

RX210、RX21A、RX220 グループ

MTU2a を使用したパルス幅測定

R01AN1010JJ0111 Rev.1.11 2014.07.01

要旨

本アプリケーションノートでは、RX210、RX21A、RX220 グループのマルチファンクションタイマパルスユニット 2(以下、MTU)を使用して、外部トリガを検出したときにパルス幅(High 幅)を測定する方法について説明します。

対象デバイス

RX210、RX21A、RX220 グループ

本アプリケーションノートを他のマイコンへ適用する場合、そのマイコンの仕様にあわせて変更し、十分評価してください。

目次

1.	仕様		3
2.	動作確認]条件	4
_			
3.	関連アフ	プリケーションノート	4
4.	ハードウ	リェア説明	5
_		- →+¥ pp	•
5.		/ェア説明/ /プルコード 1	
•	5.1 リン 5.1.1	カルコード 1	_
	5.1.1	野TF似安	
	5.1.1.2	インプットキャプチャとオーバフローが同時に発生したときの動作	
	5.1.1.2	インノットキャノテャとオーハノローか向時に光王したとさい動作	
	_	ファイル悔风オプション設定メモリ	
	5.1.3		_
	5.1.4	定数一覧	
	5.1.5	变数一覧	
	5.1.6	関数一覧	
	5.1.7	関数仕様	
	5.1.8	フローチャート	
	5.1.8.1	メイン処理	_
	5.1.8.2	ポート初期設定	_
	5.1.8.3	周辺機能初期設定	
	5.1.8.4	エラー処理	
	5.1.8.5	MTU1 のインプットキャプチャ A 割り込み処理	
	5.1.8.6	MTU1 のインプットキャプチャ B 割り込み処理	
	5.1.8.7	MTU1 のオーバフロー割り込み処理	
ţ		′プルコード 2	
	5.2.1	動作概要	
	5.2.1.1	パルス幅測定の動作	
	5.2.1.2	インプットキャプチャとオーバフローが同時に発生したときの動作	
	5.2.2	ファイル構成	
	5.2.3	オプション設定メモリ	
	5.2.4	定数一覧	
	5.2.5	变数一覧	
	5.2.6	関数一覧	
	5.2.7	関数仕様	
	5.2.8	フローチャート	
	5.2.8.1	メイン処理	
	5.2.8.2	ポート初期設定	
	5.2.8.3	周辺機能初期設定	26
	5.2.8.4	エラー処理	27
	5.2.8.5	MTU1 のインプットキャプチャ A 割り込み処理	
	5.2.8.6	MTU1 のオーバフロー割り込み処理	28
6.	RX21A、	RX220 グループ 初期設定例 アプリケーションノートとの組み合わせ方	29
7.	サンプル	·コード	30
0	会老ド サ	· - 4>, L	20

1. 仕様

MTU のインプットキャプチャ機能を使用して、外部トリガを検出したときの幅(High 幅)を測定します。 入力されるパルスの立ち上がりエッジから測定を開始し、立ち下がりエッジで幅(High 幅)を算出します。

本アプリケーションノートでは High パルスの判定方法について、表 1.1 High パルス判定サンプルコードー覧に示す 2 種類の方法を説明します。

表1.1 High パルス判定サンプルコード一覧

	概要	特徴
サンプルコード 1	2つの端子にパルスを入力して High パルスを判	2 つの端子を使用
	定する	プログラムの占有率低
サンプルコード 2	プログラムで High パルスを判定する	1つの端子を使用
		プログラムの占有率高

表 1.2に使用する周辺機能と用途を、図 1.1に接続図(サンプルコード 1)を、図 1.2に接続図(サンプルコード 2)を示します。

表1.2 使用する周辺機能と用途

周辺機能	用途
MTU2a チャネル 1(MTU1)	パルス幅の測定

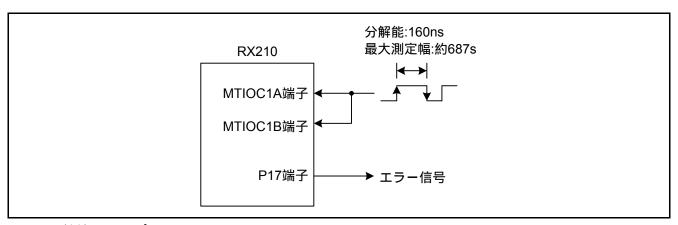


図1.1 接続図(サンプルコード 1)

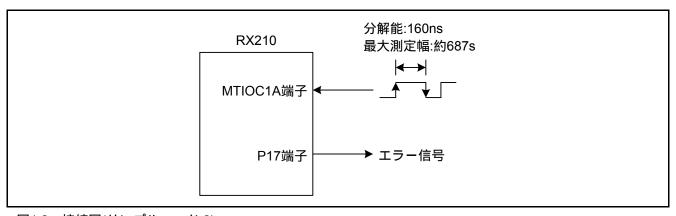


図1.2 接続図(サンプルコード 2)

2. 動作確認条件

本アプリケーションノートのサンプルコードは、下記の条件で動作を確認しています。

表2.1 動作確認条件

項目	内容
使用マイコン	R5F52108ADFP (RX210 グループ)
動作周波数	• メインクロック: 20MHz
	● PLL: 100MHz (メインクロック 2 分周 10 逓倍)
	● システムクロック(ICLK): 50MHz (PLL 2 分周)
	● 周辺モジュールクロック B (PCLKB): 25MHz (PLL 4 分周)
動作電圧	5.0V
統合開発環境	ルネサスエレクトロニクス製
	High-performance Embedded Workshop Version 4.09.01
Cコンパイラ	ルネサスエレクトロニクス製
	C/C++ Compiler Package for RX Family V.1.02 Release 01
	コンパイルオプション
	-cpu=rx200 -output=obj="\$(CONFIGDIR)\pmu\\$(FILELEAF).obj" -debug
	-nologo
	(統合開発環境のデフォルト設定を使用しています)
iodefine.h のバージョン	Version 1.2A
エンディアン	リトルエンディアン
動作モード	シングルチップモード
プロセッサモード	スーパバイザモード
サンプルコードのバージョン	Version 1.10
使用ボード	Renesas Starter Kit for RX210 (製品型名: R0K505210C000BE)

3. 関連アプリケーションノート

本アプリケーションノートに関連するアプリケーションノートを以下に示します。併せて参照してください。

- RX210 グループ 初期設定例 Rev.2.00 (R01AN1002JJ)
- RX21A グループ 初期設定例 Rev.1.10 (R01AN1486JJ)
- RX220 グループ 初期設定例 Rev.1.10 (R01AN1494JJ)

上記アプリケーションノートの初期設定関数を、本アプリケーションノートのサンプルコードで使用しています。Rev は本アプリケーションノート作成時点のものです。

最新版がある場合、最新版に差し替えて使用してください。最新版はルネサスエレクトロニクスホームページで確認および入手してください。

4. ハードウェア説明

4.1 使用端子一覧

表 4.1に使用端子と機能(サンプルコード 1)を、表 4.2に使用端子と機能(サンプルコード 2)を示します。

使用端子は 100 ピン版の製品を想定しています。 100 ピン版未満の製品を使用する場合は、使用する製品に合わせて端子を選択してください。

表4.1 使用端子と機能(サンプルコード 1)

