
 Application Note

R01AN0217EU0104 Rev.1.04 Page 1 of 51
Apr.25.23

Renesas Synergy™ Platform

GUIX™ Synergy Port Framework Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this
guide, you will be able to add this module to your own design, configure it correctly for the target application
and write code, using the included application project code as a reference and efficient starting point.
References to more detailed API descriptions and suggestions of other application projects that illustrate
more advanced uses of the module are available on the Renesas Synergy Knowledge Base (as described in
the References section at the end of this document), and should be valuable resources for creating more
complex designs.

The Express Logic GUIX Synergy Port Module, sf_el_gx, is the Express Logic GUIX™ adaptation layer for
Synergy MCU groups, which have graphics engines GLCDC, DRW (2DG engine), or a JPEG decode
engine. The API supports graphics hardware engine setup for GUIX and supports graphics rendering and
displaying accelerated by hardware engines. The module defines a full set of GUIX low-level display driver
functions which draw graphics accelerated by DRW (2DG engine) or JPEG, or displays graphics with
GLCDC (See the GUIX User Guide, Chapter 5: GUIX Display Drivers). The module encourages the
hardware acceleration for graphics rendering but also allows software processing without hardware support.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 2 of 51
Apr.25.23

Contents

1. GUIX™ Synergy Port Framework Module Features ... 3

2. GUIX™ Synergy Port Framework Module APIs Overview .. 4

3. GUIX™ Synergy Port Framework Module and JPEG Decode HAL Module Operational
Overviews .. 5

3.1 Important Operational Notes and Limitations for the GUIX™ Synergy Port Framework Module 6
3.1.1 GUIX Synergy Port Framework Module Operational Notes .. 6
3.1.2 Synergy Port Framework Module Limitations ... 14
3.2 JPEG Decode HAL Module Operational Overview ... 14
3.2.1 Input Buffer Streaming Mode Operational Description ... 14
3.2.2 Output Buffer Streaming Mode Operational Description ... 14
3.2.3 JPEG Decode HAL Module Operational Notes ... 14
3.2.4 JPEG Decode HAL Module Limitations .. 15

4. Including the GUIX™ Synergy Port Framework Module in an Application 15

5. Configuring the GUIX™ Synergy Port Framework Module ... 16
5.1 Configuration Settings for the GUIX™ Synergy Port Framework Module Low-Level Drivers 18
5.2 GUIX™ Synergy Port Framework Module Clock Configuration .. 28
5.3 GUIX™ Synergy Port Framework Module Pin Configuration ... 28

6. Using the NetX™ or GUIX™ Synergy Port Framework Module in an Application 28

7. GUIX™ Synergy Port Framework Module Application Project .. 30

8. Customizing the GUIX Synergy Port Framework Module for a Target Application 46

9. Running the GUIX™ Synergy Port Framework Module Application Project 47

10. GUIX™ Synergy Port Framework Module Conclusion .. 49

11. GUIX™ Synergy Port Framework Module Next Steps .. 49

12. GUIX™ Synergy Port Framework Module Reference Information .. 49

Revision History .. 51

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 3 of 51
Apr.25.23

1. GUIX™ Synergy Port Framework Module Features
The GUIX Synergy Port Framework module includes the following key functions:

• Adapts GUIX to the SSP Framework
• Attaches the SSP Display Interface driver to GUIX Display Driver Interface
• Allows GUIX to draw widgets accelerated by the Synergy D2W (2DG) engine
• Allows GUIX to draw widgets accelerated by the Synergy JPEG engine
• Supports double-buffer toggling control for screen transitions without tearing
• Supports screen rotation (90/180/270 degree)
• Supports various output color formats:

– 32 bpp (ARGB8888, RGB-888)
– 16 bpp (RGB565)
– 8 bpp (8-bit palette (CLUT))

• Support for user callback functions

Figure 1. GUIX Synergy Port Framework Module Block Diagram

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 4 of 51
Apr.25.23

2. GUIX™ Synergy Port Framework Module APIs Overview
The GUIX Synergy Port Framework defines APIs for opening, closing, setup, and initialization. A complete
list of the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

Table 1. GUIX Synergy Port Framework Module API Summary

Function Name Example API Call and Description
.open g_sf_el_gx.p_api->open(g_sf_el_gx.p_ctrl, g_sf_el_gx.p_cfg);

Opens the SF_EL_GX Module. The API can only be called from a thread. The API
passes the configuration pointer to define low-level graphics device drivers, frame
buffers, and register the user callback function. This function does not actually
initialize low-level drivers. Instead, the API setup initializes the low-level drivers.
The reason is in the explanation for setup below.

.close g_sf_el_gx.p_api->close(g_sf_el_gx.p_ctrl);
Closes the SF_EL_GX Module. This API closes the low-level drivers. Normally, the
API is not called since GUIX will not be closed once initialized.

.versionGet g_sf_el_gx.p_api->versionGet(&version);
Returns the version of the Module in the version pointer.

.setup gx_studio_display_configure (MAIN_DISPLAY, g_sf_el_gx.p_api-
>setup, LANGUAGE_ENGLISH, MAIN_DISPLAY_THEME_1,
&p_window_root);
This interface initializes low-level graphics device drivers. It must be passed to
GUIX via the GUIX (Studio) service call gx_studio_display_configure() as
a function pointer. GUIX then calls the API back. At that moment, the API
configures the SSP device drivers based on the configuration passed by open. In
this procedure to initialize low-level drivers, the API has the GUIX-compliant
argument (GX_DISPLAY *) type and does not allow applying the detailed
configuration of the SSP graphics device drivers generated from e2 studio.
The function gx_studio_display_configure() is located in a source file
which is auto-generated by GUIX Studio.

.canvasInit g_sf_el_gx.p_api->canvasInit(g_sf_el_gx.p_ctrl,
p_window_root);
This GUIX helper API determines the memory address of GUIX canvas. The API
has an argument with type (GX_WINDOW_ROOT *). The API provides GUIX with
the start address of canvas memory needed for the low-level graphics device
drivers to draw/display images.

Note: For details on operation and definitions for the function data structures, typedefs, defines, API data,
API structures and function variables, review the SSP User’s Manual API References for the
associated module.

Table 2. Status Return Values

Name Description
SSP_SUCCESS API call successful.
SSP_ERR_ASSERTION NULL pointer error happens.
SSP_ERR_IN_USE SF_EL_GX is in-use.
SSP_ERR_INTERNAL Error happened in a Kernel service call.
SSP_ERR_NOT_OPEN SF_EL_GX is not opened.
SSP_ERR_TIMEOUT A task times out (or exceeds retry limit) before completion in

display driver.
SSP_ERR_D2D_ERROR_DEINIT Error occurred in D/AVE 2D driver.
GX_SUCCESS Device driver setup is successfully done.
GX_FAILURE Device driver setup failed.
SSP_ERR_INVALID_CALL Function call was made when the driver is not in

SF_EL_GX_CONFIGURED state.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 5 of 51
Apr.25.23

Name Description
SSP_ERR_D2D_RENDERING The D/AVE 2D returns error at opening a display list buffer
SSP_ERR_INVALID_ARGUEMENT Invalid non-pointer (e.g. parameter) input
SSP_ERR_UNSUPPORTED Specified color format is not supported
SSP_ERR_D2D_ERROR_INIT The D/AVE 2D returns error at the initialization.

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual API References
for the associated module for a definition of all relevant status return values.

3. GUIX™ Synergy Port Framework Module and JPEG Decode HAL Module
Operational Overviews

The following figure shows components for a Synergy graphics solution and the flow of graphics data.

Figure 2. Graphics Solution Components
Module Initialization
The SF_EL_GX supports the Synergy graphics hardware setup, which is required to run the GUIX system.
The module has a dependency on Express Logic GUIX™ and GUIX Studio™ generated code. The GUIX
system initialization performs the following operations:

1. ‘Open’ SF_EL_GX module to initialize SF_EL_GX control block and pass module configurations.
2. Initialize GUIX Display object by calling GUIX Studio generated API

gx_studio_display_configure. Through this API, the SF_EL_GX setup API is input to GUIX
and Synergy graphics hardware setup will complete. Also, the root window initialized by GUIX is
output to the user application.

3. Initialize the primary memory address of a GUIX Canvas Buffer by calling the canvasInit API.
4. Create the root window by calling the GUIX Studio generated API

gx_studio_named_widget_create.
5. Show the root window by calling the GUIX API gx_window_show.
6. Start the GUIX system by calling the GUIX API gx_system_start.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 6 of 51
Apr.25.23

Ping-Pong Frame Buffer Management
The SF_EL_GX module manages the buffer-toggling operation in a graphics system with a ping-pong frame
buffer shown in the following figure. The graphics system is managed by the SF_EL_GX module. The
module uses GUIX and the low-level display driver functions to draw an image (2D Drawing engine (DRW) or
JPEG) and displays the image (DISPLAY module, for example, GLCDC). A design with a single frame buffer
is also possible in the SF_EL_GX configuration. However, use two frame buffers to avoid tearing.

Figure 3. Ping-Pong Buffer
The diagram shows a case that does not use a GUIX Canvas buffer. When the Screen Rotation feature is
enabled, GUIX draws screen updates to a GUIX Canvas buffer through the SF_EL_GX Module first, then the
screen is to be copied to a non-visible side of the frame buffer. See Screen Rotation in the following section
for details.

3.1 Important Operational Notes and Limitations for the GUIX™ Synergy Port
Framework Module

3.1.1 GUIX Synergy Port Framework Module Operational Notes
Add the GUIX Source (gx_src) to your project if you want to change the default options of the GUIX library.
To access these options, in the Configurator Thread Stack pane, click on Add GUIX Source -> New ->
GUIX Source. The following GUIX Source options appear in the Properties window for the GUIX Source
module:

• Disable Multithread Support: Disables the GUIX internal thread to take the GUIX system mutex for the
GUIX system resources protection. If your system accesses GUIX only from a single thread, you can turn
on this option to have GUIX omit the resource lock procedure and expect better system throughput.
Unless you must tune your system performance, it is recommended to keep this option set to No.

• Disable UTF8 Support: Disables UTF8 format string encoding in GUIX and allows only 8-bit ASCII
character plus Latin-1 code page character encoding.

• System Timer (Milliseconds): Defines the GUIX timer rate. Allowed rates are integers larger than or
equal to 10 ms.

Note: Check your SSP license to see whether you can view the GUIX Source files. For details about

specific licenses, go to: synergygallery.renesas.com/user/license (login required).

https://synergygallery.renesas.com/user/license

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 7 of 51
Apr.25.23

GUIX Studio
When creating a project for Synergy, right-click the project and choose Configure Displays.

• To output resource and specification files directly to the Synergy project, browse to the src folder of your
project for the Source, Header and Resource files.

• For Target CPU, choose Renesas Synergy.
• For Toolchain, choose GNU.
• Check the allocate canvas memory option.
• Set the Display Number to 1.
• Set the X and Y resolution for your hardware
• Set the GUIX library version to match the GUIX used in your Synergy project. The current GUIX library is

6.2.1. Check the header information gx_api.h in your project for the version. The symbols defined in
gx_api.h, __GUIX_MAJOR_VERSION and __GUIX_MINOR_VERSION, do not define the third digit.

• Set the main display name (default is main_display)

In the lower left of your GUIX Studio screen is the Properties view. This is where you set the properties for
each widget, including the name of the widget (which is a window, button, scrollbar, text box, etc). It is also
where you can set draw and event callback functions. These callback functions must be defined somewhere
in your Synergy project source files or a compilation error will result. By default, these are set to NULL; if so,
GUIX will use the default draw and event handling.

• Draw Function: If this field is blank, the standard drawing function for that widget type is used.
• Event Function: If blank, the standard event handling for this widget type is used.

Synergy 2D Drawing Engine Support
For older versions (before version 5.3.3), check Enable Graphics Accelerator in the Synergy Advanced
Settings window.

If your project has selected a Pixelmap in the Resource pane option Pixelmaps, right-click on the image
and choose Edit Pixelmap (or Edit Settings in version 5.3.3). For the Output Format in this window, select
Compress Output. Do not select Raw Format. This configuration allows the GUIX Studio to generate Targa
RLE format encoded image resource data. The D2W hardware can read this format and decode and draw
the image on the frame buffer.

Synergy JPEG Support
In the Configure Project window, open the Advanced Settings window and select Hardware JPEG
Decoder in the Decoder Types JPEG drop-down list.

Click the Pixelmap tab in the Resource pane. Right-click a previously added pixelmap to choose Edit
Pixelmap. Select Raw Format. This configuration allows GUIX Studio to generate raw JPEG encoded
image resource data. JPEG hardware can read this format, decode and draw the image on the frame buffer.

Adding Colors, fonts, pixelmaps and strings
In the right column of GUIX Studio, there are a series of drop-down lists for adding system and user defined
strings, pixelmaps, colors, and fonts {optional]. For more details on how to manage these settings, please
see the GUIX Studio User Guide. For the project in this module guide, there are no user defined options
added except for strings.

