Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

R8C/35C Group

UART Communication with PC Terminal Software Using 36.864 MHz High-Speed OCO

1. Abstract

This document describes the setting method and an application example of PC terminal software and UART communication using a 36.864 MHz high-speed on-chip oscillator (OCO).

2. Introduction

The application example described in this document applies to the following MCU:

• MCU : R8C/35C Group

This program can be used with other R8C/Tiny Series MCUs which have the same special function registers (SFRs) as the R8C/35C Group. Check the manual for any additions and modifications to functions. Careful evaluation is recommended before using this application note.

3. Application Example

3.1 Program Outline

Transmission/reception with PC terminal software can be performed in clock asynchronous serial I/O (UART) mode for the R8C/35C Group.

Specifications for this program are as follows:

(1) Use the keyboard for input: numbers up to three digits, + (0x2B), numbers up to three digits, and the return key (0x0D).

Example: 123 + 123 (return key)

(2) The R8C/35C Group adds the data input in number (1) above and transmits LF/NL (0x0A), = (0X3D), (calculation result), CR (0x0D), and LF/NL (0x0A) to the terminal software.
Example: (0x0A) = 246 (0x0D, 0x0A)

Table 3.1 shows the settings UART communication. Figure 3.1 shows the bit rate setting values.

Table 3.1 Settings for UART Communication

Function	Setting
Pins	TXD0 and RXD0
Transfer data length	8 bits
Stop bits	1
Parity	Parity disabled
BRG count source	f1
Data output select bit	TXD0 pin is set to CMOS output
Transfer format	LSB first
Bit rate	115200 bps

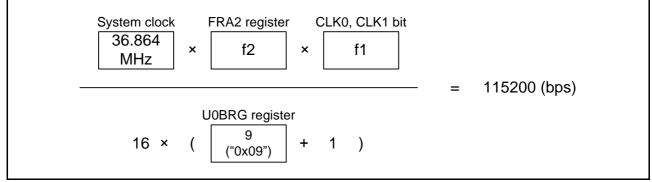
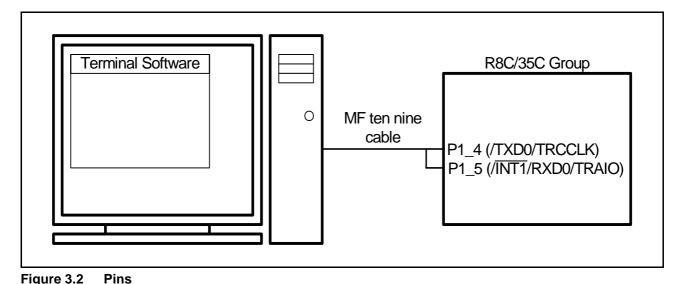


Figure 3.1 Bit Rate Setting Values

This sample program may include bit operations of unused functions for the SFR bit layout. Set these values according to the operations on the user system.



3.2 Pins and Memory

3.2.1 Pins

Table 3.2Pins and Their Functions

Pin Name	I/O	Function
P1_4 (/TXD0/TRCCLK)	Output	Serial data output
P1_5 (/INT1/RXD0/TRAIO)	Input	Serial data input

Figure 3.2 Pins

3.3 Memory

Table 3.3 Memory

Memory	Size	Remarks
ROM	823 bytes	In the rej05b1334_src.c module
RAM	15 bytes	In the rej05b1334_src.c module
Maximum user stack	16 bytes	main function: 3 bytes mcu_init function: 6 bytes uart_init function: 3 bytes pc communication function: 3 bytes input_left_part function: 7 bytes input_right_part function: 7 bytes input_data_calc_echo function: 3 bytes calculation_and_transmit function: 3 bytes
Maximum interrupt stack	0 bytes	Not used

Memory size varies depending on the C compiler version and compile options. The above applies to the following conditions:

C compiler: M16C/60, 30, 20, 10, and R8C/Tiny Series Compiler V.5.45 Release 00

Compile option: -c -finfo (see Note) -dir "\$(CONFIGDIR)" -R8C

Note: -c -finfo cannot be used for the R8C/Tiny-only Free-version.

4. Setup

This section shows the initial setting procedures and values to set the example described in 3. Application Example. Refer to the R8C/35C Group Hardware Manual for details on individual registers.

4.1 System Clock Setting

(1) Enable writing to registers CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3.

Protect Register (PRCR) Address 000Ah Bit b0 b7 b6 b5 b4 b3 b2 b1 PRC3 PRC2 PRC1 PRC0 Symbol _ _ Setting Value 1

I	Bit	Symbol	Bit Name	Description	R/W
	b0	PRC0	Protect bit 0	Enables writing to the CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3 registers. 1: Write enabled	R/W

(2) Transfer the values in the FRA4 register to the FRA1 register to adjust the frequency of the high-speed OCO to 36.864 MHz.

