
 APPLICATION NOTE

V850E2M Series
V850E2M Fixed-point Library (Using 22 register mode)

Introduction

This document describes the usage of V850E2M Fixed-point Library

Target Device

V850E2M series

Content

1. Fixed-point Library .. 2

2. Specification of Fixed-point Library .. 6

3. Performance and Precision .. 20

R01AN1678ES0100
Rev.1.00

May 31, 2013

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 2 of 21

May 31, 2013

1. Fixed-point Library

1.1 Overview

This library provides real-number operations using fixed-point format1 for V850E2M series.

The fixed-point library enables fast real-number operations, especially on CPU's without FPU.

This library supports the following functions for fixed-point type with 16, 24, or 29 fraction bits.

1. Multiplication and division
2. Mathematical functions (sin, cos, atan, and sqrt)
3. Conversion between floating point data.

Use 16-bit or 24-bit depending on the required precision of your application. 29-bit precision is supported as the most
precise type which can represent the input range of trigonometric functions (-π~+π).

In fixed-point arithmetic, the range of values is restricted compared with floating point. So appropriate precision should
be selected according to the input/output values of each operations. For this reason, this library supports multiplication,
division, conversion for all the precision (from 1 to 31) of fixed-point type.

1.2 Related Application Note

[1] V850E2M Series V850E2M Fixed-point Library (Using 32 register mode) Application Note
(R01AN1349ES)

1.3 Format of Fixed-point Data

Following is the format of fixed-point data supported in this library.

 1: Negative

Figure 1. Fixed-point Data Format

According to the number of bits in fraction part, types from FIX1 to FIX31 are supported. The number indicates the
number of bits in the fraction type.

Generic fixed-point type FIX is also supported, and generic fixed-point operations are supported for this type.

1 Fixed-point format represents a real number by assuming a decimal point at some fixed bit position.

31 30 n n-1 0

Sign Integer Part Fraction Part

(1bit) (32 - (1+n) bits) (n bits)

0: Positive

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 3 of 21

May 31, 2013

1.4 Library Files

The following include file and library files are provided.
When using this library, include the file indicated in table 1, and link the library file (corresponding to the compiler
option) indicated in table 2.

Table 1. Include File for Fixed-point Library

Library Function

Fixed-point library Implements fixed-point operations "fixmath.h"

Table 2. Fixed-point Libraries

Library name Compiler Option

cpu

V850E2Mfixmath.lib V850E2M

22 register Mode

Before using, copy these files into your local include or library directories.

Figure 2. Sample Configuration

1.5 Example of Usage

The following example shows a program using FIX16 operation and how to specify the library undef CubeSuite+.

[Source Program]
#include <stdio.h>
#include "fixmath.h" // Necessary when using
 // fixed-point library

void main()
{

float r_flt;
 FIX16 d_fix16, r_fix16;

 d_fix16 = FIX16_fromfloat(3.1415926f/2); // convert float type constant to FIX16
 r_fix16 = FIX16_sin(d_fix16); // computes sin
 r_flt = FIX16_tofloat(r_fix16); // Convert back for printing
 printf("%f¥n", r_flt);
}

include directory fixmath.h

library directory V850E2Mfixmath.lib

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 4 of 21

May 31, 2013

[How to specify the library under CubeSuite+]

Right click [File] in project tree menu, select “Add”->”Add File…”. In the dialog box [Add Existing File], choose the
library file and click the “Open” button, the library file will be added to the project tree menu.

Figure 3. Specifying library

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 5 of 21

May 31, 2013

[How to specify the 22 register Mode Compiler setting under CubeSuite+]

Click on [CX (Build Tool)] in project tree menu. Under Property Tab (CX Property), click on Register Mode to ensure
that 22 register mode(None) is selected.

Figure 4. Specifying 22 Register Mode

1.6 Notes on Library Usage

If the result of operation or conversion exceeds the range of fixed-point type, the result is not guaranteed.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 6 of 21

May 31, 2013

2. Specification of Fixed-point Library

2.1 "fixmath.h"

This header file defines types and functions for fixed-point operations.
Table 3 shows the types defined in the file and supported functions (macros).

NOTATION: The notation <n> in type, function, or macro names represents a number from 1 to 31. The number in the

function or macro name corresponds to the number in the type name.

