

Application Note

Shared IRQ Line Considerations

AN-PM-059

Abstract

When IRQ line-sharing between multiple devices has been imposed by the target hardware design, a
system failure may occur that is intrinsic to the Linux kernel. This document outlines
recommendations to avoid such issues. Several solutions have been identified and each should be
considered on its merits for the target platform under examination

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 2 of 14 © 2022 Renesas Electronics

Contents

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 2

1 Terms and Definitions ... 4

2 References ... 4

3 Introduction.. 5

4 Shared Interrupt Line .. 5

4.1 Symptoms and Mode of Failure in the Linux Kernel ... 5

4.2 Example of Causation ... 5

4.3 General Causes .. 6

5 Solutions .. 7

5.1 Allocate a Dedicated IRQ Line .. 7

5.2 OTP IRQ Mask Programming for all Interrupts ... 7

5.3 Bootloader IRQ Masking ... 7

5.4 Kernel Platform Quirk IRQ Masking .. 7

5.5 Disable the OS from Receiving Interrupts... 8

5.6 Disable the IRQ Input in the SoC GPIO .. 8

5.7 Static Arrangement of Device Driver Installation Order .. 8

6 Specific PMIC Recommendations ... 9

6.1 DA9210 ... 9

6.1.1 Interrupt Masks .. 9

6.1.2 Event Bits ... 9

6.2 DA9063 ... 9

6.2.1 Fault Log Clearance .. 9

7 Conclusions ... 10

 Linux Kernel Platform Quirk .. 11

A.1 I2C Platform Quirk for Altering IRQ Mask Registers during Linux Startup 11

A.2 Installing the Quirk into the Linux Build ... 11

 Software Fault Log Clearance for the DA9063 .. 12

B.1 Kernel Clearance .. 12

B.2 U-Boot Bootloader Clearance ... 12

Revision History .. 13

Figures

Figure 1: Shared Interrupt Line Block Diagram Example .. 5
Figure 2: IRQ Masking Quirk for the Linux Kernel .. 11
Figure 3: DA9063 FAULT_LOG Reset Source Code for U-Boot .. 12

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 3 of 14 © 2022 Renesas Electronics

Tables

Table 1: Event Bit Fields Associated with DA9210 ... 9

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 4 of 14 © 2022 Renesas Electronics

1 Terms and Definitions

CPU Central Processing Unit

GPIO General Purpose Input/Output

I2C Inter-Integrated Circuit (Bus)

ISR Interrupt Service Routine

IRQ Interrupt Request (Line)

OTP One Time Programmable (Memory)

OS Operating System

PMIC Power Management Integrated Circuit

POR Power On Request

RTC Real Time Clock

SoC System on Chip

SPI Serial Peripheral Interface

2 References

[1] DA9063, Datasheet, Dialog Semiconductor

[2] AN-PM-047, Renesas R-Car E2 platform for automotive infotainment, Application Note, Dialog
Semiconductor

[3] AN-PM-049, Renesas R-Car M2 platform for automotive applications, Application Note, Dialog
Semiconductor

[4] AN-PM-050, Renesas R-Car H2 platform for automotive applications, Application Note, Dialog
Semiconductor

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 5 of 14 © 2022 Renesas Electronics

3 Introduction

This document describes a system failure intrinsic to the Linux kernel when IRQ line-sharing has
been imposed by the target hardware design.

4 Shared Interrupt Line

Figure 1 diagram shows a typical system where a Dialog PMIC delivers power to the SoC and shares
the IRQx input with two other devices.

Each device has its own software interrupt service routine (ISR). These ISRs are called in turn by the
operating system once the IRQx is received.

Figure 1: Shared Interrupt Line Block Diagram Example

4.1 Symptoms and Mode of Failure in the Linux Kernel

The first sign of a failure within the Linux kernel is an unhandled interrupt. This behavior can be seen
by polling the filesystem’s proc interface (if this filesystem has been enabled in the kernel).

cat /proc/interrupts

Checking the console output for a rapidly increasing number of interrupt calls can provide the first
indication that an IRQ is not being handled correctly. If this first symptom is ignored, the next direct
manifestation will be a kernel message of the form:

irq N: nobody cared (try booting with the "irqpoll" option)

Disabling IRQ #N

The next kernel action is to disable the IRQ that remains un-serviced. There is a risk that the kernel
will disable all shared interrupts on the IRQ line, including those that may be from correctly
functioning devices.

