
 APPLICATION NOTE

R01AN0555EJ0215 Rev.2.15 Page 1 of 35

Mar 28, 2016

Renesas USB MCU
USB Peripheral Communications Device Class Driver (PCDC) using USB Basic Mini Firmware

Introduction

This document is an application note describing use of the USB Peripheral Communications Device Class Driver

(PCDC) built using the USB Basic Mini Firmware.

Target Device

RL78/G1C, RL78/L1C, R8C/34U, R8C/3MU, R8C/3MK, R8C/34K

This program can be used with other microcontrollers that have the same USB module as the above target devices.

When using this code in an end product or other application, its operation must be tested and evaluated thoroughly.

This program has been evaluated using the corresponding MCU’s Renesas Starter Kit board.

Contents

1. Overview ... 2

2. How to Register Class Driver ... 4

3. Operating Confirmation Environment ... 4

4. Software Configuration ... 4

5. Peripheral CDC Sample Application (APL) .. 8

6. Communications Device Class (CDC) .. 19

7. USB Peripheral Communication Device Class Driver (PCDC) .. 24

8. Communication Port Driver (CPD) ... 31

9. Setup for the e2 studio project ... 32

10. Using the e2 studio project with CS+ .. 34

R01AN0555EJ0215
Rev.2.15

Mar 28, 2016

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 2 of 35

Mar 28, 2016

1. Overview

This document is an application note describing use of the USB peripheral Communication Device Class driver (PCDC)

and communication port driver sample driver, using the USB Basic Mini FirmwareRenesas.

The ACM subclass of the CDC class is used. For USB applications that need bulk transfer - large amounts of non time

critical data, this can be the most straightforward solution, since it can be used together with a PC UART terminal

program. These host–side COM port terminal applications most often have a file transfer menu options built in. The

terminal program will be opened towards the USB COM-port that will appear after enumeration.

1.1 Functions and Features

The PCDC conforms to the Abstract Control Model of the Communication Device Class specification (CDC) and

enables communication with a USB Host.

This class driver is intended to be used in combination with the USB Basic Mini Firmware from Renesas Electronics.

1.2 Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Class Definitions for Communications Devices Revision 1.2

3. USB Communications Class Subclass Specification for PSTN Devices Revision 1.2

[http://www.usb.org/developers/docs/]

4. User’s Manual: HardwareUSB Peripheral Communications Device Class Driver (PCDC)

5. USB Basic Mini Firmware Application Note (Document No. R01AN0326EJ)

6. USB Peripheral Communications Device Class Driver (PCDC) Installation Guide for Basic Mini Firmware

7. FIT SCI Asynchronous Mode Module Application Note (Document No. R01AN1667EU)

Available from Renesas Electronics WebSite

 Renesas Electronics Website

http://www.renesas.com

 USB Devices Page

http://www.renesas.com/prod/usb

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 3 of 35

Mar 28, 2016

1.3 Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

API : Application Program Interface

APL : Application program

CDC : Communications Devices Class

CDCC : Communications Devices Class Communications Interface Class

CDCD : Communications Devices Class Data Class Interface

CPD : Serial Communication Port Driver

cstd : Prefix of function and file for Host & Peripheral USB-BASIC-F/W

Data Transfer : Generic name of Control transfer, Bulk transfer and Interrupt transfer

H/W : Renesas USB device

PCD : Peripheral control driver of USB-BASIC-F/W

PCDC : Communications Devices Class for peripheral

PCDCD : Peripheral Communications Devices Class Driver

PP : Pre-processed definition

pstd : Prefix of function and file for Peripheral USB-BASIC-F/W

RSK : Renesas Starter Kit

Scheduler : Used to schedule functions, like a simplified OS.

Scheduler Macro : Used to call a scheduler function

SCI : Serial Communication Interface

SW1/SW2/SW3 : Switch implemented on RSK board

Task : Processing unit

USB : Universal Serial Bus

USB-BASIC-F/W : USB Basic Mini Firmware for Renesas USB device

1.4 How to Read This Document

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to

look up information on functionality and interfaces as needed for your particular solution.

Chapter 5 explains how the sample application works. You will change this to create your own solution.

Understand how all code modules are divided into tasks, and that these tasks pass messages to one another. This is so

that functions (tasks) can execute in the order determined by a scheduler and not strictly in a predetermined order. This

way more important tasks can have priority. Further, tasks are intended to be non-blocking by using a documented

callback mechanism. The task mechanism is described in Chapter 1.2 above, "BASIC-FW Application Note".

All PCDC tasks are listed in Chapter 4.3 below.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 4 of 35

Mar 28, 2016

2. How to Register Class Driver

The class driver which the user creates must be registered with the BASIC-FW. Please consult function

usb_papl_registration() in r_usb_pcdc_apl.c on how to register a class driver with the BASIC-FW.

For details, please refer to the BASIC-FW application note.

3. Operating Confirmation Environment

3.1 Compiler

The compilers which is used for the operating confirmation are follows.

a. CA78K0R Compiler V.1.71

b. CC-RL Compiler V.1.01

c. IAR C/C++ Compiler for RL78 version 2.10.4

d. KPIT GNURL78-ELF v15.02

e. C/C++ Compiler Package for M16C Series and R8C Family V.6.00 Release 00

3.2 Evaluation Board

The evaluation boards which is used for the operating confirmation are follows.

a. Renesas Starter Kit for RL78/G1C (Product No: R0K5010JGC001BR)

b. Renesas Starter Kit for RL78/L1C (Product No: R0K50110PC010BR)

c. R8C/34K Group USB Peripheral Evaluation Board (Product No: R0K5R8C34DK2PBR)

4. Software Configuration

4.1 Module Configuration

Figure 4-1 shows the configuration of the modules related to PCDC. Table 4.1 lists the software modules.

