

R8C/38C Group

Timer RD (PWM3 Mode)

R01AN0083EJ0100 Rev.1.00 Sep. 27, 2010

1. Abstract

This document describes a setting method and an application example for timer RD in PWM3 mode in the R8C/38C Group.

2. Introduction

The application example described in this document applies to the following microcomputer (MCU) and parameter:

- MCU: R8C/38C Group
- XIN clock frequency: 20 MHz

This application note can be used with other R8C Family MCUs which have the same special function registers (SFRs) as the above group. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.

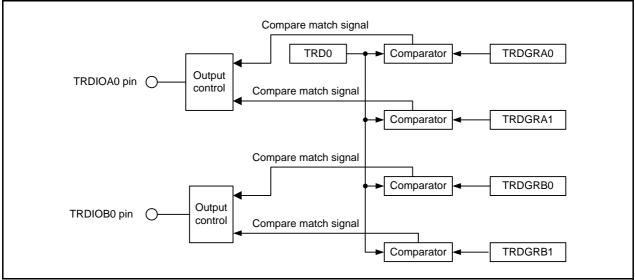
3. Application Example

3.1 Program Outline

Two PWM waveforms with 200 µs periods are output. The PWM period is generated at a compare match of timer RD counter 0 (TRD0) and general register A0 (TRDGRA0). PWM change points are generated at the compare match of the TRD0 register and general registers TRDGRA1, TRDGRB0, and TRDGRB1. An interrupt is generated at the compare match of registers TRD0 and TRDGRA0. Output signals are as follows:

TRDIOA0 pin: Active high level 60 μ s = 1/20 MHz × (TRDGRA0 – TRDGRA1) = 50 ns × (3999 – 2799) = 50 ns × 1200 TRDIOB0 pin: Active high level 60 μ s = 1/20 MHz × (TRDGRB0 – TRDGRB1) = 50 ns × (1999 – 799) = 50 ns × 1200

The 200 μ s PWM period is set to the TRDGRA0 register. 200 μ s = 1/20 MHz × (TRDGRA0 + 1) = 50 ns × 4000


PWM output change of TRDIOA0 pin (Set the active level timing in the TRDGRA1 register.) 140 μ s = 1/20 MHz × (TRDGRA1 + 1) = 50 ns × 2800 PWM output change of TRDIOB0 pin (Set the timing that returns to initial output level in the TRDGRB0 register.) 100 μ s = 1/20 MHz × (TRDGRB0 + 1) = 50 ns × 2000 PWM output change of TRDIOB0 pin (Set the active level timing in the TRDGRB1 register.) 40 μ s = 1/20 MHz × (TRDGRB1 + 1) = 50 ns × 800

Settings

- Use f1 (XIN clock: 20 MHz) as the count source.
- Clear the TRD0 register at the compare match with the TRDGRA0 register.
- Select TRDGRA0 and TRDGRB0 pin output levels as active high and the initial output level as inactive low.
- Output an active high level from the TRDIOA0 output pin at the compare match of registers TRD0 and TRDGRA1.
- Output an active high level from the TRDIOB0 output pin at the compare match of registers TRD0 and TRDGRB1.
- Do not use buffer operations (BFC0, BFD0, BFC1, and BFD1).
- Do not use the pulse output forced cutoff input function.
- Do not use A/D triggers.
- Use the timer RD0 interrupt.

Figure 3.1 shows a Block Diagram and Figure 3.2 shows a Timing Diagram. Table 3.1 lists the pins used and their functions.

