Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62 Group

A-D Converter OP-AMP Gain Adjustment Connection Mode

1. Abstract

This application note describes the operation of gain adjustment by using operational amplifier for A-D converter.

2. Introduction

This application note is applied to the M16C/62 group Microcomputers.

This program can be also operated under the condition of M16C family products with the same SFR (Special Function Register) as M16C/62 Group products. Because some functions may be modified of the M16C family products, see the user's manual. When using the functions shown in this application note, evaluate them carefully for an operation.

3. Detailed description

This example describes the operation of gain adjustment by using external operational amplifier for M16C/62 group microcomputers.

3.1 Example of wiring

Figure 1 illustrates the operation of gain adjustment by using external operational amplifier.

Figure1. Example of wiring

Note

(1)In this example, using 2nd inverting amplified circuit, feedback to in-phase.

The result shows a difference from this sample when use non-inverting amplified circuit.

(2)In this example, values input to AN0 to AN7 are amplified as below, due to the ratio of the value of resistance.

AN0: 100k/100k=1 (1 time amplified)

AN1: 120k/100k=1.2 (1.2 times amplified)

AN2: 150k/100k=1.5 (1.5 time amplified)

AN3: 170k/100k=1.7 (1.7 times amplified)

- AN4: 220k/100k=2.2 (2.2 times amplified)
- AN5: 270k/100k=2.7 (2.7 times amplified)
- AN6: 330k/100k=3.3 (3.3 times amplified)
- AN7: 380k/100k=3.8 (3.8 times amplified)

3.2 How to set up

This section shows the setting procedures when A-D conversion is carried out, for the output of the gain adjustment, by using external operational amplifier. Examples of A-D conversion with sample & hold function for one-shot mode and 10-bit mode are described.

(1) Setting ADCON2 register (A-D control register 2)

Setting A-D conversion method and frequency select bit

Note 1: Only applied to M16C/62P group. For other group please set to "00".

Note 2: Select the frequency of ϕ AD for M16C/62P group according to the following combination.

	CKS2	CKS1	CKS0	φAD
	0	0	0	Divided-by-4 of fAD
	0	0	1	Divided-by-2 of fAD
	0	1	0	
	0	1	1	TAD
	1	0	0	Divided-by-12 of fAD
	1	0	1	Divided-by-6 of fAD
	1	1	0	Divided by 2 of (AD
1	1	1	1	Divided-by-3 of fAD

(2) Setting ADCON0 register (A-D control register 0)

Analog input pin select bit, A-D operation mode, frequency select bit

Note 3: Refer to "3.2 (1) Note 2" for details the setting example for M16C/62P group.

(3) Setting ADCON1 register (A-D control register 1)

Setting A-D operation mode select bit 1, 8/10-bit mode select bit, frequency select bit 1, external op- amp connection mode bit.

Note 1: Refer to "3.2 (1) Note 2" for details the setting example for M16C/62P group.

(4) ADIC register (A-D interrupt control register)

(5) Waiting until external op-amp operation is stable

Waiting until external op-amp operation is stable. (Varied from the op-amp being used) In the wiring example of 3.1, it takes 50µs until input value to ANEX1 pin becomes stable.

		About 50µs	-
		·····	
TI	13.0us	V1(2) -550-0mW	Input to ANEX1 pin
T2	60.345	V2(2) 1.030V	Survey A
aT	47.3us	dV(2) 1.600V	

(6) A-D conversion start

A-D conversion start when setting ADST bit of ADCON0 register to "1".

(7) Waiting for A-D conversion complete

Wait until IR bit in ADIC register reaches to "1" (interrupt request).

(8) Reading of result of A-D conversion

Read A-D register i (i=0 to 7) corresponding to selected pin in analog input select bit.

4. Reference

Hardware Manual M16C/62 group (M16C/62P) Hardware Manual Rev.1.11 M16C/62 group data sheet Rev.H2 M16C/62A group data sheet Rev.C1 M16C/62N group data sheet Rev.1.1 (Use the latest version on the web-site: http://www.renesas.com)

User's Manual

M16C/62 group User's Manual Rev.C3 M16C/62A group User's Manual Rev.1.0 (Use the latest version on the web-site: http://www.renesas.com)