High-Speed OCO Control Register 1 (FRA1)

Address	0024h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	_	-	_	_	_	_	_	—		
W MALE EDA4 register velve as of chinging										

Setting Value FRA4 register value as of shipping

Bit	Description	R/W
b7 - b0	The frequency of the high-speed OCO can be adjusted using b0 to b7.	R/W

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA1 register.

(3) Transfer the values in the FRA5 register to the FRA3 register to adjust the frequency of the high-speed OCO to 36.864 MHz.

High-Speed OCO Control Register 3 (FRA3)

Address 002Fh									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	_	_	_	_	_	_	-]
etting Value FRA5 register value as of shipping									

Setting Value FRA5 register value as of shipping

ſ	Bit	Description	R/W
ſ	b7 - b0	The frequency of the high-speed OCO can be adjusted using b0 to b7.	R/W

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA3 register.

(4) Set the divide ratio of the high-speed OCO.

High-Speed OCO Control Register 2 (FRA2)

Address	0025h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	-	-	-	—	-	FRA22	FRA21	FRA20
Setting Value	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	FRA20		Division selection	R/W
b1	FRA21	High-speed OCO frequency switching bit	These bits select the division ratio for the high- speed OCO clock.	R/W
b2	FRA22		^{b2 b1 b0} 0 0 0: Divide-by-2 mode	R/W
b3	-			
b4	-			
b5	_	Reserved	Set to 0.	R/W
b6	_			
b7	_			

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA2 register.

(5)	C 4 4	.1	1.1.1.	1	000
(5)	Start	the	high-s	peed	UCU.

FRA00

b0

High	High-Speed OCO Control Register 0 (FRA0)										
/	Address 0023h										
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Symbol	-	-	-	-	FRA03	_	FRA01	FRA00		
Settin	ig Value	_	-	_	_	-	_	_	1	•	
Bit	Symbol	I Bit Name			Description						

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the FRA0 register.

1: High-speed OCO on

(6) Wait until oscillation stabilizes.

High-speed OCO enable bit

R/W

R/W

(7) S	elect the h	igh-speed	d OCO.								
High	-Speed O	CO Cor	ntrol Regis	ster 0 (FR	A0)						
	Address 00	023h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Symbol	-	-	-	_	FRA03	_	FRA01	FRA00]	
Settir	ig Value	-	-	-	-	_	-	1	-	-	
Bit	Symbol		Bit	Name				Descriptior	1		R/W
b1	FRA01	High-sp	eed OCO s	select bit ⁽¹)	1: High-	speed OC	O selected			R/W
OTE:											
	-			the follow	ing conc	litions.					
			eed OCO o								
			-	ter = 0 (low	-	CO on)					
				RA2 registe			- +- 111h				
				hen VCC = VCC = 2.7			o to 111b o to 111b ((divide by 4	or more)		
				VCC = 2.2				divide by 8			
Set tl	ne PRC0 b	it in the l	PRCR regi	ster to 1 (w	rite enabl	e) before re	writing the	e FRA0 reg	gister.		
(8) S	et the syste	em clock	dividing r	atio to divi	ded-by-1	mode					
(0) 5	et the syst	JIII CIOCI	ar raing r		aca og 1	inoue.					
Syst	em Clock	Control	Register	1 (CM1)							
	Address 00	007h									
	Bit	b7	b6	b5	b4	b3	b2	b1	b0		
	Symbol	CM17	CM16	-	CM14	CM13	CM12	CM11	CM10	1	
Settir	ig Value	0	0	_	_	_	-	_	_	•	
Bit	Symbol		Bit N	lame			De	escription			R/W
b6	CM16	System	clock divis	ion select b	oit 1 (1)	b7 b6					R/W
b7	CM17	System	CIUCK UIVIS	Ion select i	SIL I (17	0 0: No divi	sion mode				R/W
NOTE:											
1. W	hen the C	M06 bit	is set to (0 (bits CM	16 and C	CM17 enab	led), bits	CM16 and	d CM17 ai	re enable	ed.
G ()		• • • • • •		1 (•. •		• • • • •		• ,		
Set th	ie PKCU b	it in the I	PKCK regi	ster to 1 (w	rite enabl	led) before r	ewriting th	ie CM1 re	gister.		

(9) Set the system clock division ratio selection bit 0.

System Cloc	System Clock Control Register 0 (CM0)										
Address 0006h											
Bit	b7	b6	b5	b4	b3	b2	b1	b0			
Symbol	CM07	CM06	CM05	CM04	CM03	CM02	CM01	-			
Setting Value	_	0	_	_	_	_	_	_			

Bit	Symbol	Bit Name	Description	R/W
b6	CM06	System clock division select bit 0 $^{(1)}$	0: Bits CM16 and CM17 in the CM1 register enabled	R/W

NOTE:

1. When the MCU enters stop mode, the CM06 bit becomes 1 (divide-by-8 mode).

Set the PRC0 bit in the PRCR register to 1 (write enabled) before rewriting the CM0 register.