Table 3. Types and Supported Functions

Type Supported functions and macros
FIX1-FIX31
(except FIX16, FIX24
or FIX29)

FIX<n>_mul_short, FIX<n>_mul, FIX<n>_div, FIX<n>_tofloat,
FIX<n>_fromfloat, FIX<n>_todouble, FIX<n>_fromdouble,
FIX<n>_mul_frac, FIX<n>_mul_sat

FIX16, FIX24, FIX29 FIX<n>_mul_short, FIX<n>_mul, FIX<n>_div, FIX<n>_tofloat,
FIX<n>_fromfloat, FIX<n>_todouble, FIX<n>_fromdouble,
FIX<n>_mul_frac, FIX<n>_mul_sat,
FIX<n>_sin, FIX<n>_cos, FIX<n>_atan, FIX<n>_sqrt

FIX FIX_mul_scale<n>, FIX_mul_frac_scale<n>, FIX_mul_sat_scale<n>,
FIX_mul_scale, FIX_mul_frac_scale, FIX_mul_sat_scale

These types are defined as long type.
When the operands and the result of an operation are the same type (FIX<n>), use the function corresponding to that
type. Otherwise, use a function corresponding to the generic fixed-point type FIX.

[Hints on Fixed-point Library Usage]

(1) Select one of the standard fixed-point type (FIX16 or FIX24) according to the requirement of your application.
(2) Compared with floating-point types, fixed-point types have limited range of values. It is recommended to select

appropriate fixed-point types according to the range of input or intermediate result, or required precision of
arithmetic.

(3) When converting data between different fixed-point types, use shift operator of C language.

 Example: Conversion from FIX16 to FIX24

 FIX16 x, FIX24 y;
 x=y>>8;

(4) When adding or subtracting between data of the same fixed-point type, use integer addition or subtraction of the C

language.

 Example: Addition of FIX16.

 FIX16 x, y, z;
 z=x+y;

(5) Conversion between floating-point types and fixed-point types should be done only when required. Unnecessary

conversions reduces the efficiency. But the conversion function applied to a constant generates a constant expression
by expanding a macro, and fixed-point constant can be specified without any overhead.

 Example: Fixed-point constant.

 FIX16 x;
 x=FIX16_fromfloat(3.14f);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 7 of 21

May 31, 2013

Table 4 shows the representations and ranges of fixed types.

Table 4. Representation and Ranges of Fixed Types

Type Size
(byte)

Alignment
(byte)

Sign Range

Minimum Value Maximum Value

FIX1 4 4 signed -230(-1073741824.0) 230-2-1(1073741823.5)

FIX2 4 4 signed -229(-536870912.0) 229-2-2 (536870911.75)

FIX3 4 4 signed -228(-268435456.0) 228-2-3 (268435455.875)

FIX4 4 4 signed -227(-134217728.0) 227-2-4 (134217727.9375)

FIX5 4 4 signed -226(-67108864.0) 226-2-5 (67108863.96875)

FIX6 4 4 signed -225(-33554432.0) 225-2-6 (33554431.984375)

FIX7 4 4 signed -224(-16777216.0) 224-2-7 (16777215.9921875)

FIX8 4 4 signed -223(-8388608.0) 223-2-8 (8388607.99609375)

FIX9 4 4 signed -222(-4194304.0) 222-2-9 (4194303. 998046875)

FIX10 4 4 signed -221(-2097152.0) 221-2-10 (2097151. 9990234375)

FIX11 4 4 signed -220(-1048576.0) 220-2-11(1048575. 99951171875)

FIX12 4 4 signed -219(-524288.0) 219-2-12 (524287. 999755859375)

FIX13 4 4 signed -218(-262144.0) 218-2-13 (262143. 9998779296875)

FIX14 4 4 signed -217(-131072.0) 217-2-14 (131071. 99993896484375)

FIX15 4 4 signed -216(-65536.0) 216-2-15(65535. 999969482421875)

FIX16 4 4 signed -215(-32768.0) 215-2-16(32767.9999847412109375)

FIX17 4 4 signed -214(-16384.0) 214-2-17 (16383.99999237060546875)

FIX18 4 4 signed -213(-8192.0) 213-2-18 (8191.999996185302734375)

FIX19 4 4 signed -212(-4096.0) 212-2-19 (4095.9999980926513671875)