User application (APL)

USB peripheral communications device driver (PCDC)

USB peripheral control driver (PCD)

USB peripheral controller (hardware)

Serial Communication

 port driver (CPD)

Serial communication

interface (hardware)

Figure 4-1 Source Code Block Diagram

Table 4.1 Modules

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 5 of 35

Mar 28, 2016

Module Description

APL User application program.

PCDC Sends requests from the APL for requests and data communication involving the CDC to

the PCD.

PCD USB peripheral hardware control driver.

CPD Serial port control driver

The user application (APL) and PCDC each run as tasks,called by the scheduler.

PCDC communicates with the host via PCD.

APL communicates over USB via PCDC and over the serial port via CPD.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 6 of 35

Mar 28, 2016

4.2 Structure of Files and folders

4.2.1 Folder Structure

The folder structure of the files supplied with the device class is shown below.

The source codes dependent on each device and evaluation board are stored in each hardware resource folder

(\devicename\src\HwResource).

workspace

 ＋[RL78 / R8C]

 ＋[CCRL / CS+ / IAR / e2 studio / HEW]

 ＋ [RL78G1C / RL78L1C / R8C3MK / R8C3MU / R8C34K / R8C34U]

 ＋ UART UART build result

 ＋ ECHO ECHO build result

 ＋ src

 ＋――― PCDC [Communication Device Class driver] See Table 4.2

 ｜ ＋――― inc Common header file of CDC driver

 ｜ ＋――― src CDC driver

 ＋―――SmplMain [Sample Application]

 ｜ ＋――― APL Sample application

 ＋―――USBSTDFW [Common USB code that is used by all USB firmware]

 ｜ ＋――― inc Common header file of USB driver

 ｜ ＋――― src USB driver

 ＋――― HwResource [Hardware access layer; to initialize the MCU]

 ＋――― inc Common header file of hardware resource

 ＋―――src Hardware resource

[Note]

a. The project for CA78K0R compiler is stored under the CS+ folder.

b. The project for KPIT GNU compiler is stored under the e2 studio folder.

c. Refer to 10 Using the e2 studio project with CS+ section when using CC-RL compiler on CS+.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 7 of 35

Mar 28, 2016

4.2.2 CDC File List

Table 4.2 shows the file structure supplied with PCDC.

Table 4.2 PCDC Folders

Folder File Name Description Note

PCDC/src r_usb_pcdc_api.c CDC API functions

 r_usb_pcdc_driver.c CDC driver functions

PCDC/inc r_usb_pcdc_define.h CDC type definitions and macro definitions

 r_usb_pcdc_extern.h CDC prototype, external reference

SmplMain main.c Main function

SmplMain/APL r_usb_pcdc_echo_apl.c Sample application program for echo mode

 r_usb_pcdc_uart_apl.c Sample application program for Serial-USB

converter mode

 r_usb_pcdc_descriptor.c PCDC descriptor for Sample application

4.3 System Resources

Table 4.3 lists the ID and priority definitions used to register PCDC in the scheduler.

These are defined in the r_usb_ckerneid.h header file.

Table 4.3 Resource Definitions

 Name Description

Scheduler registration task USB_PCDC_TSK PCDC task (usb_pcdc_Task)

Task priority: 1

USB_PCDCSMP_TSK APL main task (usb_pcdc_main_task)

Task priority: 2

USB_PCD_TSK PCD task (R_usb_pstd_PcdTask)

Task priority : 0

Mailbox ID USB_PCDC_MBX

(default value:

USB_PCDC_TSK)

PCDC mailbox ID

USB_PCDCSMP_MBX

(default value:

USB_PCDCSMP_TSK)

APL mailbox ID

USB_PCD_MBX

(default value:

USB_PCD_TSK)

PCD mailbox ID

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 8 of 35

Mar 28, 2016

5. Peripheral CDC Sample Application (APL)

This section explains the peripheral CDC Sample Application (APL).

5.1 Operating Environment

Figure 5-1shows the sample operating environment for the software.

RSK Board

USB Host PC Serial port communication

target device

OS: Windows 2000, Windows XP, Windows Vista, Windows 7

Terminal application program

(Windows Standard mounted Hyper Terminal, etc.)

RS232C

cable

USB Basic Mini Firmware
+

Periphral Communications Device Class Driver

Serial

port

Enumeration

(PIPE0 control transfer)

Bulk data communication
(PIPE4 and PIPE5

bulk transfer)

Interrupt data
communication

(PIPE6 interrupt transfer)

USB

PORT

USB

PORT0

USB cable

Control target

device with

serial port

installed

Figure 5-1 Example Operating Environment

When using a Windows PC as the Host PC, you will also need to install the system definition file

(reference\cdc_inf\CDC_Demo.inf or CDC_Demo_Win7.inf). The system definition file must be edited to match the

Vendor ID (VID) and Product ID (PID) setup in the Rev.2.15. Edit the following places in the system definition file

using a text editor or similar editing tool.