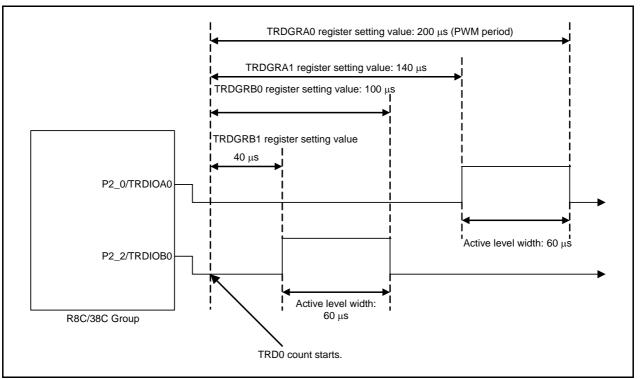


Figure 3.2 Timing Diagram

Table 3.1	Pins and Their Functions
-----------	--------------------------

Pin Name	I/O	Function
P2_0/TRDIOA0	Output	PWM output
P2_2/TRDIOB0	Output	PWM output

3.2 Memory

Table 3.2 Memory

Memory	Size	Remarks
ROM	192 bytes	In the r01an0083_src.c module
RAM	0 bytes	In the r01an0083_src.c module
Maximum user stack	10 bytes	
Maximum interrupt stack	18 bytes	

Memory size varies depending on the C compiler version and compile options. The above applies to the following conditions:

C compiler: M16C Series, R8C Family C Compiler V.5.45 Release 01 Compile option: -c -finfo -dir "\$(CONFIGDIR)" -R8C

4. Software

This section shows the initial setting procedures and values to set the example described in section **3. Application Example**. Refer to the latest **R8C/38C Group** hardware user's manual for details on individual registers.

The \times in the register's Setting Value represents bits not used in this application, blank spaces represent bits that do not change, and the dash represents reserved bits or bits that have nothing assigned.

4.1 Function Tables

Declaration	void mcu_init(vo	void mcu_init(void)							
Outline	System clock se	System clock setting							
Argument	Argument name		Meaning						
Argument	None		—						
Variable (global)	Variable name		Contents						
valiable (global)	None		—						
Returned value	Туре	Value	Meaning						
	None	—	—						
Function	Set the system of	lock (XIN clock).							


Declaration	void timer_rd_init(vo	void timer_rd_init(void)								
Outline	Initial setting of time	nitial setting of timer RD associated SFRs								
Argument	Argument name		Meaning							
Argument	None		—							
Variable (global)	Variable name		Contents							
Vallable (global)	None		—							
Returned value	Туре	Value	Meaning							
	None	—	—							
Function	Initialize timer RD a	ssociated SFRs to use t	imer RD in PWM3 mode.							

Declaration	void _timer_rd_ch0	void _timer_rd_ch0(void)							
Outline	Timer RD0 interrupt	Timer RD0 interrupt handling							
Argument	Argument name		Meaning						
Argument	None		—						
Variable (global)	Variable name		Contents						
vanable (global)	None		—						
Returned value	Туре	Value	Meaning						
	None	—	—						
Function	Perform timer RD0 interrupt handling.								

4.2 Main Function

• Flowchart

4.3 System Clock Setting

• Flowchart

R8C/38C Group

- Register settings
- (1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Register (PRCR)											
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value					х	х	х	1		
Bit	Symbol			Bit Name				Functio	n		R/W
b0	PRC0	Protec	t bit 0			OCD		A1, FRA2,	and FRA3.		R/W

(2) Start the low-speed on-chip oscillator.

System Clock Control Register 1 (CM1)

	Bit	b7	b6	b5	b4	b3	3	b2	b1	b0	
Setting V	Value			—	0			Х	Х	х	
Bit	Symbol			Bit Name					Functio	on	R/W
b4	CM14	Low-s	peed on-c	hip oscillate	or stop bit		0: Lo	w-speed o	n-chip osc	illator on	R/W

(3) Set system clock control register 1.

System Clock Control Register 1 (CM1)

	Bit	b7	b6	b5	b4	b3	3	b2	b1	b0	
Setting	Value			—		1		Х	Х	Х	
Bit	Symbol		E	Bit Name					Functio	on	R/W
b3	CM13	Port/XIN	N-XOUT sw	/itch bit			1: XI	N-XOUT p	in		R/W

(4) Set system clock control register 0.