The exact conditions are set in the Linux kernel core but, if approximately 100 000 interrupts have
not been handled, the assumption is made that the IRQ is held in some manner and is not being
serviced correctly. A diagnostic message and stack trace are sent to the console, then the kernel
attempts to turn off the offending IRQ. Future IRQ notifications on the line are then ignored.

4.2 Example of Causation

The following related events are required to cause the fault behavior.

IRQx

Dev-A
(Sensor)

Dev-C
(HID)

SoC

Interrupt
Controller

GPIOCPU

Dev-B
(PMIC)

Charger

TA Onkey

Power

POR

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 6 of 14 © 2022 Renesas Electronics

1. An event wakes up the PMIC, such as ONKEY, RTC alarm, or charger insertion.

2. The PMIC establishes the power rails.

3. If a corresponding wake-up event is unmasked, the Dev-B (PMIC) may assert its nIRQ output
(low).

4. The system loads and runs the OS.

5. During initialization, the kernel installs the drivers and registers the corresponding ISR for each
device in a predetermined order (this ordering is system dependent and assumed unknown).
The first handler registered causes the IRQ line to the CPU to be enabled.

6. The SoC GPIO and interrupt controller are configured to receive interrupt request IRQx. The
registered ISRs for the IRQx are called by the OS in turn until the IRQx becomes de-asserted.

7. If an ISR for either Dev-A or Dev-C is called before the PMIC device driver has been installed,
the CPU may repeatedly call the Dev-A and/or Dev-C ISR as the interrupt line will still be held by
Dev-B (PMIC).

4.3 General Causes

● The PMIC issues an interrupt request before the system is ready to receive it.

● The PMIC OTP does not mask all interrupts by default.

● An inability to control the order of Linux device driver installation.

● Interrupt line-sharing has not been considered during the system integration of the device drivers.

● The driver has not registered all of its IRQ entries with the kernel core and therefore the IRQs are
not properly controlled or masked by the kernel.

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 7 of 14 © 2022 Renesas Electronics

5 Solutions

There are several software solutions to handling a shared interrupt line which can be categorized as:

● configuration or hardware-based

● run-time solutions executed in software

5.1 Allocate a Dedicated IRQ Line

Whilst not always possible, allocating a dedicated IRQ input for the Dialog PMIC device resolves the
line-sharing issue and does not require any workarounds or software intervention.

5.2 OTP IRQ Mask Programming for all Interrupts

Preventing the Dialog PMIC from generating an IRQ during the system start-up sequence is suited to
all OS applications and does not require any software workarounds in the bootloader or Linux kernel.

Programming the IRQ mask bits in the PMIC OTP could resolve the issue. However, these mask bits
are generally left disabled in some PMICs to retain compatibility with other system requirements.
Programming these OTP bits therefore cannot be considered a general solution.

See Section 6 for device-specific recommendations.

In some PMICs, masking all interrupts can have side-effects and may affect wake-up operations: for
example, the DA9063 wake-up port (CHG_WAKE) feature would be disabled since, ‘The IRQ
assertion and wake-up event can be suppressed via the interrupt mask M_WAKE’. See [1], page 45.

5.3 Bootloader IRQ Masking

Early masking of interrupts within the PMIC can be performed during the bootloader section of
startup. This is the software equivalent solution of Section 5.2 and requires a bootloader to exist in
the system and the capability to modify the software in the bootloader accordingly.

This software workaround requires a customer- or platform-specific implementation and its suitability
is therefore limited to a fully-integrated target system.

5.4 Kernel Platform Quirk IRQ Masking

A kernel-only solution can be implemented using a ‘kernel quirk’. A kernel quirk is usually a platform-
specific modification which is called during the start-up code of the Linux kernel.

This solution has the disadvantage of requiring specific workaround quirks for each target platform
and also ignores the IRQ problem until the kernel has started to load. It has the advantage of being
available to all identified platforms as part of the integrated kernel distribution.

See the Linux kernel example for platform solutions for the compatible targets ‘renesas,koelsch’ and
‘renesas,lager’:

arch/arm/mach-shmobile/regulator-quirk-rcar-gen2.c

The PMICs used in these target systems are DA9063 and DA9210. The OTP settings used for these
platforms have been set such that the PMIC cold boot or restart has unmasked interrupts. Any
interrupts that are triggered upon PMIC start-up are a cause of an interrupt storm.