Building/Rebuilding the Synergy Project
For any changes you make to GUIX Studio, you must generate the output files (Project -> Generate All
Output Files). Then you must rebuild your synergy project for these changes to take effect.

SF_EL_GX Properties and the GUIX System

• GUIX Canvas Buffer
The GUIX Canvas Buffer is used to achieve the screen rotation of the screen image. The size of GUIX
Canvas Buffer must be exactly the same as a frame buffer for the DISPLAY module.

• Screen Rotation
The GUIX Synergy Port Module is able to rotate the screen image drawn by GUIX. This feature is useful for
a case such as a GUI screen design that should be a landscape shape, but the display panel hardware has
a portrait shaped screen. In this case, you can design your GUI in the landscape shape on GUIX Studio and

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 8 of 51
Apr.25.23

display the screen on your display device with rotating by this module. The Screen Rotation Angle property
may be 90, 180, 270 degrees, or counterclockwise. Dynamic screen rotation is not supported. To enable the
screen rotation feature, the GUIX Canvas Buffer property must be set to Used. GUIX draws the screen
update on a canvas first. The GUIX Port then processes the screen copy to a frame buffer, rotating the
image in counterclockwise way. If the Enable Synergy 2D Drawing Engine Support property in the GUIX
on the gx component is enabled, the rotation is processed by Synergy DRW with texture mapping. If not
enabled, the rotation is processed by software copy.

The configuration: For Screen Rotation angle set to zero, GUIX Canvas Buffer can be set to Used but
consumes extra bus bandwidth for a screen image copy. Therefore, the GUIX Canvas Buffer should be set
to Not used for a Screen Rotation angle set to zero. GUIX then draws the screen update directly to a frame
buffer so you can save memory and bus bandwidth.

• Size of JPEG Work Buffer
The JPEG work buffer trades off the JPEG decode speed against the buffer size. When a widget on the
screen is formatted in JPEG, the JPEG work buffer is used as temporary storage memory to create the
decoded image. If the buffer size is not large enough for decoding an entire image, JPEG decoding is
performed in output buffer streaming mode. BitBLT (bit block transfer) by DRW decodes a piece of JPEG
raster image in the buffer, then transfers it to the frame buffer.

Using a temporary work buffer is due to the JPEG hardware limitation for memory alignment; the number of
pixels, and the requirement for alpha-blending if the widget has an alpha value. Since drawing an entire
widget is completed with the repeated processing previously described, the data transfer overhead results in
slower speed in decode processing, if the size of the JPEG work buffer is small. If the buffer size does not
meet the minimum requirement, JPEG decoding will not be processed.

Stated another way, if you want to use the hardware decoder, more memory must be reserved into which the
hardware decoder can output at least one MCU block of the decoded image. However, there are reasons for
not using the hardware decoder. It has significant restrictions on JPEG image size, width modulus, format,
output alignment, and so forth, and limits the processing of the JPEG image to decoding it into the frame
buffer. The software decoder does not have those restrictions, but it takes up significantly more CPU time.

The minimum number in bytes for the Size of JPEG Work Buffer property must be: The number of pixels in
the horizontal line x bpp (bytes per pixel) of the display format x 8 (lines).

For instance, if the decoded image is 800 pixels in a horizontal line and RGB565 format, the number is 800 x
2 x 8= 12,800 (bytes). To get better throughput, the Size of the JPEG Work Buffer property should be set to
a value larger than the minimum value.

Event Notification and the GX_EVENT data type
GUIX events are requests made to one or more widgets to perform a particular action. For example, when a
widget gains focus, the GX_EVENT_FOCUS_GAINED event is sent to the widget processing function.

When events are detected by the hardware, they get passed through to the GUIX event queue. At this point,
the hardware data is transposed into a GX_EVENT data structure. The important fields of the GX_EVENT
structure, which is defined in gx_api.h, are the gx_event_type, gx_event_sender,
gx_event_target, and gx_event_payload.

• gx_event_type identifies the particular event class. The event type indicates if this is, for example, a
GX_EVENT_PEN_DOWN event or a GX_EVENT_TIMER event.

• gx_event_sender contains the ID of the widget that generated the event if the event is a child-widget
notification.

• gx_event_target is a pointer to a particular window or widget. If you want to send an event to a
particular window, you should send a pointer to the widget.

• gx_event_payload is a union of various data types, and they are not all valid for every event type. You
must examine the gx_event_type field first, to determine which of the payload data field is applicable.
For GX_EVENT_PEN_DOWN and GX_EVENT_PEN_UP events, for example, the
gx_event_pointdata field contains the x, y pixel coordinates the pen position. For timer events, the
gx_event_timer_id contains the ID of the expired timer. Other payload data fields are utilized for
other event types.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 9 of 51
Apr.25.23

The following is a list of pre-defined GUIX event types:

• GX_EVENT_TERMINATE
• GX_EVENT_REDRAW
• GX_EVENT_SHOW
• GX_EVENT_HIDE
• GX_EVENT_RESIZE
• GX_EVENT_SLIDE
• GX_EVENT_FOCUS_GAINED
• GX_EVENT_FOCUS_LOST
• GX_EVENT_HORIZONTAL_SCROLL
• GX_EVENT_VERTICAL_SCROLL
• GX_EVENT_TIMER
• GX_EVENT_PEN_DOWN
• GX_EVENT_PEN_UP
• GX_EVENT_PEN_DRAG
• GX_EVENT_KEY_DOWN
• GX_EVENT_KEY_UP
• GX_EVENT_CLOSE
• GX_EVENT_DESTROY
• GX_EVENT_SLIDER_VALUE
• GX_EVENT_TOGGLE_ON
• GX_EVENT_TOGGLE_OFF
• GX_EVENT_RADIO_SELECT
• GX_EVENT_RADIO_DESELECT
• GX_EVENT_CLICKED
• GX_EVENT_LIST_SELECT
• GX_EVENT_VERTICAL_FLICK
• GX_EVENT_HORIZONTAL_FLICK
• GX_EVENT_MOVE
• GX_EVENT_PARENT_SIZED
• GX_EVENT_CLOSE_POPUP
• GX_EVENT_ZOOM_IN
• GX_EVENT_ZOOM_OUT
• GX_EVENT_LANGUAGE_CHANGE
• GX_EVENT_RESOURCE_CHANGE
• GX_EVENT_ANIMATION_COMPLETE
• GX_EVENT_SPRITE_COMPLETE
• GX_EVENT_TEXT_EDITED
• GX_EVENT_TGX_TIMER
• GX_EVENT_FOCUS_NEXT
• GX_EVENT_FOCUS_PREVIOUS
• GX_EVENT_FOCUS_GAIN_NOTIFY
• GX_EVENT_SELECT
• GX_EVENT_DESELECT
• GX_EVENT_PROGRESS_VALUE
• GX_EVENT_TOUCH_CALIBRATION_COMPLETE
• GX_EVENT_INPUT_RELEASE

The application can also add its own custom events, starting numerically after the constant
GX_FIRST_APP_EVENT. Widgets with user-defined events must have a non-NULL event handler defined to
process them.

At the hardware driver level, for example, where touchscreens and keypads detect PEN UP/DOWN and
physical keystroke events, this data is ‘transposed’ at the driver level into a GX_EVENT data structure. This
structure is where the event type and payload are stored to the event.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 10 of 51
Apr.25.23

Then the driver calls the gx_system_event_send API where the event will be stored on the GUIX event
queue. From here these events on the queue are routed by the GUIX system event dispatch mechanism for
the GUIX widget handling. GUIX processes each event by either the default handler or, if defined, the
custom event handler defined by the application. At the application level, the event handler receives as
parameters a pointer to the widget instance and a pointer to the event structure itself.

The GX_SIGNAL macro is a macro that combines the ID of the widget that generated an event with the
event type the widget has generated into a unique gx_event_type identifier code.

To catch signals generated by child widget, the parent event processing function will test for the event type
using the GX_SIGNAL macro:

UINT my_window_event_process(GX_WINDOW *win, GX_EVENT *event)
{
 switch(event->gx_event_type)
 {
 case GX_SIGNAL(ID_CHECKBOX, GX_EVENT_TOGGLE_ON) :
 break;

 case GX_SIGNAL(ID_MY_SLIDER, GX_EVENT_SLIDER_VALUE):
 break;

 default:
 gx_window_event_process(win, event);
 }
}

Where ID_MY_SLIDER and ID_CHECKBOX are the widget IDs assigned to a widget in GUIX Studio, and
GX_EVENT_TOGGLE_ON and GX_EVENT_SLIDER_VALUE are events generated by GUIX.

Note that widget IDs are optional in GUIX Studio. To use the GX_SIGNAL macro, you do need to supply a
widget ID for the application to be able to determine what signal it has received. This is useful if the widget is
a window, which contains several child widgets (for example, button or text box) and it needs to know which
child widget has generated a particular event.

Example: a widget of type window with the event function callback window1_handler might be defined as
follows in the application code:
UINT window1_handler(GX_WINDOW *widget, GX_EVENT *event_ptr)
{
 UINT result = gx_window_event_process(widget, event_ptr);
 switch (event_ptr->gx_event_type)
 {
 case GX_SIGNAL(ID_CHECKBOX, GX_EVENT_TOGGLE_ON) :

 /* Update parent window in which the widget belongs with new text.*/
 update_some_text(widget->gx_widget_parent, ID_WINDOWCHANGER,
 GX_STRING_ID_BUTTON_ENABLED);

break;

Not all events can be generated by a widget. In fact, a widget is limited to certain events.

For example,

• GX_EVENT_PEN_XXXX events are generated by touch screen input drivers.
• GX_EVENT_KEY_xxx events are generated by keyboard drivers.

However, events such as GX_EVENT_SHOW and GX_EVENT_HIDE are generated internally when certain
APIs cause widget status changes.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 11 of 51
Apr.25.23

The Touch Panel V2 Framework module scans data from a touch controller and invokes the user registered
touch panel callback when a touch event occurs. (If the user callback is not registered, the
sf_touch_panel_v2_api_t::touchDataGet API function can be used to retrieve the data.)

/** User callback*/
typedef struct st_sf_touchpanel_v2_callback_args
{
 sf_touch_panel_v2_payload_t payload; ///< Touch data and event provided
 ///< to the user during callback
 void const * p_context; ///< Context provided to
 ///< user during callback
} sf_touchpanel_v2_callback_args_t;

/** Touch data payload */
typedef struct st_sf_touch_panel_v2_payload
{
 int16_t x; ///< X coordinate.
 int16_t y; ///< Y coordinate.
 sf_touch_panel_v2_event_t event_type; ///< Touch event type.
} sf_touch_panel_v2_payload_t;

The user callback must be registered to obtain touch data. The Touch Panel V2 Framework module scans
data from a touch controller and invokes the user registered callback. If the user callback is not registered,
the sf_touch_panel_v2_api_t::touchDataGet API function can be used to retrieve the data. If the
user callback is registered, then the framework will invoke the callback when touch events occur.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 12 of 51
Apr.25.23

void g_sf_touch_panel_cb(sf_touchpanel_callback_args_t * p_args)
{
 bool send_event = true;
 GX_EVENT gxe;

 switch (p_args->payload.event_type)
 {
 case SF_TOUCH_PANEL_V2_EVENT_DOWN:
 gxe.gx_event_type = GX_EVENT_PEN_DOWN;
 break;
 case SF_TOUCH_PANEL_V2_EVENT_UP:
 gxe.gx_event_type = GX_EVENT_PEN_UP;
 break;
 case SF_TOUCH_PANEL_V2_EVENT_HOLD:
 case SF_TOUCH_PANEL_V2_EVENT_MOVE:
 gxe.gx_event_type = GX_EVENT_PEN_DRAG;
 break;
 case SF_TOUCH_PANEL_V2_EVENT_INVALID:
 send_event = false;
 break;
 default:
 break;
 }

 if (send_event)
 {
 /* Send event to GUIX */
 gxe.gx_event_sender = GX_ID_NONE;
 gxe.gx_event_target = 0; /* the event to be routed to the widget
 that has input focus */
 gxe.gx_event_display_handle = 0;
 gxe.gx_event_payload.gx_event_pointdata.gx_point_x = p_args->payload.x;
#if defined(BSP_BOARD_S7G2_SK)
 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = (GX_VALUE)(320 -
p_payload->y);
#else
 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = p_args->payload.y;
#endif
 gx_system_event_send(&gxe);
 }
}

The user callback function can update the GX_EVENT data type and fill in the following fields as needed:

/* Send event to GUIX */
 gxe.gx_event_sender = GX_ID_NONE;
 gxe.gx_event_target = 0; /* the event to be routed to the widget
 that has input focus */
 gxe.gx_event_display_handle = 0;
 gxe.gx_event_payload.gx_event_pointdata.gx_point_x = p_args->payload.x;

#if defined(BSP_BOARD_S7G2_SK)
 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = (GX_VALUE)(320 -
p_payload->y);

#else
 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = p_args->payload.y;

#endif
 gx_system_event_send(&gxe);

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 13 of 51
Apr.25.23

Low level hardware drivers and the GX_EVENT data type
The driver hardware uses a ThreadX thread to periodically query the hardware for new data. When it detects
new valid data, it verifies that it is valid data. It then translates that data into a type of user event filling and
data, for example, cursor position associated with that event. Payload would be position coordinates in the
example of a touchscreen. If this is a keypad device, the payload would store information for which
keystrokes were detected.

