Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C

Firmware Requirements for In-Circuit Debugger

1.0 Abstract

The USB-Monitor is a low cost, compact interface that has two functions for Renesas' M16C Flash microcontrollers: 1) an in-circuit debugger tool with KD30 Debugger, and 2) an in-system programmer with FoUSB (Flash-over-USBTM) Flash Programmer. The following article introduces the target MCU resources used when the USB-Monitor is used for in-circuit debugging.

2.0 Introduction

When used with KD30, the USB-Monitor provides an easy-to-use in-circuit debugging environment during application development. In addition, when used with the FoUSB Flash Programmer, it also provides an in-system programming interface to the target Renesas M16C Flash MCU.

The USB-Monitor, by taking advantage of Universal Serial Bus (USB), provides plug-and-play connectivity and fast data transfers between the computer and the M16C target board. The USB-Monitor is powered by Renesas' M37641 full speed USB Flash MCU, which also makes it upgradeable to support future Renesas M16C MCUs. Powering the USB-Monitor is user selectable: USB Bus powered or Target powered. When used in bus-powered mode, the USB bus supplies power to the USB-Monitor and target board. When in target-powered mode, USB bus power is disconnected and the USB-Monitor sources power from the M16C target board. Renesas recommends to use Target Power Mode and NOT USB Bus Power Mode when connected to non-Renesas SKP target boards. If you plan to use the USB-Monitor to supply power to non-SKP boards, please contact Renesas representative for details and assistance.

Aside from a standalone kit (RTA-FoUSB-MON), the USB-Monitor comes included with the following Renesas Starter Kits:

- MSV30102-SKP
- MSV30262-SKP
- MSV30245-SKP
- M16C System Evaluation Kit

PC with Windows™ 98, 2000, Me,

or VD and available LICD north

RTA-FoUSB-MON

TARGET USB RENESAS
POWER Mode

STOP
POWER Mode

STATUS
STATUS
FOR TARGET

STATUS
FOR TARGET

TARGET

USB

STOP
Plash Programmer & in-Circuit Debugger

TARGET

TO -Pin
Connection

Figure 1 USB-Monitor System Connectivity

3.0 Target MCU Resources Used by USB-Monitor for In-Circuit Debugging

This section describes the M16C MCU resources used by the USB-Monitor for in-circuit debugging (with the KD30 Debugger). These resources are NOT used when the USB-Monitor is used for programming (with the FoUSB Programmer). See references for details on how to connect the hardware for in-circuit debugging or in-system programming support.

When used as debug interface, the USB-Monitor downloads a small program, called a ROM Monitor or MCU Monitor Image (MMI), to the target M16C MCU to establish communications used for program debugging operations. This ROM Monitor is downloaded to the target when KD30 application is started.

It is important to note that the operation of the USB-Monitor is transparent to the user. There is no special software processing required to be able to use it as long as the user understands the exceptions and follows the rules described below.

Note: These resources are ONLY used when the USB-Monitor is used for in-circuit debugging. Only the MCU pin resources are used when the USB-Monitor is used for in-system programming.

3.1 ROM

The ROM monitor code is located in the M16C memory space starts at address 0FF900H to 0FFE80H. KD30 will display a message on any attempt to overwrite specified ROM location.

Rules on ROM usage are described below.

- User memory allocated to the ROM monitor should not be used. Any attempt to use this area by the user code will be ignored.
- The special page vector table is mapped from 0FFE00H to 0FFFDBH. It is suggested that, if special page
 jumps are used, the special page numbers start with the minimum value of 20 and increases to a maximum of
 127 to accommodate future monitor size increases.

3.2 RAM

The ROM monitor utilizes 128 bytes of RAM memory located at the top of MCU RAM area. For example, on an

M30624 MCU, there is 20Kbytes of RAM located from 00400H to 053FFH. In this case, the monitor will be using the addresses from 05380H to 053FFH. In addition, the monitor also uses 4 bytes (max) of RAM on the interrupt stack.

3.3 Interrupts

For all MCU's that do NOT support DBC interrupt, the ROM monitor requires that the receive interrupt vector for the monitor/boot UART MUST point to the communications entry point of the monitor, which is 0FF900H. In addition, the monitor reserves the following hardware interrupt vectors for its own use:

- BREAK vector (0FFFE4H)
- ADDRESS MATCH vector (0FFFE8H)
- SINGLE STEP vector (0FFFECH)
- DBC vector (0FFFF4H)

The user code download process will properly load values into these locations. User code that globally disables interrupts for long periods of time (>1 second), may interfere with the proper operation of the monitor.

Note: For MCU's that do NOT have DBC interrupts, always ensure that the global interrupt is enabled in the startup files. Communications between USB-Monitor and M16C MCU ROM Monitor will fail when the global interrupt is not set or disabled for long periods (>1s). This is the primary cause of communication errors while using the KD30 Debugger.

Table 1 M16C MCU Support Summary

M16C MCU	Boot UART/SIO	DBC Irq Support	Breakpoints
M30100F3	UART0	No	2
M30245FC	UART1	No	2
M30262F8	UART1	Yes	6
M3062GF8N	UART1	No	2
M30620FCA	UART1	No	2
M30624FGA	UART1	No	2
M30626FGP	UART1	Yes	8
M306V7FG	UART0	No	2

3.4 Peripherals

The ROM monitor uses the serial port associated with the boot mode of the MCU for communication with the USB-Monitor. Connect the SCLK, TxD, RxD signals from the 10-pin header to this serial port. For example, in the case of M30624 MCU, the monitor uses UART1 as the boot UART.