FIX20 4 4 signed -211(-2048.0) 211-2-20 (2047.99999904632568359375)

FIX21 4 4 signed -210(-1024.0) 210-2-21 (1023.999999523162841796875)

FIX22 4 4 signed -29(-512.0) 29-2-22 (511.9999997615814208984375)

FIX23 4 4 signed -28(-256.0) 28-2-23 (255.99999988079071044921875)

FIX24 4 4 signed -27(-128.0) 27-2-24 (127.999999940395355224609375)

FIX25 4 4 signed -26(-64.0) 26-2-25 (63.9999999701976776123046875)

FIX26 4 4 signed -25(-32.0) 25-2-26 (31.99999998509883880615234375)

FIX27 4 4 signed -24(-16.0) 24-2-27 (15.999999992549419403076171875)

FIX28 4 4 signed -23(-8.0) 23-2-28 (7.9999999962747097015380859375)

FIX29 4 4 signed -22(-4.0) 22-2-29 (3.99999999813735485076904296875)

FIX30 4 4 signed -21(-2.0) 21-2-30 (1.999999999068677425384521484375)

FIX31 4 4 signed -20(-1.0) 20-2-31 (0.9999999995343387126922607421875)

FIX 4 4 signed Represents one of above ranges, depending on the number of fraction bits

assumed.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 8 of 21

May 31, 2013

The macros defined are listed in table 5.

Table 5. List of Macros

Category Name Paramet
er Type

Return
Type

Description

Multiplication FIX<n>_mul_short FIX<n>
n=1~31

FIX<n>
n=1~31

Computes multiplication of fixed-point
data (If the multiplication result
exceeds 32-bits, the result is not
guaranteed).

FIX<n>_mul_frac FIX<n>
n=1~31

FIX<n>
n=1~31

Computes fractional part f of the
fixed-point multiplication (0<=f<1.0).

Division FIX<n>_div FIX<n>
n=1~31

FIX<n>
n=1~31

Computes division of fixed-point data.

Conversion FIX<n>_tofloat FIX<n>
n=1~31

float Converts FIX<n> to float.

FIX<n>_fromfloat float FIX<n>
n=1~31

Converts float to FIX<n>.

FIX<n>_todouble FIX<n>
n=1~31

double Converts FIX<n> to double.

FIX<n>_fromdouble double FIX<n>
n=1~31

Converts double to FIX<n>.

Multiplication
of generic
fixed-point

FIX_mul_scale<n> FIX FIX Computes multiplication of generic
fixed-point data.

FIX_mul_frac_scale<n> FIX FIX Computes fractional part f of the
generic fixed-point multiplication
(0<=f<1.0).

FIX_mul_sat_scale<n> FIX FIX Computes multiplication of generic
fixed-point data. When overflow
occurs, the result is maximum or
minimum value of the range.

FIX_mul_frac_scale FIX FIX Computes fractional part f of the
generic fixed-point multiplication
(0<=f<1.0).

 If the result of operation is outside the range of the data type, its value is not guaranteed.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 9 of 21

May 31, 2013

The functions declared are listed in table 6.

Table 6. List of Functions

Category Name Parameter
Type

Return
Type

Description

Multiplication FIX_mul FIX FIX Computes multiplication of fixed-point
data.

FIX<n>_mul_sat FIX<n>
n=1~31

FIX<n>
n=1~31

Computes multiplication of fixed-point
data. When overflow occurs, the result
is maximum or minimum value of the
range.

Sine FIX<n>_sin FIX<n>
n=16, 24,
29

FIX<n>
n=16,
24, 29

Computes sine of fixed-oint data
(radian)

Cosine FIX<n>_cos FIX<n>
n=16, 24,
29

FIX<n>
n=16,
24, 29

Computes cosine of fixed-point data
(radian).

Arctangent FIX<n>_atan FIX<n>
n=16, 24,
29

FIX<n>
n=16,
24, 29

Computes radian value of arctangent of
fixed-point data.

Square Root FIX<n>_sqrt FIX<n>
n=16, 24,
29

FIX<n>
n=16,
24, 29

Computes square root of fixed-point
data

Multiplication
of generic
fixed-point

FIX_mul_scale FIX FIX Computes multiplication of generic
fixed-point data.