Without the quirk, an IRQ line-sharing failure occurs as soon as one driver is installed by the Linux
kernel and requests the IRQ. It immediately gets stuck in an infinite loop since it can only de-assert
its own interrupt request line, and because the other driver has not yet installed an interrupt handler.
The quirk masks the interrupts in both the DA9063 and DA9210: it must execute after the I2C master
driver but before the I2C slave drivers are initialized.

See Appendix A for further details.

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 8 of 14 © 2022 Renesas Electronics

5.5 Disable the OS from Receiving Interrupts

Specific code can be added during driver initializations to prevent the OS from receiving a PMIC
interrupt until the PMIC device driver has been installed correctly. This disallows IRQ sources until all
driver IRQ handlers have been serviced.

This is an intrusive solution and requires significant code alteration specific to the OS being used.

5.6 Disable the IRQ Input in the SoC GPIO

Interrupts can be masked by I2C/SPI commands to the SoC, before installing any device drivers that
use the IRQx line shared with the PMIC. This disallows IRQ sources until the driver IRQ handlers are
all serviced. However, the alteration would be application-dependent and require deep understanding
of the target system. This level of information may not be readily accessible when designing a
system that is not open source.

5.7 Static Arrangement of Device Driver Installation Order

This solution involves statically arranging the device driver installation into a fixed order within the
Linux kernel to avoid any driver installation race conditions that would otherwise cause an interrupt
storm problem.

This could be used as a temporary fix in some cases, however it is not a general solution in most
practical applications for several reasons. For example, if multiple devices flag an IRQ at start-up, an
IRQ storm will still occur regardless of ordering. Also, when using later Linux kernels and a device
tree solution, this would be totally dependent on the device tree implementation or would involve
modification of the Linux core functions. In general, such modification is difficult to achieve for most
large scale OS-based applications.

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 9 of 14 © 2022 Renesas Electronics

6 Specific PMIC Recommendations

The following recommendations are made for individual PMICs.

6.1 DA9210

There are several recommendations for DA9210:

● OTP default for setting all interrupt masks

● clearance of event bits upon start-up

6.1.1 Interrupt Masks

The standard OTP for DA9210 has all interrupts masked by default. However, the OTP mask settings
should be verified for each system since they can be unmasked for some OTP variants. For specific
details of Renesas R-Car E2, M2 and H2 platforms see [2], [3], and [4].

6.1.2 Event Bits

If OVCURR or NPWRGOOD occurs during the DA9210 boot-up, and they are deemed to be
unintentional events, the event flag of E_OVCURR or E_NPWRGOOD is set even if the masking
nIRQ toggle on MASK_B has been set by the OTP configuration settings.

The recommendation is for the system software to read the EVENT_B register and clear the flags on
EVENT_B during the start-up flow.

Table 1: Event Bit Fields Associated with DA9210

Event Bit Field Recommended for Clearance on Start-up

DA9210_E_OVCURR Yes

DA9210_E_NPWRGOOD Yes

DA9210_E_TEMP_WARN No

DA9210_E_TEMP_CRIT No

DA9210_E_VMAX No

6.2 DA9063

The general recommendation for DA9063 is to clear the FAULT_LOG register on start-up.

6.2.1 Fault Log Clearance

If the DA9063 has been shutdown using the hardware ONKEY reset function (long press of ONKEY
when the software fails to respond), the standard DA9063 ONKEY Linux device driver will not be
able to reset the KEY_RESET within the FAULT_LOG register. The FAULT_LOG is a persistent
register which holds its value across a reboot and therefore will affect the start-up sequence during
the next system restart.

The KEY_RESET bit triggers a non-maskable interrupt which has no corresponding event bit in the
event registers and therefore cannot be handled by the Linux framework in the normal way. This bit
should be cleared upon start-up, either during the bootloader or the kernel driver probe operation.

See Appendix B for further details.

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 10 of 14 © 2022 Renesas Electronics

7 Conclusions

The software device driver issues caused by IRQ line-sharing between multiple devices can be
avoided if the recommendations presented in this document are followed.

Each solution described should be considered on its own merits and the most appropriate way
forward should be chosen for the target platform. No single solution can be identified to solve this
problem.

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 11 of 14 © 2022 Renesas Electronics

 Linux Kernel Platform Quirk

This example is intended for the Linux kernel and should be modified for the platform device
requirements. It assumes the following:

arch/arm/mach-imx/platform-quirk.c

The location for setting IRQ mask registers is indicated by /*SET IRQ MASKS */.