System Clock Control Register 0 (CM0)

	Bit	b7	b6	b5	b4	b	3	b2	b1	b0	
Setting '	Value			0	х	2	x	х			
											-
Bit	Symbol		Bit N	ame				I	Function		R/W
b5	CM05	XIN cloc	k (XIN-XO	UT) stop b	it	0: XIN c	clock o	oscillates			R/W

(5) Wait until oscillation stabilizes.

(6) Select the XIN clock.

Systen	System Clock Control Register 0 (CM0)											
	Bit	b7	b6	b5	b4		b3	b2	b1	b0		
Setting	Value	0			х		х	х	—	_		
Bit	Symbol		Bit N	ame					Function			R/W
b7	CM07	XIN, XC	IN clock se	elect bit		0: X	(IN clock					R/W

(7) Select the XIN clock as the system clock.

Oscilla	Oscillation Stop Detection Register (OCD)												
	Bit b7 b6 b5 b4 b3 b2 b1 b0												
Setting Value —		—	—	—)	K	0	х	х]			
Bit Symbol Bit Name Function										R/W			
b2	OCD2	2 Sys	System clock select bit				0: XI	N clock sel	ected			R/W	

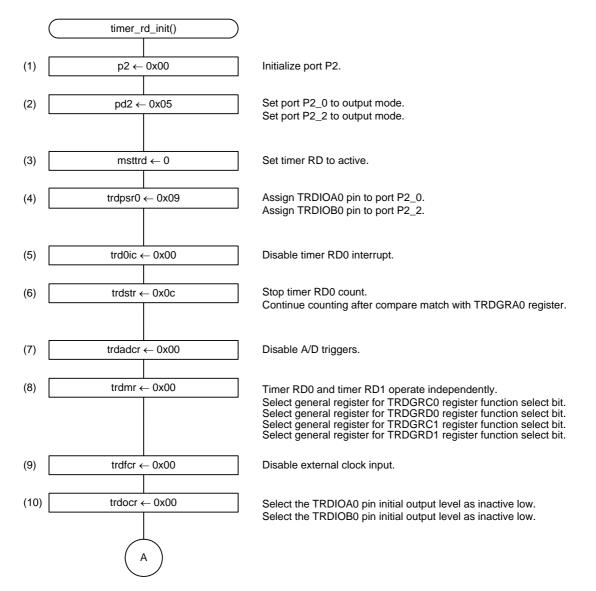
(8) Set system clock register 1.

Syst	em Clock	Cont	rol Regist	er 1 (CM1)						
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting '	Value	0	0	—			х	х	х]	
-											
Bit	Symbol			Bit Name				Functio	n		R/W
b6	CM16	CDU	clock divisi	ion select b	.i+ 1	b7 b6					R/W
b7	CM17				ni i	0 0: N	No division	mode			R/W

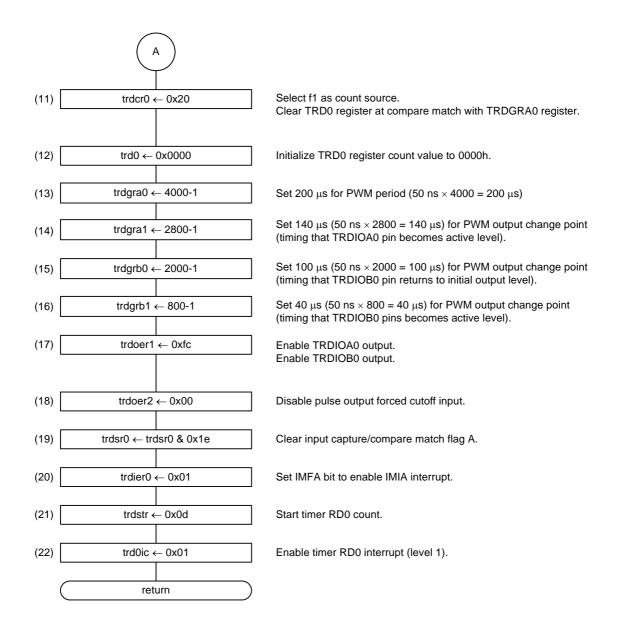
(9) Set system clock control register 0.