5. Web-site and contact for support

Renesas web-site http://www.renesas.com/

Contact for Renesas technical support E-mail: support_apl@renesas.com

6. The example of a reference program

The following program shows a sequential reading of gain amplified value from AN0 to AN7 by connecting to external operational amplifier.

```
M16C/62 Group Program Collection
   ;
   HISTORY : 2004.01.15 Ver 1.00
    Copyright (C) 2004. Renesas Technology Corp.
    Copyright (C) 2004. Renesas Solutions Corp.
   All right reserved.
----- include define -----
   .list
              off
    .include
                sfr62p.inc
    list
               on
;
  ----- Symbol define -----
; ----- Symbol define -----
vstack .equ 0002b00h ; Stack Pointer
vram .equ 0000400h ; Internal RAM area
vram_end .equ 0002c00h ;
vpro .equ 00fc000h ; Program Start address
vval_vec .equ 00ffd00h ; Variable vector address
vvector .equ 00ffdch ; Non-maskable vector address
    ----- Internal RAM Area -----
   .section ramdata,data
.org vram
    .org
;
    ---- Program Area ----
;
   .section program, code
.org vpro
    .org
reset:
   ----- Initial setting -----
ldc #vstack,sp
;
   ldc #vstack,sp
ldintb #vval_vec
                                       ; Set stack-pointer address
                                        ; Set variable vector table address
            #003h, prcr
   mov.b
   mov.b
            #008h, cm0
            #020h, cm1
                                        ; main-clock divid by 0 mode
   mov.b
            #000h, prcr
   mov.b
            #00000h, p0
   mov.w
            #0ffffh, pd0
                                        ; Port0/1 output select
   mov.w
   mov.w
            #00000h, p2
                                       ; Port2/3 output select
   mov.w
            #0ffffh, pd2
            #00000h, p4
   mov.w
            #0ffffh, pd4
                                       ; Port4/5 output select
   mov.w
mov.w
   mov.w
            #00000h, p6
   mov.w #0ffffh, pd6
                                       ; Port6/7 output select
   bset prc2
mov.b #000h, pd9
mov.b #000h, pd10
                                       ; P9_5(ANEX0) & P9_6(ANEXq) is input port
                                        ; P10_0(AN0) to P10_7(AN7) is input port
;
;----- Evaluation start -----
start:
   mov.b
            #0000001b, adcon2

      ||+------ conversion mode select
      : sample&hold

      ++------ input group select
      : select P10 g

      ------ Freq select bit2
      : fAD/2

:
                                                                          : select P10 group
;
                 +----- Freq select bit2
;
   mov.b #1000000b, adcon0
             |||||+++----- input select
|||+++----- mode select bit0
;
                                                                       : ANO select
             AD start flag
+----- Freq select bit0
                                                                       : single mode
: software
: stop
;
                                                                        : fAD/2
```


mov.b #11100000b, adcon1 ++----- sweep pin select +----- mode select bit1 ----- sweep pin select : none : 0 fix +----- 8/10 bit select : 8bit ----- Ext ope-amp connect mode : Ext ope-amp connebt #007h,adic mov.b ; set AD interrupt prioliry level main_loop: ----- ANO conversion ----bclr adst. ; AD conversion stop mov.b #1000000b, adcon0 jsr AD_wait bset adst ; AD conversion start an0_wait: ; wait for ANO conversion complate btst ir_adic an0 wait inc bclr ; AD interrupt req clear ir_adic mov.b ad0, p0 ; conversion result display ---- AN1 conversion -----; bclr adst ; AD conversion stop mov.b #10000001b, adcon0 ----- input select : AN1 select ; +++-jsr AD_wait ; AD conversion start bset adst an1_wait: ; wait for AN1 conversion complate btst ir_adic jnc an1_wait . bclr ir_adic ; AD interrupt reg clear mov.b ad1, p1 ; conversion result display ----- AN2 conversion ----bclr adst ; AD conversion stop mov.b #10000010b, adcon0 +++----- input select : AN2 select ; jsr AD_wait adst bset ; AD conversion start an2_wait: ; wait for AN2 conversion complate ir_adic btst an2_wait ir_adic inc bclr ; AD interrupt req clear mov.b ad2, p2 ; conversion result display ; ---- AN3 conversion -----; bclr adst ; AD conversion stop #10000011b, adcon0 mov.b ----- input select : AN3 select ; +++----jsr AD_wait bset adst ; AD conversion start an3_wait: ; wait for AN3 conversion complate ir_adic btst inc an3_wait ; AD interrupt req clear bclr ir_adic mov.b ad3, p3 ; conversion result display ----- AN4 conversion -----; bclr ; AD conversion stop adst. #10000100b, adcon0 mov.b +++----- input select : AN4 select jsr AD_wait bset adst ; AD conversion start