端子名	入出力	内容
P20/MTIOC1A	入力	測定パルスの入力
P21/MTIOC1B	入力	測定パルスの入力
P17	出力	エラー信号の出力

表4.2 使用端子と機能(サンプルコード 2)

端子名	入出力	内容
P20/MTIOC1A	入力	測定パルスの入力
P17	出力	エラー信号の出力

5. ソフトウェア説明

測定開始フラグを"1"にすると、パルス幅の測定を開始します。サンプルコード1の場合、MTU1のインプットキャプチャ B 割り込み処理でパルスの幅(High 幅)を算出します。サンプルコード2の場合、MTU1のインプットキャプチャ A 割り込み処理でパルスの幅(High 幅)を算出します。

サンプルコード 1、サンプルコード 2の設定方法を以下に示します。

5.1 サンプルコード 1

MTIOC1B 端子に入力されるパルスの立ち上がりエッジから次の立ち下がりエッジまでの幅を算出します。

MTU1.TCNT レジスタのオーバフロー割り込み処理で、MTU1.TCNT レジスタのオーバフロー回数をカウントします。オーバフロー回数が 65,535 回を超えるパルスが入力された場合、エラー信号を出力し、測定を停止します。

MTU1 のインプットキャプチャ B 割り込み処理で、オーバフロー回数と MTU1.TGRB レジスタの値を元にパルス幅を算出します。

パルス幅算出式 : 160ns×(オーバフロー回数×10000h + MTU1.TGRB)

設定条件を以下に示します。

<MTU1>

・カウントクロック : PCLKB/4(PCLKB=25MHz)の立ち上がりエッジ

・動作モード : ノーマルモード

・タイマジェネラルレジスタ(TGRB) : インプットキャプチャレジスタとして使用

・MTIOC1A 端子 : 立ち上がりエッジでインプットキャプチャ

・MTIOC1B 端子 : 両エッジでインプットキャプチャ

・同期動作: 使用しない

・カウンタクリア : TGRB のインプットキャプチャ

<割り込み>

・インプットキャプチャ A 割り込み(TGIA1)

割り込み優先レベル : 3

割り込み要因 : MTU1.TGRA のインプットキャプチャ

・インプットキャプチャ B 割り込み(TGIB1)

割り込み優先レベル : 3

割り込み要因 : MTU1.TGRB のインプットキャプチャ

・オーバフロー割り込み(TCIV1)

割り込み優先レベル : 4

割り込み要因 : MTU1.TCNT のオーバフロー

5.1.1 動作概要

5.1.1.1 パルス幅測定の動作

- (1) TSTR.CST1 ビットに "1"(カウント開始)を設定すると、MTU1 がカウントを開始します。
- (2) MTIOC1A 端子と MTIOC1B 端子のレベルが Low から High に変化すると、MTIOC1B 端子へのエッジ入力によるカウンタクリアとインプットキャプチャ B 割り込み要求の発生、および MTIOC1A 端子への立ち上がりエッジ入力によるインプットキャプチャ A 割り込み要求が発生します。インプットキャプチャ A 割り込み処理で、測定開始フラグを"1"(測定中)にします。また、オーバフローカウンタ、オーバフロー割り込み要求、インプットキャプチャ B 割り込み要求をクリアします。
- (3) MTIOC1B 端子のレベルが High から Low に変化すると、MTU1.TCNT レジスタの値が MTU1.TGRB レジスタへ転送され、カウンタがクリアされます。同時に MTU1 のインプットキャプチャ B 割り込み要求が発生します。インプットキャプチャ B 割り込み処理で、MTU1.TCNT レジスタのオーバフロー回数と MTU1.TGRB レジスタの値を元にパルス幅を算出します。また、測定開始フラグをクリアします。
- (4) MTIOC1A 端子と MTIOC1B 端子のレベルが Low から High に変化すると、(2)と同じ動作が行われます。
- (5) MTU1.TCNT レジスタがオーバフローすると、オーバフロー割り込み要求が発生します。 オーバフロー割り込み処理で、オーバフロー回数をカウントします。
- (6) MTIOC1B 端子のレベルが High から Low に変化すると、(3)と同じ動作が行われます。

図 5.1にパルス幅測定のタイミング図を示します。

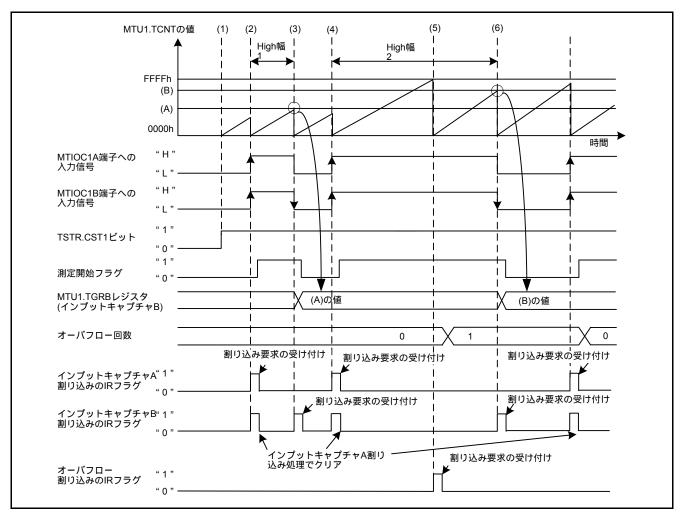


図5.1 パルス幅測定のタイミング図

5.1.1.2 インプットキャプチャとオーバフローが同時に発生したときの動作

- (1) MTU1.TCNT レジスタの値が" FFFFh "の状態で MTIOC1B 端子に立ち下がりエッジが入力された場合、 MTU1.TCNT レジスタの値 " FFFFh " が MTU1.TGRB レジスタへ転送された後、MTU1.TCNT レジスタ がクリアされて、インプットキャプチャ B 割り込み要求が発生します。オーバフローとカウンタクリア が同時に発生すると、カウンタクリアが優先されてオーバフロー割り込み要求は発生しません。
- (2) インプットキャプチャ B 割り込み処理で、MTU1.TGRB レジスタの値(" FFFFh ")を読み出してパルス幅を算出します。
- (3) オーバフロー割り込み、インプットキャプチャ B 割り込み以外の割り込み処理(以下、割り込み処理 A) を実行中に MTU1.TCNT レジスタの値がオーバフローしたとき、オーバフロー割り込み処理は待たされます。
- (4) 割り込み処理 A 実行中に、MTIOC1B 端子に立ち下がりエッジが入力されると、MTU1.TCNT レジスタ の値が MTU1.TGRB レジスタへ転送され、インプットキャプチャ B 割り込み要求が発生します。(イン プットキャプチャ B 割り込み処理は待たされます。)
- (5) 割り込み処理 A が完了したとき、割り込み優先レベルが高いオーバフロー割り込みが先に実行されます。オーバフロー割り込み処理でオーバフロー回数を+1 します。次に受け付けられるインプットキャプチャ B 割り込み処理でパルス幅を算出します。