(10) Disable writing to the CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3 registers

Protect Register (PRCR)

Address	000Ah							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	_	_	PRC3	PRC2	PRC1	PRC0
Setting Value	-	_	-	_	-	_	-	0

ſ	Bit	Symbol	Bit Name	Description	R/W
	b0	PRC0		Enables writing to the CM0, CM1, CM3, OCD, FRA0, FRA1, FRA2, and FRA3 registers. 0: Write disabled	R/W

4.2 Clock Asynchronous Serial I/O (UART) Mode Setting

4.2.1 Initial Setting

(1) Set P1_4 (TXD0) and P1_5 (RXD0) as input ports.

Port P1 Direction Register (PD1)

Address 00E3h

Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	PD1_7	PD1_6	PD1_5	PD1_4	PD1_3	PD1_2	PD1_1	PD1_0
Setting Value	_	-	0	0	-	_	_	_

Bit	Symbol	Bit Name	Description				
b4	PD1_4	Port P1_4 direction bit	0: Input mode (functions as an input port)	R/W			
b5	PD1_5	Port P1_5 direction bit		R/W			

The PD1 register selects whether I/O ports are used for input or output. Each bit in the PD1 register corresponds to one port.

(2) Set the UART0 pin selection register

UART0 Pin Select Register (U0SR)

Address	Address 0188h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	_	_	_	CLK0SEL0	_	RXD0SEL0	_	TXD0SEL0		
Setting Value	0	0	0	0	0	1	0	1		

Bit	Symbol	Bit Name	Description	R/W				
b0	TXD0SEL0	TXD0 pin select bit	1: P1_4 assigned	R/W				
b1	-	Nothing is assigned. If necessary, s	set to 0. When read, the content is 0.	-				
b2	RXD0SEL0	RXD0 pin select bit	1: P1_5 assigned	R/W				
b3	-	Nothing is assigned. If necessary, set to 0. When read, the content is 0.						
b4	CLK0SEL0	CLK0 pin select bit	0: CLK0 pin not used	R/W				
b5	-							
b6	-	Nothing is assigned. If necessary, s	lothing is assigned. If necessary, set to 0. When read, the content is 0.					
b7	-							

The U0SR register selects which pin is assigned to the UART0 I/O. To use the UART0 I/O pin, set this register. Set this register before setting UART0 associated registers. Also, do not change the setting value in this register during UART0 operation.

(3) Set the UART0 transmit interrupt control register (set interrupts to disable).

UART0 Transmit Interrupt Control Register (S0TIC) Address 0051h Bit b7 b5 b4 b3 b2 b1 b0 b6 IR ILVL2 ILVL1 ILVL0 Symbol _ 0 0 Setting Value 0 0 0 0 0 0

Bit	Symbol	Bit Name	Description	R/W				
b0	ILVL0			R/W				
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W				
b2	ILVL2			R/W				
b3	IR	Interrupt request bit	R/W ⁽¹⁾					
b4	-		•					
b5	-	Nothing is assigned. If pecessary set	to 0. When read, the content is undefined					
b6	-	Nothing is assigned. If necessary, set to 0. When read, the content is undefined.						
b7	-							

NOTE:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register in the area where the interrupt request corresponding to the register is not generated.

(4) Set the UART0 receive interrupt control register (set interrupts to disable).

UART0 Receive Interrupt Control Register (S0RIC)

Address	Address 0052h									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	_	_	_	_	IR	ILVL2	ILVL1	ILVL0		
Setting Value	0	0	0	0	0	0	0	0		

Bit	Symbol	Bit Name	Description	R/W			
b0	ILVL0			R/W			
b1	ILVL1	Interrupt priority level select bit	0 0 0: Level 0 (interrupt disabled)	R/W			
b2	ILVL2	1		R/W			
b3	IR	Interrupt request bit	errupt request bit 0: No interrupt requested				
b4	_		-				
b5	-	Nothing is assigned. If necessary	set to 0. When read, the content is undefined	_			
b6	-	Nothing is assigned. If necessary, set to 0. When read, the content is undefined.					
b7	—]					

NOTE:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register in the area where the interrupt request corresponding to the register is not generated.

