Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

Generating Long-Period Pulse Output

Introduction

Pulses with a long period are output using the 16-bit timer pulse unit (TPU). Two channels of the 16-bit timer are cascaded to form a 32-bit counter, which is used in generation of long-period pulse output.

Target Device

H8SX/1653

Contents

1.	Specifications	. 2
2.	Conditions for Application	. 2
3.	Description of Modules Used	. 3
4.	Description of Operation	. 5
5.	Description of Software	. 6

1. Specifications

- (1) Long-period pulses are output as shown in figure 1. The output pulse in this sample task has a period of 2.8 ms and a low-level width of 0.7 ms.
- (2) Long-period operation is implemented using a 32-bit counter that is configured by cascade connection of TPU_4 and TPU_5.
- (3) Pulse waveforms are output by TPU_4 in PWM mode 1.

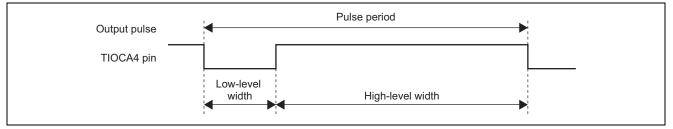


Figure 1 Example of Long-Period Pulse Output

2. Conditions for Application

Table 1Conditions for Application

Item	Contents		
Operating frequency	Input clock:	12 MHz	
	System clock (I	48 MHz	
	Peripheral module clock (P	24 MHz	
	External bus clock (B	48 MHz	
Operating mode	D0 = 0)		
Development tool High-performance Embedded Workshop Version 4.00.03			
C/C++ compiler	H8S, H8/300 SERIES C/C++ (Compiler Version 6.01.01	
	(from Renesas Technology Co	orp.)	
Compile option	nachinecode, -optimize = 1, -regparam = 3,		
	-speed = (register, shift, struct	, expression)	

Table 2 Section Setting

Address	Section Name	Description
H'001000	Р	Program area

3. Description of Modules Used

The TPU performs 32-bit counter operation by cascade connection of TPU_4 and TPU_5 to output long-period pulses. Figure 2 shows a block diagram. The TPU registers are described below.

- Timer start register (TSTR) TSTR starts or stops TCNT operation for channels 0 to 5. Before setting the operating mode in TMDR or setting the TCNT counter clock in TCR, counting by TCNT should be stopped.
- Timer control register_4, _5 (TCR_4, TCR_5) TCR controls the TCNT on each channel. The TPU has a total of six TCR registers, one for each channel. TCR register settings should be made only while TCNT operation is stopped.
- Timer I/O control register_4, _5 (TIOR_4, TIOR_5) TIOR controls timer general registers (TGR). The TPU has eight TIOR registers, two each for channels 0 and 3, and one each for channels 1, 2, 4, and 5. Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is applied while the counter is stopped (the CST bit in TSTR is cleared to 0). In PWM mode 2, TIOR specifies the output at the point when the counter is cleared to 0. When TIOR is set to specify TGRC or TGRD for buffer operation, the above setting becomes invalid and the TGR register operates as a buffer register. When TIOR is set to configure an input capture function, the DDR and ICR bits for the corresponding pin should be set to 0 and 1, respectively.
- Timer counter_4, _5 (TCNT_4, TCNT_5) TCNT is a 16-bit readable/writable counter. The TPU has six TCNT counters, one for each channel. TCNT is initialized to H'0000 by a reset or in hardware standby mode. TCNT cannot be accessed in 8-bit units and must always be accessed in 16-bit units.
- Timer general register A_4 (TGRA_4)
- Timer general register B_4 (TGRB_4) TGR is a 16-bit readable/writable register that can be used as either an output-compare or input-capture register. The TPU has 16 general registers, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated as buffer registers. TGR cannot be accessed in 8-bit units and must always be accessed in 16-bit units. Combinations of TGR and buffer register in buffer operation are TGRA-TGRC and TGRB-TGRD.
- Timer mode register_4 (TMDR_4) TMDR sets the operating mode for each channel. TPU_4 is set in PWM mode 1 in this sample task.