図 5.2にインプットキャプチャとオーバフローが同時に発生したときのタイミング図を示します。

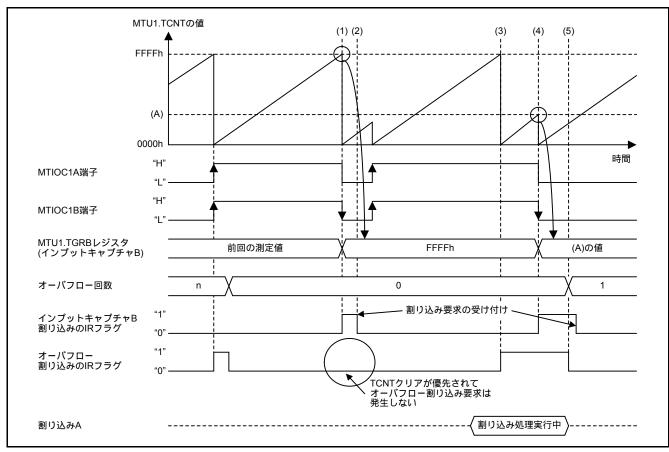


図5.2 インプットキャプチャとオーバフローが同時に発生したときのタイミング図

<システムに組み込む際の注意>

本アプリケーションノートのサンプルコードを、実際のシステムに組み込んで使用する際、次のような現象に注意してください。

- 他の割り込みの処理等によって、本アプリケーションノートで使用している割り込みが長時間待たされると、正しく動作しない場合があります。
- 測定パルス幅が短い場合、ソフトウェアの処理が間に合わず、正しく測定できない場合があります。

5.1.2 ファイル構成

表 5.1にサンプルコードで使用するファイルを示します。なお、統合開発環境で自動生成されるファイルは除きます。

表5.1 サンプルコードで使用するファイル

ファイル名	概要	備考
main.c	メイン処理	
r_init_stop_module.c	リセット後に動作している周辺機能の停止	
r_init_stop_module.h	r_init_stop_module.c のヘッダファイル	
r_init_non_existent_port.c	存在しないポートの初期設定	
r_init_non_existent_port.h	r_init_non_existent_port.c のヘッダファイル	
r_init_clock.c	クロック初期設定	
r_init_clock.h	r_init_clock.c のヘッダファイル	

5.1.3 オプション設定メモリ

表 5.2にサンプルコードで使用するオプション設定メモリの状態を示します。必要に応じて、お客様のシステムに最適な値を設定してください。

表5.2 サンプルコードで使用するオプション設定メモリ

シンボル	アドレス	設定値	内容
OFS0	FFFF FF8Fh ~ FFFF FF8Ch	FFFF FFFFh	リセット後、IWDT は停止
			リセット後、WDT は停止
OFS1	FFFF FF8Bh ~ FFFF FF88h	FFFF FFFFh	リセット後、電圧監視0リセット無効
			リセット後、HOCO 発振が無効
MDES	FFFF FF83h ~ FFFF FF80h	FFFF FFFFh	リトルエンディアン

5.1.4 定数一覧

表 5.3にサンプルコードで使用する定数を示します。

表5.3 サンプルコードで使用する定数

定数名	設定値	内容
P_OVF_ERR	PORT1.PODR.BIT.B7	エラー信号出力のポート出力データレジスタ
PD_OVF_ERR	PORT1.PDR.BIT.B7	エラー信号出力のポート方向レジスタ

5.1.5 変数一覧

表 5.4にグローバル変数を示します。

表5.4 グローバル変数

型	変数名	内容	使用関数
unsigned short	mtu1_ovf_cnt	MTU1.TCNT レジスタのオーバフロー カウンタ	Excep_MTU1_TCIV1, Excep_MTU1_TGIA1, Excep_MTU1_TGIB1
unsigned long	pulse_cnt	パルス測定カウンタ	Excep_MTU1_TGIB1
unsigned char	start_flag	測定開始フラグ 0: 測定前 1: 測定中	Excep_MTU1_TCIV1, Excep_MTU1_TGIA1, Excep_MTU1_TGIB1
unsigned char	error_flag	測定エラーフラグ 0: 正常 1: 異常	Excep_MTU1_TCIV1, Excep_MTU1_TGIB1

5.1.6 関数一覧

表 5.5にサンプルコードで使用している関数を示します。

表5.5 サンプルコードで使用している関数

関数名	概要
main	メイン処理
port_init	ポート初期設定
R_INIT_StopModule	リセット後に動作している周辺機能の停止
R_INIT_NonExistentPort	存在しないポートの初期設定
R_INIT_Clock	クロック初期設定
peripheral_init	周辺機能初期設定
error_proc	エラー処理
Excep_MTU1_TGIA1	MTU1 のインプットキャプチャ A 割り込み処理
Excep_MTU1_TGIB1	MTU1 のインプットキャプチャ B 割り込み処理
Excep_MTU1_TCIV1	MTU1 のオーバフロー割り込み処理

5.1.7 関数仕様

サンプルコードの関数仕様を示します。

	main	
,	概要	メイン処理
	ヘッダ	なし
	宣言	void main(void)
	説明	初期設定後、MTU1 のカウント動作を開始します。
	引数	なし
	リターン値	なし

port_init	
概要	ポート初期設定
ヘッダ	なし
宣言	void port_init(void)
説明	ポートの初期設定を行います。
引数	なし
リターン値	なし

R_INIT_StopModule	
概要	リセット後に動作している周辺機能の停止
ヘッダ	r_init_stop_module.h
宣言	void R_INIT_StopModule(void)
説明	モジュールストップ状態へ遷移する設定を行います。
引数	なし
リターン値	なし
備 考	サンプルコードでは、モジュールストップ状態への遷移は行っていません。
	本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してく
	ださい。

R_INIT_NonExistentF	Port
概要	存在しないポートの初期設定
ヘッダ	r_init_non_existent_port.h
宣言	void R_INIT_NonExistentPort(void)
説明	100 ピン未満の製品に対して、存在しないポートの端子に対応するポート方向レジス タの初期設定を行います。
引数	なし
リターン値	なし
備考	サンプルコードでは、100 ピン版(PIN_SIZE=100)に設定しています。本関数をコールした後に、存在しないポートを含む PDR、PODR レジスタへバイト単位で書き込む場合、存在しないポートの方向制御ビットには"1"、ポート出力データ格納ビットには"0"を設定してください。本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してください。

R_INIT_Clock	
概要	クロック初期設定
ヘッダ	r_init_clock.h
宣言	void R_INIT_Clock(void)
説明	クロックの初期設定を行います。
引 数	なし
リターン値	なし
備考	サンプルコードでは、システムクロックを PLL とし、サブクロックを使用しない処 理を選択しています。
	本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してく ださい。

peripheral_init	
概要	周辺機能初期設定
ヘッダ	なし
宣言	void peripheral_init(void)
説明	使用する周辺機能の初期設定を行います。
引数	なし
リターン値	なし

error_proc	
概要	エラー処理
ヘッダ	なし
宣言	void error_proc(void)
説明	エラー信号を出力し、無限ループに遷移します。
引数	なし
リターン値	なし