SF_EL_GX Callback Function
The sf_el_gx instance has a user-defined callback function defined by the Name of User Callback property.
By default, this is set to NULL. When the GUIX driver invokes this callback, which must be defined in the
application code, the object pointer contains event, device and error information from the driver.

The device indicates type of hardware:
SF_EL_GX_DEVICE_NONE
SF_EL_GX_DEVICE_DISPLAY
SF_EL_GX_DEVICE_DRW
SF_EL_GX_DEVICE_JPEG

The event is one of the following:

SF_EL_GX_EVENT_ERROR
SF_EL_GX_EVENT_DISPLAY_VSYNC
SF_EL_GX_EVENT_UNDERFLOW

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 14 of 51
Apr.25.23

3.1.2 Synergy Port Framework Module Limitations
• SF_EL_GX is only applicable for the Synergy MCU with GLCDC (mandatory), the 2D Drawing engine, or

the JPEG engine (optional)
• SF_EL_GX does not support a system with more than two frame buffers.
• SF_EL_GX supports only one GUIX canvas system.
• SF_EL_GX makes use of only one layer in DISPAY module.
• Do not access the TES D/AVE 2D module and TES D/AVE 2D Port module directly if GUIX uses the

modules.
• Do not access the JPEG Decode Framework module and JPEG Decode HAL module directly if GUIX

uses the modules.
• See the most recent SSP Release notes for additional limitations when using this module.

3.2 JPEG Decode HAL Module Operational Overview
The JPEG Decode HAL module is a high-level API for JPEG Decode processing implemented on r_jpeg.
The module supports the Synergy JPEG Codec peripheral. It has the following features:

• Supports JPEG decompression.
• Supports polling mode that allows an application to wait for JPEG Decoder to complete.
• Supports interrupt mode with user-supplied callback functions.
• Configures parameters such as horizontal and vertical subsample values, horizontal stride, decoded pixel

format, input and output data format, and color space.
• Obtains the size of the image prior to decoding it.
• Supports putting coded data in an input buffer and an output buffer to store the decoded image frame.
• Supports streaming coded data into JPEG Decoder module. This feature allows an application to read

coded JPEG image from a file or from network without buffering the entire image.
• Configures the number of image lines to decode. This feature enables the application to process the

decoded image on the fly without buffering the entire frame.
• Supports the input decoded format YCbCr444, YCbCr422, YCbCr420, YCbCr411.
• Supports the output format ARGB8888, RGB565.
• Returns error when the JPEG image’s size, height and width don’t meet the requirements.

The JPEG Decoder HAL module can be used in the Input Buffer Streaming mode or JPEG Output Buffer
Streaming mode.

3.2.1 Input Buffer Streaming Mode Operational Description
In this scenario, the JPEG image data resides in a file, or is received from the network. The HAL-layer driver
can handle this scenario without requiring the input data to be stored in memory first.

3.2.2 Output Buffer Streaming Mode Operational Description
In this scenario, the application needs to write the decoded image data to a file or to the network. The
HAL-layer driver does not require the application to allocate memory for the entire frame. Instead the
application may choose to decode one or more lines at a time. With this feature the amount of memory
needed for the output data is greatly reduced.

3.2.3 JPEG Decode HAL Module Operational Notes
JPEG Decode Callbacks
A user callback function can be registered in the open API. If a user callback function is provided, the
callback function will be called from the interrupt service routine (ISR) each time an interrupt happens. The
argument of the callback function status can take the enumerated values listed below so that user can
identify which event occurred in the decoding procedure.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 15 of 51
Apr.25.23

Event Name Event Condition
JPEG_DECODE_STATUS_ERROR JPEG Decode module encountered an error.
JPEG_DECODE_STATUS_IMAGE_SIZE_READY
JPEG

Decode obtained the image size of data to be
decoded, and paused.

JPEG_DECODE_STATUS_INPUT_PAUSE JPEG Decode paused waiting for more input data.
JPEG_DECODE_STATUS_OUTPUT_PAUSE
JPEG

Decode paused after decoded the number of lines
specified by user.

JPEG_DECODE_STATUS_DONE JPEG Decode operation has successfully completed.
Note: Since a user callback function is called from an ISR, be careful not to use blocking calls or lengthy

processing. Spending excessive time in an ISR can affect the responsiveness of the system.

3.2.4 JPEG Decode HAL Module Limitations
• The JPEG Decode HAL module does not support JPEG Encode processing.
• Refer to the most recent SSP Release Note for the most up to date limitations for this module.

4. Including the GUIX™ Synergy Port Framework Module in an Application
This section describes how to include the GUIX Synergy Port Framework module in an application using the
SSP configurator.

Note: It is assumed that you are familiar with creating a project, adding threads, adding a stack to a thread
and configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first
few chapters of the SSP User’s Manual to learn how to manage each of these important steps in
creating SSP-based applications.

To add the GUIX Synergy Port Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table..

Table 3. GUIX Synergy Port Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_sf_el_gx0 GUIX Port on
sf_el_gx

Threads New Stack> Framework> Graphics> GUIX Port
on sf_el_gx

When the GUIX on gx in added to the thread stacks as shown in the following figure, the configurator
automatically adds any needed lower-level drivers. Any modules that need additional configuration
information will be box text highlighted in red. Modules with a gray band are individual modules that stand
alone. Modules with a blue band are shared or common and need only be added once, since they can be
used by multiple stacks. Modules with a pink band can require the selection of lower level drivers.
Sometimes these are optional or recommended and this is indicated in the block with the inclusion of this
text. If the addition of lower level drivers is required, the module description will include Add in the text.
Clicking on any pink banded modules will bring up the New icon and then will show the possible choices.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 16 of 51
Apr.25.23

Figure 4. GUIX Synergy Port Framework Module Stack

5. Configuring the GUIX™ Synergy Port Framework Module
The GUIX Synergy Port Framework module must be configured by you for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required configuration
selections, such as interrupts or operating modes, which must be configured for lower-level modules for
successful operation. Only those properties that can be changed without causing conflicts are available for
modification. Other properties are ‘locked’ and unavailable for changes, these are identified with a lock icon
for the ‘locked’ property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous ‘manual’ approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator and are shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the interrupt priority: this configuration
setting is available within the Properties window of the associated module. Simply select the indicated
module and then view the Properties window. The interrupt settings are often toward the bottom of the
properties list, so scroll down until they become available. Also, note that the interrupt priorities listed in the
Properties window in the ISDE will include an indication as to the validity of the setting based on the MCU
targeted (CM4 or CM0+). The configuration properties in the following tables do not include this level of
detail, but details are easily visible within the ISDE when configuring interrupt-priority levels.

Note: You may want to open your ISDE, create the module and explore the property settings in parallel with
looking over the following configuration table settings. This helps to orient you and can be a useful
‘hands-on’ approach to learning the ins and outs of developing with SSP.

Table 4. Configuration Settings for the GUIX Synergy Port Framework Module on GUIX on gx

ISDE Property Value Description
Enable Synergy 2D
Drawing Engine Support

Yes, No
Default: Yes

If Synergy 2D Drawing Engine (DRW) Support is
enabled, the rotation is processed by Synergy DRW
with texture mapping. If not enabled, the rotation is
processed by software copy.

Enable Synergy JPEG
Support

Yes, No
Default: Yes

Enabling this support places restrictions on JPEG
image size, width modulus, format, output
alignment, and so forth. It is also limited to only
decoding the JPEG image into the frame buffer.
(The software decoder doesn’t have any of those
restrictions, but of course it uses more CPU time.)

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 17 of 51
Apr.25.23

Table 5. Configuration Settings for the GUIX Synergy Port Framework Module on sf_el_gx

Parameter Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter checking.

Name g_sf_el_gx0 Name of SF_EL_GX instance which will be
generated by ISDE. Specify the instance
name of this module. Name must be a valid
C symbol.

Name of Frame Buffer B
(NULL allowed if
consisting a single frame
buffer system)

g_display0_fb_background[1] Specify the name of another frame buffer.
If you want to design your graphics system
with a single frame buffer, set this
parameter to NULL, or set same frame
buffer name with parameter “Name of
Frame Buffer A”. See Tearing in Single
Buffer Designs

Name of User Callback
function

NULL Name of User Callback function invoked by
the Module when events happen. It must
be a valid C symbol and NULL is allowed.

Screen Rotation Angle
(Clockwise)

0, 90, 180, 270
Default: 0

Angle of screen rotation (degree). If non-
zero value is selected, screen rotation is
enabled and GUIX draws screen image on
a frame buffer, rotating the image with the
angle in the counter clockwise way.

GUIX Canvas Buffer
(required if rotation
angle is not zero)

Not used; Used
Default: Not used

If enabling the screen rotation, a canvas
buffer must be used. The size of canvas
buffer must be the same as a frame buffer
for the display module.

Size of JPEG Work
Buffer (valid if JPEG
hardware acceleration
enabled)

768000 The JPEG work buffer size in bytes. Value
must be a valid integer value and zero is
allowed to be set if JPEG acceleration is
not used. Larger buffer size shortens the
drawing time. See Size of JPEG Work
Buffer

Memory section for
GUIX Canvas Buffer

sdram, bss, …
Default: sdram

Name of memory section where you want
to allocate the GUIX Canvas Buffer. Enter
a valid section name defined in the linker
script file. Name must be a valid C symbol.

Memory section for
JPEG Work Buffer

Sdram, bss, …
Default: sdram

Name of memory section where you want
to allocate the JPEG Work Buffer. Enter a
valid section name defined in the linker
script file. Name must be a valid C symbol.

Note: The example values and defaults are for a project using the Synergy S7G2. Other MCUs may have
different default values and available configuration settings.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 18 of 51
Apr.25.23

5.1 Configuration Settings for the GUIX™ Synergy Port Framework Module Low-
Level Drivers

Typically, only a small number of settings must be modified from the default for lower level drivers as
indicated via the red text in the thread stack block. Notice that some of the configuration properties must be
set to a certain value for proper framework operation and will be locked to prevent user modification. The
following table identifies all the settings within the properties section for the module.

Table 6. Configuration for the GLCD HAL Module on r_glcd

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter checking.

Name g_display0 The name to be used for a GLCDC
module control block instance. This name
is also used as the prefix of the other
variable instances.

Name of display callback
function to be defined by user

NULL Name must be a valid C symbol.

Input - Panel clock source
select

Internal
clock(GLCDCLK),
External
clock(LCD_EXTCLK)
Default: Internal clock
(GLCDCLK)

Choose the panel clock source depends
on your system.

Input - Graphics screen1 Used, Not used
Default: Used

Specify "Used" if the graphics screen N is
used. Then the frame buffer named
"display_fb_background" for graphics
screen1 and "display_fb_foreground" for
graphics screen2 is auto-generated by
ISDE. If not using either of the graphics
screens, specify "Not used". Then the
frame buffer is not created. Note that there
is no memory read access to the frame
buffer when you specify "Not used", which
reduces the consumption of bus
bandwidth.

Input - Graphics screen1
frame buffer name

fb_background Custom name for frame buffer.

Input - Number of Graphics
screen1 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen1 frame buffer allocated

sdram Specify the section name to allocate the
frame buffer. This is valid if "Input -
Graphics screen1" is set as "Used."

Input - Graphics screen1 input
horizontal size

800 Specify the number of horizontal pixels.
Default value is the size for an image with
800x480 pixels

Input - Graphics screen1
vertical size

480 Specify the number of vertical pixels.
Default value is the size for an image with
800x480 pixels.

Input - Graphics screen1 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a horizontal
line. This value must be specified with the
number of pixels, not actual bytes.
Typically, this parameter is set to same
number as parameter 'input horizontal
size'. Default value is the size for an image
with 800x480 pixels.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 19 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen1 input
format

32bits ARGB888, 32bits
RGB888, 16bits
RGB565, 16bits
ARGB1555, 16bits
ARGB4444, CLUT 8,
CLUT 4, CLUT 1
Default: 16bits RGB565

Specify the graphics screen Input format. If
selecting CLUT formats, you must write
CLUT data using clut before performing
start. Default setting supports a RGB565
formatted image.

