

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

RES05B0012-0100/Rev.1.00 January 2010 Page 1 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Introduction
MR8C/4 is an embedded real-time operating system (RTOS) that use preemptive priority-based task switching like
most RTOS. This ability to run multiple tasks brings new complications. In addition, performance of an RTOS in an
embedded application is highly dependent on the design considerations in its implementation. Switching from a “one-
big-loop” style of programming to a multithreaded RTOS thus require proper planning and execution.

This document discuss on the steps and considerations to be taken in the process of incorporating MR8C/4 in an
embedded application.

Target Device
Applicable MCU: R8C Family

Contents

1. Guide in using this Document ... 2

2. Design Considerations .. 3

3. MR8C/4 Implementation ... 4

4. Example: Implementing MR8C/4 in “Watch_RSKR8C_Demo” Application.................................... 10

5. Reference Documents... 16

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 2 of 18

1. Guide in using this Document
Implementation of a system using an RTOS requires calculation and planning. The designer needs to consider all the
timing aspects of the system. In addition, designer will need to consider task partitioning, task prioritization, use of
interrupts and hardware device capabilities in the implementation.

This document aims to explain how to implement a system using MR8C/4.

Table 1 Explanation of Document Topics

Topic Objective Pre-requisite

Design Considerations

Highlighting probable
considerations to be made in the
designing stage of incorporating an
RTOS.

MR8C/4 and MR30/4

MR8C/4 Implementation
An explanation of the steps involved
in the implementation of MR8C/4 in
an embedded application

MR8C/4 and RTOS Scheduling
Algorithms and Protocols

Example: Implementing MR8C/4 in
“Watch_RSKR8C_Demo”
Application

A step by step illustration of
implementing MR8C/4 in the demo
application

MR8C/4

Reference Documents
Listing of documents that equip users
with knowledge in the pre-requisite
requirements

None

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 3 of 18

2. Design Considerations
The main objective of incorporating an RTOS into an application is to improve the real-time response to external events
by ensuring predictability without consuming much of the embedded systems’ limited resources.

2.1 Preemptive performance
To ensure that external events trigger the corresponding operational responses of a device, it is crucial to assign the
operations accurately to the designated task. To achieve an accurate real-time response, tasks partitioning and
dispatching need to be correctly carried out.

MR8C/4 is an RTOS that employ preemptive priority based scheduling where tasks are executed in the order of their
priority. Therefore, to ensure the preemptive performance of the embedded application, assignment of appropriate
priority level to the corresponding tasks is of utmost importance.

Inter-task synchronization is another important factor contributing to the preemptive performance of the embedded
application. Inappropriate inter-task synchronization management might result in priority inversion, race conditions,
starvation or deadlock that will deter the responsiveness of the system.

Interrupt latency introduced by RTOS is another deterrent factor. RTOS might not be suitable for embedded
applications that require the engagement of multiple high frequency interrupts.

2.2 Extra memory consumption
Extra ROM/RAM is required for the RTOS code and associated data structures (e.g. Data Queue module). Additionally,
each task requires extra RAM for its own private stack space. In such situation, size of individual tasks plays a critical
role in the total memory consumption. User may perform computation of the required RAM size of each task and
allocate the appropriate RAM size to the respective tasks to reduce wastage.

2.3 Power consumption
For an embedded device, the hardware design and the RTOS play important roles in ensuring that power consumption is
reduced. If the RTOS is well implemented, memory use can be minimized, and less power will be consumed. An
efficient embedded application with RTOS can make a lower-specification CPU viable and reduce power even further.

R8C Family
How to Implement MR8C/4 in Embedded Applications

3. MR8C/4 Implementation
The whole cycle of implementing MR8C/4 encompasses the feasibility analysis by understanding the RTOS and
hardware device involved to ensuring an effective deployment through proper partitioning, prioritization of tasks, inter-
task communications and interrupts mapping. Figure 1 depicts the entire process of implementing MR8C/4.

Figure 1 MR8C/4 Implementation Procedures

RES05B0012-0100/Rev.1.00 January 2010 Page 4 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

3.1 MR8C/4 Suitability Analysis
A clear understanding of the objective/s of an embedded system and the choice of hardware device to be utilized are
important in determining the relevance and suitability of implementing it with MR8C/4. The key considerations are the
available timer period, inter-task communication methods, contention resolution, memory protection and capabilities of
handling the set of tasks.

3.1.1 Real-time System Identification
A real-time system is one, which must satisfy bounded response-time constraints or risk severe consequences, including
failure. Real-time system may be classified as hard, firm or soft systems. And such identification is crucial in the
designing of RTOS implementation in an embedded application involving processes such as tasks partitioning, task
scheduling, inter-task synchronization methods and etc.

