
 Application Note

R11AN0344EU0100 Rev.1.00 Page 1 of 24
Oct 22, 2018

R11AN0344EU0100
Rev.1.00

Oct 22, 2018

Renesas Synergy™ Platform

NetX Duo™ MQTT Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this guide, you
will be able to add this module to your own design, configure it correctly for the target application, and write code using
the included application project code as a reference and efficient starting point. References to more detailed API
descriptions and suggestions of other application projects that illustrate more advanced uses of the module are available
on the Renesas Synergy Knowledge Base (as described in the References section at the end of this document) and
should be valuable resources for creating more complex designs.

The MQTT (Message Queue Telemetry Transport) communication protocol is based on a publisher-subscriber model.
A data producer can publish information to other clients through a broker. Multiple data consumers, if interested in a
topic, can subscribe to the topic through the broker. The broker is responsible for authentication and authorization of the
clients and delivering published messages to its topic subscribers. In this publisher-subscriber model, multiple clients
may publish data with the same topic. A client will receive the messages that are published if the client subscribes to the
same topic.

Contents

1. NetX Duo MQTT Client Module Features .. 2

2. NetX Duo MQTT Client Module APIs Overview .. 2

3. NetX Duo MQTT Client Module Operational Overview ... 4
3.1 NetX Duo MQTT Client Module Important Operational Notes and Limitations 6
3.1.1 NetX Duo MQTT Client Module Operational Notes .. 6
3.1.2 NetX Duo MQTT Client Module Limitations .. 9

4. Including the NetX Duo MQTT Client Module in an Application .. 9

5. Configuring the NetX Duo MQTT Client Module ... 10
5.1 Configuration Settings for the NetX MQTT Client Lower-Level Modules .. 11
5.2 NetX Duo MQTT Client Module Clock Configuration .. 13
5.3 NetX Duo MQTT Client Module Pin Configuration .. 13

6. Using the NetX Duo MQTT Client Module in an Application ... 14

7. The NetX Duo MQTT Client Module Application Project ... 17

8. Customizing the NetX Duo MQTT Client Module for a Target Application 19

9. Running the NetX Duo MQTT Client Module Application Project .. 20

10. NetX Duo MQTT Client Module Conclusion .. 22

11. NetX Duo MQTT Client Module Next Steps .. 22

12. NetX Duo MQTT Client Module Reference Information .. 22

Revision History .. 24

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 2 of 24
Oct 22, 2018

1. NetX Duo MQTT Client Module Features
• Compliant with OASIS MQTT Version 3.1.1 Oct 29th, 2014. The specification can be found at:

http://mqtt.org/
• Provides option to enable/disable TLS for secure communications using NetX Secure in SSP
• Supports QoS and provides the ability to choose the levels that can be selected while publishing the message
• Internally buffers and maintains queue of received messages
• Provides mechanism to register callback when new message is received.
• Provides mechanism to register callback when connection with the broker is terminated.

Figure 1 NetX Duo MQTT Client Module Block Diagram

2. NetX Duo MQTT Client Module APIs Overview
The NetX Duo MQTT Client Support module defines APIs for creating the MQTT Client, connecting to broker, setting
up TLS security, and receiving MQTT messages. A complete list of the available APIs, an example API call, and a
short description of each can be found in the table below. A table of status return values follows.

Table 1 Status Return Values

Function Name Example API Call and Description
nxd_mqtt_client_create nxd_mqtt_client_create(&mqtt_client_secure,

"my_client", CLIENT_ID_STRING,
strlen(CLIENT_ID_STRING), ip_ptr, pool_ptr,
(VOID*)mqtt_client_stack,
sizeof(mqtt_client_stack),
mqtt_thread_priority, (UCHAR*)client_memory,
sizeof(client_memory));

Create an MQTT client with the specified Client ID, stack
memory and stack size, and message block memory.

http://mqtt.org/

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 3 of 24
Oct 22, 2018

nxd_mqtt_client_connect nxd_mqtt_client_connect(&mqtt_client,
&server_ip, NXD_MQTT_PORT,
MQTT_KEEP_ALIVE_TIMER, 0, NX_WAIT_FOREVER)

Non secure connect to the MQTT broker specifying broker IP
address and port, keep alive timer, and disabling the clean
session option

nxd_mqtt_client_secure_connect nxd_mqtt_client_secure_connect(&mqtt_client_s
ecure, &server_ip, NXD_MQTT_TLS_PORT,
tls_setup_amazon, 600, 1, NX_WAIT_FOREVER)

Connect to broker with TLS security using the
tls_setup_amazon, which is a user-defined function, to set up
TLS and set TLS parameters. The clean session option is
enabled. This is only available if the NetX Duo library is built
with NX_SECURE_ENABLE set, and if the MQTT client
property NX Secure is set.

nxd_mqtt_client_login_set nxd_mqtt_client_login_set(mqtt_client_ptr,
“Username”, strlen(“Username”), ”Password”,
strlen(“Password”);

Set the optional MQTT username and password. This must
be called before the nxd_mqtt_client_connect or
nxd_mqtt_client_secure_connect call if the broker requires
username and password.

nxd_mqtt_client_message_get nxd_mqtt_client_message_get(&mqtt_client_secu
re, &topic, &topic_length, &message,
&message_length, &packet_ptr);

Retreive a published MQTT message for the specified topic.

nxd_mqtt_client_receive_notify
_set

nxd_mqtt_client_receive_notify_set(&mqtt_clie
nt_secure, my_notify_func);

Specify the function the MQTT Client thread task calls when
an MQTT message is received.

nxd_mqtt_client_subscribe nxd_mqtt_client_subscribe(&mqtt_client_secure
, TEST_SUBSCRIBE_TOPIC_NAME,
strlen(TEST_SUBSCRIBE_TOPIC_NAME), 0);

Send a subscriber message to the broker for the specified
topic for QoS (quality of service) level 0.

nxd_mqtt_client_unsubscribe Send an unsubscriber message to the broker for the specified
topic.

nxd_mqtt_client_publish nxd_mqtt_client_publish(&mqtt_client_secure,
TEST_SUBSCRIBE_TOPIC_NAME,
strlen(TEST_SUBSCRIBE_TOPIC_NAME),
message_buffer, strlen(message_buffer), 0, 1,
NX_WAIT_FOREVER);

Send a message to the broker for the specified topic
previously subscribed to for QoS (quality of service) level 1,
and the retain message option disabled.

nxd_mqtt_client_disconnect nxd_mqtt_client_disconnect(&mqtt_client);

Disconnect from the MQTT broker.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 4 of 24
Oct 22, 2018

nxd_mqtt_client_disconnect_not
ify_set

nxd_mqtt_client_disconnect_notify_set(mqtt_cl
ient_ptr, my_disconnect_notify);

Specify the user defined function for the MQTT Client thread
task to call if the broker initiates disconnecting from the client.

nxd_mqtt_client_delete nxd_mqtt_client_delete(mqtt_client_ptr);

Delete the MQTT instance, clear transmit and message
queue messages

nxd_mqtt_client_will_message_s
et

nxd_mqtt_client_will_message_set(mqtt_client_
ptr, will_topic, will_topic_length,
“will_message”, strlen(“will_message”), 0,
1);

Set the optional MQTT Client will message without the retain
will message option, for QOS 1. If a will message is needed,
this must be called before connecting to the broker.