FIX_mul_sat_scale FIX FIX Computes multiplication of generic
fixed-point data. When overflow occurs,
the result is maximum or minimum
value of the range.

 If the result of operation is outside the range of the data type, its value is not guaranteed.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 10 of 21

May 31, 2013

2.2 Description of Functions

2.2.1 Multiplication (macro)

[Function] FIX<n> FIX<n>_mul_short(FIX<n> x, FIX<n> y)

 n: 1~31

[Description] Two 32-bit data are multiplied and shifted right by n bits. This computes the multiplication of two

fixed-point data of FIX<n> type.

[Header] "fixmath.h"

[Return Value] Result of multiplication

[Parameters] x: Fixed-point data.
 y: Fixed-point data

[Example] #include "fixmath.h"
 fix16 x, y, ret;

 ret=FIX16_mul_short(x, y);

[Note] Short multiplication uses 32-bit integer arithmetic. The result is not guaranteed if the intermediate

result exceeds 32 bits.

2.2.2 Division (macro)

[Function] FIX<n> FIX<n>_div(FIX<n> x, FIX<n> y)

 n: 1~31

[Description] Computes the quotient of two fixed-point data.

[Header] "fixmath.h"

[Return Value] Result of division

[Parameters] x: Dividend.
 y: divisor

[Example] #include "fixmath.h"
 fix16 x, y, ret;

 ret=FIX16_div(x, y);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 11 of 21

May 31, 2013

2.2.3 Conversion (macro)

(1) Conversion from float type to fixed-point
[Function] FIX<n> FIX<n>_fromfloat(float x)

 n: 1~31

[Description] Converts float type data to fixed-point type.

[Header] "fixmath.h"

[Return Value] Result of conversion

[Parameters] x: Source of conversion

[Example] #include "fixmath.h"
 float x;
 FIX16 ret;

 ret=FIX16_fromfloat(x);

(2) Conversion from double type to fixed-point
[Function] FIX<n> FIX<n>_fromdouble(double x)

 n: 1~31

[Description] Converts double type data to fixed-point type.

[Header] "fixmath.h"

[Return Value] Result of conversion

[Parameters] x: Source of conversion

[Example] #include "fixmath.h"
 double x;
 FIX16 ret;

 ret=FIX16_fromdouble(x);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 12 of 21

May 31, 2013

(3) Conversion from fixed-point type to float
[Function] float FIX<n>_tofloat(FIX<n> x)

 n: 1~31

[Description] Converts fixed-point data to float.

[Header] "fixmath.h"

[Return Value] Result of conversion

[Parameters] x: Source of conversion

[Example] #include "fixmath.h"
 FIX16 x;
 float ret;

 ret=FIX16_tofloat(x);

(4) Conversion from fixed-point type to double
[Function] double FIX<n>_todouble(FIX<n> x)

 n: 1~31

[Description] Converts fixed-point data to double.

[Header] "fixmath.h"

[Return Value] Result of conversion

[Parameters] x: Source of conversion

[Example] #include "fixmath.h"
 FIX16 x;
 double ret;

 ret=FIX16_todouble(x);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 13 of 21

May 31, 2013

2.2.4 Multiplication

[Function] FIX FIX_mul(FIX x, FIX y, int n)

 n: 1~31

[Description] Computes the multiplication of two fixed-point data of FIX type. 64-bit intermediate result is used.

Supposing fraction part both of x and y is n-bit, computes the product of two fixed-point data and the
values of x and y are multiplied as long data, and shifted n bits to the right.

[Header] "fixmath.h"

[Return Value] Result of multiplication

[Parameters] x: Fixed-point data.
 y: Fixed-point data
 n: bit size of Fraction Part

[Example] #include "fixmath.h"
 FIX16 x, y, ret;

 ret=(FIX16)FIX_mul((FIX)x, (FIX)y, 16);

2.2.5 Sine Function

[Function] FIX<n> FIX<n>_sin(FIX<n> x)

 n: 16, 24, 29

[Description] Computes the sine function of FIX<n> fixed-point data. The result is radian value.
[Header] "fixmath.h"

[Return Value] Result of sine.