[Model]

%STRING_MODEL% = CDC, USB\VID_0000&PID_0000 Edit the 4-digit numeric values as 4-digit hexadecimal

numbers.

Edit the line as follows for a VID of 0x1234 and a PID of 0x5678.

[Model]

%STRING_MODEL% = CDC, USB\VID_1234&PID_5678 Edit the 4-digit numeric values as 4-digit hexadecimal

numbers.

The PID and VID values of the peripheral device are defined by USB_VENDORID and USB_PRODUCTID,

respectively, in the file WorkSpace\SmplMain\APL\r_usb_echo_apl_descriptor.c.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 9 of 35

Mar 28, 2016

5.2 Application Program (APL) Overview

The application program works in the following 2 mode. The files of the application program is differ in each mode

differ. Refer to chapter 5.2.3 about selecting the mode.

5.2.1 Serial-USB converter mode

The board works as a USB-to-serial (UART) converter. Incoming data from the USB host is sent to the UART port of

the board. Conversely, incoming data to the board UART is sent to the USB COM-port, that is, the USB host.

5.2.2 Echo Mode

Echo mode transmits by return the data received from the USB host to a USB host. A UART port is not used in echo

mode.

5.2.3 Selecting Serial-USB converter mode / Echo mode

Select “Serial-USB converter mode / Echo mode” on the integrated development environment (IDE) after starting the

IDE is supported by each MCU.

1). CS+

2). e2 studio

Selecting the build mode

Selecting the build configuration

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 10 of 35

Mar 28, 2016

5.3 APL Messages

The application module (APL) receives messages from the mailbox USB_PCDCSMP_MBX). APL then processes the

messages as described in “Table 5.1 APL Receive Message List”.

Table 5.1 APL Receive Message List

Classification Source of Message

USB_PCDC_RX_COMP The callback function called at completion of USB reception

(OUT): “usb_psmpl_RxCB”

USB_PCDC_TX_COMP The callback function called at completion of a USB transmission

(IN): “usb_psmpl_TxCB”

USB_PCDC_STATUS_TX_COMP A serial state transmission completion:

“usb_psmpl_state_notification”

USB_PCDC_PERIODIC The cyclical start signal to process the sample application task:

“usb_psmpl_periodic_request”

5.4 APL Functions

Table 5.2 lists and describes the APL level functions.

Table 5.2 Lists of APL Functions

Function Name Description

usb_cstd_task_start Task start processing

usb_pcdc_task_start Various task start process for peripheral USB

usb_psmpl_driver_registration PCDC driver registration

usb_psmpl_open PCDC open function

usb_psmpl_close PCDC close function

usb_apl_task_switch The task-switching loop

usb_psmpl_MainTask Sample application main task

usb_psmpl_RxCB The completion callback function of USB reception

usb_psmpl_TxCB The completion callback function of USB transmitting

usb_psmpl_GetRcvDataCnt Receive data count acquisition processing

usb_psmpl_change_device_state Device state callback check

usb_psmpl_ReceiveDataStart Start the date receive request for Host

usb_psmpl_LineCodingInitial Line Coding initial processing

usb_psmpl_DummyFunc Dummy function for the callback

usb_psmpl_state_notification Callback function for notifying the serial state

usb_psmpl_class_request_callback Callback function for receiving the class request

usb_psmpl_periodic_request Application program cyclic start request

usb_psmpl_uart_callback Callback function for UART driver

usb_psmpl_serial_state_process Serial State processing

usb_psmpl_is_connected Return the USB connection state

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 11 of 35

Mar 28, 2016

5.5 APL Dataflow

An application level dataflow overview is shown in Figure 5-2.

5.5.1 Serial-USB converter mode

usb_psmpl_ReceiveData[]

Data received from USB

USB data receive process

R_esb_pcdc_ReceiveData()

Receive MAXPS (*)

Serial port data transmit process

R_SCI_Send()

Store data in ring buffer

U
S

B
 re

c
e
iv

e
 e

n
d
 c

a
ll-b

a
c
k

Data for transmission to

serial port

At the receive end

call-back

notification from

the data receive

processing, the

data received

from the USB is

transmitted to the

serial port.

usb_psmpl_send_data[]

Data for transmission to

USB

USB data transmit process

R_esb_pcdc_SendData()

Transmit MAXPS (*)

Serial port data receive process

R_SCI_Receive()

Get data stored in ring buffer

Data received from

serial port

The serial port

is checked

periodically for

accumulated

receive data,

and if so the

data is

transmitted to

the USB.

Serial transmit interrupt handler

Transmit 1 byte

Serial receive interrupt handler

Receive 1 byte

When not in echo mode, 1

character of receive data is

stored in usb_gpcdc_srxdata[]

Interrupt handling

Application task

usb_psmpl_MainTask

Serial transmit interrupt Serial receive

interrupt

USB port

1 character of transmit data is

fetched from usb_gpcdc_stxdata[]

*

For Full-Speed: 64 byte

Figure 5-2 APL Data Flow (Serial-USB converter mode)

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 12 of 35

Mar 28, 2016

5.5.2 Echo Mode

usb_gpcdc_receive_data[]

Data received from USB

USB data receive process

R_usb_pcdc_ReceiveData()

Receive MAXPS (*)

U
S

B
 re

c
e
iv

e
 e

n
d
 c

a
ll-b

a
c
k

At the receive end

call-back

notification from

the data receive

processing, the

data received

from the USB is

transmitted to the

serial port.

usb_gpcdc_send_data[]

Data for transmission to

USB

USB data transmit process

R_usb_pcdc_SendData()

Transmit MAXPS (*) The serial port

is checked

periodically for

accumulated

receive data,

and if so the

data is

transmitted to

the USB.