Input - Graphics screen1 input
line descending

On, Off
Default: Off

Specify "On" if image data descends from
the bottom line to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen1 input
line repeat

On, Off
Default: Off

Specify "On" if expecting to repeatedly
read a raster image which is smaller than
the LCD panel size. Usually "Off". For
details, see the description of Line
Repeating function.

Input - Graphics screen1 input
line repeat times

0 Specify the number of repeating times for
a raster image which is read repeatedly in
a frame.

Input - Graphics screen1 layer
coordinate X

0 Specify the horizontal offset in pixels of the
graphics screen from the background
screen.

Input - Graphics screen1 layer
coordinate Y

0 Specify the vertical offset in pixels of the
graphics screen from the background
screen.

Input - Graphics screen1 layer
background color alpha

255 Based on the alpha value, either the
graphics screen2 (foreground graphics
screen) is blended into the graphics
screen1 (background graphics screen) or
the graphics screen1 is blended into the
monochrome background screen.

Input - Graphics screen1 layer
background color Red

255 Specify the background color in the
graphics screen N.

Input - Graphics screen1 layer
background color Green

255 Specify the background color in the
graphics screen N.

Input - Graphics screen1 layer
background color Blue

255 Specify the background color in the
graphics screen N.

Input - Graphics screen1 layer
fading control

None, Fade-in, Fade-
out
Default: None

Specify "Fade-In" when performing a fade-
in for the graphics screen. The transparent
screen changes gradually to opaque.
Specify "Fade-Out" when performing the
fade-out for the graphics screen. The
opaque screen changes gradually to
transparent. Note that this processing is
accelerated by the GLCDC hardware and
cannot stop once started. The transition
status can be monitored by statusGet.

Input - Graphics screen1 layer
fade speed

0 Specify the number of frames for the
fading transition to complete.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 20 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen2 Used, Not used

Default: Not used
Specify "Used" if the graphics screen N is
used. Then the frame buffer named
"display_fb_background" for graphics
screen1 and "display_fb_foreground" for
graphics screen2 is auto-generated by
ISDE. If not using either of the graphics
screens, specify "Not used". Then the
frame buffer is not created. Note that there
is no memory read access to the frame
buffer when you specify "Not used", which
reduces the consumption of bus
bandwidth.

Input - Graphics screen2
frame buffer name

fb_foreground Custom name for frame buffer.

Input - Number of Graphics
screen2 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen2 frame buffer allocated

sdram Specify the section name to allocate the
frame buffer. This is valid if "Input -
Graphics screen1" is set as "Used."

Input - Graphics screen2 input
horizontal size

800 Specify the number of horizontal pixels.
Default value is the size for an image with
800x480 pixels

Input - Graphics screen2
vertical size

480 Specify the number of vertical pixels.
Default value is the size for an image with
800x480 pixels.

Input - Graphics screen2 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a horizontal
line. This value must be specified with the
number of pixels, not actual bytes.
Typically, this parameter is set to same
number as parameter 'input horizontal
size'. Default value is the size for an image
with 800x480 pixels.

Input - Graphics screen2 input
format

32bits ARGB888, 32bits
RGB888, 16bits
RGB565, 16bits
ARGB1555, 16bits
ARGB4444, CLUT 8,
CLUT 4, CLUT 1
Default: 16bits RGB565

Specify the graphics screen Input format. If
selecting CLUT formats, you must write
CLUT data using clut before performing
start. Default setting supports a RGB565
formatted image.

Input - Graphics screen2 input
line descending

On, Off
Default: Off

Specify "On" if image data descends from
the bottom line to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen2 input
line repeat

On, Off
Default: Off

Specify "On" if expecting to repeatedly
read a raster image which is smaller than
the LCD panel size. Usually "Off". For
details, see the description of Line
Repeating function.

Input - Graphics screen2 input
line repeat times

0 Specify the number of repeating times for
a raster image which is read repeatedly in
a frame.

Input - Graphics screen2 layer
coordinate X

0 Specify the horizontal offset in pixels of the
graphics screen from the background
screen.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 21 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen2 layer
coordinate Y

0 Specify the vertical offset in pixels of the
graphics screen from the background
screen.

Input - Graphics screen2 layer
background color alpha

255 Based on the alpha value, either the
graphics screen2 (foreground graphics
screen) is blended into the graphics
screen1 (background graphics screen) or
the graphics screen1 is blended into the
monochrome background screen.

Input - Graphics screen2 layer
background color Red

255 Specify the background color in the
graphics screen N.

Input - Graphics screen2 layer
background color Green

255 Specify the background color in the
graphics screen N.

Input - Graphics screen2 layer
background color Blue

255 Specify the background color in the
graphics screen N.

Input - Graphics screen2 layer
fading control

None, Fade-in, Fade-
out
Default: None

Specify "FadeIn" when performing a fade-
in for the graphics screen. The transparent
screen changes gradually to opaque.
Specify "Fade-Out" when performing the
fade-out for the graphics screen. The
opaque screen changes gradually to
transparent. Note that this processing is
accelerated by the GLCDC hardware and
cannot stop once started. The transition
status can be monitored by statusGet.

Input - Graphics screen2 layer
fade speed

0 Specify the number of frames for the
fading transition to complete.

Output - Horizontal total cycles 1024 Specify the total cycles in a horizontal line.
Set to the number of cycles defined in the
data sheet of LCD panel sheet in your
system. Default value matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Horizontal active
video cycles

800 Specify the number of active video cycles
in a horizontal line. Set to the number of
cycles defined in the data sheet of LCD
panel sheet in your system. Default value
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Horizontal back porch
cycles

46 Specify the number of back porch cycles in
a horizontal line. Back porch starts from
the beginning of Hsync cycles, which
means back porch cycles contain Hsync
cycles. Set to the number of cycles defined
in the data sheet of LCD panel sheet in
your system. Default value matches the
LCD panel on S7G2 PE-HMI1 board.

Output - Horizontal sync signal
cycles

20 Specify the number of Hsync signal
assertion cycles. Set to the number of
cycles defined in the data sheet of LCD
panel sheet in your system. Default value
matches LCD panel on S7G2 PE-HMI1
board.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 22 of 51
Apr.25.23

ISDE Property Value Description
Output - Horizontal sync signal
polarity

Low active, High active
Default: Low active

Select the polarity of Hsync signal to
match your system. Default setting
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Vertical total lines 525 Specify number of total lines in a frame.
Set to the number of lines defined in the
data sheet of LCD panel sheet in your
system. Default value matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Vertical active video
lines

480 Specify the number of active video lines in
a frame. Set to the number of lines defined
in the data sheet of LCD panel sheet in
your system. Default value matches the
LCD panel on S7G2 PE-HMI1 board.

Output - Vertical back porch
lines

23 Specify the number of back porch lines in
a frame. Back porch starts from the
beginning of Vsync lines, which means
back porch lines contain Vsync lines. Set
to the number of lines defined in the data
sheet of LCD panel sheet in your system.
Default value matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Vertical sync signal
lines

10 Specify the Vsync signal assertion lines in
a frame. Set to the number of lines defined
in the data sheet of LCD panel sheet in
your system. Default value matches the
LCD panel on S7G2 PE-HMI1 board.

Output - Vertical sync signal
polarity

Low active, High active
Default: Low active

Select the polarity of Vsync signal to
match to your system. Default setting
matches LCD panel on S7G2 PE-HMI1
board.

Output - Format 24bits RGB888, 18bits
RGB666, 16bits
RGB565, 8bits serial
Default: 24bits RGB888

Specify the graphics screen output format
to match to your LCD panel. Default
setting matches the LCD panel on S7G2
PE-HMI1 board.

Output - Endian Little endian, Big endian
Default: Little endian

Select data endian for output signal to
LCD panel. Default setting matches the
LCD panel on S7G2 PE-HMI1 board.

Output - Color order RGB, BGR
Default: RGB

Select data order for output signal to LCD
panel. The order of blue and red can be
swapped if needed. Default setting
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Data Enable Signal
Polarity

Low active, High active
Default: High active

Select the polarity of Data Enable signal to
match to your system. Default setting
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Sync edge Rising Edge, Falling
Edge
Default: Rising Edge

Select the polarity of Sync signals to
match to your system. Default setting
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Background color
alpha channel

255 Specify the background color of the
background screens.

Output - Background color R
channel

0 Specify the background color of the
background screens.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 23 of 51
Apr.25.23

ISDE Property Value Description
Output - Background color G
channel

0 Specify the background color of the
background screens.

Output - Background color B
channel

0 Specify the background color of the
background screens.

CLUT Used, Not used
Default: Not used

Specify "Used" if selecting CLUT formats
for a graphics screen input format. Then, a
buffer named "CLUT_buffer" for the CLUT
source data is generated in the ISDE auto-
generated source file.

CLUT - CLUT buffer size 256 Specify the number of entries for the CLUT
source data buffer. Each entry consumes
4 bytes (1 word). Words of CLUT source
data specified by this parameter are
generated in the ISDE auto-generated
source file.

TCON - Hsync pin select Not used,
LCD_TCON0,
LCD_TCON1,
LCD_TCON2,
LCD_TCON3
Default: LCD_TCON0

Select the TCON pin used for the Hsync
signal to match to your system. Default
setting is for LCD panel on S7G2 PE-HMI1
board.

TCON - Vsync pin select Not used,
LCD_TCON0,
LCD_TCON1,
LCD_TCON2,
LCD_TCON3
Default: LCD_TCON1

Select TCON pin used for Vsync signal to
match to your system. Default setting is for
LCD panel on S7G2 PE-HMI1 board.

TCON - DataEnable pin select Not used,
LCD_TCON0,
LCD_TCON1,
LCD_TCON2,
LCD_TCON3
Default: LCD_TCON2

Select TCON pin used for DataEnable
signal to match to your system. Default
setting is for LCD panel on S7G2 PE-HMI1
board.

TCON - Panel clock division
ratio

1/1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8, 1/9, 1/12,
1/16, 1/24, 1/32
Default: 1/8

Select the clock source divider value. See
the note at bottom of this table about the
source clock for the pixel clock.

Color correction - Brightness Off, On
Default: Off

Specify "On" when performing brightness
control. If specifying "Off", the setting
below does not affect the output color.

Color correction - Brightness R
channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ -
512. Set the value for each of R, G, B
channels.

Color correction - Brightness G
channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ -
512. Set the value for each of R, G, B
channels.

Color correction - Brightness B
channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ -
512. Set the value for each of R, G, B
channels.

Color correction - Contrast Off, On
Default: Off

Specify "On" when performing contrast
control. If specifying "Off", the setting
below does not affect the output color.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 24 of 51
Apr.25.23

ISDE Property Value Description
Color correction -
Contrast(gain) R channel

128 Output color level is calculated as follows:
Output color level = Input color level x
(/128). Set the value for each of R, G, B
channels.

Color correction -
Contrast(gain) G channel

128 Output color level is calculated as follows:
Output color level = Input color level x
(/128). Set the value for each of R, G, B
channels.

Color correction -
Contrast(gain) B channel

128 Output color level is calculated as follows:
Output color level = Input color level x
(/128). Set the value for each of R, G, B
channels.

Color correction - Gamma
correction(Red)

Off, On
Default: Off

Control for each channel R/G/B. Specify
"On" when performing gamma correction
for the red channel. If specifying "Off", the
settings for gain and threshold do not
affect the output color.

Color correction - Gamma gain
R[0-15]

0 Set the gain value for the red channel in
the area N on the gamma correction curve.
The gain setting for area N is applied to
the input data with a color level between
((Gamma threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2). The output
value is calculated as follows: Output color
level = Input color level / 1024 (/128).

Color correction - Gamma
threshold R[0-15]

0 Set the threshold value for the red channel
in the area N on the gamma correction
curve. The gain setting for area N is
applied to the input data with a color level
between Gamma threshold R[N-1] and
Gamma threshold R[N]. The output value
is calculated as follows: Output color level
= Input color level / 1024 (/128).

Color correction - Gamma
correction(Green)

Off, On
Default: Off

Control for each channel R/G/B. Specify
"On" when performing gamma correction
for the green channel. If specifying "Off",
the settings for gain and threshold do not
affect the output color.

Color correction - Gamma gain
G[0-15]

0 Set the gain value for the green channel in
the area N on the gamma correction curve.
The gain setting for area N is applied to
the input data with a color level between
((Gamma threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2). The output
value is calculated as follows: Output color
level = Input color level / 1024 (/128).

Color correction - Gamma
threshold G[0-15]

0 Set the threshold value for the green
channel in the area N on the gamma
correction curve. The gain setting for area
N is applied to the input data with a color
level between Gamma threshold R[N-1]
and Gamma threshold R[N]. The output
value is calculated as follows: Output color
level = Input color level / 1024 (/128).

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 25 of 51
Apr.25.23

ISDE Property Value Description
Color correction - Gamma
correction(Blue)

Off, On
Default: Off

Control for each channel R/G/B. Specify
"On" when performing gamma correction
for the blue channel. If specifying "Off", the
settings for gain and threshold do not
affect the output color.