Excep_MTU1_TGIA1	
概要	MTU1 のインプットキャプチャ A 割り込み処理
ヘッダ	なし
宣言	void Excep_MTU1_TGIA1(void)
説明	測定開始フラグを"1"(測定中)にして、パルス幅測定を開始します。
	また、インプットキャプチャ B 割り込み要求とオーバフロー割り込み要求のクリア、
	およびオーバフローカウンタの初期化を行います。
引数	なし
リターン値	なし

Excep_MTU1_TGIB1		
概要	MTU1 のインプットキャプチャ B 割り込み処理	
ヘッダ	なし	
宣言	void Excep_MTU1_TGIB1(void)	
説明	測定開始フラグが " 1 " (測定中)の場合、パルス幅を算出します。 また、測定開始フラグをクリアします。	
引数	なし	
リターン値	なし	

Excep_MTU1_TCIV1	
概要	MTU1 のオーバフロー割り込み処理
ヘッダ	なし
宣言	void Excep_MTU1_TCIV1(void)
説明	測定開始フラグが " 1 " (測定中)の場合、オーバフロー回数をカウントします。 オーバフロー回数が 65,535 回を超えた場合、エラー処理に遷移します。
引数	なし
リターン値	なし

5.1.8 フローチャート

5.1.8.1 メイン処理

図 5.3にメイン処理のフローチャートを示します。

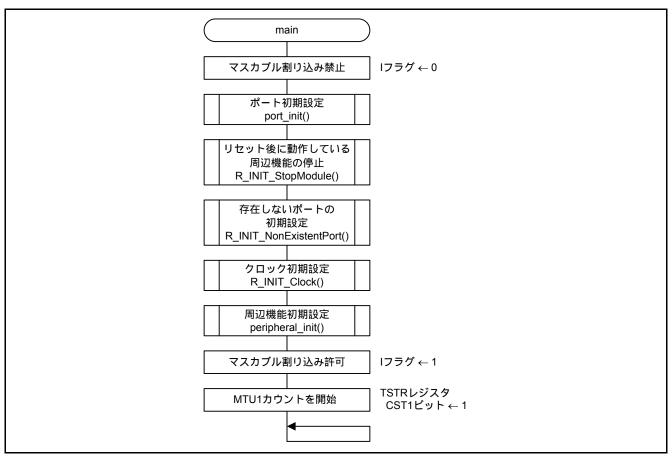


図5.3 メイン処理

5.1.8.2 ポート初期設定

図 5.4にポート初期設定のフローチャートを示します。

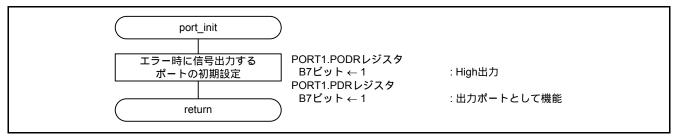


図5.4 ポート初期設定

5.1.8.3 周辺機能初期設定

図 5.5、図 5.6に周辺機能初期設定のフローチャートを示します。

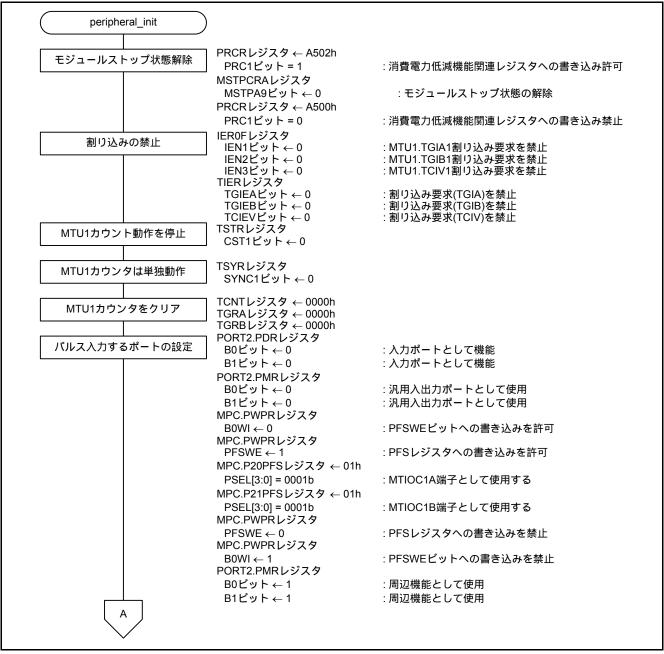


図5.5 周辺機能初期設定 (1/2)

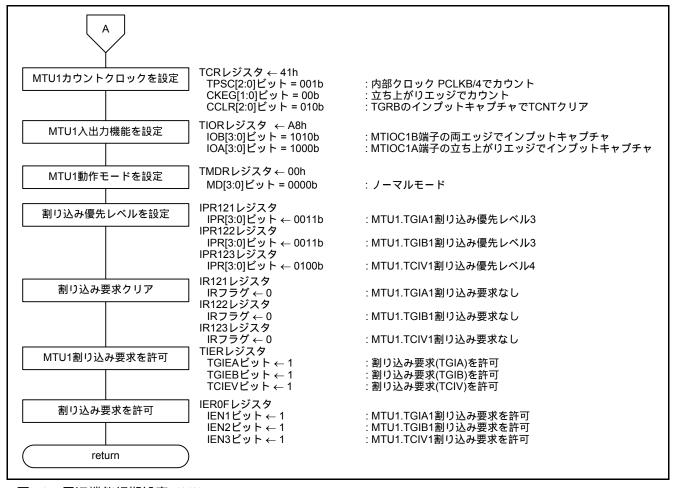


図5.6 周辺機能初期設定 (2/2)