Application task

usb_psmpl_MainTask

USB port

*

For Full-Speed: 64 byte

Data copy processing for echo mode

usb_cpu_Sci_CopyData_forEcho()

Copy usb_psmpl_receive_data[] to

usb_psmpl_send_data[]

When in echo mode

Figure 5-3 APL Data Flow (Echo mode)

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 13 of 35

Mar 28, 2016

5.6 Sequence Charts

Below are time sequence charts showing the interaction between the modules APL (application), PCDC (device class

driver), PCD (USB device HW control) and CPD (serial port control driver).

5.6.1 Normal Mode (Serial-USB converter mode)

1. Reception from CDC Host => Serial Port Transmit

The sequence whereby data is received from the CDC host and then transmitted to the serial port is shown Figure 5-4.

APL PCDC PCD CPD

Return Value ==

SCI_SUCCESS

Transmit receive data to serial port

R_SCI_Send()

YES

Receive request to CDC host device

R_usb_pcdc_ReceiveData()

R_usb_pstd_TransferStart()

Bulk out transfer

Receive operation start

Receive end call-back

Receive end call-back

APL triggered when message received

(USBC_PCDC_RX_COMP)

Receive request to CDC host

R_usb_pcdc_ReceiveData()

R_usb_pstd_TransferStart()

Receive end call-back

Receive end call-back

APL triggered when message received

(USBC_PCDC_RX_COMP)

Transmit USB receive data to serial port

R_SCI_Send()

Repeats the processing in this box

NO

Figure 5-4 Data Reception from CDC Host and Serial Port Transmit Sequence

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 14 of 35

Mar 28, 2016

2. Serial Port Reception => Transmission To CDC Host

The sequence whereby is data received from the serial port and then transmitted to the USB Host is shown Figure 5-8.

APL PCDC PCD CPD

Receive data

Fetch data received from serial port

R_SCI_Receive()

Transmit serial receive data to CDC host

R_usb_pcdc_SendData()

R_usb_pstd_TransferStart()

Transfer end call-back

Transfer end call-back

Receive data count = 0
Balk in transfer

Transfer end

APL triggered periodically when message received

(USB_PCDC_PERIODIC_PROCESS)

APL triggered when message received

(USB_PCDC_TX_COMP)

R_SCI_Control()

Get num bytes ready for reading

Figure 5-5 Serial Port (UART) Reception and Transmission to CDC Host Sequence

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 15 of 35

Mar 28, 2016

3. Serial Error Handling

The sequence when a serial receive error is detected, and a class notification (SerialState) is transmitted to the USB

Host, is shown Figure 5-6.

APL PCDC PCD CPD

R_usb_pcdc_SendNotification ()

R_usb_pstd_TransferStart()

Transmit end call-back

SerialState transmit end call-back

Interrupt in transfer

Transfer end

APL triggered periodically when message

received (USB_PCDC_PERIODIC)

APL triggered when message received

(USB_PCDC_STATUS_TX_COMP)

Call the callback function which is specified by R_SCI_open function

SCI error

Interrupt

Serial Error ?

YES

NO

Figure 5-6 Serial Error Handling Sequence

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 16 of 35

Mar 28, 2016

5.6.2 Echo Mode

The sequence of echo mode operation, in which data received from the USB Host is transmitted back to the USB Host,

is shown Figure 5-7.

APL PCDC PCD

Receive data

· Check receive data size

· Copy receive data to transmit data area

Transmit receive data to CDC host

R_usb_pcdc_SendData()

R_usb_pstd_TransferStart()

Receive data count = 0

Transfer end call-back

Transfer end call-back
Balk in transfer

Transfer end

Receive request to CDC host

R_usb_pcdc_ReceiveData()

R_usb_pstd_TransferStart()

Receive end call-back

Receive end call-back
Balk out transfer

Transfer end

Receive data count > 0

APL triggered when message received

(USBC_PCDC_RX_COMP)

APL triggered when message received

(USBC_PCDC_TX_COMP)

It repeats from "Receive request to CDC host".

Figure 5-7 Echo Mode Sequence

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 17 of 35

Mar 28, 2016

5.7 APL Processing Details

Here follows a more detailed description of the processing pathways for USB-to-serial-UART mode and Echo mode.

1. USB – Serial converter processing

・ USB → Serial (UART)

➀. USB data reception processing done by: R_usb_pcdc_ReceiveData()

➁. Transmission over serial port: R_SCI_Send()

➀and ➁ repeated.

・ Serial (UART) → USB

➂. Serial receive processing done by: R_usb_sci_receive()

 ➃. USB transmission by: R_usb_sci_send()

➂ and ➃ repeated.

usb_pcdc_MainTask

Message receive processing

R_USB_RCV_MSG

Message classification

Message transmit processing

usb_psmpl_periodic_request()

Serial state processing

usb_psmpl_serial_state_

process()

Transmission Wait ?