In hard real-time systems, failure to response to time constraint requirements leads to catastrophic results for the system.

Firm real-time systems entail an unacceptable quality reduction when a deadline is missed. Systems whose deadlines
may be missed and can be recovered from with acceptable reduction in quality are called soft real-time systems.

MR8C/4 is an evolution from uITRON4.0 that supports hard-real time systems. As such, MR8C/4 can be implemented
in firm or soft-real time systems as well.

3.1.2 Hardware Device Identification
Understanding the functional capabilities and peripherals available in a device is equally important in the decision,
designing and implementation of an RTOS. An RTOS is limited by the hardware it runs on. MR8C/4, being specially
designed and fully compatible with R8C family devices. Understanding the full features of the chosen R8C device will
aid designer in the allocation of MR8C/4 resource to fulfill the application requirements of the system. At the same time,
designer may review the feasibility of an implementation based on the available resources of MR8C/4 and the device.
Figure 2 provides a non-exhaustive list of R8C family devices features.

Figure 2 R8C Family Devices Features

RES05B0012-0100/Rev.1.00 January 2010 Page 5 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 6 of 18

3.2 Tasks Partitioning
This process involves decomposing an embedded application into small, schedulable, and sequential program units
called Tasks to optimize the handling of inputs and outputs within set time constraints. A task is a unit of concurrency,
but it is not the smallest unit of software architectural design. Most tasks contain a number of functions that are
executed sequentially within the task.

In embedded systems, individual task typically provide the following services:
• Handling a single asynchronous input or output device
• Executing the software that must meet a single time deadline
• Performing a large calculation
• Maintaining a large data store
• Executing software that must run at a single point in time
• Executing software that must run periodically

This section discusses on the considerations when performing tasks partitioning.

3.2.1 Decision on total number of tasks
The number of tasks to create is highly dependent on the requirements of the system. MR8C/4 allows declaration of up
to 255 tasks. However, it will be unwise to declare all 255 tasks unless required. The decision on the total number of
tasks to be created therefore based on a leverage of what is needed versus the amount of trade-off in memory
consumption that can be tolerated.

Table 1 explores the pros and cons of defining more tasks.

Table 1 Pros & Cons of defining more Tasks

No. Pros Cons

1 Better overall response time
control

Require better data protection
with more intertask
communications

2
Modularity with individual task
assigned with specific
functionality

Long response time due to
associated overheads

3 Better encapsulation of data and
functionality within individual task

More memory required for
increase in task stack size

3.2.2 Functionality encapsulation in tasks
Functionality encapsulation involves the classification of tasks based on functions of embedded system. The segregation
approach is done by classifying functions into asynchronous, synchronous and repetitive tasks using desynchronous,
synchronous and architectural methods respectively.

Desynchronous method identifies functions that operate asynchronously to one another, classify them into single tasks
and prioritize them (refer to Section 3.4 for priotization guidelines). Few common asynchronization function variations
include:

• User interface function
• Millisecond function
• CPU hogging function

Synchronous method involves identifying functions that performs in synchronization with other functions. Synchronous
tasks usually offer services of shared resources to other asynchronous tasks. Few synchronous functions include:

• Error logging function
• Data control function

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 7 of 18

Architectural method identifies periodic and state machine functions and classifies them into single tasks. Periodic tasks
operate on a regular interval basis. Whereas a state machine tasks operates in accordance to external events triggered by
other tasks. Examples of periodic and state machine functions include:

• Monitoring function
• Display function

3.3 Interrupts Mapping
Interrupts latency will be introduced with implementation of RTOS. To reduce the amount of latency and avoid
scheduling conflict, following guidelines may be exercised.

• Keep ISRs short and simple (to minimize interrupt response time, testing and debugging time)
• Disable preemption before calling interrupt service routine function (to enable completion of interrupt service

routine)
• Assign only urgent operation to interrupts and use task to perform bulk of interrupt service (to minimize amount of

overheads due to interrupts)
• Avoid disabling interrupts (to prevent delays in handling high priority interrupts by kernel
• Avoid implementing high-latency instructions in ISRs (mathematical computation like division and string

manipulations may take many cycles to execute and thus increase latency)
• Avoid improper usage of RTOS APIs in ISRs (to prevent occurrence of possible nondeterministic nature of APIs

that hog the ISRs).

3.4 Task Priority Assignment
Selection of scheduling algorithm and inter-task synchronization protocol defines the assignment of priority level to
individual task.

3.4.1 Selection of Scheduling Algorithms
Scheduling algorithms define whether individual tasks of the system will be able to meet their deadlines without
incurring priority inversion, deadlocks, race conditions and starvations.