3. NetX Duo MQTT Client Module Operational Overview
MQTT (Message Queue Telemetry Transport) is a protocol based on the NetX Duo TCP/IP stack. It is based on a
publisher-subscriber model. A client can publish information to other clients through an MQTT Server (broker). A
client, if interested in a topic, can subscribe to the topic through the broker. A broker is responsible for delivering
published messages to its clients who subscribe to the topic. In this publisher-subscriber model, multiple clients may
publish data with the same topic. A client will receive a message that was published if the client subscribes to the same
topic.

The following figure provides an overview of the MQTT Client publisher-subscriber model:

Figure 2 MQTT Client Publisher-Subscriber Model
The NetX Duo MQTT client module can be used in the normal mode or the secure mode.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 5 of 24
Oct 22, 2018

• NetX Duo MQTT client module Normal Mode Operational Description
In Normal mode, the communication between the MQTT client and broker is not secure.

• NetX Duo MQTT client module Secure Mode Operational Description
In Secure mode, the communication between the MQTT client and broker is secured using the TLS protocol. In the
thread pane, the TLS protocol is represented by "Add NetX Duo TLS common [Optional]" block.
Depending on the use case, a client may choose one of the 3 QoS levels when publishing a message:
 QoS 0: The message is delivered at most once. Messages sent with QoS 0 may be lost.
 QoS 1: The message is delivered at least once. Messages sent with QoS 1 may be delivered more than once.
 QoS 2: The message is delivered exactly once. Messages sent with QoS 2 is guaranteed to be delivered, with no

duplication.
Note: This implementation of MQTT client does not support QoS level 2 messages.

Since QoS 1 and QoS 2 are guaranteed to be delivered, the broker keeps track the state of QoS 1 and QoS 2 messages
sent to each client. This is particularly important for clients that expect QoS1 or QoS 2 messages. The client may be
disconnected from the broker (for example when the client reboots, or the communication link is temporarily lost). The
broker must store QoS 1 and QoS 2 messages so the messages can be delivered later once the client is reconnected to
the broker.

However, the client may choose not to receive any stale messages from the broker after reconnection. The client can do
so by initiating the connection with the clean_session flag set to NX_TRUE (1) in the
nxd_mqtt_client_connect API. In this case, upon receiving the MQTT CONNECT message, the broker shall
discard any session information associated with this client, including undelivered or unconfirmed QoS 1 or QoS 2
messages.

If the clean_session flag is to NX_FALSE, the server shall resend the QoS 1 and QoS 2 messages. The MQTT
Client also resends any un-acknowledged messages if clean_session is set to NX_TRUE. This acknowledgment is
different from the TCP socket layer ACK, although that happens as well. The MQTT client sends an MQTT
acknowledgment message to the broker upon receipt of a message, and gets one back when it publishes a message.

Incoming MQTT messages are stored in the receive queue of the MQTT client instance. The application retrieves these
messages by calling the nxd_mqtt_client_message_get API, which returns both the topic and the topic
message. The application must ensure to provide a large enough buffer for each. The oldest message in the queue is
returned to the caller first. nxd_mqtt_client_message_get is non-blocking. If the MQTT client receive queue
is empty, it returns immediately with an NXD_MQTT_NO_MESSAGE (0x1000A) status. This should not be handled as
an error, but that the receive queue is empty.

To avoid polling the receive queue for incoming messages, the application can register a receive message callback
function with the MQTT client by calling the nxd_mqtt_client_recieve_notify_set API. The callback
function is defined as:

VOID (*receive_notify_callback)(NXD_MQTT_CLIENT *client_ptr, UINT
message_count);

As the MQTT client receives messages from the broker, it invokes the callback function if the function is set. The
callback function passes the pointer to the client control block and a message count value. The message count value
indicates the number of MQTT messages in the receive queue. Note that this callback function executes in the MQTT
client thread context. Therefore, the callback function should not execute any procedures that may block the MQTT
client thread. The callback function should trigger the application thread to call the
nxd_mqtt_client_message_get API to retrieve the messages. This is demonstrated in the module guide
project.

To disconnect the MQTT client service, the application shall use the service nxd_mqtt_client_disconnect and
nxd_mqtt_client_delete APIs respectively. Calling nxd_mqtt_client_disconnect disconnects the
TCP connection to the broker. It releases messages already received and stored in the receive queue. However, it does
not release QoS level 1 messages in the transmit queue. QoS level 1 messages are retransmitted upon connection,
assuming the clean_session flag is set to NX_FALSE.

The broker may initiate the disconnect from the client. The application can be notified of the disconnect request by
registering a disconnect notify function with the MQTT Client. This is done by calling the
nxd_mqtt_client_disconnect_notify_set API.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 6 of 24
Oct 22, 2018

To delete an MQTT client, call the nxd_mqtt_client_delete API. This releases all message blocks in the
transmit queue and the receive queue. Unacknowledged QoS level 1 messages are also deleted.

Using Secure communication

To secure the communication between MQTT client and broker, TLS protocol is required. In the thread pane, TLS
protocol is represented by an “Add NetX Duo TLS common [Optional]” block. Adding NetX Duo TLS Common block
enables the TLS support.

MQTT with TLS/NetX Duo Secure

When you use TLS with MQTT Client, it is strongly recommended that the TLS setup callback in the
nxd_mqtt_client_secure_connect call contain all of the TLS set up, including creating the TLS instance,
defining the local certificates, allocating memory for remote certificate processing, and optional callbacks such as
timestamp and certificate authentication.

Regardless of whether the MQTT Client was able to connect via TCP successfully, or whether the TLS session was
successfully started, the application MUST call nxd_mqtt_client_disconnect to properly clear and reset the
TLS session before attempting to reconnect again.

If the session was terminated improperly, nxd_mqtt_client_disconnect must still be called for the same
reason.