(5) Set the TE bit in the U0C1 register to 0.												
UART0 Transmit/Receive Control Register 1 (U0C1)												
	Address 00A5h											
Bit b7 b6 b5 b4 b3 b2 b1 b0												
	Symbol	_	_	U0RRM	U0IRS	RI	RE	TI	TE			
Settir	ig Value	-	-	-	-	-	-	-	0	'		
Bit Symbol Bit Name Description											/	
b0	TE	Transm	it enable bi	t		0: Transmis	sion disab	led		R/W	Γ	

(6) Set the RE bit in the U0C1 register to 0.

UART0 Transmit/Receive Control Register 1 (U0C1)

Address	00A5h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	U0RRM	U0IRS	RI	RE	TI	TE
Setting Value	-	-	-	-	-	0	-	-

Bit	Symbol	Bit Name	Description	R/W
b2	RE	Receive enable bit	0: Reception disabled	R/W

(7) Set the UART0 transmit/receive mode register.

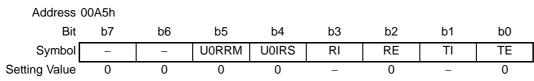
UART0 Transmit/Receive Mode Register (U0MR)

Address (00A0h								
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	_	PRYE	PRY	STPS	CKDIR	SMD2	SMD1	SMD0	
Setting Value	0	0	0	0	0	1	0	1	

Bit	Symbol	Bit Name	Description	R/W
b0	SMD0			R/W
b1	SMD1	Serial I/O mode select bit	1 0 1: UART mode, transfer data 8 bits long	R/W
b2	SMD2			R/W
b3	CKDIR	Internal/external clock select bit	0: Internal clock	R/W
b4	STPS	Stop bit length select bit	0: One stop bit	R/W
b5	PRY	Odd/even parity select bit	Enabled when PRYE = 1 0: Odd parity	R/W
b6	PRYE	Parity enable bit	0: Parity disabled	R/W
b7	-	Reserved bit	Set to 0.	R/W

(8) Set the UART0 transmit/receive control register 0.

UART0 Transmit/Receive Control Register 0 (U0C0)


Bit	Symbol	Bit Name	Description	R/W		
b0	CLK0	BRG count source select bit ⁽¹⁾	b1 b0	R/W		
b1	CLK1	BRG count source select bit ()	0 0: f1 selected			
b2	_	Reserved bit	Set to 0.	R/W		
b4	-	Nothing is assigned. If necessary, set to	0. When read, the content is 0.	-		
b5	NCH	Data output select bit	0: TXD0 pin set to CMOS output	R/W		
b6	CKPOL	CLK polarity select bit	Set to 0 in UART mode.	R/W		
b7	UFORM	Transfer format select bit	0: LSB first	R/W		

NOTE:

1. If the BRG count source is switched, reset the U0BRG register.

(9) Set the UART0 transmit/receive control register 1.

UART0 Transmit/Receive Control Register 1 (U0C1)

Bit	Symbol	Bit Name	Description	R/W					
b0	TE	Transmit enable bit	0: Transmission disabled	R/W					
b2	RE		0: Reception disabled	R/W					
b4	U0IRS	UART0 transmit interrupt source select bit	0: Transmission buffer empty (TI = 1) 1: Transmission completed (TXEPT = 1)	R/W					
b5	U0RRM	UART0 continuos receive mode enable bit ⁽¹⁾	0: Continuous receive mode disabled	R/W					
b6	-	Nothing is assigned. If necessary set to 0. Whe	lothing is assigned. If necessary, set to 0. When read, the content is 0.						
b7	_	Sinning is assigned. In necessary, set to 0. When read, the content is 0.							

NOTE:

1. In UART mode, set the U0RRM bit to 0 (continuous receive mode disabled).

(10) S	Set the UA	ART0 bit	rate registe	er									
UART0 Bit Rate Register (U0BRG)													
А	Address 00A1h												
	Bit	b7	b6	b5	b4	b3	b2	b1	b0				
:	Symbol	_	-	-	-	-	-	-	-				
Setting	g Value	0	0	0	0	1	0	0	1				
Bit	Description												
b7 - b0	When the setting value is n, the U0BRG register divides the count source by n+1.												

Write to the U0BRG register while transmission and reception are stopped. Use the MOV instruction to write to this register. Set bits CLK0 and CLK1 in the U0C0 register before writing to the U0BRG register.

(11) Set the UART0 transmit interrupt control register (set interrupts to disable).

UART0 Transmit Interrupt Control Register (S0TIC)

Address	0051h							
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol	_	_	_	_	IR	ILVL2	ILVL1	ILVL0
Setting Value	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W					
b0	ILVL0			R/W					
b1	ILVL1	Interrupt priority level select bits	0 0 0: Level 0 (interrupt disabled)	R/W					
b2	ILVL2			R/W					
b3	IR	Interrupt request bit	0: No interrupt requested	R/W ⁽¹⁾					
b4	-								
b5	-	Nothing is assigned. If necessary set	to 0. When read, the content is undefined	_					
b6	-	Nothing is assigned. If necessary, set to 0. When read, the content is undefined.							
b7	-								

NOTE:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register in the area where the interrupt request corresponding to the register is not generated.