Get num bytes ready for

reading
R_SCI_Control()

Received data size

Serial transmit processing

R_usb_pcdc_SendData()

Transmit-in-progress flag on

USB receive data count
acquisition processing

usb_pcdc_get_rcv_data_cnt()

Serial port transmit processing

R_SCI_Send()

Return Value ==

SCI_SUCESS

Data receive processing

R_usb_pcdc_ReceiveData()

Transmit-in-progress

flag off

Serial error notification

transmit-in-progress flag off

Other

Serial error

notification

transmit end

USB transmit end

USB_PCDC_

RX_COMP

USB_PCDC_PERIODIC

Off

On

= 0

> 0

Periodic startup

request to task

Portion inside dotted line is required

for echo mode operation.

YES

Receive Wait flag on

NO

The processing ends and

control returns to the scheduler

Receive Wait flag ?

Serial port transmit processing

R_SCI_Send()

Return Value ==

SCI_SUCESS

On

Clear Receive Wait flag

Off

YES

NO

USB_PCDC_

TX_COMP

USB_PCDC_STATUS_

TX_COMP

Figure 5-8 APL Processing Flowchart (USB – Serial converter Mode)

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 18 of 35

Mar 28, 2016

2. Echo Mode

① Received USB data processing: usb_psmpl_ReceiveDataStart()

② USB transmission: R_usb_pcdc_SendData()

➀and ➁ repeated.

usb_pcdc_MainTask

Message receive processing

USB_TRCV_MSG()

Message classification

Message transmit processing

USB_SND_MSG()

Switch input processing

usb_pcdc_sw_process()

Serial state processing

usb_pcdc_serial_state_

process()

Transmit-in-progress flag

Serial receive data acquisition
processing

usb_cpu_SciDataReceive()

Receive data count

Serial transmit processing

R_usb_pcdc_SendData()

Transmit-in-progress flag on

If data receive processing

could not be performed at

initial connection to the CDC

host or at receive end because

the buffer was full, data

receive processing is

performed at this point.

USB receive data count
acquisition processing

usb_pcdc_get_rcv_data_cnt()

Serial port transmit processing

usb_cpu_SciDataSend()

Serial transmit buffer status
check

usb_cpu_Scit_StxBuffStatus()

Buffer status

Data receive processing

R_usb_pcdc_ReceiveData()

Transmit-in-progress

flag off

Serial error notification

transmit-in-progress flag off

Other

Serial error

notification

transmit end

USB transmit end USB receive end

Periodic startup

Off

On

= 0

> 0

Periodic startup

request to task

The processing ends and control returns to the scheduler.

Portion inside dotted line is required

for echo mode operation.

Figure 5-9 APL Processing Flowchart (Echo Mode)

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 19 of 35

Mar 28, 2016

6. Communications Device Class (CDC)

6.1 Basic Functions

This software conforms to the Abstract Control of the CDC PSTN Subclass.

The main functions of this “PCDC” firmware are as follows.

1. Respond to functional inquiries from the USB Host

2. Respond to class requests from the USB Host

3. Data communication with the USB Host

4. Notifying the USB Host of serial communication errors

6.2 Abstract Control Model Overview

The Abstract Control Model subclass of CDC is a technology that “bridges the gap between USB devices and earlier

modems” (employing RS-232C connections), enabling use of application programs designed for older modems.

Nowadays, the ACM subclass is used for USB applications that need USB bulk transfer – for larger amounts of non

time critical data. The ACM is ideal for example for applications where a file needs to be transferred. This can then be

done using a PC UART terminal program that has a built-in file transfer menu option.

The class requests and class notifications supported are listed below.

6.2.1 Class Requests (Host to Peripheral)

Table 6.1 shows CDC class requests, and whether they are supported.

Table 6.1 CDC class requests

Request Code Description Supported

SendEncapsulatedCommand 0x00 Transmits AT commands, etc., defined by the

protocol.

No*

GetEncapsulatedResponse 0x01 Requests a response to a command transmitted

by SendEncapsulatedCommand.

No*

SetCommFeature 0x02 Enables or disables features such as device-

specific 2-byte code and country setting.

No*

GetCommFeature 0x03 Acquires the enabled/disabled state of features

such as device-specific 2-byte code and country

setting.

No*

ClearCommFeature 0x04 Restores the default enabled/disabled settings of

features such as device-specific 2-byte code and

country setting.

No*

SetLineCoding 0x20 Makes communication line settings

(communication speed, data length, parity bit,

and stop bit length).

Yes

GetLineCoding 0x21 Acquires the communication line setting state. Yes

SetControlLineState 0x22 Makes communication line control signal (RTS,

DTR) settings.

Yes

SendBreak 0x23 Transmits a break signal. No*

*Must be added by the user of PCDC.(Refer to the sample function in)

For details concerning the Abstract Control Model requests, refer to Table 11, “Requests - Abstract Control Model” in

“USB Communications Class Subclass Specification for PSTN Devices”, Revision 1.2.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 20 of 35

Mar 28, 2016

6.2.2 Data Format of Class Requests

The data formats of the class requests supported by the class driver software are described below.

(1). SetLineCoding

This is the class request that the host transmits for UART line setting.

The SetLineCoding data format is shown below.