[Parameters] x: Fixed-point data (radian)

[Example] #include "fixmath.h"
 FIX16 x, ret;

 ret=FIX16_sin(x);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 14 of 21

May 31, 2013

2.2.6 Cosine Function

[Function] FIX<n> FIX<n>_cos(FIX<n> x)

 n: 16, 24, 29

[Description] Computes the cosine function of FIX<n> fixed-point data. The result is radian value.

[Header] "fixmath.h"

[Return Value] Result of cosine.

[Parameters] x: Fixed-point data (radian)

[Example] #include "fixmath.h"
 FIX16 x, ret;

 ret=FIX16_cos(x);

2.2.7 Arctangent Function

[Function] FIX<n> FIX<n>_atan(FIX<n> x)

 n: 16, 24, 29

[Description] Computes the arctangent function of FIX<n> fixed-point data. The result is radian value.

[Header] "fixmath.h"

[Return Value] Result of arctangent (in radian).

[Parameters] x: Fixed-point data.

[Example] #include "fixmath.h"
 FIX16 x, ret;

 ret=FIX16_atan(x);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 15 of 21

May 31, 2013

2.2.8 Square Root Function

[Function] FIX<n> FIX<n>_sqrt(FIX<n> x)

 n: 16, 24, 29

[Description] Computes the square root of FIX<n> fixed-point data.

[Header] "fixmath.h"

[Return Value] Result of square root.

[Parameters] x: Fixed-point data.

[Example] #include "fixmath.h"
 FIX16 x, ret;

 ret=FIX16_sqrt(x);

2.2.9 Multiplication (fraction part) (macro)

[Function] FIX<n> FIX<n>_mul_frac(FIX<n> x, FIX<n> y)

 n: 1~31

[Description] Computes the fraction part of the product. The result will always be positive (0<=result<1.0).

[Header] "fixmath.h"

[Return Value] Fractional part of the product.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX16 x, y, ret;

 ret=FIX16_mul_frac(x, y);

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 16 of 21

May 31, 2013

2.2.10 Multiplication (saturated) (macro)

[Function] FIX<n> FIX<n>_mul_sat(FIX<n> x, FIX<n> y)

 n: 1~31

[Description] Computes the product of two fixed-point data. When the result overflows, the return value will be the

maximum or minimum value, according to the sign of the result.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX16 x, y, ret;

 ret=FIX16_mul_sat(x, y);

2.2.11 Multiplication (FIX-type) (macro)

[Function] FIX FIX_mul_scale<n>(FIX x, FIX y)

 n: 1~31

[Description] Computes the product of two generic fixed-point data. The values of x and y are multiplied as long

data, and shifted n bits to the right.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;

 ret=FIX_mul_scale16(x, y);

[Note] If the result cannot be represented in 32-bit, its value is not guaranteed. When multiplying FIX<n1>

and FIX<n2> to get FIX<n3> type, shift count is n1+n2-n3, and you can specify this value (1~31) as
<n>.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 17 of 21

May 31, 2013

2.2.12 Multiplication (FIX-type)

[Function] FIX FIX_mul_scale(FIX x, FIX y, int n)

 n: 1~31

[Description] Computes the product of two generic fixed-point data. The values of x and y are multiplied as long

data, and shifted n bits to the right.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;
 int n=16;

 ret=FIX_mul_scale(x, y, n);

[Note] If the result cannot be represented in 32-bit, its value is not guaranteed. When multiplying FIX<n1>

and FIX<n2> to get FIX<n3> type, shift count is n1+n2-n3, and you can specify this value (1~31) as
<n>.

2.2.13 Multiplication (fraction part, FIX-type) (macro)

[Function] FIX FIX_mul_frac_scale<n>(FIX x, FIX y)

 n: 1~31

[Description] Computes the fraction part of the product of two generic fixed-point data. The values of x and y are

multiplied as long data, shifted n bits to the right, and lower n-bits are returned.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;

 ret=FIX_mul_frac_scale16(x, y);

[Note] This function can be used to compute the fractional part of FIX<n> type by multiplying FIX<n+d>

type and FIX<n-d> type.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 18 of 21

May 31, 2013

2.2.14 Multiplication (fraction part, FIX-type) (macro)

[Function] FIX FIX_mul_frac_scale(FIX x, FIX y, int n)

 n: 1~31

[Description] Computes the fraction part of the product of two generic fixed-point data. The values of x and y are

multiplied as long data, shifted n bits to the right, and lower n-bits are returned.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;
 int n=16;

 ret=FIX_mul_frac_scale(x, y, n);

[Note] This function can be used to compute the fractional part of FIX<n> type by multiplying FIX<n+d>

type and FIX<n-d> type.