(12) Set the UART0 receive interrupt control register (set interrupts to disable).

UART0 Receive Interrupt Control Register (S0RIC)											
	Address 00	52h									
Bit b7 b6 b5 b4 b3 b2 b1								b1	b0		
	Symbol	_	-	-	-	IR	ILVL2	ILVL1	ILVL0		
Settin	ng Value	0	0	0	0	0	0	0	0		
Bit Symbol Bit Name Description										R/W	
b0	ILVL0						R/W				
b1	ILVL1	Inte	rrupt priorit	y level sele	ect bit	b2 b1 b0 0 0 0: Leve	el 0 (interru	pt disabled	4)	R/W	
b2	ILVL2								-)	R/W	
b3	IR	Inte	rrupt reque	st bit		0: No interr	upt reques	ted		R/W ⁽¹⁾	
b4	—										
b5	-	Not	othing is assigned. If necessary, set to 0. When read, the content is undefined.								
b6	_	NOU	ning is assigned. If necessary, set to 0. When read, the content is underned.								
b7	-										

NOTE:

1. Only 0 can be written to the IR bit. Do not write 1 to this bit.

Rewrite the interrupt control register in the area where the interrupt request corresponding to the register is not generated.

4.2.2 Transmission Settings

(1) Set the TE bit in the U0C1 register to 1.

UART0 Transmit/Receive Control Register 1 (U0C1)

/	Address 00	0A5h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
	Symbol	_	_	U0RRM	U0IRS	RI	RE	ΤI	TE	
Setting Value		_	_	-	-	_	_	_	1	•
		-								
Bit Symbol Bit N		Name			De	scription				
b0 TE Transmit enable bit				1: Transmis	sion enable	ed				

(2) Confirm the TI bit in the U0C1 register is 1.

(3) Write transmit data to the U0TB register.

R/W

R/W

1: Reception enabled

4.2.3 Reception Setting

(1) Set the RE bit in the U0C1 register to 1.

UART0 Transmit/Receive Control Register1 (U0C1)

	Address 00	DA5h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
	Symbol	-	-	U0RRM	U0IRS	RI	RE	ΤI	TE]
Settir	ng Value	-	-	_	-	-	1	-	-	-
Bit	Bit Symbol Bit Name					De	escription			

(2) Confirm the RI bit in the U0C1 register is 1.

Receive enable bit

(3) Read the U0RB register.

RE

b2

R/W

R/W

5. Function Table and Flowchart

5.1 Function Table

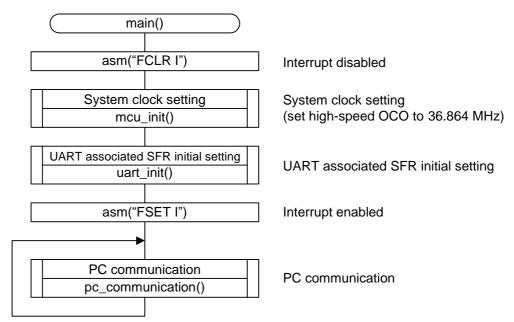
Declaration	void mcu_init(void)			
Outline	System clock setting	System clock setting		
Argument	Argument name		Meaning	
Argument	None		-	
Variable (global)	Variable name		Contents	
Vallable (global)	None		-	
Returned value	Туре	Value	Meaning	
Retuined value	None	-	-	
Function	Set system clock (36.864 Mhz high-speed OCO).			

Declaration	void uart_init(void)			
Outline	UART Associated S			
Argument	Argument name		Meaning	
Aigument	None		-	
Variable (global)	Variable name		Contents	
Vallable (global)	None		-	
Returned value	Туре	Value	Meaning	
Returned value	None	-	-	
Function	Process SFR initial setting associated with UART.			

Declaration	void pc_communica	void pc_communication(void)			
Outline	PC communication				
Argumont	Argument name		Meaning		
Argument	None		-		
Variable (global)	Variable name		Contents		
Vallable (global)	unsigned char mode		-		
Returned value	Туре	Value	Meaning		
Returned value	None	-	-		
Function	Control communication with PC terminal.				