Table 6.2 SetLineCoding Format

bmRequestType bRequest wValue wIndex wLength Data

0x21 SET_LINE_CODING

(0x20)

0x00 0x00 0x07 Line Coding Structure

See Table 6.3 Line Coding

Format

Table 6.3 Line Coding Format

Offset Field Size Value Description

0 DwDTERate 4 Number Data terminal speed (bps)

4 BcharFormat 1 Number Stop bits 0 - 1 stop bit

 1 - 1.5 stop bits

 2 - 2 stop bits

5 BparityType 1 Number Parity 0 - None

 1 - Odd

 2 - Even

6 BdataBits 1 Number Data bits (5, 6, 7, 8)

The following shows the setting that this S/W supports.

DwDTERate: 1200bps/2400bps/4800bps/9600bps/14400bps/19200bps/38400bps/57600bps/115200bps

BcharFormat: １Stop bit/２Stop bit

BparityType: None/Odd/Even

BdataBits: 7bit/8bit

(2). GetLineCoding

This is the class request the host transmits to request the UART line state.

The GetLineCoding data format is shown below.

Table 6.4 SetLineCoding Format

bmRequestType bRequest wValue WIndex wLength Data

0xA1 GET_LINE_CODING

(0x21)

0x00 0x00 0x07 Line Coding Structure

See table 4.3, Line Coding

Structure Format

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 21 of 35

Mar 28, 2016

(3). SetControlLineSTATE

This is a class request that the host sends to set up the signal for flow controls of UART.

This software does not support RTS/DTR control.

The SET_CONTROL_LINE_STATE data format is shown below.

Table 6.5 SET_CONTROL_LINE_STATE Format

bmRequestType bRequest wValue wIndex wLength Data

0x21 SET_CONTROL_

LINE_STATE

(0x22)

Control Signal Bitmap

See Table 4.6, Control

Signal Bitmap Format

0x00 0x00 None

Table 6.6 Control Signal Bitmap

Bit Position Description

D15 to D2 Reserved (reset to 0)

D1 DCE transmit function control 0 - RTS Off

 1 - RTS On

D0 Notification of DTE ready state 0 - DTR Off

 1 - DTR On

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 22 of 35

Mar 28, 2016

6.2.3 Class Notifications (Peripheral to Host)

Whether or not a class notification is supported is shown in Table 6.7.

Table 6.7 CDC Class Notifications

Notification Code Description Supported

NETWORK_CONNECTION 0x00 Notification of network connection state No

RESPONSE_AVAILABLE 0x01 Response to GET_ENCAPSLATED_RESPONSE No

SERIAL_STATE 0x20 Notification of serial line state Yes

(1). Serial State

The host is notified of the serial state when a change in the UART port state is detected.

This software supports the detection of overrun, parity and framing errors. A state notification is performed when a

change from normal state to error is detected. However, notification is not continually transmitted when an error is

continually detected.

The SerialState data format is shown below.

Table 6.8 SerialState Format

bmRequestType bRequest wValue wIndex wLength Data

0xA1 SERIAL_STATE

(0x20)

0x00 0x00 0x02 UART State bitmap

See Table 6.9 UART

state bitmap format

Table 6.9 UART state bitmap format

Bits Field Description Supported

D15～D7 Reserved -

D6 bOverRun Overrun error detected Yes

D5 bParity Parity error detected Yes

D4 bFraming Framing error detected Yes

D3 bRingSignal INCOMING signal (ring signal) detected No

D2 bBreak Break signal detected No

D1 bTxCarrier Data Set Ready: Line connected and ready for communication No

D0 bRxCarrier Data Carrier Detect: Carrier detected on line No

6.3 Endpoint Specification

Endpoints used are shown in Table 6.10.

Table 6.10 Endpoints

bEndpointAddress bmAttributes wMaxPacketSize Description

EP No Direction Transfer Method Max Packet Size

EP0 In/Out Control 64 Standard request, class request

EP1 In Bulk 64 (Full Speed) Data transfer from device to host

EP2 Out Bulk 64 (Full Speed) Data transfer from host to device

EP3 In Interrupt 16 State notification from device to host

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 23 of 35

Mar 28, 2016

6.4 Usage as PC virtual COM port (reference)

The CDC device can be used as a virtual COM port when operating in Windows OS.

When using a PC installed with Windows OS, when the RSK board is connected, and after enumeration , the CDC class

requests GetLineCoding and SetControlLineState from the USB host are processed, and then the CDC device is

registered in the Windows Device Manager as a virtual COM port device.

Registering the CDC device as a virtual COM port in the Windows device manager enables data communication with

the CDC device via a terminal app, such as Hyper Terminal, which comes standard with Windows XP.

When selecting the COM port number and setting the serial port options in the PC terminal applicaton, the UART

settings are propagated to the firmware via the class request SetLineCoding.

Data input (or file transmission) from the terminal app window is transmitted to the RSK board using EP2; data from

the RSK board side is transmitted to the PC using EP1.

The maximum packet size for Full-Speed is 64 bytes. Note that when the last packet of data received is the maximum

packet size, and the terminal determines that there is continuous data, the received data may not be displayed in the

terminal. If the received data is smaller than the maximum packet size, the data received up to that point is displayed in

the terminal.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 24 of 35

Mar 28, 2016

7. USB Peripheral Communication Device Class Driver (PCDC)

7.1 Basic Functions

The basic functions of PCDC are as follows.

1. Provides data transmission and reception services to the USB host.

2. Responds to CDC class requests.

3. Provides a CDC notification transmission service.

7.2 PCDC API Functions

Table 7.1 below show all the PCDC API functions.