5.1.8.4 エラー処理

図 5.7にエラー処理のフローチャートを示します。

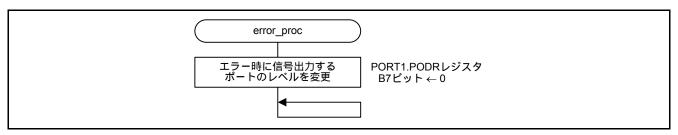


図5.7 エラー処理

5.1.8.5 MTU1 のインプットキャプチャ A 割り込み処理 図 5.8にMTU1 のインプットキャプチャ A 割り込み処理のフローチャートを示します。

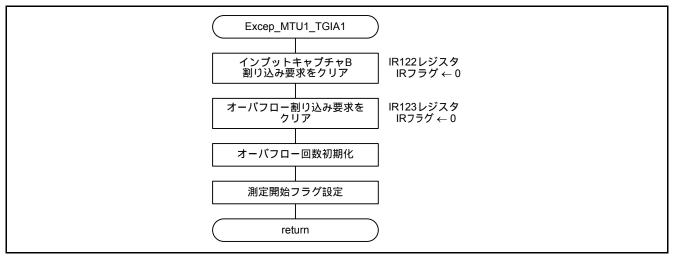


図5.8 MTU1 のインプットキャプチャ A 割り込み処理

5.1.8.6 MTU1 のインプットキャプチャ B 割り込み処理 図 5.9にMTU1 のインプットキャプチャ B 割り込み処理のフローチャートを示します。

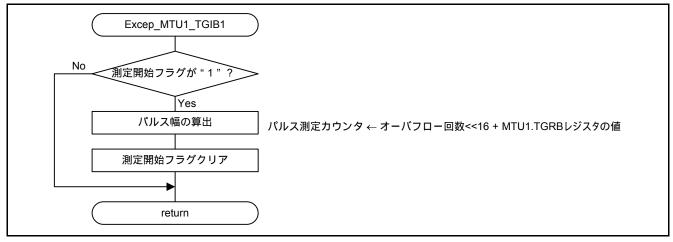


図5.9 MTU1 のインプットキャプチャ B 割り込み処理

5.1.8.7 MTU1 のオーバフロー割り込み処理 図 5.10にMTU1 のオーバフロー割り込み処理のフローチャートを示します。

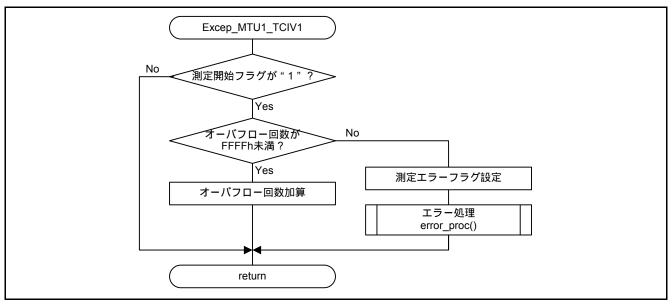


図5.10 MTU1 のオーバフロー割り込み処理

5.2 サンプルコード2

MTIOC1A 端子に入力されるパルスの立ち上がりエッジから次の立ち下がりエッジまでの幅を算出します。

MTU1.TCNT レジスタのオーバフロー割り込み処理で、MTU1.TCNT レジスタのオーバフロー回数をカウントします。オーバフロー回数が 65,535 回を超えるパルスが入力された場合、エラー信号を出力し、測定を停止します。

MTU1 のインプットキャプチャ A 割り込み処理で、オーバフロー回数と MTU1.TGRA レジスタの値を元にパルス幅を算出します。

パルス幅算出式 : 160ns×(オーバフロー回数×10000h + MTU1.TGRA)

設定条件を以下に示します。

<MTU1>

・カウントクロック : PCLKB/4(PCLKB=25MHz)の立ち上がりエッジ

・動作モード : ノーマルモード

・タイマジェネラルレジスタ(TGRA) : インプットキャプチャレジスタとして使用

・MTIOC1A 端子 : 両エッジでインプットキャプチャ

・同期動作 : 使用しない

・カウンタクリア : TGRA のインプットキャプチャ

・ノイズフィルタ : MTIOC1A 端子のノイズフィルタを許可

・ノイズフィルタクロック : PCLKB/1(PCLKB=25MHz)

<割り込み>

・インプットキャプチャ A 割り込み(TGIA1)

割り込み優先レベル : 3

割り込み要因 : MTU1.TGRA のインプットキャプチャ

・オーバフロー割り込み(TCIV1)

割り込み優先レベル : 4

割り込み要因 : MTU1.TCNT のオーバフロー

5.2.1 動作概要

5.2.1.1 パルス幅測定の動作

- (1) TSTR.CST1 ビットに "1" (カウント開始)を設定すると、MTU1 がカウントを開始します。
- (2) MTIOC1A 端子にエッジが入力されると、MTU1.TCNT レジスタの値が MTU1.TGRA レジスタへ転送され、カウンタがクリアされます。同時に MTU1 のインプットキャプチャ A 割り込み要求が発生します。インプットキャプチャ A 割り込み処理で、MTIOC1A 端子の状態を確認します。 "H"であれば Highパルスの測定開始と判断して測定開始フラグを"1"(測定中)にし、オーバフロー回数をクリアします。
- (3) MTIOC1A 端子に再度エッジが入力されると、MTU1 のインプットキャプチャ A 割り込み要求が発生します。インプットキャプチャ A 割り込み処理で、MTIOC1A 端子の状態を確認します。 " L " であれば High パルスの測定完了と判断し、MTU1.TCNT レジスタのオーバフロー回数と MTU1.TGRA レジスタ の値を元にパルス幅を算出します、また、測定開始フラグをクリアします。
- (4) MTIOC1A 端子に再度、立ち上がりエッジが入力されると、(2)と同じ動作が行われます。
- (5) MTU1.TCNT レジスタがオーバフローすると、オーバフロー割り込み要求が発生します。 オーバフロー割り込み処理で、オーバフロー回数をカウントします。
- (6) MTIOC1A 端子に再度、立ち上がりエッジが入力されると、(3)と同じ動作が行われます。

図 5.11にパルス幅測定のタイミング図を示します。

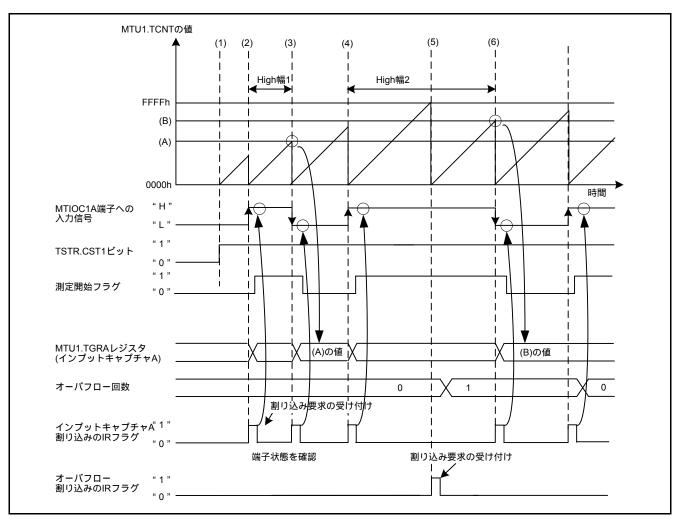


図5.11 パルス幅測定のタイミング図

インプットキャプチャとオーバフローが同時に発生したときの動作 5.2.1.2

- MTU1.TCNT レジスタの値が" FFFFh "の状態で MTIOC1A 端子に立ち下がりエッジが入力された場合、 MTU1.TCNT レジスタの値 "FFFFh"が MTU1.TGRA レジスタへ転送された後、MTU1.TCNT レジスタ がクリアされて、インプットキャプチャ A 割り込み要求が発生します。オーバフローとカウンタクリ アが同時に発生すると、カウンタクリアが優先されてオーバフロー割り込み要求は発生しません。
- インプットキャプチャ A 割り込み処理で、MTU1.TGRA レジスタの値(" FFFFh ")を読み出してパルス 幅を算出します。
- オーバフロー割り込み、インプットキャプチャ A 割り込み以外の割り込み処理(以下、割り込み処理 A) を実行中に MTU1.TCNT レジスタの値がオーバフローしたとき、オーバフロー割り込み処理は待たされ ます。
- 割り込み処理 A 実行中に、MTIOC1A 端子に立ち下がりエッジが入力されると、MTU1.TCNT レジスタ (4) の値が MTU1.TGRA レジスタへ転送され、インプットキャプチャ A 割り込み要求が発生します。(イン プットキャプチャ A 割り込み処理は待たされます。)
- 割り込み処理 A が完了したとき、割り込み優先レベルが高いオーバフロー割り込みが先に実行されま す。オーバフロー割り込み処理でオーバフロー回数を+1 します。次に受け付けられるインプットキャ プチャ A 割り込み処理でパルス幅を算出します。