For SSP 1.3.x, the TLS setup callback will need to call a memset on the NXD_SECURE_TLS_SESSION data block
before (re)creating a TLS session (nxd_secure_tls_session_create).

Below is the definition of the nxd_mqtt_client_secure_connect API with the TLS setup input:
UINT nxd_mqtt_client_secure_connect(NXD_MQTT_CLIENT *client_ptr,

 NXD_ADDRESS *server_ip,
 UINT server_port,

 UINT (*tls_setup)(
 NXD_MQTT_CLIENT *client_ptr,
 NX_SECURE_TLS_SESSION *session_ptr,

 NX_SECURE_X509_CERT *,
 NX_SECURE_X509_CERT *),
 UINT keepalive,
 UINT clean_session,
 ULONG wait_option)

Add this logic to the tls_setup callback function (assuming the MQTT Client instance name is g_mqtt_client0):

 session_ptr = &(g_mqtt_client0.nxd_mqtt_tls_session);
 memset(session_ptr, 0, sizeof(NX_SECURE_TLS_SESSION));
 status = nxd_secure_tls_session_create(….)

If memset is not called, the TLS nxd_secure_tls_session_create call may not succeed. In SSP 1.4.0, it is
no longer be necessary to call memset, but we still strongly recommend putting all TLS setup, including TLS creation,
in the callback. It may seem wasteful to completely delete and recreate a TLS session. But the manner in which TLS is
integrated into MQTT Client makes this the most sensible and reliable method to guarantee successful reconnection
attempts.

For more details about TLS protocol, please see the NetX Duo TLS Secure Module Guide.

Multiple Instances of MQTT Client per Device

For SSP 1.4.0 and earlier, a device cannot safely run multiple instances of the MQTT Client. This is because the MQTT
Client in these releases assumes global variables. That should be remedied in a subsequent release.

3.1 NetX Duo MQTT Client Module Important Operational Notes and Limitations
3.1.1 NetX Duo MQTT Client Module Operational Notes
The NetX Duo MQTT Client component is added by clicking on the (+) sign in the thread pane window -> X-Ware ->
NetX Duo -> Protocols -> NetX Duo MQTT Client.

Adding the NetX Duo MQTT Client component to a project automatically adds the option to add the NetX Duo TLS
component required for secure MQTT.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 7 of 24
Oct 22, 2018

The MQTT Client properties are listed in the table below:

Figure 3 NetX Duo MQTT Client block configurable properties

In the above figure, “Common” properties are those configurable options in the NetX Duo MQTT Client that are
common to all instances of the MQTT client in the project. The “Module” properties are specific to each instance of
MQTT Client in the project.

Common Properties

• NX Secure: Enables/disables TLS support. If this property is set to Enabled, the MQTT Client is built with TLS
support. Note that enabling the property requires adding the NetX Duo TLS component to the project to supply the
necessary source code to the project, or the project will not build. If set to Disabled, adding the NetX Duo TLS
component has no effect though the project will still build and run.

• Topic Name Max Length: The maximum topic length (in bytes) the application is going to subscribe to. The default
is 12 bytes.

• Message Max Length: The maximum message length (in bytes) the application is going to send or receive. The
default is 32 bytes.

• Keepalive Timer Rate: This timer is used to keep track of the time since last MQTT control message was sent, and
sends out an MQTT PINGREQ message before the keep-alive time expires. The default value is 1 second.

• Ping Timeout Delay: The time MQTT client waits for PINGRESP from the broker for after it sends out MQTT
PINGREQ. The default value is 1 second.

Module Properties

• Name: Name of the MQTT client instance
• Name of generated initialization function: Name of initialization function which creates MQTT client instance. The

default is the auto-generated function auto generated function mqtt_client_init0.
• Auto Initialization: Enable/disable call to initialization function. If disabled, the application thread entry function

must obtain the Client ID and create the MQTT Client instance.
• Client ID Callback: Callback function provided by user for the MQTT Client thread task to obtain a unique client

ID. If Auto Initialization is disabled, this and the Client ID length have no effect.
• Client ID Max Length: Maximum Length in bytes of the client ID.
• Client Thread Stack Size: MQTT Client thread stack size in bytes.
• Number of Messages to be stored in Memory: MQTT client uses memory area to store messages. The memory

needed for MQTT client operation depends on the amount of data being sent or received. The minimal memory
size is the size of a single MQTT_MESSAGE_BLOCK instance which is 60 bytes. The default value is 1
MQTT_MESSAGE_BLOCK or 60 bytes. However, this is not a good choice if there will be multiple messages

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 8 of 24
Oct 22, 2018

received before the application can receive them. Transmitted messages cannot be released until the TCP socket
receives an ACK for the data, or if the QoS level is 1 or higher and the MQTT Client has received an ACK from
the MQTT server. So, the module guide project uses 6 message blocks. That number can probably be reduced to 3
or 4.

• Client Thread Priority: MQTT Client thread priority.
• Name of Generated Initialization function: Name of the function that will call the nxd_mqtt_client_create

API. If Auto Initialization is disabled, this has no effect. If it is, Synergy will create this function automatically.
• Auto Initialization: This determines if the function specified in the Name of Generated Initialization function

option is called. If set to Enable, it will invoke this function. Otherwise if set to Disable, the application must call
the nxd_mqtt_client_create API before using any NetX Duo MQTT Client services.

Setting a unique Client ID

As mentioned previously, an MQTT client instance is created using nxd_mqtt_client_create() API. If the
MQTT Client application is letting the ISDE create the MQTT client, then it must define the Client ID Callback. This
will be called before the ISDE calls nxd_mqtt_client_create internally with a defined Client ID string. The
MQTT Client component allows you to set the Client ID Callback and Client ID Max Length in the list of MQTT Client
properties (see above Module Properties).

The Client ID should be unique and is one of the parameters the MQTT broker uses to identify the client.

The prototype for Client ID callback is as below:
void mqtt_client_id_callback(char * p_client_id, uint32_t *
p_client_id_length);

p_client_id is a pointer to the Client ID, so it is an output parameter which will be filled in by this callback
function. p_client_id_length is a pointer to the length of the Client ID, so it is an input and output parameter.
This mechanism enables the Client ID to be determined at run time instead of at compile time.