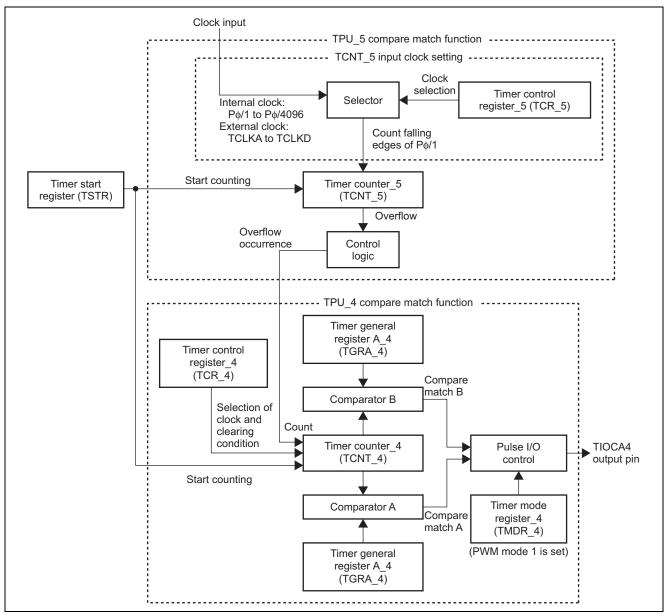


Figure 2 Block Diagram of Long-Period Pulse Output

4. Description of Operation

Figure 3 illustrates the operation of long-period pulse output. The hardware processing and software processing of figure 3 are explained in table 3.

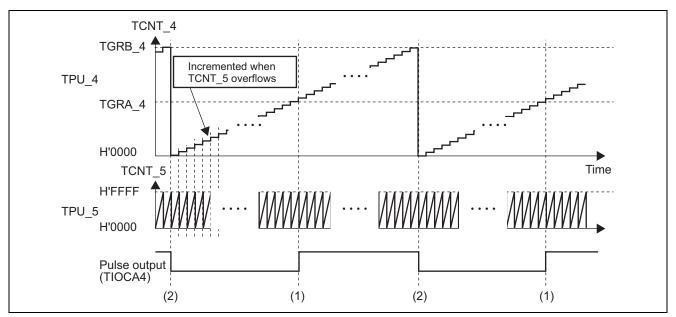


Figure 3 Operation of Long-Period Pulse Output

Table 3 Hardware and Software Processing

	Hardware Processing	Software Processing
(1)	(a) Generate compare match A of TPU_4.	No processing
	(b) Output 1 from the TIOCA4 pin.	
(2)	(a) Generate compare match B of TPU_4.	No processing
	(b) Clear TCNT_4.	
	(c) Output 0 from the TIOCA4 pin.	

Description of Software 5.

5.1 List of Functions

Table 4 List of Functions

Function Name	Functions				
init	Initialization routine				
	Sets the CCR and configures the clocks, cancels the module stop mode, and calls the main function.				
main	Main routine				
	Makes settings for toggle output generation by compare match A and outputs pulses.				

5.2 Vector Table

Table 5 Exception Handling Vector Table

Exception Handling	Exception Handling		
Source	Vector Number	Vector Table Address	Routine
Reset	0	H'000000	main

5.3 Formulas for Calculation of Pulse Output Values

The pulse period and low-level width of the pulse are calculated by the formulas below.

When $P\phi = 24$ MHz and TGRB_4 = H'03FF,

Pulse period =
$$\frac{(TGRB_4 + 1) \times TCNT_3 \text{ overflow count}}{P\phi}$$

= 2.79 ≈ 2.8 ms

When $P\phi = 24$ MHz and TGRA 4 = H'00FF,

Low-level width =
$$\frac{(TGRA_4 + 1) \times TCNT_3 \text{ overflow count}}{P\phi}$$

Address: H'FFFDC4

5.4 Description of Functions

5.4.1 init Function

(1) Functional overview

Initialization routine which cancels the module stop mode, sets up the clocks, and calls the main function.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are described below. Note that the settings shown below are not the initial values but the values used in this sample task.