Color correction - Gamma gain
B[0-15]

0 Set the gain value for the blue channel in
the area N on the gamma correction curve.
The gain setting for area N is applied to
the input data with a color level between
((Gamma threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2). The output
value is calculated as follows: Output color
level = Input color level / 1024 (/128).

Color correction - Gamma
threshold B[0-15]

0 Set the threshold value for the blue
channel in the area N on the gamma
correction curve. The gain setting for area
N is applied to the input data with a color
level between Gamma threshold R[N-1]
and Gamma threshold R[N]. The output
value is calculated as follows: Output color
level = Input color level / 1024 (/128).

Dithering Off, On
Default: Off

Dithering enable. Specify "On" when
applying the dither effect to reduce the
banding in case of selecting RGB666 or
RGB565 output formats. Dithering can be
applied when converting. If specified "Off",
the settings for dithering below do not
affect the output. For details on the dither
effect, see Output Control Block Panel
Dither Correction Register (OUT_PDTHA)
in the hardware manual.

Dithering - Mode Truncate, Round off,
2x2 Pattern
Default: Truncate

Specify the dither mode. For detail, see
the Output Control Block Panel Dither
Correction Register (OUT_PDTHA) in the
hardware manual.

Dithering - Pattern A Pattern 00, Pattern 01,
Pattern 10, Pattern 11
Default: Pattern 11

Specify the dither pattern for 2X2 pattern
mode. For more details, see the Output
Control Block Panel Dither Correction
Register (OUT_PDTHA) in the hardware
manual.

Dithering - Pattern B Pattern 00, Pattern 01,
Pattern 10, Pattern 11
Default: Pattern 11

Specify the dither pattern for 2X2 pattern
mode. For more details, see the Output
Control Block Panel Dither Correction
Register (OUT_PDTHB) in the hardware
manual.

Dithering - Pattern C Pattern 00, Pattern 01,
Pattern 10, Pattern 11
Default: Pattern 11

Specify the dither pattern for 2X2 pattern
mode. For more details, see the Output
Control Block Panel Dither Correction
Register (OUT_PDTHC) in the hardware
manual.

Dithering - Pattern D Pattern 00, Pattern 01,
Pattern 10, Pattern 11
Default: Pattern 11

Specify the dither pattern for 2X2 pattern
mode. For more details, see the Output
Control Block Panel Dither Correction
Register (OUT_PDTHD) in the hardware
manual.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 26 of 51
Apr.25.23

ISDE Property Value Description
Misc - Correction Process
Order

Brightness and Contrast
then Gamma, Gamma
then Brightness and
Contrast
Default: Brightness and
Contrast then Gamma

Specify the color correction processing
order if needed.

Line Detect Interrupt Priority Priority 0 (highest),
Priority 1:2, Priority 3
(CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14
(CM4: valid, CM0+:
invalid), Priority 15
(CM4 lowest - not valid
if using ThreadX,
CM0+: invalid)
Default: Disabled

The driver needs valid interrupt priority
setting and it won't work if disabled.

Underflow 1 Interrupt Priority Priority 0 (highest),
Priority 1:2, Priority 3
(CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14
(CM4: valid, CM0+:
invalid), Priority 15
(CM4 lowest - not valid
if using ThreadX,
CM0+: invalid)
Default: Disabled

The driver needs valid interrupt priority
setting and it won't work if disabled.

Underflow 2 Interrupt Priority Priority 0 (highest),
Priority 1:2, Priority 3
(CM4: valid, CM0+:
lowest- not valid if using
ThreadX), Priority 4:14
(CM4: valid, CM0+:
invalid), Priority 15
(CM4 lowest - not valid
if using ThreadX,
CM0+: invalid)
Default: Disabled

The driver needs valid interrupt priority
setting and it won't work if disabled.

Table 7. Configuration for the JPEG Decode Framework Module on sf_jpeg_decode

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter checking.

Name g_sf_jpeg_decode0 The name to be used for a JPEG Decode
Framework module instance.

Table 8. Configuration for the JPEG Decode HAL Module on r_jpeg

ISDE Property Value Description
Parameter Checking BSP, Enabled, Disabled

Default: BSP
Enable or disable the parameter error
checking.

Name g_jpeg_decode0 The name to be used for a JPEG
Decode module instance.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 27 of 51
Apr.25.23

ISDE Property Value Description
Byte Order for Input
Data Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap (2)(1)(4)(3)(6)(5)(8)(7),
Word Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Specify the byte order for input data.
The order is swapped as specified in
every 8-byte.

Byte Order for Output
Data Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap (2)(1)(4)(3)(6)(5)(8)(7),
Word Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Specify the byte order for output data.
The order is swapped as specified in
every 8-byte.

Output Data Color
Format

Pixel Data RGB565 format, Pixel
Data ARGBB888 format
Default: Pixel Data RGB565 format

Specify the output data format.

Alpha value to be
applied to decoded
pixel data (only valid
for ARGB8888 format)

255 Specify the alpha value for the output
data format (only valid for ARGB8888
format).

Name of user callback
function

NULL Specify the name of user callback
function.

Decompression
Interrupt Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Decompression interrupt priority
selection.

Data Transfer Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Data transfer interrupt priority
selection.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 28 of 51
Apr.25.23

Table 9. Configuration for the D/AVE 2D Driver on dave2d

ISDE Property Value Description
No configurable settings

Table 10. Configuration for the D/AVE 2D Port on sf_tes_2d_drw

ISDE Property Value Description
Work memory size for
display lists in bytes

32768 Work memory size for display lists
selection

DRW Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if using ThreadX),
Priority 4:14 (CM4: valid, CM0+:
invalid), Priority 15 (CM4 lowest -
not valid if using ThreadX, CM0+:
invalid)
Default: Disabled

DRW INT selection

Note: The example values and defaults are for a project using the Synergy S7G2 Family. Other MCUs may
have different default values and available configuration settings.

5.2 GUIX™ Synergy Port Framework Module Clock Configuration
The GUIX Synergy Port Module is a logical module and therefore does not require any hardware setting
except setting the ARM Cortex®-M core SysTick timer.

5.3 GUIX™ Synergy Port Framework Module Pin Configuration
The GUIX Synergy Port Module is a logical module and therefore does not require pin settings.

6. Using the GUIX™ Synergy Port Framework Module in an Application
The following important settings are made in the Synergy Configurator and are used to initialize the module:

• Setup GLCDC configurations including the module clock setting and GLCDC interrupt priority. Typically,
the configuration can be auto-generated through Synergy Configurator.

• Setup 2D Drawing engine or JPEG engine configurations including the module clock setting and
hardware interrupt priorities. Typically, the configuration can be auto-generated through Synergy
Configurator.

The typical steps in using the GUIX Framework module in an application are:

1. Initialize the SF_EL_GX control block and pass module configuration settings by calling the open API.
2. Complete initialization by calling the GUIX Studio generated gx_studio_display_configure API and

pass the SF_EL_GX setup function shown as follows. This function call completes the initialization of
Synergy graphics hardware accelerators. Obtain the address of the root window initialized by GUIX
through the call.
gx_studio_display_configure (MAIN_DISPLAY,
 g_sf_el_gx0.p_api->setup,
 LANGUAGE_ENGLISH,
 MAIN_DISPLAY_THEME,
 &p_window_root);

3. Initialize the primary memory address GUIX Canvas buffer by calling the canvasInit API.
4. Create the root window by calling the GUIX Studio generated gx_studio_named_widget_create

API.
5. Show the root screen by calling the GUIX gx_widget_show API.
6. Start the GUIX system by calling the GUIX gx_system_start API.

Once GUIX system is started, the SF_EL_GX module is driven under GUIX control. The application need not
execute any operations after this.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 29 of 51
Apr.25.23

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 5. Flow Diagram of a Typical GUIX Synergy Port Framework Module Application
Once the JPEG Decode HAL module has been configured and the files generated, the JPEG Decode is
ready to be used in an application. The typical steps in using the JPEG Decoder HAL module in an
application are initializing the JPEG Decode using the open API, configure the horizontal stride, image sub-
sample, input buffer and output buffer, once the input and output buffers are set, JPEG codec trigger the
decode operation and store the decoded image to the output buffer, the statusGet API can be used to poll
the status of JPEG operation.

The typical steps in using the JPEG Decode HAL module in an application are:

1. Initialize the JPEG Decode HAL module using the jpeg_decode_api_t::open API.
2. Set the horizontal stride using the jpeg_decode_api_t::horizontalStrideSet API.
3. Set vertical and horizontal image sub-sample using the jpeg_decode_api_t::imageSubsampleSet

API.
4. Set the input buffer address (which contains the JPEG image) using the

jpeg_decode_api_t::inputBufferSet API.
5. Set the output buffer (should be large enough to hold the raw image data) using the

jpeg_decode_api_t::outputBufferSet API.
6. The jpeg_decode_api_t::statusGet API can be used to get the JPEG operation,

jpeg_decode_api_t::statusGet API return an enumerated value (described above) to notify the

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 30 of 51
Apr.25.23

user. Status JPEG_DECODE_STATUS_DONE from jpeg_decode_api_t::statusGet API shows
that the decode operation is complete.

7. Operate on the received raw image data as needed by the application.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 6. Flow Diagram of Typical Operation

7. GUIX™ Synergy Port Framework Module Application Project
The application project associated with this module guide demonstrates the steps in a full design. The project
can be found using the link provided in the References section at the end of this document. You may want to
import and open the application project within the ISDE and view the configuration settings for the GUIX
Synergy Port Framework module. You can also read over the code (in my_gui_thread_entry.c) which is
used to illustrate the GUIX Synergy Port Framework module APIs in a complete design.

The application project main thread entry initializes the GUIX system and low-level drivers for the display and
LCD hardware. Then it runs one of two different tests depending on whether it is set to LCD_TEST or
GUIX_TEST mode. If the mode is set to GUIX_TEST, it uses the resource and specification files generated
by GUIX Studio. If it is set to LCD_TEST, it creates a simple three color bar image and calls the LCD
services in the lcd_setup.c file to draw the image on the LCD screen. The application keeps an error
counter for any API that returns a non-success status return or a GUIX callback that indicates an error. If
SEMI_HOSTING is defined, the debug printf output indicates a successful or failed test result.

Table 11. Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 7.5.1 or later Integrated Solution Development Environment (ISDE)
SSP 1.7.0 or later Synergy Software Platform
IAR EW for Renesas
Synergy

8.23.3 or later IAR Embedded Workbench for Renesas Synergy

SSC 7.5.1 or later Synergy Standalone Configurator
SK-S7G2 V3.0 to v3.3 Starter Kit
GUIX Studio 5.4.0 or later Stand-alone Windows tool to create bitmaps

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 31 of 51
Apr.25.23

A simple flow diagram of the application project is given in the following figure:

Figure 7. GUIX Synergy Port Framework Module Application Project Flow Diagram in LCD_TEST
Mode

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 32 of 51
Apr.25.23

Figure 8. GUIX Synergy Port Framework Module Application Project Flow Diagram in GUIX_TEST
Mode

Figure 9. GUIX Synergy Port Framework Module Application Project Components with Interface to
LCD Hardware

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 33 of 51
Apr.25.23

The r_rspi_lcdc instance of the SPI driver is defined to have a callback, my_lcd_spi_callback. This
function is defined in guix_driver_sf_el_gx_mg_ap.c and when it is called it releases the semaphore
to allow the LCD to continue processing. This callback allows the SPI to return information about the event
transfer to the application in the spi_callback_args_t pointer input. my_lcd_spi_callback uses the
semaphore created in the e2 studio Thread Stack pane to control reads and writes to the SPI driver
instance.

The my_guix_thread_entry.c, guix_driver_sf_el_gx_mg_ap.c ,
guix_driver_sf_el_gx_mg_ap.h, my_gui_event_handler.c, lcd.h, and lcd_setup.c files are
located in the project once it has been imported into the ISDE. You can open these files within the ISDE and
follow along with the description provided to help identify key uses of APIs.

The my_guix_thread_entry.c file has the thread entry function. It initializes the printf debug output.
Then it makes two calls to the guix_driver_test_image_draw function defined in
guix_driver_sf_el_gx_mg_ap.c, one with the mode set to LCD_TEST and the other with the mode set
to GUIX_TEST. Then it prints the results of those tests for whether any errors occurred and the number of
display events that the GUIX notified the application.

GUIX_TEST
In this test mode, the resource files, (which may contain pixelmap data) and specification files (which define
initial screen state) are created by GUIX Studio, and saved to the project src folder. In this project, there are
four GUIX Studio files that need to be included in the project src folder:

• guix_for_mg_ap_resources.c
• guix_for_mg_ap_resources.h
• guix_for_mg_ap_specifications.c
• guix_for_mg_ap_specifications.h

The file names are based on the name of the project in GUIX Studio, which for this project was
guix_for_mg_ap.