System Clock Control Register 0 (CM0)

	Bit	b7	b6	b5	b4	b3	b2		b1	b0		
Setting V	Value		0		х	х	х		_			
Bit	Symbol		Bit N	ame				Fu	Inction			R/W
b6	CM06	CPU clc	ck divisior	n select bit	0	0: Bits CM	16 and C	M17 ir	n CM1 re	gister enat	oled	R/W


(10) Disable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Register (PRCR) Bit b7 b6 b5 b4 b3 b2 b1 b0 Setting Value х Х х 0 Bit Name Function R/W Bit Symbol Enables writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3. R/W b0 Protect bit 0 PRC0 0: Write disabled



4.4 Initial Setting of Timer RD Associated SFRs

• Flowchart

R8C/38C Group

- Register settings
- (1) Initialize port P2.

Port P2 Register (P2)

	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	>	(Х	х	х	х	0	х	0		
	_		-									
Bit	Sym	bol		Bit Na	ame			Fι	Inction		R/W	1
b0	P2_	0	Port	P2_0 bit		0: "L"	lovol				R/W	'
b2	P2_	2	Port	P2_2 bit							R/W	'

(2) Set ports P2_0 and P2_2 to output mode.

Port P2 Direction Register (PD2)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	х	х	х	х	х	1	х	1	
Bit	Symbo	I	Bit Nam	е			Func	ion		R/W
b0	PD2_0	Port P	2_0 direction	on bit	1: Output	mode (func	tions as an		rt)	R/W
b2	PD2_2	Port P	2_2 direction	on bit			lions as an	output poi		R/W

(3) Set timer RD to active.

Module Standby Control Register (MSTCR)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value		х	х	0	х				
Bit	Symbol		Bit Na	ame			Fu	nction		R/W
b4	MSTTRE) Time	er RD stand	dby bit	0: Activ	'e				R/W

(4) Set timer RD pin select register 0.

Timer RD Pin Select Register 0 (TRDPSR0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value		х	х	х	1	0		1

Bit	Symbol	Bit Name	Function	R/W
b0	TRDIOA0SEL0	TRDIOA0/TRDCLK pin select bit	1: P2_0 assigned	R/W
b2	TRDIOB0SEL0		b3 b2	R/W
b3	TRDIOB0SEL1		1 0: P2_2 assigned	R/W

(5) Disable the timer RD0 interrupt.

Intorrunt	Control	Dogistor	(TRD0IC)
menupi	CONTINU	Negisiei	(10000)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	—		—			0	0	0		
Bit	Symbol		Bit Nam	ie			Func	tion		R/\	W
b0	ILVL0	la ta mu								R/\	W
b1	ILVL1	bit	ipt priority i	evel select		el 0 (interru	upt disable	d)		R/	W
b2	ILVL2					,	•	,		R/	W
b3	IR	Interru	ipt request	bit		rupt reques t requested				R	२

(6) Stop the timer RD0 count and set the timer RD0 count operation.

Timer RD Start Register (TRDSTR)

	Bit	b7		b6	b5	b4	b3		b2	b1	b0		
Setting	Value	_		_	_	_	Х		1	Х	0		
Bit	Syr	nbol			Bit Name	Э				Functi	on		R/W
b0	TST	ART0	TRD	00 count s	tart flag			0: C	count stops				R/W
b2	CS	EL0	TRD	00 count o	peration se	elect bit			Count contin			re match	R/W

(7) Disable A/D triggers.