2.2.15 Multiplication (saturated, FIX-type) (macro)

[Function] FIX FIX_mul_sat_scale<n>(FIX x, FIX y)

 n: 1~31

[Description] Computes the product of two generic fixed-point data. The values of x and y are multiplied as long

data, and shifted n bits to the right. When the result overflows, the return value will be the maximum
or minimum value, according to the sign of the result.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;

 ret=FIX_mul_sat_scale16(x, y);

[Note] If the result cannot be represented in 32-bit, its value is not guaranteed. When multiplying FIX<n1>

and FIX<n2> to get FIX<n3> type, shift count is n1+n2-n3, and you can specify this value (1~31) as
<n>.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 19 of 21

May 31, 2013

2.2.16 Multiplication (saturated, FIX-type)

[Function] FIX FIX_mul_sat_scale(FIX x, FIX y, int n)

 n: 1~31

[Description] Computes the product of two generic fixed-point data. The values of x and y are multiplied as long

data, and shifted n bits to the right. When the result overflows, the return value will be the maximum
or minimum value, according to the sign of the result.

[Header] "fixmath.h"

[Return Value] Product of fixed point data.

[Parameters] x: Fixed-point data.
 y: Fixed-point data.

[Example] #include "fixmath.h"
 FIX x, y, ret;
 int n=16;

 ret=FIX_mul_sat_scale(x, y, n);

[Note] If the result cannot be represented in 32-bit, its value is not guaranteed. When multiplying FIX<n1>

and FIX<n2> to get FIX<n3> type, shift count is n1+n2-n3, and you can specify this value (1~31) as
<n>.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 20 of 21

May 31, 2013

3. Performance and Precision

3.1 Evaluation Condition

Compiler: CX V1.21

3.2 Execution Cycles

The execution cycles of fixed-point mathematical functions are shown in table 7.

Table 7. Execution Cycles of Fixed-point Mathematical Functions

CPU V850E2M

Sine FIX16_sin 67

FIX24_sin 67

FIX29_sin 64

Cosine FIX16_cos 61

FIX24_cos 61

FIX29_cos 63

Arctangent FIX16_atan 120

FIX24_atan 120

FIX29_atan 120

Square
Root

FIX16_sqrt 75

FIX24_sqrt 75

FIX29_sqrt 75
[Note] The numbers are in cycles. Measurement may include some error.

3.3 Precision

The maximum error of these mathematics functions is ±2 in the last place except FIX29_sqrt. The precision of
FIX29_sqrt is ±3 in the last place.

 V850E2M Fixed-point Library (Using 22 Register Mode)

R01AN1678ES0100 Rev.1.00 Page 21 of 21

May 31, 2013

Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 May.31.13 — First edition issued. Support only 22 Register Mode

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Fixed-point Library
	1.1 Overview
	1.2 Related Application Note
	1.3 Format of Fixed-point Data
	1.4 Library Files
	1.5 Example of Usage
	1.6 Notes on Library Usage

	2. Specification of Fixed-point Library
	2.1 "fixmath.h"
	2.2 Description of Functions
	2.2.1 Multiplication (macro)
	2.2.2 Division (macro)
	2.2.3 Conversion (macro)
	2.2.4 Multiplication
	2.2.5 Sine Function
	2.2.6 Cosine Function
	2.2.7 Arctangent Function
	2.2.8 Square Root Function
	2.2.9 Multiplication (fraction part) (macro)
	2.2.10 Multiplication (saturated) (macro)
	2.2.11 Multiplication (FIX-type) (macro)
	2.2.12 Multiplication (FIX-type)
	2.2.13 Multiplication (fraction part, FIX-type) (macro)
	2.2.14 Multiplication (fraction part, FIX-type) (macro)
	2.2.15 Multiplication (saturated, FIX-type) (macro)
	2.2.16 Multiplication (saturated, FIX-type)

	3. Performance and Precision
	3.1 Evaluation Condition
	3.2 Execution Cycles
	3.3 Precision

	Website and Support
	Revision Record