The guix_driver_sf_el_gx_mg_ap.c #includes header files for GUIX Studio generated files,
gx_api.h for GUIX services, lcd.h for LCD image processing, and my_gui_thread.h which is the
Synergy generated header file based on the Thread Stack components. It also defines several function
prototypes, including a callback for the GUIX system, my_guix_callback. This callback enables GUIX to
notify the application of events and errors while running GUIX. This property for setting this callback is the
Name of User Callback property in the g_sf_el_gx0 component of the project.
guix_driver_sf_el_gx_mg_ap.c defines a pointer to a root window, p_window_root, which will be used
in GUIX and GUIX Studio API. For each visible canvas created, a root window must be created for that
canvas. This special window basically acts as a container for all the top-level application windows and
widgets. See the GUIX User Guide listed in the Reference section for more details.

guix_driver_test_image_draw is the function that performs the processing for the image for the LCD
panel:

1. It begins by initializing the GUIX system by calling the gx_system_initialize API.
2. The GUIX instance g_sf_el_gx0 module gets set up (creates mutex to lock the GUIX driver during a

context update, creates a semaphore for rendering and displaying synchronization, checks the GUIX
canvas memory, screen rotation and other details, and initializes the g_sf_el_gx0 control block):
A. g_sf_el_gx0.p_api->open()

3. Next, the gx_studio_display_configure API initializes the display driver. It puts the components of
the image together in the display object, including the theme, color palette, font, and language.
This API installs the requested GUIX resource theme, which specifies the fonts, colors, and pixelmap data
associated with each Resource ID. The API further installs the application string table, and defines the
currently active language. The parameter MAIN_DISPLAY identifies which display is being configured (in
case the application defines multiple hardware displays). The parameter MAIN_DISPLAY_THEME_1
defines the resource theme to be installed, since applications can define multiple resource themes.
Finally, the parameter LANGUAGE_ENGLISH defines the language that is initially active, since GUIX
applications can define multiple languages and select the active language at runtime.

These resources are defined in GUIX Studio project files listed above.
4. The canvasInit API sets the memory address for the GUIX canvas, which is the buffer area into which

the GUIX display driver will draw.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 34 of 51
Apr.25.23

5. The gx_studio_named_widget_create API creates the “splash_screen” widget using the data
supplied in the GUIX Studio generated specifications file. This will be the primary screen.

6. The gx_widget_show API makes the root window, and all children of the root window, visible.
7. Now the application calls the gx_system_start API which starts the GUIX system thread. This thread

is responsible for dispatching events posted to the GUIX event queue, and when necessary refreshing or
redrawing dirty areas of the GUIX canvas.

8. The serial port driver is initialized by calling the open function:
A. err = g_rspi_lcdc.p_api->open(g_rspi_lcdc.p_ctrl, g_rspi_lcdc.p_cfg);

9. Then it prepares the LCD for receiving image data by calling LCD_init service (defined in lcd_setup.c).

Now the GUIX engine can send the image to the LCD panel.

During this time, user defined callbacks for various components of the widget created in the GUIX Studio
project may be invoked. The my_guix_event_handler.c file contains the callback functions for this
project, specifically the SplashScreenEventHandler callback. This demonstrates how to use GUIX and GUIX
Studio services to control the functionality of the widget at runtime. The callback supplies the event type,
which could be a button click or a timer expiration. For the GX_EVENT_SHOW event type (when the splash
screen is displayed), this callback starts a timer set to expire in 100 ticks (1 second on a system with a
periodic of 100 ticks per second), which will only expire once (is not reset on expiration). Then it returns
control to the GUIX system to complete the processing of displaying the splash_screen. When the callback
receives the GX_EVENT_TIMER event type from the underlying GUIX engine, it executes a simple change in
the splash screen. It overwrites the message from “Version 5.3.3” to “Hello World”.

The image is displayed for a few moments, then the display and serial port driver must be closed for
subsequent calls on the guix_driver_test_image_draw service:

1. Stop the display driver:
g_display0.p_api->stop(g_display0.p_ctrl);

2. Close the display driver interface:
g_display0.p_api->close(g_display0.p_ctrl);

3. Close the SPI driver interface:
err = g_rspi_lcdc.p_api->close (g_rspi_lcdc.p_ctrl);

The number of errors are returned to the my_guix_thread_entry function. Zero indicates a successful
test.

LCD_TEST
The LCD_TEST is useful as a test of the SPI and display drivers, and LCD hardware; it does not use the
GUIX services.

This test requires an LCD SPI callback to be defined. However, it does not use any GUIX services, so the
my_guix_callback is not used. In LCD_TEST mode, there is a function for a creating simple color bar
display, test_LCD defined in LCD_Setup.c.
The guix_driver_test_image_draw service in LCD_TEST mode directly opens the display driver and uses the
same display driver and serial port interface drivers as it does in GUIX_TEST mode:

1. The serial port driver is initialized by calling open:
err = g_rspi_lcdc.p_api->open(g_rspi_lcdc.p_ctrl, g_rspi_lcdc.p_cfg);

2. The display driver is initialized by the open call:
g_display0.p_api->open(g_display0.p_ctrl, g_display0.p_cfg)’

3. Then the LCD hardware is prepared for receiving image data by calling the LCD_init service.
4. Enable the display by calling:

g_display0.p_api->start(g_display0.p_ctrl)
5. The image drawing function, test_LCD, is called and three color bars, red, green, and blue should

appear on the LCD screen.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 35 of 51
Apr.25.23

The image is displayed for a few moments, then the display and serial port driver must be closed for
subsequent calls on the guix_driver_test_image_draw service:

1. Stop the display driver:
g_display0.p_api->stop(g_display0.p_ctrl);

2. Close the display driver interface:
g_display0.p_api->close(g_display0.p_ctrl);

3. Close the SPI driver interface:
err = g_rspi_lcdc.p_api->close (g_rspi_lcdc.p_ctrl);

The number of errors are returned to the my_guix_thread_entry function. Zero indicates a successful
test.

After both tests are run, the total number of errors and display events are printed in the debug console if
SEMI_HOSTING is defined in the my_guix_thread_entry function.

Note: The above description assumes you are familiar with using printf() and the debug console in the
Synergy Software Package. If you are unfamiliar with this, refer to the “How do I Use Printf() with the
Debug Console in the Synergy Software Package” Knowledge Base article, available as described in
the Reference section at the end of this document. Alternatively, you can see results via the watch
variables in the debug mode.

A few key properties are configured in this application project to support the required operations and the
physical properties of the target board and MCU. Below the properties with the values set for this specific
project are highlighted in bold. You can also open the application project and view these settings in the
property window as a hands-on exercise.

Table 12. Configuration for the GUIX Synergy Port Framework Module on GUIX on gx

ISDE Property Value Description
Enable Synergy 2D
Drawing Engine Support

Yes If Synergy 2D Drawing Engine (DRW) Support is enabled, the
rotation is processed by Synergy DRW with texture mapping.
If not enabled, the rotation is processed by software copy.

Enable Synergy JPEG
Support

Yes Enabling this will place restrictions on JPEG image size, width
modulus, format, output alignment, and so forth. It also limited
to only decoding the JPEG image into the frame buffer. (The
software decoder doesn’t have any of those restrictions, but of
course it uses more CPU time.)

Table 13. Configuration for the GUIX Synergy Port Framework Module on sf_el_gx

ISDE Property Value Description
Parameter Checking Enabled Enable the parameter checking.
Name g_sf_el_gx0 Name of SF_EL_GX instance which is

generated by ISDE. Name must be a
valid C symbol.

Name of Display Driver
Run-time Configuration
(Must be a valid
symbol)

g_display0_runtime_cfg_bg Specify the name of run-time
configuration for the DISPLAY module
you specified in the Synergy
Configuration. Name must be a valid C
symbol and NULL is not allowed to be
set.

Name of Frame Buffer
A (Must be a valid
symbol)

g_display0_fb_background[0] Specify the name of frame buffer. A
DISPLAY module configuration in the
Synergy Configuration contains the
name of frame buffer to create. Set the
name of frame buffer here. Name must
be a valid C symbol and NULL is not
allowed to be set.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 36 of 51
Apr.25.23

ISDE Property Value Description
Name of Frame Buffer
B (NULL allowed if
consisting a single
frame buffer system)

g_display0_fb_background[1] Specify the name of another frame
buffer. If you want to design your
graphics system with a single frame
buffer, set NULL to this parameter, or
set same frame buffer name with
parameter Name of Frame Buffer A.
See Tearing in Single Buffer Designs

Name of User
Callback function

my_guix_callback Name of User Callback function invoked
by the Module when events happen
(optional).

Screen Rotation Angle
(Clockwise)

0 Angle of screen rotation (degree). If
non-zero value is selected, screen
rotation is enabled and GUIX draws
screen image on a frame buffer, rotating
the image with the angle in the
counterclockwise way.

GUIX Canvas Buffer
(required if rotation
angle is not zero)

Not used If not enabling the screen rotation, set
this to Not Used.

Size of JPEG Work
Buffer (valid if JPEG
hardware acceleration
enabled)

81920 The JPEG work buffer size in bytes.
Value must be a valid integer value and
zero is allowed to be set if JPEG
acceleration is not used. Larger buffer
size shortens the drawing time. See
Size of JPEG Work Buffer

Memory section for
GUIX Canvas Buffer

bss Name of memory section where you
want to allocate the GUIX Canvas
Buffer. Enter a valid section name
defined in the linker script file. Name
must be a valid C symbol.

Memory section for
JPEG Work Buffer

bss Name of memory section where you
want to allocate the JPEG Work Buffer.
Enter a valid section name defined in
the linker script file. Name must be a
valid C symbol.

Table 14. Configuration for the GLCD HAL Module on r_glcd

ISDE Property Value Description
Parameter Checking Enabled Enable or disable the parameter checking.
Name g_display0 The name to be used for a GLCDC module

control block instance. This name is also used
as the prefix of the other variable instances.

Name of display callback
function to be defined by
user

NULL Name must be a valid C symbol.

Input - Panel clock
source select

Internal clock
(GLCDCLK)

Choose the panel clock source depends on
your system.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 37 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen1 Used Specify "Used" if the graphics screen N is

used. Then, the frame buffer named
"display_fb_background" for graphics screen1
and "display_fb_foreground" for graphics
screen2 is autogenerated by ISDE. If not using
either of the graphics screens, specify "Not
used." Then, the frame buffer is not created.
Note that there is no memory read access to
the frame buffer when you specify “Not used,”
reducing the consumption of bus bandwidth.

Input - Graphics screen1
frame buffer name

fb_background Custom name for frame buffer.

Input - Number of
Graphics screen1 frame
buffer

2 Number of graphics selection.

Input - section where
Graphics screen1
frame buffer allocated

bss Specify the section name to allocate the frame
buffer. This is valid if "Input - Graphics
screen1" is set as "Used."

Input - Graphics
screen1 input
horizontal size

256 Specify the number of horizontal pixels.

Input - Graphics
screen1 vertical size

320 Specify the number of vertical pixels.

Input - Graphics
screen1 input
horizontal stride (not
bytes but pixels)

256 Specify the memory stride for a horizontal line.
This value must be specified with the number
of pixels, not actual bytes. Typically, this
parameter is set to same number as parameter
'input horizontal size'.

Input - Graphics screen1
input format

16bits ARGB1555, 16bits Specify the graphics screen Input format. If
selecting CLUT formats, you must write CLUT
data using clut before performing start. Default
setting supports a RGB565 formatted image.

Input - Graphics screen1
input line descending

Not used Specify "On" if image data descends from the
bottom line to the top line in the frame buffer.
Usually "Off".

Input - Graphics screen1
input line repeat

Off Specify "On" if expecting to repeatedly read a
raster image which is smaller than the LCD
panel size. Usually "Off". For details, see the
description of Line Repeating function.

Input - Graphics screen1
input line repeat times

0 Specify the number of repeating times for a
raster image which is read repeatedly in a
frame.

Input - Graphics screen1
layer coordinate X

0 Specify the horizontal offset in pixels of the
graphics screen from the background screen.

Input - Graphics screen1
layer coordinate Y

0 Specify the vertical offset in pixels of the
graphics screen from the background screen.

Input - Graphics screen1
layer background color
alpha

255 Based on the alpha value, either the graphics
screen2 (foreground graphics screen) is
blended into the graphics screen1 (background
graphics screen) or the graphics screen1 is
blended into the monochrome background
screen.

Input - Graphics screen1
layer background color
Red

255 Specify the background color in the graphics
screen N.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 38 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen1
layer background color
Green

255 Specify the background color in the graphics
screen N.

Input - Graphics screen1
layer background color
Blue

255 Specify the background color in the graphics
screen N.

Input - Graphics screen1
layer fading control

None Specify "On" when performing a fade-in for the
graphics screen. The transparent screen
changes gradually to opaque. Specify "Off"
when performing the fade-out for the graphics
screen. The opaque screen changes gradually
to transparent. Note that this processing is
accelerated by the GLCDC hardware and
cannot stop once started. The transition status
can be monitored by statusGet.