A.1 I2C Platform Quirk for Altering IRQ Mask Registers during Linux Startup

#include <linux/mfd/da9xxx/registers.h>

static int platform_i2c_bus_notify(struct notifier_block *nb,

 unsigned long action, void *data)

{

 struct device *dev = data;

 struct i2c_client *client;

 if (action != BUS_NOTIFY_ADD_DEVICE || dev->type == &i2c_adapter_type)

 return 0;

 client = to_i2c_client(dev);

 /* Assume I2C slave address 0x68 and da90xxx name */

 if ((client->addr == 0x68 && !strcmp(client->name, “da9xxx”))) {

 /* SET IRQ MASKS */

i2c_smbus_write_byte_data(client, <REGISTER>, <VALUE>);

 bus_unregister_notifier(&i2c_bus_type, nb);

 }

 return 0;

}

static struct notifier_block platform_i2c_bus_nb = {

 .notifier_call = platform_i2c_bus_notify

};

static int __init platform_quirk(void)

{

 bus_register_notifier(&i2c_bus_type, &platform_i2c_bus_nb);

 return 0;

}

arch_initcall(platform_quirk);

Figure 2: IRQ Masking Quirk for the Linux Kernel

A.2 Installing the Quirk into the Linux Build

To include the quirk, a modification to the Makefile will be necessary:

arch/arm/mach-imx/Makefile
obj-$(CONFIG_SOC_IMX6Q) += clk-imx6q.o mach-imx6q.o platform-quirk.o

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 12 of 14 © 2022 Renesas Electronics

 Software Fault Log Clearance for the DA9063

B.1 Kernel Clearance

Clearing the FAULT_LOG register can be implemented during the device driver probe of the
DA9063. See the file drivers/mfd/da9063-core.c and function da9063_clear_fault_log

implemented in the linux-mainline/v4.2 kernels onwards.

B.2 U-Boot Bootloader Clearance

The same code example as described in Section B.1 but targeted at U-Boot is given in Figure 3.

#define DA9063_I2C_SLAVE 0x58

#define DA9063_FAULT_LOG_REG 0x05

unsigned char value = 0;

if (!(i2c_read(DA9063_I2C_SLAVE, DA9063_FAULT_LOG_REG, 1, &value, 1))) {

 if (value & 0x20)

printf(“Power down from a long press of nONKEY or GPIO14/15\n”);

 /* Clear the DA9063 FAULT_LOG on start-up */

 i2c_write(DA9063_I2C_SLAVE, DA9063_FAULT_LOG_REG, 1, &value, 1);

}

Figure 3: DA9063 FAULT_LOG Reset Source Code for U-Boot

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 13 of 14 © 2022 Renesas Electronics

Revision History

Revision Date Description

1.0 18-Sep-2015 Initial version.

1.1 12-Oct-2015 Positive rewording of the abstract to reflect multiple solutions offered
by this document.

1.2 15-Jun-2016 Update formatting style to follow document conventions.

Section 5.2 combine two sections into one, clarifying that normal IRQs
and wake-up interrupts would cause the same problems.

1.3 10-Mar-2022 File was rebranded with new logo, copyright and disclaimer

AN-PM-059

Shared IRQ Line Considerations

Application Note Revision 1.3 10-Mar-2022

CFR0014 14 of 14 © 2022 Renesas Electronics

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our
suppliers are available on request.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	4 Shared Interrupt Line
	4.1 Symptoms and Mode of Failure in the Linux Kernel
	4.2 Example of Causation
	4.3 General Causes

	5 Solutions
	5.1 Allocate a Dedicated IRQ Line
	5.2 OTP IRQ Mask Programming for all Interrupts
	5.3 Bootloader IRQ Masking
	5.4 Kernel Platform Quirk IRQ Masking
	5.5 Disable the OS from Receiving Interrupts
	5.6 Disable the IRQ Input in the SoC GPIO
	5.7 Static Arrangement of Device Driver Installation Order

	6 Specific PMIC Recommendations
	6.1 DA9210
	6.1.1 Interrupt Masks
	6.1.2 Event Bits

	6.2 DA9063
	6.2.1 Fault Log Clearance

	7 Conclusions
	Appendix A Linux Kernel Platform Quirk
	A.1 I2C Platform Quirk for Altering IRQ Mask Registers during Linux Startup
	A.2 Installing the Quirk into the Linux Build

	Appendix B Software Fault Log Clearance for the DA9063
	B.1 Kernel Clearance
	B.2 U-Boot Bootloader Clearance

	Revision History