Table 7.1 API Functions

Function Name Description

R_usb_pcdc_LineCodingInitial Line Coding initialization

R_usb_pcdc_SendData Sends a data transmit request message to the PCDC task.

R_usb_pcdc_ReceiveData Sends a data receive request message to the PCDC task.

R_usb_pcdc_ClassRequest Control transfer processing for CDC

R_usb_pcdc_task The PCDC task

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 25 of 35

Mar 28, 2016

R_usb_pcdc_LineCodingInitial

Transfer USB data

Format

usb_er_t R_usb_pcdc_LineCodingInitial (usb_pcdc_LineCoding_t *linecoding)

Argument

*linecoding LineCoding setting data address

Return Value

USB_E_OK Success

Description

This function initializes a LineCoding.

Note

－

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 26 of 35

Mar 28, 2016

R_usb_pcdc_SendData

Transfer USB data

Format

void R_usb_pcdc_SendData (uint8_t* table,

 usb_leng_t size,

 usb_cbinfo_t complete)

Argument

*Table Pointer to buffer containing data to transmit

size Transfer size

complete Process completion callback function

Return Value

－ －

Description

This function transfers the specified USB data of the specified size from the address specified in the Transmit Data

Address Table(1st argument).

When the transmission is done, the call-back function ‘complete’ is called.

Note

1. The USB transmit process results are found via the usb_utr_t pointer in the call-back function’s arguments.

2. See “USB Communication Structure” (usb_utr_t) in the USB Basic Mini Firmware application note.

Example

void usb_apl_task(void)

{

 uint8_t send_data[] = {0x01,0x02,0x03,0x04,0x05}; /* USB send data */

 uint16_t size = 5; /* Data size */

 R_usb_pcdc_SendData((uint8_t *)send_data, size, (usb_cbinfo_t)&usb_complete)

}

/* Callback function */

void usb_complete(usb_utr_t *mess);

{

 /* Processing at the time of the completion of USB transmitting */

}

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 27 of 35

Mar 28, 2016

R_usb_pcdc_ReceiveData

Issue a data receive request to the USB driver (PCD)

Format

void R_usb_pcdc_ReceiveData (uint8_t *Table, usb_leng_t size, usb_cbinfo_t complete)

Argument

*Table Pointer to transmmit data buffer address

size Transfer size

complete Process completion callback function

Return Value

－ －

Description

This function requests a USB data transfer reception of the USB driver. One transfer is handled,

after that a new request must be issued.

When the data of the size specified by 3rd argument is received or the data of less than max packet size is

received from USB, callback function is called.

The received data is stored in the area that is specified by the second argument .

Note

1. The USB transfer results are found via the usb_utr_t pointer in the call-back function’s arguments.

2. See "USB Communication Structure" (usb_utr_t) in the USB Basic Mini Firmwar application note.

Example

void usb_smp_task(void)

{

 uint8_t receive_data[64]; /* Data buff */

 uint16_t size = 64; /* Data size */

 R_usb_pcdc_ReceiveData((uint8_t *)receive_data,size,

(usb_cbinfo_t)&usb_complete)

}

/* Callback function */

void usb_complete(usb_utr_t *mess);

{

 /* Processing at the time of the completion of USB reception */

}

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 28 of 35

Mar 28, 2016

R_usb_pcdc_ClassRequest

Control transfer processing for CDC

Format

void R_usb_pcdc_ClassRequest(usb_request_t *request, uint16_t data)

Argument

*request Class request message pointer.

data Control transfer stage information

 USB_CS_IDST Idle or setup stage

 USB_CS_RDDS Control read data stage

 USB_CS_WRDS Control write data stage

 USB_CS_WRND Control write no data status stage

 USB_CS_RDSS Control read status stage

 USB_CS_WRSS Control write status stage

 USB_CS_SQER Sequence error

Return Value

－ －

Description

When the request type is a CDC class request, this function calls the processing that corresponds to the control

transmit stage.

This callback is registered earlier during PCDC class “driver registration”and is triggered at the end of a CDC

control transfer.

Note

－ －

Example

void usb_apl_task(void)

{

 usb_pcdreg_t driver;

 ：

 /* Control Transfer */

 driver.ctrltrans = &R_usb_pcdc_ClassRequest;

 R_usb_pcdc_Registration(&driver);

 ：

}

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 29 of 35

Mar 28, 2016

R_usb_pcdc_Task

The PCDC task

Format

void R_usb_pcdc_Task(void)

Argument

－ －

Return Value

－ －

Description

This is the PCDC task, which processes requests by the application and then notifies it of the results.

Note

In non-OS operations, the function is registered to be scheduled by the scheduler.

Refer to the USB-BASIC-F/WApplication Notes for more information concerning the scheduling process.

Example

void usb_apl_task_switch(void)

{

 while(1)

 {

 if(USB_FLGSET == R_usb_cstd_Schedule())

 {

 /* PCD Task */

 R_usb_pstd_PcdTask();

 /* Peripheral Communications Devices Class Task */

 R_usb_pcdc_Task();

 /* Peripheral Communications Class Application Task */

 usb_pcdc_main_task();

 }

 }

}

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 30 of 35

Mar 28, 2016

7.3 User Definition Tables

It is necessary to create a descriptor table and Pipe Information Table (or “Endpoint Table”) for use by PCDC. Refer to

the sample in file r_usb_PCDCdescriptor.c when creating these tables.