Input - Graphics screen1
layer fade speed

0 Specify the number of frames for the fading
transition to complete.

Input - Graphics screen2 Not used Specify "Used" if the graphics screen N is
used. Then the frame buffer named
"display_fb_background" for graphics screen1
and "display_fb_foreground" for graphics
screen2 is auto-generated by ISDE. If not
using either of the graphics screens, specify
"Not used". Then the frame buffer is not
created. Note that there is no memory read
access to the frame buffer when you specify
"Not used", which reduces the consumption of
bus bandwidth.

Input - Graphics screen2
frame buffer name

fb_foreground Custom name for frame buffer.

Input - Number of
Graphics screen2 frame
buffer

2 Number of graphics selection.

Input - section where
Graphics screen2 frame
buffer allocated

sdram Specify the section name to allocate the frame
buffer. This is valid if "Input - Graphics
screen1" is set as "Used."

Input - Graphics screen2
input horizontal size

800 Specify the number of horizontal pixels. Default
value is the size for an image with 800x480
pixels

Input - Graphics screen2
vertical size

480 Specify the number of vertical pixels. Default
value is the size for an image with 800x480
pixels.

Input - Graphics screen2
input horizontal stride
(not bytes but pixels)

800 Specify the memory stride for a horizontal line.
This value must be specified with the number
of pixels, not actual bytes. Typically, this
parameter is set to same number as parameter
'input horizontal size'. Default value is the size
for an image with 800x480 pixels.

Input - Graphics screen2
input format

16bits RGB565 Specify the graphics screen Input format. If
selecting CLUT formats, you must write CLUT
data using clut before performing start. Default
setting supports a RGB565 formatted image.

Input - Graphics screen2
input line descending

Off Specify "On" if image data descends from the
bottom line to the top line in the frame buffer.
Usually "Off".

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 39 of 51
Apr.25.23

ISDE Property Value Description
Input - Graphics screen2
input line repeat

Off Specify "On" if expecting to repeatedly read a
raster image which is smaller than the LCD
panel size. Usually "Off". For details, see the
description of Line Repeating function.

Input - Graphics screen2
input line repeat times

0 Specify the number of repeating times for a
raster image which is read repeatedly in a
frame.

Input - Graphics screen2
layer coordinate X

0 Specify the horizontal offset in pixels of the
graphics screen from the background screen.

Input - Graphics screen2
layer coordinate Y

0 Specify the vertical offset in pixels of the
graphics screen from the background screen.

Input - Graphics screen2
layer background color
alpha

255 Based on the alpha value, either the graphics
screen2 (foreground graphics screen) is
blended into the graphics screen1 (background
graphics screen) or the graphics screen1 is
blended into the monochrome background
screen.

Input - Graphics screen2
layer background color
Red

255 Specify the background color in the graphics
screen N.

Input - Graphics screen2
layer background color
Green

255 Specify the background color in the graphics
screen N.

Input - Graphics screen2
layer background color
Blue

255 Specify the background color in the graphics
screen N.

Input - Graphics screen2
layer fading control

None Specify "On" when performing a fade-in for the
graphics screen. The transparent screen
changes gradually to opaque. Specify "Off"
when performing the fade-out for the graphics
screen. The opaque screen changes gradually
to transparent. Note that this processing is
accelerated by the GLCDC hardware and
cannot stop once started. The transition status
can be monitored by statusGet.

Input - Graphics screen2
layer fade speed

0 Specify the number of frames for the fading
transition to complete.

Output - Horizontal
total cycles

320 Specify the total cycles in a horizontal line. Set
to the number of cycles defined in the data
sheet of LCD panel sheet in your system.
Default value matches the LCD panel on S7G2
PE-HMI1 board.

Output - Horizontal
active video cycles

240 Specify the number of active video cycles in a
horizontal line. Set to the number of cycles
defined in the data sheet of LCD panel sheet in
your system. Default value matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Horizontal
back porch cycles

6 Specify the number of back porch cycles in a
horizontal line. Back porch starts from the
beginning of Hsync cycles, which means back
porch cycles contain Hsync
cycles. Set to the number of cycles defined in
the data sheet of LCD panel sheet in your
system. Default value matches the LCD panel
on S7G2 PE-HMI1 board.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 40 of 51
Apr.25.23

ISDE Property Value Description
Output - Horizontal
sync signal cycles

4 Specify the number of Hsync signal assertion
cycles. Set to the number of cycles defined in
the data sheet of LCD panel sheet in your
system. Default value matches LCD panel on
S7G2 PE-HMI1 board.

Output - Horizontal sync
signal polarity

Low active Select the polarity of Hsync signal to match
your system. Default setting matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Vertical total
lines

328 Specify number of total lines in a frame. Set to
the number of lines defined in the data sheet of
LCD panel sheet in your system. Default value
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Vertical active
video lines

320 Specify the number of active video lines in a
frame. Set to the number of lines defined in the
data sheet of LCD panel sheet in your system.
Default value matches the LCD panel on S7G2
PE-HMI1 board.

Output - Vertical back
porch lines

4 Specify the number of back porch lines in a
frame. Back porch starts from the beginning of
Vsync lines, which means back porch lines
contain Vsync lines. Set to the number of lines
defined in the data sheet of LCD panel sheet in
your system. Default value matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Vertical sync
signal lines

4 Specify the Vsync signal assertion lines in a
frame. Set to the number of lines defined in the
data sheet of LCD panel sheet in your system.
Default value matches the LCD panel on S7G2
PE-HMI1 board.

Output - Vertical sync
signal polarity

Low active Select the polarity of Vsync signal to match to
your system. Default setting matches LCD
panel on S7G2 PE-HMI1 board.

Output - Format 16bits RGB565 Specify the graphics screen output format to
match to your LCD panel. Default setting
matches the LCD panel on S7G2 PE-HMI1
board.

Output - Endian Little endian Select data endian for output signal to LCD
panel. Default setting matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Color order RGB Select data order for output signal to LCD
panel. The order of blue and red can be
swapped if needed. Default setting matches
the LCD panel on S7G2 PE-HMI1 board.

Output - Data Enable
Signal Polarity

High active Select the polarity of Data Enable signal to
match to your system. Default setting matches
the LCD panel on S7G2 PE-HMI1 board.

Output - Sync edge Rising Edge Select the polarity of Sync signals to match to
your system. Default setting matches the LCD
panel on S7G2 PE-HMI1 board.

Output - Background
color alpha channel

255 Specify the background color of the
background screens.

Output - Background
color R channel

0 Specify the background color of the
background screens.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 41 of 51
Apr.25.23

ISDE Property Value Description
Output - Background
color G channel

0 Specify the background color of the
background screens.

Output - Background
color B channel

0 Specify the background color of the
background screens.

CLUT Not used Specify "Used" if selecting CLUT formats for a
graphics screen input format. Then, a buffer
named "CLUT_buffer" for the CLUT source
data is generated in the ISDE auto-generated
source file.

CLUT - CLUT buffer size 256 Specify the number of entries for the CLUT
source data buffer. Each entries consume 4
bytes (1 word). Words of CLUT source data
specified by this parameter are generated in
the ISDE auto-generated source file.

TCON - Hsync pin select LCD_TCON0 Select the TCON pin used for the Hsync signal
to match to your system. Default setting is for
LCD panel on S7G2 PE-HMI1 board.

TCON - Vsync pin select LCD_TCON1 Select TCON pin used for Vsync signal to
match to your system. Default setting is for
LCD panel on S7G2 PE-HMI1 board.

TCON - DataEnable pin
select

LCD_TCON2 Select TCON pin used for DataEnable signal to
match to your system. Default setting is for
LCD panel on S7G2 PE-HMI1 board.

TCON - Panel clock
division ratio

1/32 Select the clock source divider value. See the
note at bottom of this table about the source
clock for the pixel clock.

Color correction -
Brightness

Off Specify "On" when performing brightness
control. If specifying "Off", the setting below
does not affect the output color.

Color correction -
Brightness R channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ - 512.
Set the value for each of R, G, B channels.

Color correction -
Brightness G channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ - 512.
Set the value for each of R, G, B channels.

Color correction -
Brightness B channel

512 Output color level is calculated as follows:
Output color level = Input color level +/ - 512.
Set the value for each of R, G, B channels.

Color correction -
Contrast

Off Specify "On" when performing contrast control.
If specifying "Off", the setting below does not
affect the output color.

Color correction -
Contrast(gain) R channel

128 Output color level is calculated as follows:
Output color level = Input color level x (/128).
Set the value for each of R, G, B channels.

Color correction -
Contrast(gain) G channel

128 Output color level is calculated as follows:
Output color level = Input color level x (/128).
Set the value for each of R, G, B channels.

Color correction -
Contrast(gain) B channel

128 Output color level is calculated as follows:
Output color level = Input color level x (/128).
Set the value for each of R, G, B channels.

Color correction -
Gamma correction(Red)

Off Control for each channel R/G/B. Specify "On"
when performing gamma correction for the red
channel. If specifying "Off", the settings for gain
and threshold do not affect the output color.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 42 of 51
Apr.25.23

ISDE Property Value Description
Color correction -
Gamma gain R[0-15]

0 Set the gain value for the red channel in the
area N on the gamma correction curve. The
gain setting for area N is applied to the input
data with a color level between ((Gamma
threshold R[N-1])<<2) and ((Gamma threshold
R[N])<<2). The output value is calculated as
follows: Output color level = Input color level /
1024 (/128).

Color correction -
Gamma threshold R[0-
15]

0 Set the threshold value for the red channel in
the area N on the gamma correction curve.
The gain setting for area N is applied to the
input data with a color level between Gamma
threshold R[N-1] and Gamma threshold R[N].
The output value is calculated as follows:
Output color level = Input color level/1024
(/128).

Color correction -
Gamma
correction(Green)

Off Control for each channel R/G/B. Specify "On"
when performing gamma correction for the
green channel. If specifying "Off", the settings
for gain and threshold do not affect the output
color.

Color correction -
Gamma gain G[0-15]

0 Set the gain value for the green channel in the
area N on the gamma correction curve. The
gain setting for area N is applied to the input
data with a color level between ((Gamma
threshold R[N-1])<<2) and ((Gamma threshold
R[N])<<2). The output value is calculated as
follows: Output color level = Input color level /
1024 (/128).

Color correction -
Gamma threshold G[0-
15]

0 Set the threshold value for the green channel
in the area N on the gamma correction curve.
The gain setting for area N is applied to the
input data with a color level between Gamma
threshold R[N-1] and Gamma threshold R[N].
The output value is calculated as follows:
Output color level = Input color level/1024
(/128).

Color correction -
Gamma correction(Blue)

Off Control for each channel R/G/B. Specify "On"
when performing gamma correction for the
blue channel. If specifying "Off", the settings for
gain and threshold do not affect the output
color.

Color correction -
Gamma gain B[0-15]

0 Set the gain value for the blue channel in the
area N on the gamma correction curve. The
gain setting for area N is applied to the input
data with a color level between ((Gamma
threshold R[N-1])<<2) and ((Gamma threshold
R[N])<<2). The output value is calculated as
follows: Output color level = Input color
level/1024 (/128).

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 43 of 51
Apr.25.23

ISDE Property Value Description
Color correction -
Gamma threshold B[0-
15]

0 Set the threshold value for the blue channel in
the area N on the gamma correction curve.
The gain setting for area N is applied to the
input data with a color level between Gamma
threshold R[N-1] and Gamma threshold R[N].
The output value is calculated as follows:
Output color level = Input color level/1024
(/128).

Dithering Off Dithering enable. Specify "On" when applying
the dither effect to reduce the banding in case
of selecting RGB666 or RGB565 output
formats. Dithering can be applied when
converting. If specified "Off", the settings for
dithering below do not affect the output. For
details on the dither effect, see Output Control
Block Panel Dither Correction Register
(OUT_PDTHA) in the hardware manual.

Dithering - Mode Truncate Specify the dither mode. For detail, see the
Output Control Block Panel Dither Correction
Register (OUT_PDTHA) in the hardware
manual.

Dithering - Pattern A Pattern 11 Specify the dither pattern for 2X2 pattern
mode. For details, see the Output Control
Block Panel Dither Correction Register
(OUT_PDTHA) in the hardware manual.

Dithering - Pattern B Pattern 11 Specify the dither pattern for 2X2 pattern
mode. For details, see the Output Control
Block Panel Dither Correction Register
(OUT_PDTHB) in the hardware manual.

Dithering - Pattern C Pattern 11 Specify the dither pattern for 2X2 pattern
mode. For details, see the Output Control
Block Panel Dither Correction Register
(OUT_PDTHC) in the hardware manual.