If Client ID Callback is left empty in the properties pane of e2 studio, a compiler error occurs. NULL is an acceptable
entry. If your application prefers to create the MQTT Client directly, set this callback to NULL and set Auto
Initialization to Disabled. Then when your application calls the nxd_mqtt_client_create API, provide the
Client ID string directly, and the length of it as the input parameters:
 /* Create MQTT client instance. */

 nxd_mqtt_client_create(&mqtt_client, "my_client", CLIENT_ID_STRING,
strlen(CLIENT_ID_STRING), ip_ptr, pool_ptr,
(VOID*)mqtt_client_stack, sizeof(mqtt_client_stack),
MQTT_THREAD_PRIORTY,
(UCHAR*)client_memory, sizeof(client_memory));

Below is the sample reference implementation of Client ID callback function which copies MAC address to Client ID.
void mqtt_client_id_callback(char *p_client_id, uint32_t
*p_client_id_length)
{
 uint32_t id_length;
 UCHAR mac_id[6] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06};

 if (*p_client_id_length < sizeof(mac_id))
 {
 id_length = *p_client_id_length;
 }
 else
 {
 id_length = sizeof(mac_id);
 }

 /* Copy MAC address to CLient ID and update client ID length */
 memcpy(p_client_id, mac_id, id_length);

 return;

 }

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 9 of 24
Oct 22, 2018

Note: It is possible to have an MQTT session with a zero length Client ID string. If an MQTT Client supplies a zero-
byte Client ID, the Client MUST also set the clean_session input in the nxd_mqtt_client_connect
API to NX_TRUE (1) as per the MQTT protocol. If the Client supplies a zero-byte Client ID with
clean_session set to NX_FALSE (0), the Server will respond to the CONNECT Packet with a CONNACK
return code 0x02 (Identifier rejected) and then close the Network Connection.

3.1.2 NetX Duo MQTT Client Module Limitations
• NetX Duo MQTT Client does not support sending or receiving QoS level 2 messages.
• NetX Duo MQTT Client does not support chained packets.

4. Including the NetX Duo MQTT Client Module in an Application
This section describes how to include the NetX Duo MQTT Client module in an application using the SSP configurator.

Note: It is assumed that you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters
of the SSP User’s Manual to learn how to manage each of these important steps in creating SSP-based
applications.

To add the NetX Duo MQTT Client Module to an application, simply add it to a thread using the stacks selection
sequence given in the following table. The default name for the NetX Duo MQTT Client Module is g_mqtt_client0.
This name can be changed in the associated Properties window.

Table 2 NetX Duo MQTT Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_mqtt_client0 NetX Duo
MQTT Client

Threads New Stack> X-Ware> NetX Duo> Protocols> NetX Duo
MQTT Client

As shown in the following figure, when the NetX Duo MQTT Client module is added to the thread stack, the
configurator automatically adds any needed lower-level modules. Any modules needing additional configuration
information have the box text highlighted in Red. Modules with a Gray band are individual modules that stand alone.
Modules with a Blue band are shared or common; they need only be added once and can be used by multiple stacks.
Modules with a Pink band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is required, the
module description include Add in the text. Clicking on any Pink banded modules brings up the New icon and displays
possible choices.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 10 of 24
Oct 22, 2018

Figure 2 NetX Duo MQTT Client Module Stack
The auto-generated code creates the IP instance, necessary to use NetX Duo library services, and the IP default packet
pool. The MQTT Client can share that packet pool, or it can use its own packet pool by clicking on Add NetX Duo
Packet Pool and choosing New. Set the packet payload size to the size of the messages the MQTT Client expects to
send or receive. The optimal number of packets for the MQTT Client is based on expected/worst case volume of traffic
for example. This is usually determined by observation. You will also need to add the NetX Duo Network Driver (NetX
Ethernet, Cellular, or Wi-Fi). Use the tables provided in Section 5 for filling in these component properties.

After the auto-generated code completes, your application thread entry function runs. This is defined in the thread you
created for this project in the left panel (not shown above). Now you are ready to start using the MQTT Client services.
See section 6 for more details of the steps to take to connect, publish and disconnect from the MQTT Server (broker).

For details for adding a NetX Duo TLS component, please see NetX Duo TLS Module Guide.

5. Configuring the NetX Duo MQTT Client Module
The NetX Duo MQTT Client module must be configured by the user for the desired operation. The SSP configuration
window automatically identifies (by highlighting the block in red) any required configuration selections, such as
interrupts or operating modes, which must be configured for lower-level modules for successful operation. Only
properties that can be changed without causing conflicts are available for modification. Other properties are ‘locked’
and not available for changes and are identified with a lock icon for the ‘locked’ property in the Properties window in
the ISDE. This approach simplifies the configuration process and makes it much less error-prone than previous
‘manual’ approaches to configuration. The available configuration settings and defaults for all the user-accessible
properties are given in the Properties tab within the SSP Configurator and are shown in the following tables for easy
reference.

One of the properties most often identified as requiring a change is the interrupt priority. This configuration setting is
available within the Properties window of the associated module. Simply select the indicated module and then view the
Properties window. The interrupt settings are often toward the bottom of the properties list, so scroll down until they
become available. Also note that the interrupt priorities listed in the Properties window in the ISDE indicates the
validity of the setting based on the targeted MCU (CM4 or CM0+). This level of detail is not included in the following
configuration properties tables but is easily visible with the ISDE when configuring interrupt-priority levels.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 11 of 24
Oct 22, 2018

Note: You may want to open your ISDE, create the module, and explore the property settings in parallel with looking
over the following configuration table values. This helps to orient you and can be a useful ‘hands-on’ approach
to learning the ins and outs of developing with SSP.

Table 3 Configuration Default Settings for the NetX Duo MQTT Client Module

ISDE Property Value Description
NX Secure Enable, Disable

Default: Enable
NX secure selection

Topic Name Max Length 12 Topic name max length selection
Message Max Length 32 Message max length selection
Keepalive Timer Rate(s) 1 Keepalive timer rate(s) selection
Ping Timeout Delay(s) 1 Ping timeout delay(s) selection
Name g_mqtt_client0 Module name
Name of generated
initialization function

mqtt_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Client ID Callback mqtt_client_id_callback Client ID callback selection
Client ID Max Length 12 Client ID max length selection
Client Thread Stack Size 4096 Client thread stack size selection
Number of Messages to be
stored in memory

1 Number of messages to be stored
in memory selection

Client thread priority 2 Client thread priority selection
Name of generated
initialization function

Default:
mqtt_client_init0

Function that calls the Client ID
callback and create the MQTT
Client instance.

Auto initialization Enable, Disable
Default: Enable

Automatically generates the MQTT
Client. For example, enables the
function specified in Name of
generated initialization function to
be called.

Note: The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other
MCUs may require different configuration settings, particularly where memory is concerned.

In some cases, settings other than the defaults for stack modules can be desirable. For example, you may require a
longer Client ID string or to disable NX Secure.

The configurable properties for the lower-level stack modules are given in the following sections for completeness and
as a reference.