There are generally two approaches namely, fixed/static priority scheduling and dynamic priority scheduling as shown
in Figure 3.

R8C Family
How to Implement MR8C/4 in Embedded Applications

Figure 3 Static and Dynamic Scheduling Algorithms

In static scheduling algorithms, priority of a task will not be modified when it is running unless the task changes its own
priority. This approach can be implemented more easily and scheduler is fast and more predictable. Dynamic
scheduling algorithms allow a task priority to be modified when it’s running. This approach is more dynamic but
considerably more complicated.

3.4.2 Selection of Inter-task Synchronization Protocol
Both the static and dynamic scheduling algorithms might not be sufficient to ensure no occurrence of priority inversion
and deadlocks in inter-task synchronization of resource. As such, additional scheduling protocols may be deployed. Few
of the protocols include:

• Critical Section
Critical Section method directs the locking of the scheduler when a resource is accessed by making the current task the
highest priority task in the system. This prevents another task from simultaneously accessing it.

The advantage of this method is its simplicity, partially in terms of understandability and implementation. The
downside lies with the possibility of incurring tasks blockage when the resource access take too long.

This method is suitable for embedded application that do not require the simultaneous sharing of resources among tasks.

• Priority Ceiling
Priority Ceiling method impose a priority ceiling for each resources and in turn escalate the priority level of the task
holding the resource to the same level as another task that has been blocked from accessing the same resource or
resource with the same priority ceiling.

This method helps to resolve the issues of priority inversion and deadlock but is more complex for implementation and
incur larger overhead.

RES05B0012-0100/Rev.1.00 January 2010 Page 8 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 9 of 18

This method is more suitable for more complex embedded applications that require better control in the elimination of
deadlocks and inversion priority.

• Simultaneous Locking
Simultaneous Locking method is device to solely avoid deadlock avoidance by locking or unlocking all resources
needed at any one instance.

This method prevents deadlock without resolving priority inversion. This method incurs large computational overhead
that may become severe when there are many shared resources.

This method is more suitable for embedded applications that resulting in deadlock situation where some resources
might be blocked while waiting for others to become available.

• Ordered Locking
Ordered Locking method eliminates deadlock by ordering resources and enforcing a policy which resources must be
allocated only in a specific order.

This method effectively removes any possible deadlocks but impose significantly more complex algorithm and does not
prevent priority inversion.

• Priority Inheritance
Priority Inheritance method introduces the manipulation of executing priorities of tasks that lock resources. This method
aims to reduce priority inversion by limiting to; at most, a task will only be blocked by a single, lower-priority task
owning a needed resource.

This method is highly effective in handling the problem of priority inversion when at most a single resource is locked at
any given time. However, multiple tasks blockage termed chain blocking will occur when there are multiple resources
that may be locked at any time. In addition, this method does not address deadlock and incur larger overhead.

• Highest Locker
Highest Locker method defines a priority ceiling for each resource where the task owning the resource runs at the
highest priority ceiling of all the resources that it owns at the instance.

This method has better priority inversion bounding properties than Priority Inheritance method and avoids deadlock.
The disadvantage of this method will incur larger overhead and its ability to bound priority inversion only to a single
level.

R8C Family
How to Implement MR8C/4 in Embedded Applications

4. Example: Implementing MR8C/4 in “Watch_RSKR8C_Demo” Application

4.1 Step 1: MR8C/4 Suitability Analysis
Objective of the project is to develop a digital watch that provides timing display, alarm setting, and stopwatch
functions. Figure 4 provides a comparison of the feasibility of incorporating MR8C/4 in the project utilizing R8C/25
hardware device.

Figure 4 Suitability Analysis of MR8C/4 Implementation in “Watch_RSKR8C_Demo”

From Figure 4, we may deduce it is suitable to implement MR8C/4 in the embedded application
“Watch_RSKR8C_Demo”.

4.2 Step 2: Task Partitioning
The next step is to list out the main functions and classify them respectively into single tasks. Figure 5 shows the listing
of main functions in “Watch_RSKR8C_Demo” application program. The functions are analyzed and classified into the
respective task types and groups.

RES05B0012-0100/Rev.1.00 January 2010 Page 10 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Figure 5 Classifications of Function Listings in “Watch_RSKR8C_Demo”

With the classifications, the main functions are further partitioned into single tasks. Figure 6 shows that six tasks and
three interrupt service routines (ISRs) are defined.

Figure 6 Task Partitioning of “Watch_RSKR8C_Demo”

RES05B0012-0100/Rev.1.00 January 2010 Page 11 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Out of the six tasks defined, “Update_Watch”, “Update_Alarm” and “Update_StopWatch” are three periodic tasks that
occur at a regular interval (e.g. “Update_Watch” occur at one interval). Thus, three cyclic handlers will be defined to
activate the tasks on a regular basis.