Dithering - Pattern D Pattern 11 Specify the dither pattern for 2X2 pattern
mode. For details, see the Output Control
Block Panel Dither Correction Register
(OUT_PDTHD) in the hardware manual.

Misc - Correction
Process Order

Brightness and Contrast
then Gamma

Specify the color correction processing order if
needed.

Line Detect Interrupt
Priority

Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX)

The driver needs valid interrupt priority setting
and it won't work if disabled.

Underflow 1 Interrupt
Priority

Priority 3 (CM4: valid,
CM0+: lowest- not valid if
using ThreadX)

The driver needs valid interrupt priority setting
and it won't work if disabled.

Underflow 2 Interrupt
Priority

Disabled The driver needs valid interrupt priority setting
and it won't work if disabled.

Table 15. Configuration for the JPEG Decode Framework Module on sf_jpeg_decode

ISDE Property Value Description
Parameter Checking Enabled Enable or disable the parameter checking.
Name g_sf_jpeg_decode0 The name to be used for a JPEG Decode

Framework module instance.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 44 of 51
Apr.25.23

Table 16. Configuration for the JPEG Decode HAL Module on r_jpeg

ISDE Property Value Description
Parameter Checking Enabled Enable or disable the parameter error

checking.
Name g_jpeg_decode0 The name to be used for a JPEG Decode

module instance.
Byte Order for Input Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8)

Specify the byte order for input data. The order
is swapped as specified in every 8-byte.

Byte Order for Output
Data Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8)

Specify the byte order for output data. The
order is swapped as specified in every 8-byte.

Output Data Color
Format

Pixel Data RGB565
format, Pixel Data
ARGBB888 format
Default: Pixel Data
RGB565 format

Specify the output data format.

Alpha value to be applied
to decoded pixel data
(only valid for ARGB8888
format)

255 Specify the alpha value for the output data
format (only valid for ARGB8888 format).

Name of user callback
function

NULL Specify the name of user callback function.

Decompression
Interrupt Priority

Priority 3 (CM4: valid,
CM0+: lowest- not valid
if using ThreadX)

Decompression interrupt priority selection.

Data Transfer Interrupt
Priority

Priority 3 (CM4: valid,
CM0+: lowest- not valid
if using ThreadX)

Data transfer interrupt priority selection.

Table 17. Configuration for the D/AVE 2D Driver on dave2d

ISDE Property Value Description
No configurable settings

Table 18. Configuration for the D/AVE 2D Port on sf_tes_2d_drw

ISDE Property Value Description
Work memory size for
display lists in bytes

32768 Work memory size for display lists selection

DRW Interrupt Priority Priority 3 (CM4: valid,
CM0+: lowest- not valid
if using ThreadX)

DRW INT selection

Table 19. Configuration for the SPI driver

ISDE Property Value Set
Clock Phase Data sampling on even edge, data variation on odd edge
Clock Polarity High when idle
Callback my_lcd_spi_callback
SPI Mode Clock Synchronous operation
Receive Interrupt Priority Priority 2
Transmit Interrupt Priority Priority 2
Transmit End Interrupt Priority Priority 12
Error Interrupt Priority Priority 2

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 45 of 51
Apr.25.23

The RSPI bus pins need to be configured. In the Thread Stack pane, select the Pins tab > Peripherals –
Connectivity:SPI > SPI0. Change the Operation Mode to Enabled. Verify the pin assignments as shown in
Figure 10:

Figure 10. Configuration of RSPI bus pins

Several LCD panel signals are controlled by GPIO pins under application control. Because the RSPI is
configured for Clock Synchronous operation, the SPI slave select signal must be controlled by the application
as a GPIO pin. Slave select for the LCD is on P611. Additionally, there is a reset pin on P610 and a
command pin on P115. We need to enable these three pins as GPIO outputs.

Select Pins -> P6 -> P610. Set the Mode to Output mode (Initial High) as Figure 11 shows. Repeat for
P610 and P115.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 46 of 51
Apr.25.23

Figure 11. Configuration of GPIO pins for the LCD Panel

8. Customizing the GUIX Synergy Port Framework Module for a Target Application
The project can be customized with the existing splash screen and memory resources. For example, the
screen rotation angle can be modified to orient the image portrait or landscape. The project can use the
hardware JPEG decoder, for optimal speed, or if memory is an issue to use the software decoder. See
section 3.1.1 for more details on how to do this.

An application can be created without using GUIX Studio. To do so, the application simply calls the
gx_<widget_type>_create() function directly, and manually creates all the child widgets. That is a lot of
work, so for anything other than a highly specialized or trivial application, most developers prefer to use
GUIX Studio. The LCD_TEST in the project is also an example of manually drawing an image.

To understand the GUIX system, and step through the GUIX source code logic, click to add GUIX Source
under GUIX stacks, this adds the source code into project as shown in Figure 12. The warning on the GUIX
Source can be ignored or disabled by setting Show linkage warning in the properties. Next, generate the
project, rebuild it, and debug the application.

For best results stepping through code set the optimization level to -O0 (no optimization). Right-click the project,
choose Properties -> C/C++ Build (expand) -> Settings -> Optimization.

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 47 of 51
Apr.25.23

Note: The DTC module is optional. If it gets added, remove it.

Figure 12. Add GUIX Source code

9. Running the GUIX™ Synergy Port Framework Module Application Project
To run the GUIX Synergy Port Framework module application project and to see it executed on a target kit,
you can simply import it into your ISDE, compile, and run debug. Refer to the Renesas Synergy™ Project
Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf, included in this package) for instructions on
importing the project into e2 studio or IAR embedded workbench and building/running the application.

To implement the GUIX Synergy Port Framework module application in a new project, follow the steps below
for defining, configuring, auto-generating files, adding code, compiling, and debugging on the target kit.
Following these steps is a hands-on approach that can help make the development process with SSP more
practical.

Note: The following steps are described in sufficient detail for someone experienced with the basic flow
through the Synergy development process. If these steps are not familiar, refer to the first few
chapters of the SSP User’s Manual for a description of how to accomplish these steps.

To create and run the GUIX Synergy Port Framework application project, simply follow these steps:

1. Create a new Renesas Synergy project for the SK-S7G2 called GUIX_sf_el_gx_AP. Choose BSP
only.

2. Select the Threads tab.
3. Check if the CGC is added to the HAL/Common thread stack. If not, add it.
4. Add a thread called my_guix_thread and set the priority to 10.
5. Add a semaphore under GUI Thread: g_my_gui_semaphore.
6. Add an instance of the GUIX driver: Click on the (+) icon in the Thread Stack pane and choose X-ware -

> GUIX -> GUIX on gx. This will add the GUIX driver sf_el_gx, the display driver r_glcd, the D/AVE
2D driver, and the JPEG decoder framework. Keep the default names of each instance.

7. Add the serial interface to the LCD screen by choosing (+) -> Driver -> Connectivity -> SPI Driver on
r_rspi. Rename it to g_rspi_lcdc.

8. Click on the Generate Project Content button.
9. Add the code from the supplied project file guix_driver_sf_el_gx_mg_ap.c and

guix_driver_sf_el_gx_mg_ap.c or copy the logic from these files to the generated thread entry
file. If you named your thread my_guix_thread, then the Synergy generated thread entry file will be

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 48 of 51
Apr.25.23

my_guix_thread_entry.c. Add the four files generated by GUIX Studio as described previously in
section 7 under GUIX TEST.

10. The project has an optional event handler for the main window, SplashScreenHandler. If GUIX studio
specification files specify such a callback, the application must define it. Use the event handler function,
SplashScreenEventHandler, in the my_guix_event_handler.c project file for this callback (or
define your own).

11. Set the Thread Stack component (for example, g_sf_el_gx0 driver instance and r_lcd display driver)
properties as described in tables in section 7.

12. Set the pin and peripheral settings as described in section 7.
13. Call the guix_driver_test_image_draw service with the desired mode, LCD_TEST or GUIX_TEST

to process an image to the LCD panel from the thread entry function my_guix_thread_entry (if your
thread is named my_guix_thread).

14. For printf debug output, one can either #define SEMI_HOSTING in the thread entry function or for the
whole project. For the latter, right click on the project -> properties -> C/C++ Build (expand the list) ->
Cross ARM C Compiler -> Preprocessor. Click the (+) and enter SEMI_HOSTING. For IAR, right-click
on the project Options -> C/C++ compiler -> Preprocessor and add SEMI_HOSTING.

15. Start to debug the application.
16. The output can be viewed in the Renesas Debug Console. If no error occurred, the output will be as

shown in the following screenshot.

Figure 13. Example Output from GUIX Synergy Port Framework Application Project

Figure 14. LCD display from GUIX SF_EL_GX Driver Application Project in GUIX_TEST Mode

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 49 of 51
Apr.25.23

The screen on the left appears initially for about 1 second. Then the text at the bottom of the screen changes
to “Hello World” on the right.

Figure 15. LCD display from GUIX SF_EL_GX Driver Application Project in LCD_TEST Mode

10. GUIX™ Synergy Port Framework Module Conclusion
This module guide has provided all the background information needed to select, add, configure, and use the
module in an example project. The project walks you through the process of initializing the GUIX system and
hardware drivers and setting the drawing component properties and pin assignments in the e2 studio project
pane. The project demonstrates how to draw an image to the LCD screen directly in LCD_TEST mode which
is also a simple test of the GUIX system and the hardware. The project also demonstrates how to create
resource and specification files from GUIX Studio for more complex LCD screens.

Many of these steps were time consuming and error-prone activities in previous generations of embedded
systems. The Renesas Synergy™ Platform makes these steps much less time consuming and removes the
common errors, like conflicting configuration settings or the incorrect selection of low-level modules. The use
of high-level APIs (as demonstrated in the application project) illustrates additional development-time savings
by allowing work to begin at a high level and avoiding the time required in older development environments
to use, or, in some cases, create, lower-level drivers.

11. GUIX™ Synergy Port Framework Module Next Steps
After you have mastered a simple GUIX module project, you may want to review a more complex example.

The resource and specification files generated in GUIX Studio are for fairly simple screens. Buttons, drop-
down lists, child windows, and other screen objects may be added. More complex handlers and timers will
also greater functionality for an application.

The size and location of memory for the GUIX canvas and decoding JPEG images can also be optimized for
greater performance.

You can also add a touchscreen component to the project and write handlers for touch screen events.

12. GUIX™ Synergy Port Framework Module Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Synergy
Gallery.

Links to all the most up-to-date sf_el_gx module reference materials and resources are available on the
Synergy Knowledge Base: www.renesas.com/knowledgeBase/16977541

https://en-support.renesas.com/knowledgeBase/16977541

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 50 of 51
Apr.25.23

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform GUIX™ Synergy Port Framework Module Guide

R01AN0217EU0104 Rev.1.04 Page 51 of 51
Apr.25.23

Revision History

Rev. Date
Description
Page Summary

1.00 May.15.17 - Initial Release
1.01 Dec.01.17 - Update to Hardware and Software Resources Table
1.02 May.06.19 - Updated for SSP v1.6.0. Added note for DTC module.
1.03 Oct.11.19 - Updated for SSP v1.7.0
1.04 Apr.25.23 - Replaced description of Messaging Framework with Touch

Panel V2 Framework callback usage.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external

reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states

of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power

reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity

of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in

terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic

values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. GUIX™ Synergy Port Framework Module Features
	2. GUIX™ Synergy Port Framework Module APIs Overview
	3. GUIX™ Synergy Port Framework Module and JPEG Decode HAL Module Operational Overviews
	3.1 Important Operational Notes and Limitations for the GUIX™ Synergy Port Framework Module
	3.1.1 GUIX Synergy Port Framework Module Operational Notes
	3.1.2 Synergy Port Framework Module Limitations

	3.2 JPEG Decode HAL Module Operational Overview
	3.2.1 Input Buffer Streaming Mode Operational Description
	3.2.2 Output Buffer Streaming Mode Operational Description
	3.2.3 JPEG Decode HAL Module Operational Notes
	3.2.4 JPEG Decode HAL Module Limitations

	4. Including the GUIX™ Synergy Port Framework Module in an Application
	5. Configuring the GUIX™ Synergy Port Framework Module
	5.1 Configuration Settings for the GUIX™ Synergy Port Framework Module Low-Level Drivers
	5.2 GUIX™ Synergy Port Framework Module Clock Configuration
	5.3 GUIX™ Synergy Port Framework Module Pin Configuration

	6. Using the GUIX™ Synergy Port Framework Module in an Application
	7. GUIX™ Synergy Port Framework Module Application Project
	8. Customizing the GUIX Synergy Port Framework Module for a Target Application
	9. Running the GUIX™ Synergy Port Framework Module Application Project
	10. GUIX™ Synergy Port Framework Module Conclusion
	11. GUIX™ Synergy Port Framework Module Next Steps
	12. GUIX™ Synergy Port Framework Module Reference Information
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