図 5.12にインプットキャプチャとオーバフローが同時に発生したときのタイミング図を示します。

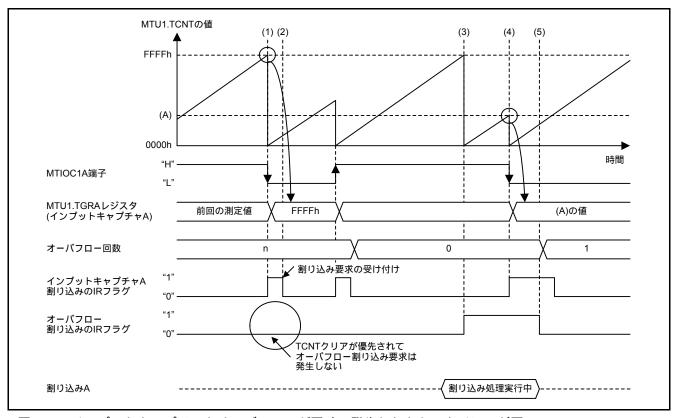


図5.12 インプットキャプチャとオーバフローが同時に発生したときのタイミング図

<システムに組み込む際の注意>

本アプリケーションノートのサンプルコードを、実際のシステムに組み込んで使用する際、次のような現象に注意してください。

- 他の割り込みの処理等によって、本アプリケーションノートで使用している割り込みが長時間待たされると、正しく動作しない場合があります。
- 測定パルス幅が短い場合、ソフトウェアの処理が間に合わず、正しく測定できない場合があります。

5.2.2 ファイル構成

表 5.6にサンプルコードで使用するファイルを示します。なお、統合開発環境で自動生成されるファイルは除きます。

表5.6 サンプルコードで使用するファイル

ファイル名	概要	備考
main.c	メイン処理	
r_init_stop_module.c	リセット後に動作している周辺機能の停止	
r_init_stop_module.h	r_init_stop_module.c のヘッダファイル	
r_init_non_existent_port.c	存在しないポートの初期設定	
r_init_non_existent_port.h	r_init_non_existent_port.c のヘッダファイル	
r_init_clock.c	クロック初期設定	
r_init_clock.h	r_init_clock.c のヘッダファイル	

5.2.3 オプション設定メモリ

表 5.7にサンプルコードで使用するオプション設定メモリの状態を示します。必要に応じて、お客様のシステムに最適な値を設定してください。

表5.7 サンプルコードで使用するオプション設定メモリ

シンボル	アドレス	設定値	内容
OFS0	FFFF FF8Fh ~ FFFF FF8Ch	FFFF FFFFh	リセット後、IWDT は停止
			リセット後、WDT は停止
OFS1	FFFF FF8Bh ~ FFFF FF88h	FFFF FFFFh	リセット後、電圧監視0リセット無効
			リセット後、HOCO 発振が無効
MDES	FFFF FF83h ~ FFFF FF80h	FFFF FFFFh	リトルエンディアン

5.2.4 定数一覧

表 5.8にサンプルコードで使用する定数を示します。

表5.8 サンプルコードで使用する定数

定数名	設定値	内容
P_OVF_ERR	PORT1.PODR.BIT.B7	エラー信号出力のポート出力データレジスタ
PD_OVF_ERR	PORT1.PDR.BIT.B7	エラー信号出力のポート方向レジスタ
PI_MTIOC1A	PORT2.PIDR.BIT.B0	MTU1.MTIOC1A のポート入力データレジスタ
HIGH	1	ポート入力データが High
LOW	0	ポート入力データが Low

5.2.5 変数一覧

表 5.9にグローバル変数を示します。

表5.9 グローバル変数

型	变数名	内容		使用関数
unsigned short	mtu1_ovf_cnt	MTU1.TCNT レジスタ カウンタ	のオーバフロー	Excep_MTU1_TCIV1, Excep_MTU1_TGIA1
unsigned long	pulse_cnt	パルス測定カウンタ		Excep_MTU1_TGIA1
unsigned char	start_flag		0: 測定前 1: 測定中	Excep_MTU1_TCIV1, Excep_MTU1_TGIA1
unsigned char	error_flag		0: 正常 1: 異常	Excep_MTU1_TCIV1, Excep_MTU1_TGIA1

5.2.6 関数一覧

表 5.10にサンプルコードで使用している関数を示します。

表5.10 サンプルコードで使用している関数

関数名	概要
main	メイン処理
port_init	ポート初期設定
R_INIT_StopModule	リセット後に動作している周辺機能の停止
R_INIT_NonExistentPort	存在しないポートの初期設定
R_INIT_Clock	クロック初期設定
peripheral_init	周辺機能初期設定
error_proc	エラー処理
Excep_MTU1_TGIA1	MTU1 のインプットキャプチャ A 割り込み処理
Excep_MTU1_TCIV1	MTU1 のオーバフロー割り込み処理

5.2.7 関数仕様

サンプルコードの関数仕様を示します。

m	าล	ın
		•••

概要	メイン処理
1000 女	グイン処理
ヘッダ	なし
宣言	void main(void)
説明	初期設定後、MTU1 のカウント動作を開始します。
引数	なし
リターン値	なし

port_init	
概要	ポート初期設定
ヘッダ	なし
宣言	void port_init(void)
説明	ポートの初期設定を行います。
引数	なし
リターン値	なし

R_INIT_StopModule	
概要	リセット後に動作している周辺機能の停止
ヘッダ	r_init_stop_module.h
宣言	void R_INIT_StopModule(void)
説明	モジュールストップ状態へ遷移する設定を行います。
引数	なし
リターン値	なし
備 考	サンプルコードでは、モジュールストップ状態への遷移は行っていません。
	本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してく ださい。

R_INIT_NonExistentPort		
概要	存在しないポートの初期設定	
ヘッダ	r_init_non_existent_port.h	
宣言	void R_INIT_NonExistentPort(void)	
説明	100 ピン未満の製品に対して、存在しないポートの端子に対応するポート方向レジス	
	タの初期設定を行います。	
引数	なし	
リターン値	なし	
備 考	サンプルコードでは、100 ピン版(PIN_SIZE=100)に設定しています。	
	本関数をコールした後に、存在しないポートを含む PDR、PODR レジスタへバイト	
	単位で書き込む場合、存在しないポートの方向制御ビットには"1"、ポート出力デー	
	タ格納ビットには"0"を設定してください。	
	本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してく	
	ださい。	