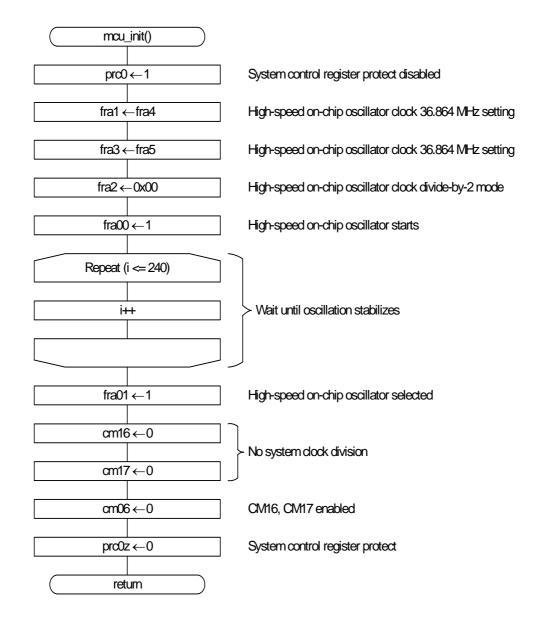
Declaration	void input_left_part(void)			
Outline	Left-part input			
Argument	Argument name		Meaning	
Argument	None		-	
	Variable name		Contents	
	unsigned char rcv_buf		Reference/setting	
Variable (global)	unsigned char digit	_num	Reference/setting	
valiable (global)	unsigned short left_part_num		Setting	
	unsigned short calc_data		Reference	
	unsigned char mode		Setting	
Returned value	Туре	Value	Meaning	
Returned Value	None	-	-	
Function	Maintain the left-part data in the formula.			

Declaration	void input_right_part(void)			
Outline	Right-part input			
Argument	Argument name		Meaning	
Argument	None		-	
	Variable name		Contents	
	unsigned char rcv_b	buf	Reference/setting	
Variable (global)	unsigned char digit_	num	Reference/setting	
Vallable (global)	unsigned short right	_part_num	Setting	
	unsigned short calc	_data	Reference	
	unsigned char mode		Setting	
Returned value	Туре	Value	Meaning	
	None	_	-	
Function	Maintain the right-part data in the formula.			

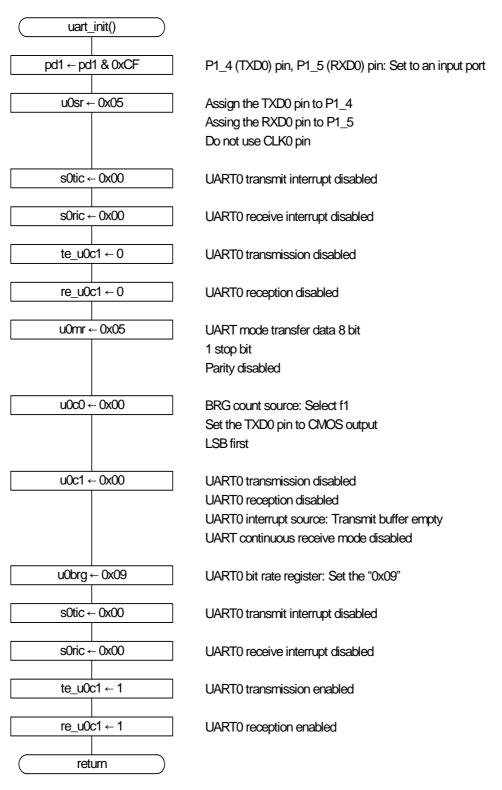


Declaration	void input_data_calc_echo(void)				
Outline	Input data calculation, echo processi		ng		
Argument	Argument name		Meaning		
Argument	None		-		
	Variable name		Contents		
	unsigned char rcv_b	ouf	Reference/setting		
	unsigned char digit_	_num	Reference/setting		
Variable (global)	unsigned char digit_	_1st	Reference/setting		
	unsigned char digit_	_2nd	Reference/setting		
	unsigned char digit_	_3rd	Reference/setting		
	unsigned short calc_data		Setting		
Returned value	Туре	Value	Meaning		
Returned value	None	-	_		
Function	Check if the data received from PC terminal software is suitable. If the data is suitable, maintain it and echo transmit an echo to PC terminal software.				

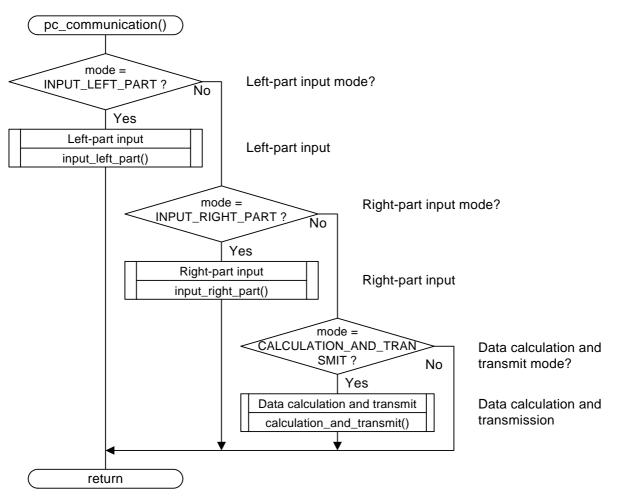
Declaration	void calculation_and_transmit(void)				
Outline	Data calculation and	d transmission			
Argument	Argument name		Meaning		
Argument	None		-		
	Variable name		Contents		
	unsigned char digit_	_1st	Reference/setting		
	unsigned char digit_	_2nd	Reference/setting		
	unsigned char digit_	_3rd	Reference/setting		
Variable (global)	unsigned char digit_	_4th	Reference/setting		
	unsigned short left_	part_num	Reference		
	unsigned short right	t_part_num	Reference		
	unsigned short sum		Reference/setting		
	unsigned char mode		Setting		
Returned value	Туре	Value	Meaning		
Returned value	None	-	-		
Function	Calculate the maintained data and transmit the calculation result data to PC termina software.				