Note: Most of the property settings for lower-level modules are fairly intuitive and usually can be determined by
inspection of the associated properties window from the SSP configurator.

5.1 Configuration Settings for the NetX MQTT Client Lower-Level Modules
Note: The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

different default values and available configuration settings.

Bolded entries indicate properties that may need to be modified from the default value to match your system, changed
to match your network device (for example, IP address). The italicized entries are required for the MQTT Client project
to run.

Typically, only a small number of settings must be modified from the default for the IP layer and lower-level drivers as
indicated via the red text in the thread stack block. Notice that some of the configuration properties must be set to a
certain value for proper framework operation and are locked to prevent user modification. The following table identifies
all the settings within the properties section for the module.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 12 of 24
Oct 22, 2018

Table 4 Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description
Name g_ip0 Module name
IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

IPv6 Global Address (use commas
for separation)*

0x2001, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All zeros
means use MAC address)*

0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0

IPv6 link local address selection. This
will be configured automatically if left at
the default value, based on the device
MAC address.

IP Helper Thread Stack Size (bytes) 1024 IP Helper Thread Stack Size (bytes)
selection

IP Helper Thread Priority 3 IP Helper Thread Priority selection
ARP Enable ARP selection
ARP Cache Size in Bytes 512 ARP Cache Size in Bytes selection
Reverse ARP Enable, Disable

Default: Disable
Reverse ARP selection

TCP Enable TCP selection
UDP Enable, Disable

Default: Enable
UDP selection

ICMP Enable, Disable
Default: Enable

ICMP selection

IGMP Enable, Disable
Default: Enable

IGMP selection

IP fragmentation Enable, Disable
Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Note: *Only necessary if using IPv6 network connections

Table 5 Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description
Name of generated
initialization function

nx_common_init0 Name of generated initialization function
selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Table 6 Configuration Settings for the NetX and NetX Duo Packet Pool Instance g_packet_pool0

ISDE Property Value Description
Name g_packet_pool0 Module name
Packet Size in Bytes 640 Packet size selection
Number of Packets in Pool 16 Number of packets in pool selection
Name of generated initialization
function

packet_pool_init0 Name of generated initialization function
selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 13 of 24
Oct 22, 2018

Table 7 Configuration Settings for the NetX and NetX Duo Packet Pool Instance g_packet_pool1

ISDE Property Value Description
Name g_packet_pool1 Module name
Packet Size in Bytes 640 Packet size selection
Number of Packets in Pool 16 Number of packets in pool selection
Name of generated initialization
function

packet_pool_init0 Name of generated initialization function
selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Table 8 Configuration Settings for the NetX Port ETHER

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter
checking

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin selection
Channel 0 MAC Address
High Bits

0x00002E09 Channel 0 MAC address high bits
selection

Channel 0 MAC Address
Low Bits

0x0A0076C7 Channel 0 MAC address low bits
selection

Channel 1 Phy Reset Pin** IOPORT_PORT_08_PIN_06 Channel 1 Phy reset pin selection
Channel 1 MAC Address
High Bits

0x00002E09 Channel 1 MAC address high bits
selection

Channel 1 MAC Address
Low Bits

0x0A0076C8 Channel 1 MAC address low bits
selection

Number of Receive Buffer
Descriptors

8 Number of receive buffer descriptors
selection

Number of Transmit Buffer
Descriptors

32 Number of transmit buffer descriptors
selection

Ethernet Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14 (CM4:
valid, CM0+: invalid), Priority 15
(CM4 lowest - not valid if using
ThreadX, CM0+: invalid)
Default: Disabled

Ethernet interrupt priority selection.
Change from Disabled for the network
driver to send and receive packets.

Name g_sf_el_nx Module name
Channel** 1 Channel selection
Callback NULL Callback selection

Note: **This is specific to the SK-S7G2 MCU. The DK-S7G2 default values need not be modified.
For Wi Fi networks, please refer to the Synergy Wi-Fi Application Project for SK-S7G2 - Application
Project on the Renesas Gallery for more information on setting network parameters.

5.2 NetX Duo MQTT Client Module Clock Configuration
The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the SSP
configurator clock tab prior to a build, or by using the CGC interface at run-time.

5.3 NetX Duo MQTT Client Module Pin Configuration
The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O pins must be
selected and configured by the external device as required. The following table illustrates the method for selecting the
pins within the SSP configuration window and the subsequent table illustrates an example selection for the I2C pins.

Note: The selected operation mode determines the peripheral signals available and the MCU pins required.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 14 of 24
Oct 22, 2018

Table 9 Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence
ETHERC Pins Select Peripherals > Connectivity:ETHERC > ETHERC1.RMII

Note: The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Table 10 Pin Configuration Settings for the ETHERC1

Property Value Description
Operation Mode Disabled, Custom, RMII

(Default: Disabled)
Select RMII as the Operation Mode for ETHERC1

Pin Group Selection Mixed, _A only
(Default: _A only)

Pin group selection

REF50CK P701 REF50CK Pin
TXD0 P700 TXD0 Pin
TXD1 P406 TXD1 Pin
TXD_EN P405 TXD_EN Pin
RXD0 P702 RXD0 Pin
RXD1 P703 RXD1 Pin
RX_ER P704 RX_ER Pin
CRS_DV P705 CRS_DV Pin
MDC P403 MDC Pin
MDIO P404 MDIO Pin

Note: Example settings are for a project using the Synergy S7G2 MCU and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

6. Using the NetX Duo MQTT Client Module in an Application
Below are the basic steps towards getting an MQTT Client project connected to a broker.

Add a NetX Duo MQTT Client component as follows. After adding a thread in the Threads panel, select that thread and
click on the (+) in the New Thread Stacks panel. Then choose X-Ware > NetX Duo > Protocols > NetX Duo MQTT
Client. Please see following figure.

If there is no pre-existing IP instance then adding MQTT client block will add the IP instance below it. If there is a IP
instance already added to the Thread Stacks pane choose the “Use” option and select the already created IP instance.

Never create multiple IP instances in NetX Duo! The IP thread task in NetX Duo uses global variables and having
multiple IP instances can result in undefined behavior.

Once an IP instance is added, the user can either add a new packet pool or use an existing packet pool which is required
for MQTT Client. To attach a packet pool to the MQTT Client, click on the Add NetX Duo Packet Pool block and
choose New to create a new one (default name g_packet_pool1) or click on Use to share the packet pool used by the IP
instance. The module guide project creates a new pool, g_packet_pool1.