• System clock control register (SCKCR)

Bit	Bit Name	Setting	R/W	Function
10	ICK2	0	R/W	System Clock (I
9	ICK1	0	R/W	These bits select the frequency of the system clock, which is
8	ICK0	0	R/W	supplied to the CPU, DMAC, and DTC.
				000: Input clock × 4
6	PCK2	0	R/W	Peripheral Module Clock (P
5	PCK1	0	R/W	These bits select the frequency of the peripheral module
4	PCK0	1	R/W	clock.
				001: Input clock × 2
2	BCK2	0	R/W	External Bus Clock (B
1	BCK1	0	R/W	These bits select the frequency of the external bus clock.
0	BCK0	0	R/W	000: Input clock × 4

• MSTPCRA, MSTPCRB, and MSTPCRC control module stop mode. Setting a bit in these registers to 1 places the corresponding module in module stop mode, while clearing the bit to 0 cancels module stop mode.

• M	odule stop control	register A (MSTPCRA)	Address: H'FFFDC8
Bit	Bit Name	Setting	R/W	Function
15	ACSE	0	R/W	 All-module-clock-stop mode enable Enables or disables transition to all-module-clock-stop mode. If this bit is set to 1, all-module-clock-stop mode is entered when the SLEEP instruction is executed by the CPU while all the modules under control of the MSTPCR registers are placed in module stop mode. In all-module-clock-stop mode, even the bus controller and I/O ports are stopped to reduce the supply current. 0: Disables transition to all-module-clock-stop mode. 1: Enables transition to all-module-clock-stop mode.
13	MSTPA13	1	R/W	DMA controller (DMAC)
12	MSTPA12	1	R/W	Data transfer controller (DTC)
9	MSTPA9	1	R/W	8-bit timer (TMR_3, TMR_2)
8	MSTPA8	1	R/W	8-bit timer (TMR_1, TMR_0)
5	MSTPA5	1	R/W	D/A converter (channels 1 and 0)
3	MSTPA3	1	R/W	A/D converter (unit 0)
0	MSTPA0	0	R/W	16-bit timer pulse unit (TPU channels 5 to 0)

Module stop control register B (MSTPCRB) ٠

Address: H'FFFDCA


Bit	Bit Name	Setting	R/W	Function
15	MSTPB15	1	R/W	Programmable pulse generator (PPG)
12	MSTPB12	1	R/W	Serial communication interface_4 (SCI_4)
10	MSTPB10	1	R/W	Serial communication interface_2 (SCI_2)
9	MSTPB9	1	R/W	Serial communication interface_1 (SCI_1)
8	MSTPB8	1	R/W	Serial communication interface_0 (SCI_0)
7	MSTPB7	1	R/W	I ² C bus interface_1 (IIC_1)
6	MSTPB6	1	R/W	I ² C bus interface_0 (IIC_0)

• Module stop control register C (MSTPCRC)

Address: H'FFFDCC

Bit	Bit Name	Setting	R/W	Function
15	MSTPC15	1	R/W	Serial communication interface_5 (SCI_5), (IrDA)
14	MSTPC14	1	R/W	Serial communication interface_6 (SCI_6)
13	MSTPC13	1	R/W	8-bit timer (TMR_4, TMR_5)
12	MSTPC12	1	R/W	8-bit timer (TMR_6, TMR_7)
11	MSTPC11	1	R/W	Universal serial bus interface (USB)
10	MSTPC10	1	R/W	Cyclic redundancy check
4	MSTPC4	0	R/W	On-chip RAM_4 (H'FF2000 to H'FF3FFF)
3	MSTPC3	0	R/W	On-chip RAM_3 (H'FF4000 to H'FF5FFF)
2	MSTPC2	0	R/W	On-chip RAM_2 (H'FF6000 to H'FF7FFF)
1	MSTPC1	0	R/W	On-chip RAM_1 (H'FF8000 to H'FF9FFF)
0	MSTPC0	0	R/W	On-chip RAM_0 (H'FFA000 to H'FFBFFF)

(5) Flowchart

5.4.2 main Function

(1) Functional overview

Main routine which sets up the cascade connection of TPU_4 and TPU_5.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are described below. Note that the settings shown below are not the initial values but the values used in this sample task.