Timer RD Trigger Control Register (TRDADCR)

	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting	Value	х	Х	0	0	Х	Х	0	0	
Bit	Syr	mbol		Bit Na	me			Func	tion	R/W
b0	ADTF	RGA0E	A/D trigger A	0 enable	bit		0: A/D trigge	r disabled		R/W
b1	ADTF	RGB0E	A/D trigger E	30 enable	bit		0: A/D trigge	r disabled		R/W
b4	ADTF	RGA1E	A/D trigger A	1 enable	bit		0: A/D trigge	r disabled		R/W
b5	ADTF	RGB1E	A/D trigger E	31 enable	bit		0: A/D trigge	r disabled		R/W

(8) Set the timer RD mode register.

Timer RD Mode Register (TRDMR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	Х	Х	0	0	—	_	_	0

Bit	Symbol	Bit Name	Function	R/W
b0	SYNC	Timer RD synchronous bit	Registers TRD0 and TRD1 operate independently	R/W
b4	BFC0	TRDGRC0 register function select bit	0: General register	R/W
b5	BFD0	TRDGRD0 register function select bit	0: General register	R/W
b6	BFC1	TRDGRC1 register function select bit	0: General register	R/W
b7	BFD1	TRDGRD1 register function select bit	0: General register	R/W

(9) Set the timer RD function control register.

Timer RD Function Control Register (TRDFCR)

	Bit	b7	,	b6	b5	b4	b3	3	b2	b1	b0		
Setting '	Setting Value 0			0	х	х	х		х	0	0]	
Bit	Bit Symbol Bit Name						Function						R/W
b0	CM	D0	Com	nbination m	ode selec		Set t	to 00b (time	er mode, F	WM mode	, or PWM3	R/W	
b1	CM	D1	Con	Dination n		i Dit		mode) in PWM3 mode.					R/W
b6	STC	LK	Exte	xternal clock input select bit					Set this bit to 0 (external clock input disabled) in PWM3 mode.				
b7	b7 PWM3 PWM3 mode select bit						Set t mod		(PWM3 m	ode) in PV	VM3	R/W	

(10) Set the timer RD output control register.

Timer RD Output Control Register (TRDOCR)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	х	х	х	х	х	х	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	TOA0	TRDIOA0 output level select bit	0: Active level "H", initial output "L", "H" output at compare match with the TRDGRA1 register, "L" output at compare match with the TRDGRA0 register	R/W
b1	TOB0	TRDIOB0 output level select bit	0: Active level "H", initial output "L", "H" output at compare match with the TRDGRB1 register, "L" output at compare match with the TRDGRB0 register	R/W

(11) Set timer RD control register 0.

Timer RD Control Register 0 (TRDCR0)

	Bit	-		b6	b5	b4	b3	b2	b1	b0		
Setting	Value	0		0	1	х	х	0	0	0		
Bit	Sumh				Dit Nomo		—		Functi	<u></u>		R/W
DIL	Symb				Bit Name				Functi	on		R/VV
b0	TCK	.0										
b1	TCK	1 C	Count	source se	ect bit		b2 b1 0 0	^{b0} 0: f1				R/W
b2	TCK	2										R/W
b5	CCLF	२०					Set	to 001b (th	ne TRD0 re	gister clear	ed at	R/W
b6	CCLF	र1 T	[RD0	counter cl	lear select	bit		•	h with TRD	GRA0 regi	ster) in	R/W
b7	CCLF	२2					PW	M3 mode.				R/W

(12) Initialize timer RD counter 0 to 0000h.

Timer R	D Co	ounter 0 (TRD0)								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Setting Va	alue	0	0	0	0	0	0	0	0		
	Bit	b15	b14	b13	b12	b11	b10	b9	b8		
Setting Va	alue	0	0	0	0	0	0	0	0		
Bit	I				Setting R	ange	R/W				
	-b0 Count a count source. Count operation is incremented. When an overflow occurs, the OVF bit in the TRDSR0 register is set to 1.								0000h to F	FFFh	R/W

(13) Set compare value 4000 - 1 (F9Fh) of timer RD counter 0 to timer RD general register A0.