For details, see Renesas USB Device USB Basic Mini Firmware User’s Manual.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 31 of 35

Mar 28, 2016

8. Communication Port Driver (CPD)

The communications port driver (CPD) is a serial communications driver for UART in the RSK.

When using this application on hardware other than the RSK, please prepare a matching serial communications driver.

8.1 RL78 Series

The serial communication driver which is used in RL78 series conform to the driver of the above application note

(Document No. R01AN1667EU) which is used in RX series.

Refer to this application note about the API and the argument for the serial communication driver.

8.1.1 Overview of Functions

1. Serial communication specification

(1) Line speed (1200 bps to 115200 bps)

(2) Parity bit (none, even, odd)

(3) Stop bits (1 or 2 bits)

(4) Data length (7 or 8 bits)

2. Transmit

Transmitting data to the serial port involves saving the transmit data to the ring buffer of CPD and then transmitting

the data one byte at a time, using the transmit data empty interrupt.

3. Receive

Receiving data from the serial port involves saving data received using the receive data full interrupt to the ring

buffer of CPD. The receive data is processed by using the receive data read API provided by CPD.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 32 of 35

Mar 28, 2016

9. Setup for the e2 studio project

(1). Start up e2 studio.

* If starting up e2 studio for the first time, the Workspace Launcher dialog box will appear first. Specify the folder

which will store the project.

(2). Select [File] [Import]; the import dialog box will appear.

(3). In the Import dialog box, select [Existing Projects into Workspace].

Figure 9-1 Select Import Source

(4). Press [Browse] for [Select root directory]. Select the folder in which [.cproject] (project file) is stored.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 33 of 35

Mar 28, 2016

Figure 9-2 Project Import Dialog Box

(5). Click [Finish].

This completes the step for importing a project to the project workspace.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 34 of 35

Mar 28, 2016

10. Using the e2 studio project with CS+

This package contains a project only for e2 studio. When you use this project with CS+, import the project to CS+ by

following procedures.

Note:

The rcpc file is stored in "workspace\RL78\CCRL\devicename" folder.

Figure 10-1 Using the e2 studio project with CS+

Launch CS+ and click “Start”.

Select [Open Exsisting e2studio/CubeSuite/High-performance Embedded

Workshop/PM+ project] in Start menu.

Select [project file for
e2studio] Select the file with the extension

[.rcpc] and click Open button.

Select the device used in
the project.

Select Project type, and specify the
project name and its location.
Click OK button if they are OK.

Select the used project

e.g. Sample

The project name depends on the AN.

Renesas USB Peripheral Communications Device Class Driver (PCDC)

R01AN0555EJ0215 Rev.2.15 Page 35 of 35

Mar 28, 2016

 Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Mar.18.11 — First edition issued

2.00 Feb.06.13 — Revision of the document by firmware upgrade

2.01 Mar.26.13 — Added about IAR edition.

2.10 Aug.01.13 — RL78/L1C, RX111 is supported. Error is fixed.

2.11 Oct.31.13 — 1.4 Folder path fixed.

3.2.1 Folder Structure was corrected.

Error is fixed.

2.12 Mar.31.14 — R8C is supported. Error is fixed.

2.13 Mar.16.15 — RX111 is deleted from Target Device

2.14 Jan. 18. 16 — Supported Technical Update (Document No. TN-RL*-A055A/E

and TN-RL*-A033B/E)

2.15 Mar. 28. 16 — CC-RL compiler is supported.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.

Colophon 5.0

	1. Overview
	1.1 Functions and Features
	1.2 Related Documents
	1.3 Terms and Abbreviations
	1.4 How to Read This Document

	2. How to Register Class Driver
	3. Operating Confirmation Environment
	3.1 Compiler
	3.2 Evaluation Board

	4. Software Configuration
	4.1 Module Configuration
	4.2 Structure of Files and folders
	4.2.1 Folder Structure
	4.2.2 CDC File List

	4.3 System Resources

	5. Peripheral CDC Sample Application (APL)
	5.1 Operating Environment
	5.2 Application Program (APL) Overview
	5.2.1 Serial-USB converter mode
	5.2.2 Echo Mode
	5.2.3 Selecting Serial-USB converter mode / Echo mode

	5.3 APL Messages
	5.4 APL Functions
	5.5 APL Dataflow
	5.5.1 Serial-USB converter mode
	5.5.2 Echo Mode

	5.6 Sequence Charts
	5.6.1 Normal Mode (Serial-USB converter mode)
	5.6.2 Echo Mode

	5.7 APL Processing Details

	6. Communications Device Class (CDC)
	6.1 Basic Functions
	6.2 Abstract Control Model Overview
	6.2.1 Class Requests (Host to Peripheral)
	6.2.2 Data Format of Class Requests
	6.2.3 Class Notifications (Peripheral to Host)

	6.3 Endpoint Specification
	6.4 Usage as PC virtual COM port (reference)

	7. USB Peripheral Communication Device Class Driver (PCDC)
	7.1 Basic Functions
	7.2 PCDC API Functions
	7.3 User Definition Tables

	8. Communication Port Driver (CPD)
	8.1 RL78 Series
	8.1.1 Overview of Functions

	9. Setup for the e2 studio project
	10. Using the e2 studio project with CS+