R_INIT_Clock	
概要	クロック初期設定
ヘッダ	r_init_clock.h
宣言	void R_INIT_Clock(void)
説明	クロックの初期設定を行います。
引数	なし
リターン値	なし
備考	サンプルコードでは、システムクロックを PLL とし、サブクロックを使用しない処 理を選択しています。
	本関数の詳細は、各グループのアプリケーションノート「初期設定例」を参照してく
	ださい。

peripheral_init	
概要	周辺機能初期設定
ヘッダ	なし
宣言	void peripheral_init(void)
説明	使用する周辺機能の初期設定を行います。
引数	なし
リターン値	なし

error_proc	
概要	エラー処理
ヘッダ	なし
宣言	void error_proc(void)
説明	エラー信号を出力し、無限ループに遷移します。
引数	なし
リターン値	なし

Excep_MTU1_TGIA1	
概要	MTU1 のインプットキャプチャ A 割り込み処理
ヘッダ	なし
宣言	void Excep_MTU1_TGIA1 (void)
説明	MTIOC1A 端子の状態が " H " の場合、測定開始フラグを " 1 " (測定中)にして、パルス測定を開始します。また、オーバフローカウンタをクリアします。 MTIOC1A 端子の状態が " L " の場合、パルス幅を算出し、測定開始フラグをクリアします。
引数	なし
リターン値	なし

Excep_MTU1_TCIV1	
概要	MTU1 のオーバフロー割り込み処理
ヘッダ	なし
宣言	void Excep_MTU1_TCIV1(void)
説明	測定開始フラグが "1" (測定中)の場合、オーバフロー回数をカウントします。
	オーバフロー回数が 65,535 回を超えた場合、エラー処理に遷移します。
引数	なし
リターン値	なし

5.2.8 フローチャート

5.2.8.1 メイン処理

図 5.13にメイン処理のフローチャートを示します。

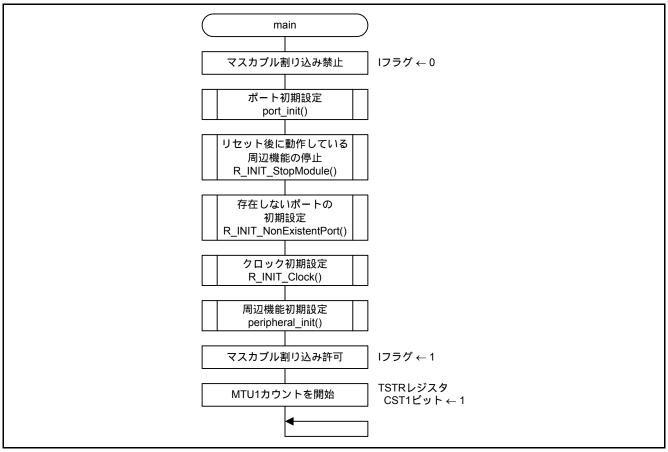


図5.13 メイン処理

5.2.8.2 ポート初期設定

図 5.14にポート初期設定のフローチャートを示します。

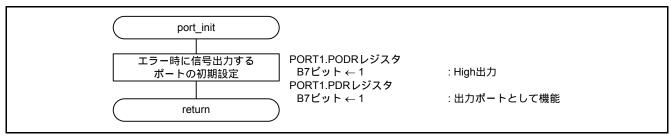


図5.14 ポート初期設定

5.2.8.3 周辺機能初期設定

図 5.15に周辺機能初期設定のフローチャートを示します。

図5.15 周辺機能初期設定

5.2.8.4 エラー処理

図 5.16にエラー処理のフローチャートを示します。

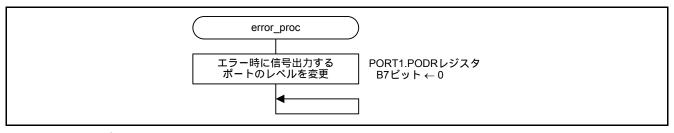


図5.16 エラー処理

5.2.8.5 MTU1 のインプットキャプチャ A 割り込み処理

図 5.17にMTU1 のインプットキャプチャ A 割り込み処理のフローチャートを示します。

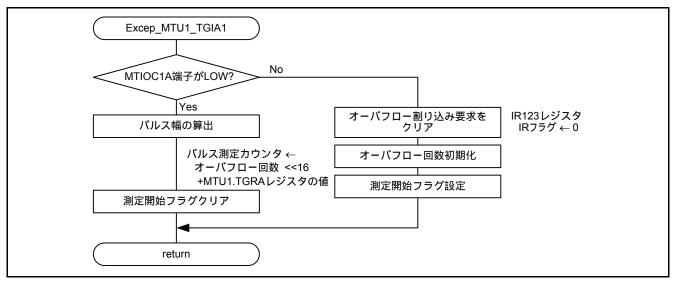


図5.17 MTU1 のインプットキャプチャ A 割り込み処理

5.2.8.6 MTU1 のオーバフロー割り込み処理 図 5.18にMTU1 のオーバフロー割り込み処理のフローチャートを示します。

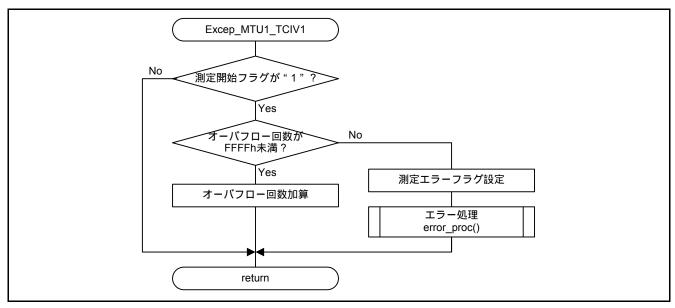


図5.18 MTU1のオーバフロー割り込み処理

6. RX21A、RX220 グループ 初期設定例 アプリケーションノートとの組み合わせ方

本アプリケーションノートのサンプルコードは、RX210 グループで動作することを確認しています。RX21A グループや RX220 グループで動作させるには、それぞれの初期設定例のアプリケーションノートと組み合わせてください。

手順は、初期設定例のアプリケーションノート 「5.RX210 グループのアプリケーションノートを RX21A グループに適用する方法」、「4.RX210 グループのアプリケーションノートを RX220 グループに適用する方法」を参照ください。

7. サンプルコード

サンプルコードは、ルネサス エレクトロニクスホームページから入手してください。

8. 参考ドキュメント

ユーザーズマニュアル:ハードウェア

RX210グループ ユーザーズマニュアル ハードウェア編 Rev.1.50 (R01UH0037JJ) RX21A グループ ユーザーズマニュアル ハードウェア編 Rev.1.00 (R01UH0251JJ) RX220 グループ ユーザーズマニュアル ハードウェア編 Rev.1.10 (R01UH0292JJ) (最新版をルネサス エレクトロニクスホームページから入手してください。)

テクニカルアップデート / テクニカルニュース

(最新の情報をルネサス エレクトロニクスホームページから入手してください。)