• Port function control register 9 (PFCR9)

Address: H'FFFBC9

Bit	Bit Name	Setting	R/W	Function
6	TPUMS4	0	R/W	TPU I/O Pin Multiplex Function Select
				Selects the TIOCA4 function.
				 Specifies P25 as the output compare output or input capture input pin
				1: Specifies P24 as the input capture input pin and P25 as the output compare output pin

• Timer control register 4 (TCR 4)

Address: H'FFFEE0

Bit	Bit Name	Setting	R/W	Function
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	1	R/W	These bits select the TCNT_4 counter clearing condition.
5	CCLR0	0	R/W	010: TCNT_4 is cleared by TGRB_4 compare match/input capture
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge for counting.
				00: Falling edge
2	TPSC2	1	R/W	Timer Prescaler 2 to 0
1	TPSC1	1	R/W	These bits select the TCNT_4 counter clock.
0	TPSC0	1	R/W	111: TCNT_5 overflow/underflow signal

• Timer mode register_4 (TMDR_4)

Address: H'FFFEE1

Bit	Bit Name	Setting	R/W	Function
3	MD3	0	R/W	Modes 3 to 0
2	MD2	0	R/W	These bits set the timer operating mode.
1	MD1	1	R/W	0010: PWM mode 1*
0	MD0	0	R/W	Note: * When TPU_4 is set in PWM mode 1, TGRA_4 and TGRB_4 are used in pair to generate PWM output on the TIOCA4 pin.

Bit	Bit Name	Setting	R/W	Function
7	IOB3	0	R/W	I/O Control B3 to B0
6	IOB2	1	R/W	These bits specify the function of TGRB_4.
5	IOB1	0	R/W	0101: TGRB_4 functions as an output compare register.
4	IOB0	1	R/W	In PWM mode 1, the TIOCA4 pin outputs 0 on
				compare match.
3	IOA3	0	R/W	I/O Control A3 to A0
2	IOA2	0	R/W	These bits specify the function of TGRA_4.
1	IOA1	1	R/W	0010: TGRA_4 functions as an output compare register.
0	IOA0	0	R/W	The TIOCA4 pin outputs 0 as the initial output and
				outputs 1 on compare match.

- Timer counter_4 (TCNT_4) Function: 16-bit readable/writable counter Setting: H'0000
- Timer general register A_4 (TGRA_4) Function: Used as an output compare register. Setting: H'0100
- Timer general register B_4 (TGRB_4) Function: Used as an output compare register. Setting: H'0300

• Timer start register (TSTR)

Address: H'FFFFBC

Address: H'FFFEE8

Address: H'FFFEEA

Bit	Bit Name	Setting	R/W	Function
5	CST5	0	R/W	Counter Start 5 to 0
4	CST4	1	R/W	These bits start or stop the operation of the corresponding
3	CST3	1	R/W	TCNT.
2	CST2	0	R/W	0: Stops counting by TCNT_5 to TCNT_0
1	CST1	0	R/W	1: Starts counting by TCNT_5 to TCNT_0
0	CST0	0	R/W	

• Timer control register_5 (TCR_5)

Address: H'FFFFF0

Bit	Bit Name	Setting	R/W	Function
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	These bits select the TCNT_5 counter clearing condition.
5	CCLR0	0	R/W	000: Clearing of TCNT_5 is disabled
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge for counting.
				00: Falling edge
2	TPSC2	0	R/W	Timer Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT_5 counter clock.
0	TPSC0	0	R/W	000: Internal clock Pø/1

(5) Flowchart

main	
PFCR9 = H'00 Select TIOCA4 output as the P25 pin function.	
TCR_4 = H'47 • Clear TCNT_4 by TGRB_4 compare match/input capture. • Increment on TCNT_5 overflow.	
TCR_5 = H'00 • Disable clearing of TCNT_5. • Increment on the falling edge of P\u00f6/1.	
TMDR_4 = H'C2 Set TPU_4 in PWM mode 1.	
 TIOR_4 = H'52 Set TGRA_4 and TGRB_4 to function as output compare registers. Set the TIOCA4 pin function: Initial output is 0. Output 1 on TGRA_4 compare match Output 0 on TGRB_4 compare match 	
TCNT_4 = H'0000 Clear TCNT_4.	
TGRA_4 = H'0100 Set the low-level width of the long- period pulse.	
TGRB_4 = H'0300 Set the period of the long-period pulse.	
Start counting by TCNT_4 and TCNT_5.	
End	

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Descript	lion	
Rev.	Date	Page	Summary	
1.00	Sep.11.06	_	First edition issued	

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.