DMA0 transfer count match interrupt
Header －

Declaration __interrupt void int_dmact0(void)
Description DMA0 transfer count match interrupt, inverts LED.
Arguments － －

Return Value －

int_dma1()

Outline DMA1 transfer completion interrupt
Header －

Declaration __interrupt void int_dma1(void)
Description DMA1 transfer completion interrupt, inverts LED, and clears transfer completion flag.
Arguments － －

Return Value －

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 14 of 18
Jun. 22, 2012

3.7 Flowchart(s)
3.7.1 Main Processing

Figure3.2 shows the Main Processing.

Figure3.2 Main Processing

main()

Disable maskable interrupts

Initialize system

Initialize software

Initialize DMA

Enable maskable interrupts

Start transfer

by software(DMA0);

by INTTAUA0I0(DMA1).

Shows if transfer is over, on LED,
and restarts transfer(only dma1).

Initialize timer

Main
processing

Initialization

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 15 of 18
Jun. 22, 2012

3.7.2 Initialize DMA

Figure3.3 shows flowchart of Initialize DMA0(DMAC).

Figure3.3 Initialize DMA0(DMAC)

dma0_initial()

Set transfer destination address

Set transfer count

Select transfer trigger

Unmask interrupt

Enable DMA

Set transfer source address

END
Wait for interrupt

DSA0 register <- 1EDFA000H: DMA source address.
DSC0 register <- 0002H: DMA source is inner RAM.

DTCT0 register <- 1000H
DS1, DS0 bit = 00: DMA transfer data size = 8bits
MLE bit = 1 : Multi-link enable (does not clear DTSnDTE, enables

continuous transfer.)
SACM1, SACM0 bits = 00: DMA transfer source address counting

direction = increment
DACM1, DACM0 bits = 00: DMA transfer destination address

counting direction = increment
DSM bit = 0: DMA signal mode =Read cycle.

ICDMACT0 register <- 000FH : unmask transfer count match interrupt.

DTS0DTE bit <- 1H: enables DMA.

Back to main(), wait for interrupt in the infinite loop.

DDA0 register <- 1EDFB000H : DMA destination address.
DDC0 register <- 0002H: DMA destination is inner RAM.

DTC0 register <- 4H: DMA transfer count = 4

Set transfer count match
DTCC0 register <- 2H: DMA transfer count compare. When the transfer
count reaches to 2, INTDMACT0 will occur.

Set up DMA

DTRS0 register <- 0000H: Software DMA transfer request

Prohibit DMA transfer DTS0DTE bit <- 00H: prohibit DMA transfer.

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 16 of 18
Jun. 22, 2012

Figure3.4 shows flowchart of Initialize DMA1(DTFR).

Figure3.4 Initialize DMA1(DTFR)

dma1_initial()

Set transfer destination address

Set transfer count

Select DMA transfer request

Unmask interrupt

Enable DMA

Set transfer source address

END
Wait for interrupt

DSA1 register <- 1EDFC000H: DMA source address.
DSC1 register <- 0002H: DMA source is inner RAM.

DTCT0 register <- 3000H
DS1, DS0 bit = 01B :DMA transfer data size = 16bits
MLE bit = 1 : Multi-link enable (does not clear DTSnDTE, enables

continuous transfer.)
SACM1, SACM0 bits = 00: DMA transfer source address counting

direction = increment
DACM1, DACM0 bits = 00: DMA transfer destination address

counting direction = increment
DSM bit = 0: DMA signal mode =Read cycle.

ICDMA1 register <- 000FH : unmask transfer completion interrupt.

DTS0DTE bit <- 1H: enables DMA.

Back to main(), wait for interrupt in the infinite loop.

DDA1 register <- 1FFF8000H: DMA destination address.
DDC1 register <- 0001H: DMA destination is peripheral I/O.

DTC0 register <- 1H: DMA transfer count = 1

Set up DMA

DTRS1 register <- 0001H: hardware DMA transfer request
DTFR1 register <- 8020H:

REQEN bit = 1: enables DMA source selector.
IFCn6- IFCn0 bits = 20H：DMA start source = INTTAUA0I0.

Prohibit DMA transfer DTS1DTE bit <- 00H: prohibit DMA transfer.

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 17 of 18
Jun. 22, 2012

3.7.3 Interrupt Processing

Figure3.5 shows the flowchart of Transfer count match interrupt.

Figure3.5 Transfer count match interrupt

Figure3.6 shows the flowchart of Transfer completion interrupt.

Figure3.6 Transfer completion interrupt

Transfer completion interrupt
int_dma1

An interrupt INTDMA1 occurs when the transfer of DMA1 has
completed.

Invert LED1, shows the transfer is over. Invert LED1

END

DTS1TC bit =0: clears transfer end status. Wait for the next
transfer request (INTTAUA0I0).

Clears transfer end status

Transfer count match
int_dmact0

An interrupt INTDMACT0 occurs when the transferred count
matches to the number specified in DTCC0 register.

Light on LED2, shows the transfer is over. Light on LED2

END

V850E2/ML4 DMA Control

R01AN1223JJ0100 Rev.1.00 Page 18 of 18
Jun. 22, 2012

4. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

5. Reference Documents
User’s Manual: Hardware

V850E2/ML4 User’s Manual: Hardware (R01UH0262EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

A-1

REVISION HISTORY V850E2/ML4 Application Note DMA Controller

Description Rev. Date

Page Summary
1.00 Jun. 22, 2012 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
The states of internal circuits in the LSI are indeterminate and the states of register settings and pins

are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
When the clock signal is generated with an external resonator (or from an external oscillator) during a

reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover,
when switching to a clock signal produced with an external resonator (or by an external oscillator)
while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Copying