ユーザーズマニュアル: 開発環境

RX ファミリ C/C++コンパイラパッケージ V.1.01 ユーザーズマニュアル Rev.1.00 (R20UT0570JJ) (最新版をルネサス エレクトロニクスホームページから入手してください。)

ホームページとサポート窓口

ルネサス エレクトロニクスホームページ

http://japan.renesas.com

お問合せ先

http://japan.renesas.com/contact/

改訂記録

RX210グループ アプリケーションノート MTU2a を使用したパルス幅測定

Rev.	発行日	改訂内容	
		ページ	ポイント
1.00	2012.03.21	_	初版発行
1.10	2013.03.01	1	対象デバイス追加
		4	動作確認条件更新
		5	4.1使用端子一覧 文章追加
		6	インプットキャプチャ A 割り込み(TGIA1)割り込み優先レベル「4」「3」
			インプットキャプチャ B 割り込み(TGIB1)割り込み優先レベル「4」「3」
			オーバフロー割り込み(TCIV1)割り込み優先レベル「3」 「4」
		7	文章修正
			「ルーチン内」削除
			「パルス幅測定の開始」 「測定中」
			(2)「オーバフロー割り込み要求」追加
		8	文章修正、図 5.2 修正
		9	表 5.1 ファイル名修正
		10	表 5.4 使用関数名変更
			表 5.5 関数名変更
		11	「R_INIT_StopModule」追加
			「non_existent_port_init」 「R_INIT_NonExistentPort」
			関数名変更、内容修正
		40	「clock_init」 「R_INIT_Clock」関数名変更、内容修正
		13	図 5.3 「R_INIT_StopModule」追加
			「non_existent_port_init」 「R_INIT_NonExistentPort」関数名変更 「clock_init」 「R_INIT_Clock」関数名変更
		14	Clock_IIII()
		15	図 5.6 MTU1.TGIA1 割り込み優先レベル「4」 「3」
		13	MTU1.TGIB1割り込み優先レベル「4」 「3」
			MTU1.TCIV1 割り込み優先レベル「3」 「4」
			誤記修正「割り込み要求クリアおよび確認」 「割り込み要求クリア」
		16	図 5.8 関数名修正
			図 5.9 関数名修正、処理変更
		17	図 5.10 関数名修正
		18	ノイズフィルタクロック「PCLKB/8」 「PCLKB/1」
			インプットキャプチャ A 割り込み(TGIA1)割り込み優先レベル「4」「3」
			オーバフロー割り込み(TCIV1)割り込み優先レベル「3」 「4」
		19	文章修正
			「ルーチン内」削除
			「パルス幅測定の開始」 「測定中」
		20	文章修正、図 5.12修正
		21	表 5.6 ファイル名修正
		22	表 5.10 使用関数名変更
		23	「R_INIT_StopModule」追加
			「non_existent_port_init」 「R_INIT_NonExistentPort」
			関数名変更、内容修正
			「clock_init」 「R_INIT_Clock」関数名変更、内容修正

		1	71-27-1-22	
Rev.	発行日	改訂内容		
		ページ	ポイント	
1.10	2013.03.01	25	図 5.13「R_INIT_StopModule」追加	
			「non_existent_port_init」 「R_INIT_NonExistentPort」関数名変更	
			「clock_init」 「R_INIT_Clock」関数名変更	
		26	図 5.15 ノイズフィルタクロック選択「PCLKB/8」 「PCLKB/1」	
			MTU1.TGIA1 割り込み優先レベル「4」 「3」	
			MTU1.TCIV1 割り込み優先レベル「3」 「4」	
			誤記修正「PSEL[4:0] = 00001b」 「PSEL[3:0] = 0001b」	
			誤記修正「割り込み要求クリアおよび確認」 「割り込み要求クリア」	
		27	図 5.17 関数名修正、処理変更	
		28	図 5.18 関数名修正	
		29	RX210 グループ ユーザーズマニュアル ハードウェア編	
			「Rev.1.00」 「Rev.1.20」	
1.11	2014.07.01	1	対象デバイスに RX21A、RX220 グループを追加	
		4	関連アプリケーションノートに RX21A、RX220 グループ 初期設定例	
			のアプリケーションノートを追加	
		11、23		
			ノート初期設定例に変更	
		30	RX21A、RX220 グループ 初期設定例と組み合わせる方法の参照先を追	
			加	
		31	参考ドキュメントに RX21A、RX220 グループのユーザーズマニュアル	
			を追加	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意 事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 未使用端子の処理

【注意】未使用端子は、本文の「未使用端子の処理」に従って処理してください。

CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。未使用端子は、本文「未使用端子の処理」で説明する指示に従い処理してください。

2. 電源投入時の処置

【注意】電源投入時は、製品の状態は不定です。

電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。 外部リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の 状態は保証できません。

同様に、内蔵パワーオンリセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. リザーブアドレスのアクセス禁止

【注意】リザーブアドレスのアクセスを禁止します。

アドレス領域には、将来の機能拡張用に割り付けられているリザーブアドレスがあります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

4. クロックについて

【注意】リセット時は、クロックが安定した後、リセットを解除してください。

プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。 リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

5. 製品間の相違について

【注意】型名の異なる製品に変更する場合は、事前に問題ないことをご確認下さい。

同じグループのマイコンでも型名が違うと、内部メモリ、レイアウトパターンの相違などにより、特性が異なる場合があります。型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して、お客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 2. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報 の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 3. 本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の知的財産権 に対する侵害に関し、当社は、何らの責任を負うものではありません。当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許 諾するものではありません。
- 4. 当社製品を改造、改変、複製等しないでください。かかる改造、改変、複製等により生じた損害に関し、当社は、一切その責任を負いません。
- 5. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、

各品質水準は、以下に示す用途に製品が使用されることを意図しております。

標準水準: コンピュータ、OA機器、通信機器、計測機器、AV機器、

家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通用信号機器、

防災・防犯装置、各種安全装置等

当社製品は、直接生命・身体に危害を及ぼす可能性のある機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(原子力制御システム、軍事機器等)に使用されることを意図しておらず、使用することはできません。 たとえ、意図しない用途に当社製品を使用したことによりお客様または第三者に損害が生じても、当社は一切その責任を負いません。 なお、ご不明点がある場合は、当社営業にお問い合わせください。

- 6. 当社製品をご使用の際は、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他の保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 8. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に 関して、当社は、一切その責任を負いません。
- 9. 本資料に記載されている当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。また、当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途に使用しないでください。当社製品または技術を輸出する場合は、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。
- 10. お客様の転売等により、本ご注意書き記載の諸条件に抵触して当社製品が使用され、その使用から損害が生じた場合、当社は何らの責任も負わず、お客様にてご負担して頂きますのでご了承ください。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 注1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社がその総株主の議決権の過半数 を直接または間接に保有する会社をいいます。
- 注2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

ルネサスエレクトロニクス株式会社

■営業お問合せ窓口

http://www.renesas.com

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒100-0004 千代田区大手町2-6-2 (日本ビル)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口: http://japan.renesas.com/contact/