Timer RD General Register A0 (TRDGRA0)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	1	0	0	1	1	1	1	1	I
Bit	b15	b14	b13	b12	b11	b10	b9	b8	
Setting Value	0	0	0	0	1	1	1	1	l
Bit				F	unction				

Bit	Function	R/W	
	General register. Set the PWM period. Setting range: Value set in TRDGRA1 register or above	R/W	

(14) Set compare value 2800 - 1 (AEFh) of timer RD counter 0 to timer RD general register A1.

Timer RD General Register A1 (TRDGRA1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Setting Value	1	1	1	0	1	1	1	1
Bit	b15	b14	b13	b12	b11	b10	b9	b8
Setting Value	0	0	0	0	1	0	1	0

Bit	Function	R/W
b15-b0	General register. Set the changing point (the active level timing) of PWM output. Setting range: Value set in TRDGRA0 register or below	R/W

(15) Set compare value 2000 - 1 (7CFh) of timer RD counter 0 to timer RD general register B0.

			gister DU))								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0				
Setting V	alue	1	1	0	0	1	1	1	1	ĺ			
	Bit	b15	b14	b13	b12	b11	b10	b9	b8				
Setting V	alue	0	0	0	0	0	1	1	1	ļ			
Bit					F	unction					R/W		
	Gene	ral registe	r. Set the c	hanging po	pint (the tim	ning that re	turns to init	ial output l	evel) of PV	VM output.			
b15-b0	Settin	tting range: Value set in TRDGRB1 register or above, R/W											
		١	/alue set in	TRDGRA	0 register c	or below							

Timer RD General Register B0 (TRDGRB0)

(16) Set compare value 800 - 1 (31Fh) of timer RD counter 0 to timer RD general register B1.

Timer RD General Register B1 (TRDGRB1)

Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Setting Value	0	0	0	1	1	1	1	1]
Bit	b15	b14	b13	b12	b11	b10	b9	b8	
Setting Value	0	0	0	0	0	0	1	1]
-									-

Bit	Function	R/W
b15-b0	General register. Set the changing point (active level timing) of PWM output. Setting range: Value set in TRDGRB0 register or below	R/W

(17) Set timer RD output master enable register 1.

Timer RD Output Master Enable Register 1 (TRDOER1)

	Bit	b7		b6	b5	b4	b	3	b2	b1	b0		
Setting	Value	1		1	1	1	1		1	0	0		
Bit	Symt	ool			Bit Name	•				Functi	on		R/W
b0	EAG)	TRD	IOA0 outp	ut disable	bit		0: Ei	nable outp	ut			R/W
b1	EBO)	TRD	IOB0 outp	ut disable	bit		0: Ei	nable outp	ut			R/W
b2	EC)	TRD	IOC0 outp	ut disable	bit							R/W
b3	ED)	TRD	IOD0 outp	ut disable	bit							R/W
b4	EA	1	TRD	IOA1 outp	ut disable	bit		Set 1	hese bits t	o 1 (progra	ammable	e I/O port) in	R/W
b5	EBŕ	1	TRD	IOB1 outp	ut disable	bit		PWN	/I3 mode.				R/W
b6	EC1 TRDIOC1 output disable bit					R/W							
b7	ED'	1	TRD	IOD1 outp	ut disable	bit		1					R/W

(18) Set to pulse output forced cutoff input disabled.

Timer	ïmer RD Output Master Enable Register 2 (TRDOER2)											
	Bit	b7		b6	b5	b4	b3	b2	b1	b0		
Setting	Value				—	—		—	—	—]	
Bit	Symbo				Bit Name				Functio	n		R/W
b7	PTO			of pulse o input ena	utput force abled bit	ed cutoff	0: Pu	ilse output f	orced cutof	f input disa	abled	R/W

(19) Initialize input capture/compare match flag A.