There is no disadvantage in creating a second packet pool, provided there is enough system memory. Usually using
multiple packet pools allows for optimal memory usage and better control of packet availability. The IP instance’s
packet pool (by default g_packet_pool0) is used by the network driver to receive packets and the IP instance for internal
operations. Creating a new packet pool for the application itself, particularly if it sends a large number of packets out at
a time, might result in better performance, since it frees up g_packet_pool0 for internal operations.

After adding packet pool, the thread pane view looks as shown below.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 15 of 24
Oct 22, 2018

Figure 6 MQTT Client block with IP Instance and a second packet pool g_packet_pool1 used by the
MQTT Client thread task

After adding the NetX Port Ether driver, the thread pane view looks as shown below

Figure 6 MQTT Client block with the NetX Port Ether driver added

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 16 of 24
Oct 22, 2018

Configure the other properties of the MQTT Client. Please refer to the Error! Reference source not found. section for
details about each property.

Generate the code by clicking on the Generate Project Content button. This creates the auto generated code under the
configured thread. If the Auto Initialization property is set to Enable, this auto generated code includes the MQTT
Client initialization function specified in the Name of generated initialization function property. This function
internally calls the callback specified in the Client ID Callback property to obtain Client ID string and string length, and
then calls the nxd_mqtt_client_create API to create an MQTT client. If Auto Initialization is set to Disable, the
application must call nxd_mqtt_client_create directly.

If using Auto initialization, the application thread entry function needs to define the Client ID callback specified in the
Client ID Callback property of the MQTT Client block. As mentioned previously, this callback is called by the
MQTT Client initialization function prior to calling the nxd_mqtt_client_create API. This is because the
nxd_mqtt_client_create function takes as its input the Client ID and length of the ID. The Client ID callback
returns a unique client ID, typically the device MAC address, and length of the Client ID. Please refer to Setting a
Unique Client ID in section 3.1.1.

Build the application and if there are no errors, run it. Now the thread entry function can execute. Below is an example
MQTT Client session (without security).

MQTT Client application example

1. Wait for the network link to be enabled by calling the nx_ip_status_check (or if your system has multiple
network interfaces, call nx_ip_interface_status_check) with the NX_IP_LINK_ENABLED option.

2. Create an event flag group using the tx_event_flags_create API.

3. Connect to the MQTT server (broker) using the nxd_mqtt_client_connect API.

4. Set a receive notification callback using the nxd_mqtt_client_receive_notify_set API. The receive
callback sets a flag when notified by the underlying NetX Duo socket services that it has received a packet on this
connection.

5. Subscribe to a topic on the MQTT Server using the nxd_mqtt_client_subscribe API.

6. Publish a message to the topic using the nxd_mqtt_client_publish API.

7. Wait to receive messages by calling the tx_event_flags_get API.

8. Receive the message using the nxd_mqtt_client_message_get API. Note that, unlike when receiving
packets from a socket, the MQTT Client need not be concerned about releasing packets. The MQTT Client thread
task handles packet and message block allocate and release.

9. Unsubscribe from the topic by calling the nxd_mqtt_client_unsubscribe API, specifying the topic.

10. Disconnect from the topic by calling the nxd_mqtt_client_disconnect API.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 17 of 24
Oct 22, 2018

Figure 3 Flow Diagram of a Typical NetX Duo MQTT Client Module Application

7. The NetX Duo MQTT Client Module Application Project
The application project associated with this module guide demonstrates the steps needed in a full design. The project
can be found using the link provided in the References section at the end of this document. You may want to import and
open the application project within the ISDE and view the configuration settings for the NetX and NetX Duo MQTT
Client module. You can also read over the code in mqtt_thread0_entry.c which illustrates the NetX Duo
MQTT Client Module APIs in a complete design.

The application project demonstrates the typical use of the NetX Duo MQTT Client Module APIs. The IP protocol is
responsible for creating a valid IP address. Internally, NetX Duo handles all network transmission and reception of data
for the MQTT Client. The text output of the project presents the current state of the application, and the current IP
address. This is enabled by defining SEMI_HOSTING in the thread entry function,
mqtt_client_thread_entry.c.

The following table identifies the target versions for the associated software and hardware used by the Application
Project:

Table 11 Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 5.4.023 Integrated Solution Development Environment
SSP 1.3.0 Synergy Software Platform
IAR EW for Synergy 7.71.3 IAR Embedded Workbench® for Renesas Synergy™
SSC 5.4.023 Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.1 Starter Kit

The mqtt_client_thread_entry.c file is the entry function for the main program-control section. You can
open the project files within the ISDE and follow along with the description provided to help identify key uses of APIs.

mqtt_client_thread_entry.c lists the header files, mqtt_client_thread.h and
MQTT_Client_MG_AP.h. It defines the client ID callback function mqtt_client_id_callback, for creating
the MQTT Client ID when auto initialization is enabled. It also includes code for allowing semi-hosting to display

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 18 of 24
Oct 22, 2018

results using printf(). To enable debug output in the Renesas Virtual Debug Console, the SEMI_HOSTING macro
must be defined in the MQTT_Client_MG_AP.h file.

Note: This description assumes you are familiar with using printf() with the Debug Console in the Synergy
Software Package. If you are unfamiliar with this, refer to the “How do I Use Printf() with the Debug Console in
the Synergy Software Package” Knowledge Base article, available as described in the References section at the
end of this document. Alternatively, you can see results via the watch variables in the debug mode.

Before calling the run_mqtt_client_session function, the mqtt_client_thread_entry function waits
for the network link to be enabled. If USE_IPV6 is defined, the MQTT Client will use IPv6. In this case, it calls the
enable_for_ipv6 function to enable the necessary services in NetX Duo for IPv6 services. NetX Duo by default
supports IPv6 so no change to the NetX Duo library is required. Otherwise, the MQTT Client uses IPv4 by default and
defines the IPv4 MQTT server address.

At this time, the MQTT server must be started and waiting for connection requests. The server IP address is defined in
mqtt_client_thread_entry.c by the LOCAL_SERVER_ADDRESS symbol. If your MQTT server is at IP
address 192,2,2,201 it should be defined as follows:

#define LOCAL_SERVER_ADDRESS IP_ADDRESS(192,2,2,201

If you are running MQTT on an IPv6 network, the IPv6 address of the MQTT server is defined in a utility function in
mqtt_client_thread_entry.c called enable_for ipv6(). (LOCAL_SERVER_ADDRESS is not used for
defining the sever IPv6 address.) It might look like the following (depending on your network):

 server_ip.nxd_ip_address.v6[3] = 0x201;
 server_ip.nxd_ip_address.v6[2] = 0x0;
 server_ip.nxd_ip_address.v6[1] = 0x0;
 server_ip.nxd_ip_address.v6[0] = 0x20010db8;
 server_ip.nxd_ip_version = NX_IP_VERSION_V6;

More details for how to set up and run an MQTT server are available in section 9.