For MCU's that do NOT support DBC, ensure that the interrupt vector for this serial port/UART is set to FF900h. Avoid byte-writes to the (boot UART/SIO) port, including direction register, associated with the SIO when the other half of the port is used as General Purpose I/O (GPIO) pins. Byte-writes to the port and direction register

REU05B0028-0100Z June 2003 Page 3 of 7

M16C Firmware Requirements for In-Circuit Debugger

may prevent the monitor program from functioning properly. Use read-modify-write instructions instead. If possible, avoid using this serial port for other applications in the firmware when USB-Monitor will be used for development.

3.5 Real-Time Capability

Please be aware that while the ROM monitor is in its "STOP"ed state, the hardware peripherals will continue to run. Therefore, interrupts may not be serviced properly. Also, the watchdog timer will not be serviced and will likely timeout if active.

Note: While the ROM monitor is in its "RUN"ning state, there is no overhead on the application code, UNLESS a RAM monitor window is open in KD30. This window requires periodic communication with the MCU. This communication suspends normal application operation while servicing the request (approximately 2000 BCLK cycles for each 16 bytes of data displayed in the window are used per window update). The user must determine whether or not, this behavior is acceptable.

3.6 Software Summary and Precautions

- Ensure that global interrupt is set in the startup file and not disabled for long periods (>1s).
- Do NOT use the RAM or ROM memory as specified in sections 3.1 ROM and 3.2 RAM.
- Avoid byte-writes to the port and direction register to avoid interfering with monitor operation associated with the boot SIO/UART. Use bit manipulations.
- Do NOT change boot UART configuration.
- Ensure that the boot SIO/UART vector is properly setup to point to FF900H for those M16C MCU's that don't have DBC interrupt.
- Do NOT attempt to debug watchdog, WAIT mode, or STOP mode.
- Do NOT execute a 'STEP' operation after a write to PRC2 SFR.

4.0 Conclusion

The USB-Monitor is an easy-to-use interface for setting up an M16C MCU development environment to support in-circuit debugging. It does not require a lot of resources from the target board. Correct hardware connectivity will guarantee proper operation.

5.0 Reference

Most of the information used to make this application note can be found on the USB-Monitor's Users Manual. For detailed information about the USB-Monitor such as application software, driver installation, troubleshooting, etc., please refer to the Users Manual.

If unsure or to verify your hardware setup, contact your Renesas representative for assistance.

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

User's Manual

- RTA-FoUSB-MON User's Manual
- Target Setup for FoUSB Programmer App Note
- Target Setup for In-Circuit Debugger App Note

6.0 Software Code–Startup File Examples for USB-Monitor Support for Debugging Operations (MCU with NO DBC support)

Following is a simple program written for Renesas' NC30 compiler to illustrate how to set up Pulse Output Mode on timer A0. 6. Software Code – Startup File Examples for USB-Monitor Support for Debugging Operations (MCU with NO DBC support)

A startup file (ncrt0.a30) example for the M16C/10 (M30102) MCU with global interrupt enabled, and highlighted, is shown below. For M16C MCU's with DBC interrupt, the global interrupt need not be enabled unless the application requires the use of maskable interrupts.

```
C COMPILER for M16C/10 with USB-Monitor support.
    Copyright 2003 Renesas Technology America, Inc.
    All Rights Reserved.
    ncrt0.a30 : NC30 startup program for M16C/10 devices.
    This program is applicable when using the basic I/O library
  $Id: ncrt0.a30, v 1.12 2000/05/18 06:44:37 simomura Exp $
  This startup program is setup for use with the USB-Monitor.
  Source code ROM area is from 0xFA000 to 0xFF800 (22.5K bytes).
  Available ram memory is from 0x400 0x770 (880 bytes).
  Heap memory area is zeroed out. If using standard libraries
  heap memory area will have to be specified.
  UARTO is used by the USB-MONITOR, and is not available for application.
  Modified for use in Mini 10 Board development.
#data SE top, sb ; set sb (stack base) register
    ldc
    ldintb #VECTOR ADR
                         ; enabling interrupts. Do NOT disable
                         ;interrupt when using USB-Monitor
; NEAR area initialize.
;-----
    N BCOPY data_NOI_top,data_NO_top,data_NO
```


An example of a sect30.inc file for the M16C/10, where the SIO/UART receive interrupt vector points to the ROM monitor (FF900h), is shown highlighted below. For M16C MCU's with DBC interrupt, the vector declaration is not required.

```
************************
         C Compiler for M16C/10
         Copyright 2003 Renesas Technology America, Inc.
         All Rights Reserved.
                Written by T.Aoyama
                         : section definition
         sect30.inc
         This program is applicable when using the basic I/O library
         $Id: sect30.inc, v 1.9 2000/06/20 09:07:11 simomura Exp $
:
           :
        .lword dummy_int ; Software INT #15
.lword dummy_int ; Software INT #16
.lword dummy_int ; uart0 transmit(for user)(vector 17)
.lword OFF900h ; uart0 receive(for user)(vector 18) For USB
                                        ; Monitor - DO NOT CHANGE!!
        ; Monitor - DO NOT CHANGE!!
.lword dummy_int ; uart1 transmit(for user)(vector 19)
.lword dummy_int ; uart1 receive (vector 20)
.lword dummy_int ; Timer1 Interrupt (vector 21)
.lword dummy_int ; TimerX Interrupt (vector 22)
           :
           :
```

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and
 algorithms represents information on products at the time of publication of these materials, and are
 subject to change by Renesas Technology Corporation without notice due to product improvements
 or other reasons. It is therefore recommended that customers contact Renesas Technology
 Corporation or an authorized Renesas Technology Corporation product distributor for the latest
 product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
 device or system that is used under circumstances in which human life is potentially at stake. Please
 contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
 distributor when considering the use of a product contained herein for any specific purposes, such as
 apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
 repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be
 exported under a license from the Japanese government and cannot be imported into a country other
 than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.