Timer I	Timer RD Status Register 0 (TRDSR0)											
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value	_	_	—	—	х	х	х	х	0		
	r											
Bit	Sym	lod			Bit Name				Functio	n		R/W
b0	0 IMFA Input capture/compare match flag A					ce for settin 0 after read		0 0]		R/W		

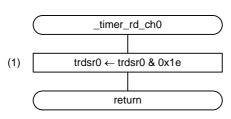
(20) Set the IMFA bit to enable the IMIA interrupt.

Timer RD Interrupt Enable Register 0 (TRDIER0)

	Bit	b	7	b6	b5	b4	b3	b2	b1	b0		
Setting	Value		-	—		х	Х	х	х	1		
Bit	Sym	bol			Bit Name		Functio	on		R/W		
b0	IMIE	IMIEA Input capture/compare match interrup enable bit A				ot 1: Ena	able interru	pt (IMIA) b	y the IMFA	bit	R/W	

(21) Start the timer RD0 count.

Timer I	RD Sta	art R	egiste	r (TRDS	STR)					Timer RD Start Register (TRDSTR)										
	Bit	b	7	b6	b5	b4	b3	b2	b1	b0										
Setting	Value	_	-	_	—	—	х		х	1										
Bit	Sym	bol			Bit Name				Functio	n		R/W								
b0	b0 TSTART0 TRD0 count start flag					1: Cou	int starts				R/W									


(22) Enable the timer RD0 interrupt (level 1).

Interrupt Control Register (TRDUIC)													
	Bit	b7	b6	b5	b4	b3		b2	b1	b	0		
Setting	Value			_	—			0	0	1			
Bit	Symb	ol		Bit Name)				Functi	ion			R/W
b0	ILVL	C											
b1	ILVL1	1 Inte	errupt priorit	y level sele	b2 b1 b0 0 0 1: Level 1							R/W	
b2	ILVL2	2										R/W	
b3	IR	Inte	errupt reque	est bit				o interrupt terrupt req	•				R

Interrupt Control Register (TRD0IC)

4.5 Timer RD0 Interrupt Handling

• Flowchart

Clear input capture/compare match flag A.

• Register setting

(1) Initialize input capture/compare match flag A.

Timer RD Status Register 0 (TRDSR0)

Setting Value — — x x x 0	Bit	b7	b6	b5	b4	b3	b2	b1	b0
	Setting Value			_				х	0

Bit	Symbol	Bit Name	Function	R/W
b0	IMFA	LINDUIT CADTUITE/COMPARE MATCH TIAC A	[Source for setting this bit to 0] Write 0 after read.	R/W

5. Sample Program

A sample program can be downloaded from the Renesas Electronics website. To download, click "Application Notes" in the left-hand side menu of the R8C Family page.

6. Reference Documents

R8C/38C Group User's Manual: Hardware Rev.1.00 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry

Revision History	R8C/38C Group Timer RD (PWM3 Mode)

Pov	Rev. Date		Description						
ILEV.	Dale	Page	Summary						
1.00	Sep. 27, 2010	_	First edition issued						

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +44-1528-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-8677-7818, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10nt 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-12-8677-7818, Fax: +86-21-6887-7859 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Towrer 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-24815-9800, Fax: +886 2-9175-9870 Renease Electronics Singapore Pte. Ltd. 7th No. 363 Fu Shing North Road Taipei, Taiwan Tel: +88-24915-9800, Fax: +886 2-9175-9870 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2415-9200, Fax: +868 2-9155-9510 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2415-9400, Fax: +868-2915-95-9510 Renease Electronics Konea Co., Ltd. 11F, Samik Lavied or Billogi, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-9337, Fax: +82-2558-5141