The mqtt_client_thread_entry function can now call the run_mqtt_client_session function, defined
in the MQTT_Client_MG_AP.c file. In this function call, the MQTT client specifies the MQTT server IP and
listening port. It also specifies a keepalive timer on a 60 second t to be activated, a QoS level of 1 and the clean session
feature disabled. It also specifies the topic it will subscribe to and a message it would like to publish to this topic.

run_mqtt_client_session conducts the actual MQTT session: it connects to the MQTT Server and subscribes
to and publishes messages. That function returns the number of errors encountered in the MQTT session if any. The
mqtt_client_thread_entry function prints out the success or number of errors in completing the MQTT
session. The details are below.

run_mqtt_client_session begins by creating a ThreadX event group. After it connects with the MQTT server
by calling the nxd_mqtt_client_connect API, it registers a callback function,
my_receive_notify_callback, with the MQTT Client for the MQTT Client thread task to notify the
application when a message is received. This callback function is called in the context of the MQTT Client thread so it
should do minimal processing and not make blocking calls. In the project, it sets a flag to notify
run_mqtt_client_session about the received message. This spares the run_mqtt_client_session from
having to ‘poll’ the MQTT Client task for received messages.

Now the Client subscribes to the topic specified in the run_mqtt_client_session by calling the
nxd_mqtt_client_publish API. It waits for the next message with the tx_event_flags_get API. It checks
the events that are detected for including an MQTT_MESSAAGE_EVENT. If so, it retrieves the message from the MQTT
Client receive queue using the nxd_mqtt_client_message_get API.

The Client can stay connected to the Server indefinitely, publishing and receiving messages, or until the server
disconnects. In this case the Client only publishes a single message. Then it exits the session by unsubscribing
(nxd_mqtt_client_unsubscribe API) and disconnecting (nxd_mqtt_client_disconnect API) from
the MQTT server. All messages on the receive queue are released (returned to memory pool) and the TCP socket
connection is closed. When it calls the nxd_mqtt_client_delete API, all messages on the transmit queue are
released as well.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 19 of 24
Oct 22, 2018

The table below indicates the settings of the properties configured in this application project to support the required
operations and the physical properties of the target board and MCU. The Bolded entries are changed from the default.
Italicized entries are required settings.

Table 12 Configuration Default Settings for the NetX Duo MQTT Client Module

ISDE Property Value Description
NX Secure Disable NX secure selection
Topic Name Max Length 12 Topic name max length selection
Message Max Length 32 Message max length selection
Keepalive Timer Rate(s) 1 Keepalive timer rate(s) selection
Ping Timeout Delay(s) 1 Ping timeout delay(s) selection
Name g_mqtt_client0 Module name
Name of generated
initialization function

mqtt_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Client ID Callback mqtt_client_id_callback Client ID callback selection
Client ID Max Length 12 Client ID max length selection
Client Thread Stack Size 4096 Client thread stack size selection
Number of Messages to be
stored in memory

6 Number of messages to be stored
in memory selection

Client thread priority 2 Client thread priority selection
Name of generated
initialization function

Default:
mqtt_client_init0

Function that calls the Client ID
callback and create the MQTT
Client instance.

Auto initialization Enable, Disable
Default: Enable

Automatically generates the MQTT
Client e.g. enables the function
specified in Name of generated
initialization function to be called.

Note: The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other
MCUs may require different configuration settings, particularly where memory is concerned

You can also open the application project and view these settings in the Properties window as a hands-on exercise.

8. Customizing the NetX Duo MQTT Client Module for a Target Application
As mentioned previously, an MQTT session can be enabled for security. This is not discussed in detail in this document
but there are module guides on TLS security available in Renesas Gallery.

The MQTT Client application can specify a disconnect callback if the MQTT Server initiates a disconnect with the
client. This is done using the nxd_mqtt_client_disconnect_notify_set. Like the receive notify callback,
this callback is called in the context of the MQTT Client thread and therefore must be kept to a minimum and no
blocking calls made. Typically, it can set a flag for the application will receive when it checks its event queue in the
project for this module guide.

The MQTT Client application can enable a keep alive feature in the nxd_mqtt_client_connect API. This creates a timer
which on expiration signals the MQTT Client to send a keepalive message to the MQTT Server if no messages have
been received during the Keepalive timeout.

• When this timer is created, it has a timer entry function that keeps track of whether the keepalive timeout has
expired. If it has, it sends a simple message to the Server which should get a response. In this way, the Client (and
the Server) both know the other end of the connection is still live.

Each MQTT session with QoS 1 (or QoS 2 which is not supported here) can able be enabled or disabled for the
clean_session feature. This is specified in the nxd_mqtt_client_connect API.

• If set, this removes all messages on the MQTT Server’s transmit queue if there are any. That way the Client does
not have to receive “stale” messages. If it is not set, then the Server will retransmit them. Also, the Client will
retransmit all unacknowledged messages on its own transmit queue. This is useful if the network connection
abruptly broke off before the Client could receive or send all its messages.

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 20 of 24
Oct 22, 2018

The MQTT Server and Client may have a preset username password logon. If so, the MQTT Client application can call
the nxd_mqtt_client_set_login before connecting with the Server to set the username and password. Note this
is not part of the TLS Security processing. When the MQTT Client connects, the MQTT Client will send a message
with the username and password to the Server and wait for the Server to acknowledge it. Note that the username and
password are sent open text, not encrypted.

9. Running the NetX Duo MQTT Client Module Application Project
To run the NetX Duo MQTT Client Module application project and to see it executed on a target kit, you can simply
import it into your ISDE, compile, and run debug.

Note: The following steps are described in sufficient detail for someone experienced with the basic flow through the
Synergy development process. If these steps are not familiar, refer to the first few chapters of the SSP User’s
Manual for a description of how to accomplish these steps.

1. Refer to the Synergy Project Import Guide (r11an0023eu0116-synergy-ssp-import-guide.pdf, included in this
package) for instructions on importing the project into e2 studio or the IAR EW for Synergy ISDE and
building/running the application.