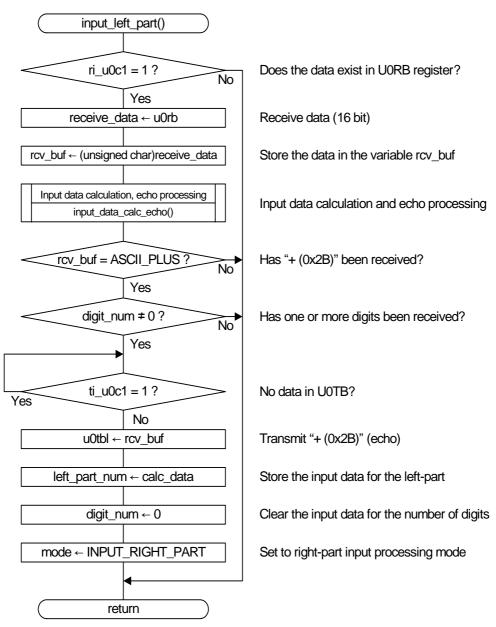
- 5.2 Flow Chart
- 5.2.1 Main Function



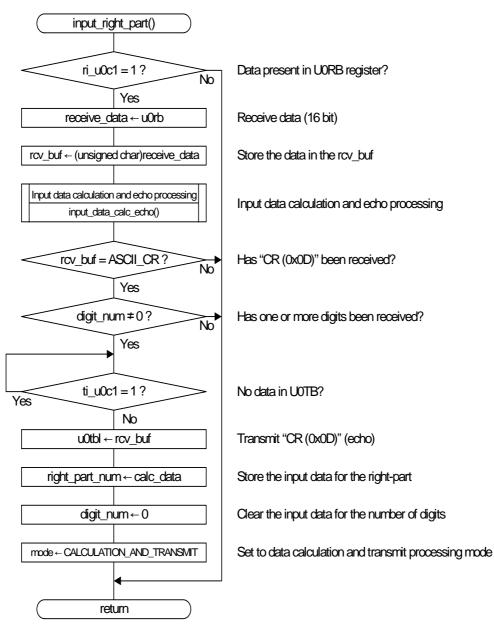
5.2.2 System Clock Setting



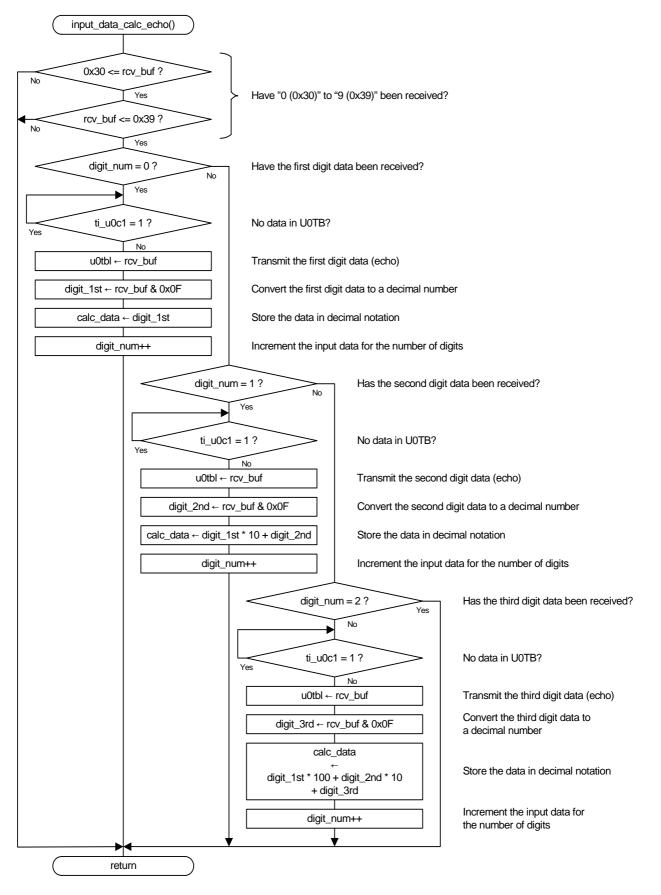
5.2.3 UART Associated SFR Initial Setting