“StartAlarm_Task” and “StopAlarm_Task” are sporadic tasks that trigger at a user-defined interval upon activation.
Two alarm handlers will be defined to activate the tasks respectively.

4.3 Step 3: Interrupt Mapping
After all the tasks have been defined, next step is to determine the interrupt routine and corresponding interrupt vector
to be defined.

“Watch_RSKR8C_Demo” embedded application is required to response to three sporadic events respectively from
three tactile switches, namely, “SW1”, “SW2” and “SW3”. To response to these three events, three separate interrupt
routine will be required. With reference to Figure 7, “SW1”, “SW2” and “SW3” are tied to interrupt sources “INT0”,
“INT1” and “Key Input” respectively.

Figure 7 Relocatable Vector Tables of R8C/25

It is mandatory to set a timer as the system clock for MR8C/4 kernel as five time-event handlers (three cyclic handlers
and two alarm handlers) are used. Timer RA is chosen as the system clock.

The full outline of tasks, time event and interrupt handlers are shown in Figure 8.

RES05B0012-0100/Rev.1.00 January 2010 Page 12 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Figure 8 Outlines of Tasks, Time Event and Interrupt Handlers for “Watch_RSKR8C_Demo”

4.4 Step 4: Task Priority Assignment
The final process is to define the priority of individual task and deduce the inter-task communication and
synchronization mechanisms required.

In this example, Rate Monotonic Analysis (RMA) scheduling method is chosen due to:

• No resource sharing required
• Deterministic deadlines are exactly equal to periods
• Static scheduling is suitable due to simplicity of “Watch_RSKR8C_Demo” embedded application

In RMA, priority of each task is assigned according to its period. The shorter its period, the higher its priority. In the
“Watch_RSKR8C_Demo” application, computation/execution time was measured. Its corresponding period was
determined based on its specification (e.g. Task “ID_Task3_UpdateWatch” is required to be executed at an interval of
1second to refresh the display, thus its period is 1 second).

RES05B0012-0100/Rev.1.00 January 2010 Page 13 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Figure 9 RMA Priorities Setting for “Watch_RSKR8C_Demo”

With reference to Figure 9, priority of the respective tasks is set based on its period. “ID_Task5_UpdateStop” has the
smallest period so it will be assigned with the highest priority.

After defining the priority of individual task, schedulability test (based on theorem shown in Figure 10) will need to be
conducted to ascertain the priority assignment.

Figure 10 RMA Schedulability Test Theorem

Based on the above theorem, analysis can be performed for all the tasks. Below illustrate the schedulability test for
Task2 “ID_Task2_ModeFunc” in Figure 11.

RES05B0012-0100/Rev.1.00 January 2010 Page 14 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

Figure 11 RMA Schedulability Test for Task2

Using the theorem computation, schedulability test can be conducted for the rest of the tasks in the order of their
assigned priority.

Figure 12 RMA Schedulability Test for Task3, Task4, Task6 and Task7

As there is no exchanging of message/data among the tasks, no inter-task synchronization protocol will need to be
included.

RES05B0012-0100/Rev.1.00 January 2010 Page 15 of 18

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 16 of 18

5. Reference Documents
User’s Manual

• MR8C/4 V1.00 User’s Manual
The latest version can be downloaded from the Renesas Technology website

Document
• Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Bruse Powel Douglass)

Website

• EMBEDDED.COM, http://www.embedded.com.

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 17 of 18

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Jan.01.10 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

R8C Family
How to Implement MR8C/4 in Embedded Applications

RES05B0012-0100/Rev.1.00 January 2010 Page 18 of 18

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2010. Renesas Technology Corp., All rights reserved.

	1. Guide in using this Document
	2. Design Considerations
	2.1 Preemptive performance
	2.2 Extra memory consumption
	2.3 Power consumption

	3. MR8C/4 Implementation
	3.1 MR8C/4 Suitability Analysis
	3.1.1 Real-time System Identification
	3.1.2 Hardware Device Identification

	3.2 Tasks Partitioning
	3.2.1 Decision on total number of tasks
	3.2.2 Functionality encapsulation in tasks

	3.3 Interrupts Mapping
	3.4 Task Priority Assignment
	3.4.1 Selection of Scheduling Algorithms
	3.4.2 Selection of Inter-task Synchronization Protocol

	4. Example: Implementing MR8C/4 in “Watch_RSKR8C_Demo” Application
	4.1 Step 1: MR8C/4 Suitability Analysis
	4.2 Step 2: Task Partitioning
	4.3 Step 3: Interrupt Mapping
	4.4 Step 4: Task Priority Assignment

	5. Reference Documents