2. Connect to the host PC via a micro USB cable to J19 on SK-S7G2 Kit.

3. Connect to the host PC running a MQTT server via an Ethernet cable to J11 on SK-S7G2 Kit.

4. Compile the application.

5. Start the MQTT Server utility on the host PC. The MQTT server used for this project is available from Microsoft
for Windows 10 https://mosquitto.org/download/. The defaults will work for the MQTT Client in this project.

a. To run this utility in verbose output mode and for listening on a specific port, type this command [if you
installed the utility to the c:\mos directory]:

C:\mos\mosquitto -v [for verbose output] -p
[specify a port number, no brackets, make sure your firewall permits TCP connections on this port]

b. Type in this command in the command shell window after CDing into the directory where Mosquitto is
installed:
mosquitto -v -p 1883

The standardized listening port for MQTT servers is 1883. For MQTT Servers over TLS it is 8883. (TLS is not
applied in this module guide project.) However, the MQTT server may listen on any port if there is a conflict or
other reason for 1883 not being available.

Below is the output from this utility when used with this module guide project:

6. Start the MQTT Client on your device. While in Debug mode in e2 studio, click Run > Resume or click on the
Play icon twice.

a. Verify from the output in the command window that the MQTT Client has connected with the Server and the
output is similar to the following:

https://mosquitto.org/download/

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 21 of 24
Oct 22, 2018

Figure 4 Example Output from the MQTT Server Mosquitto in an IPv4 (upper frame) and IPv6 (lower
frame MQTT session with the NetX Duo MQTT Client

7. At the conclusion of the MQTT session, the mqtt_client_thread_entry function will print out the success
(or number of errors) of the MQTT session. Go to the Renesas Virtual Debug Console to see the output in e2 studio.
In IAR, in the View menu, choose the Terminal I/O option. If the MQTT session is successful, the output will be:

If the MQTT session encountered errors, the output will report the number of errors:

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 22 of 24
Oct 22, 2018

If the mqtt_client_thread_entry function was not able to initialize the session for IPv6, the actual
error status will be reported:

Figure 4 Example Output in e2 studio from NetX Duo MQTT Client Module Application Project

Figure 5 Example Output in IAR from NetX Duo MQTT Client Module Application Project

10. NetX Duo MQTT Client Module Conclusion
This Module Guide has provided all the background information needed to select, add, configure, and use the module in
an example project. Many of these steps were time consuming and error-prone activities in previous generations of
embedded systems. The Renesas Synergy™ Platform makes these steps much less time consuming and removes the
common errors like conflicting configuration settings or incorrect selection of lower-level drivers. The use of high-level
APIs (as demonstrated in the application project) illustrates additional development-time savings by allowing work to
begin at a high level and avoiding the time required in older development environments to use, or, in some cases, create,
lower-level drivers.

11. NetX Duo MQTT Client Module Next Steps
After you have mastered a simple NetX Duo MQTT Client Module project, you may want to review a more complex
example. You may wish to connect to multiple MQTT brokers or publish to multiple topics on the same MQTT server.
The MQTT application can set up a will message before connecting with the MQTT Server in the event of an ungraceful
disconnect with the server. Since MQTT is often used in scenarios where unreliable networks are not uncommon, ‘will’
messages let the MQTT client request the broker to notify the other clients about an unplanned disconnect. Use the ‘will’
message with the nxd_mqtt_client_will_message_set API to set up the will message and topic.

User Guides for these modules can be found using the instructions provided in the References section at the end of this
document.

12. NetX Duo MQTT Client Module Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Renesas website.

Links to all the most up-to-date NetX Duo MQTT Client Module reference materials and resources are available on the
Synergy Knowledge Base: https://en-
us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowle
dge_Base/NetX_MQTT_Client_Module_Guide_Resources.

https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/NetX_MQTT_Client_Module_Guide_Resources
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/NetX_MQTT_Client_Module_Guide_Resources
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/NetX_MQTT_Client_Module_Guide_Resources

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 23 of 24
Oct 22, 2018

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and
related documentation, and get support.

Synergy Software renesassynergy.com/software
 Synergy Software Package renesassynergy.com/ssp
 Software add-ons renesassynergy.com/addons
 Software glossary renesassynergy.com/softwareglossary

Development tools renesassynergy.com/tools

Synergy Hardware renesassynergy.com/hardware
 Microcontrollers renesassynergy.com/mcus
 MCU glossary renesassynergy.com/mcuglossary
 Parametric search renesassynergy.com/parametric

Kits renesassynergy.com/kits

Synergy Solutions Gallery renesassynergy.com/solutionsgallery
 Partner projects renesassynergy.com/partnerprojects

Application projects renesassynergy.com/applicationprojects

Self-service support resources:

Documentation renesassynergy.com/docs
Knowledgebase renesassynergy.com/knowledgebase
Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support

http://renesassynergy.com/software
http://renesassynergy.com/ssp
http://renesassynergy.com/addons
http://renesassynergy.com/softwareglossary
http://renesassynergy.com/tools
http://renesassynergy.com/hardware
http://renesassynergy.com/mcus
http://renesassynergy.com/mcuglossary
http://renesassynergy.com/parametric
http://renesassynergy.com/kits
http://renesassynergy.com/solutionsgallery
http://renesassynergy.com/partnerprojects
http://renesassynergy.com/applicationprojects
http://renesassynergy.com/docs
http://renesassynergy.com/knowledgebase
http://renesassynergy.com/forum
http://renesassynergy.com/training
http://renesassynergy.com/videos
http://renesassynergy.com/support

Renesas Synergy™ Platform NetX Duo™ MQTT Module Guide

R11AN0344EU0100 Rev.1.00 Page 24 of 24
Oct 22, 2018

Revision History

Rev. Date
Description
Page Summary

1.00 Oct 22, 2018 — First release document

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.comSALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

	1. NetX Duo MQTT Client Module Features
	2. NetX Duo MQTT Client Module APIs Overview
	3. NetX Duo MQTT Client Module Operational Overview
	3.1 NetX Duo MQTT Client Module Important Operational Notes and Limitations
	3.1.1 NetX Duo MQTT Client Module Operational Notes
	3.1.2 NetX Duo MQTT Client Module Limitations

	4. Including the NetX Duo MQTT Client Module in an Application
	5. Configuring the NetX Duo MQTT Client Module
	5.1 Configuration Settings for the NetX MQTT Client Lower-Level Modules
	5.2 NetX Duo MQTT Client Module Clock Configuration
	5.3 NetX Duo MQTT Client Module Pin Configuration

	6. Using the NetX Duo MQTT Client Module in an Application
	7. The NetX Duo MQTT Client Module Application Project
	8. Customizing the NetX Duo MQTT Client Module for a Target Application
	9. Running the NetX Duo MQTT Client Module Application Project
	10. NetX Duo MQTT Client Module Conclusion
	11. NetX Duo MQTT Client Module Next Steps
	12. NetX Duo MQTT Client Module Reference Information
	Revision History