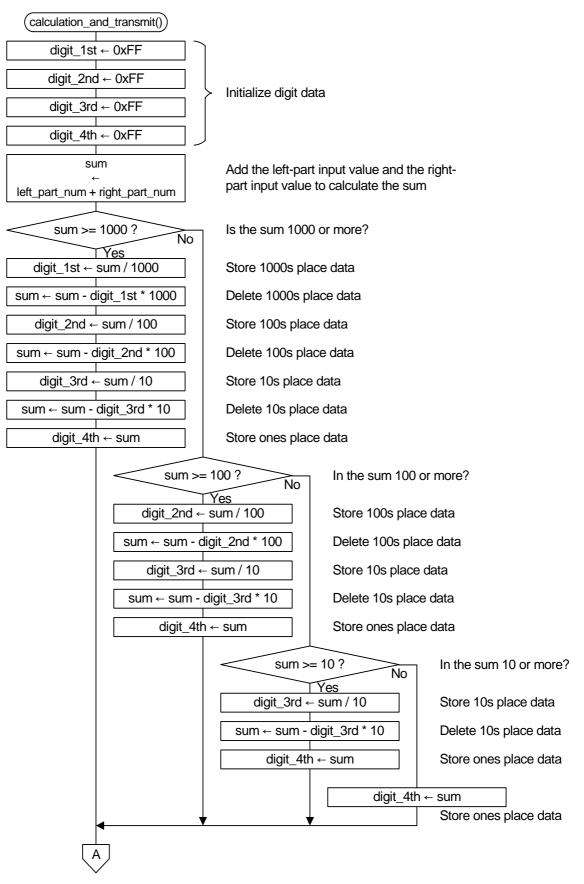
5.2.4 PC Communication



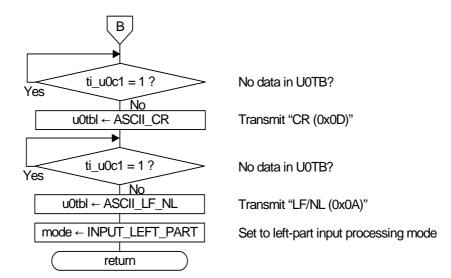
5.2.5 Left-Part Input



5.2.6 Right-Part Input



5.2.7 Input Data Calculation and Echo Processing


5.2.8 Data Calculation and Transmit Processing

A	
Yes ti_u0c1 = 1 ?	No data in U0TB?
U0tbl ← ASCII_LF_NL	Transmit "LF/NL (0x0A)"
Yes ti_u0c1 = 1 ?	No data in U0TB?
U0tbl ← ASCII_EQUAL	Transmit "= (0x3D)"
digit_1st ≠ 0xFF ? No Yes	Is the 1000th digit data present?
Yes ti_u0c1 = 1 ?	No data in U0TB?
No 	Convert the 1000th digit data to ASCII code and transmit the code
digit_2nd ≠ 0xFF ? No Yes	Is the 100th digit data present?
Yes ti_u0c1 = 1 ?	No data in U0TB?
u0tbl ← digit_2nd 0x30	Convert the 100th digit data to ASCII code and transmit the code
digit_3rd ≠ 0xFF ? No Yes	Is the 10th digit data present?
Yes ti_u0c1 = 1 ?	No data in U0TB?
No u0tbl ← digit_3rd 0x30	Convert the 10th digit data to ASCII code and transmit the code
digit_4th ≠ 0xFF ? No Yes	Is the first digit data present?
Yes ti_u0c1 = 1 ?	No data in U0TB?
u0tbl ← digit_4th 0x30	Convert the first digit data to ASCII code and transmit the code
B	

6. Sample Programming Code

A sample program can be downloaded from the Renesas Technology website. To download, click "Application Notes" in the left-hand side menu of the R8C/Tiny Series page.

7. Reference Documents

RENESAS

Hardware Manual

R8C/35C Group Hardware Manual Rev.0.10 The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Technology website.

Website and Support

Renesas Technology website http://www.renesas.com/

Inquiries http://www.renesas.com/inquiry csc@renesas.com

	R8C/35C Group
REVISION HISTORY	UART Communication with PC Terminal Software Using
	36.864 MHz High-Speed OCO

Rev.	Date		Description
	Dale	Page	Summary
1.00	Oct 23, 2009	-	First Edition issued

All trademarks and registered trademarks are the property of their respective owners.

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- programs, algorithms, and application circuit examples.
 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 - (2) surgical implantations

KENESAS

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.