an4	_wait: btst	ir adic	; wait for AN4 conversion complate
	jnc bclr	an4_wait ir adic	; AD interrupt reg clear
	mov.b	ad4, p4	; conversion result display
;			
;	2	AN5 conversion	
	bclr mov.b	adst #10000101b, adcon0	; AD conversion stop
;		+++	input select : AN5 select
	jsr	AD_wait	
an5	bset _wait:	adst	; AD conversion start ; wait for AN5 conversion complate
	btst jnc	ir_adic an5_wait	
	bclr	ir_adic	; AD interrupt req clear
	mov.b	ad5, p5	; conversion result display
; ;	2	AN6 conversion	
	bclr	adst	; AD conversion stop
;	mov.b	#10000110b, adcon0	input select : AN6 select
	jsr	AD_wait	-
	bset	adst	; AD conversion start
an6	_wait: btst	ir_adic	; wait for AN6 conversion complate
	jnc bclr	an6_wait ir adic	; AD interrupt reg clear
	mov.b	_ ad6, p6	; conversion result display
;		· •	
;	2	AN7 conversion	
	bclr mov.b	adst #10000111b, adcon0	; AD conversion stop
;		+++	input select : AN7 select
;	jsr	AD_wait	input select : AN7 select
; an7	jsr bset _wait:	AD_wait adst	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate</pre>
; an7	jsr bset _wait: btst jnc	AD_wait adst ir_adic an7_wait	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate</pre>
; an7	jsr bset _wait: btst jnc bclr	AD_wait adst ir_adic an7_wait ir_adic	<pre>; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear</pre>
; an7	jsr bset _wait: btst jnc bclr mov.b	AD_wait adst ir_adic an7_wait ir_adic ad7, p7	<pre>; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display</pre>
; an7 ;	jsr bset wait: btst jnc bclr mov.b i mov.b	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display</pre>
; an7 ; end	jsr bset wait: btst jnc bclr mov.b h mov.b _loop:	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display</pre>
; an7 ; end	jsr bset ync bclr mov.b mov.b _loop: jmp	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop	<pre>; AD conversion start ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop</pre>
; an7 ; end ; ;	jsr bset wait: btst jnc bclr mov.b mov.b loop: jmp	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routir	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop ne</pre>
; an7 ; end ; ; AD_	jsr bset jnc bclr mov.b jmp wait: mov.b	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait</pre>
; an7 ; end ; ; AD_	jsr bset wait: btst jnc bclr mov.b loop: jmp (wait: mov.b mov.b bset	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TAO start</pre>
; end ; ; AD_ ta0	jsr bset jnc bclr mov.b mov.b loop: jmp (wait: mov.b mov.w bset _wait: btst	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir ta0ic	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ; AD_ ta0	jsr bset wait: btst bclr mov.b loop: jmp (wait: mov.b mov.b bset wait: btst jnc bclr	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ; ; AD_ ta0	jsr bset wait: bclr mov.b mov.b loop: jmp 	AD_wait AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop He ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; an7 ; end ; ; AD_ ta0 ; ;	jsr bset wait: bclr mov.b mov.b loop: jmp wait: mov.b mov.b bset bset jnc bclr rts	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ;; AD_ ta0 ;,; ;//	jsr bset wait: bclr mov.b mov.b loop: jmp (wait: mov.b mov.w bset jmc bclr rts Eva	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic ta0_wait ir_ta0ic	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop ne ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ; AD_ ta0 ; ;///;	jsr bset _wait: bclr mov.b mov.b _loop: jmp 	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic luation end	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop Me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ; AD_ ta0 ; ;// ;// dum	jsr bset wait: bclr mov.b mov.b loop: jmp (wait: mov.b mov.w bset btst jnc bclr rts Eva /////// interru ///////	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic luation end ////////////////////////////////	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>
; end ; AD_ ta0 ; ;// ; ;// dum;	jsr bset _wait: bclr mov.b mov.b jmp wait: mov.b mov.w bset bclr rts rts /////// myi: nop	AD_wait adst ir_adic an7_wait ir_adic ad7, p7 AD conversion complated - #0ffh, pd8 #0ffh, p8 end_loop Dpeamp wakeup wait routin #000b, ta0mr #1600-1, ta0 ta0s ir_ta0ic ta0_wait ir_ta0ic luation end ////////////////////////////////	<pre> input select : AN7 select ; AD conversion start ; wait for AN7 conversion complate ; AD interrupt req clear ; conversion result display ; Infinity loop Me ; for Opeamp wakeup wait ; 100us(16MHz,f1) ; TA0 start ; TA0 overflow wait</pre>

reit		
;;/////////////////////////////////////		///////////////////////////////////////
; Non-maskab	le interrupt routine	
;/////////////////////////////////////		Undefined instruction interrupt
ovfli:	,	Overflow interrupt
brki:	;	BRK instruction interrupt
addri:	;	Address match interrupt
wdti:	;	Watch-dog timer interrupt
nmii:	i	NMI interrupt
i non		
nop		
nop		
nop		
reit		
;//////////////////////////////////////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////
; Variale ve	ctor table	
;//////////////////////////////////////		///////////////////////////////////////
.section	val_vector,romdata	
.org	vval_vec	
' lword	dummyi	: 0=BRK instruction interrupt
.lword	dummyi	; 1=
.lword	dummyi	; 2=
.lword	dummyi	; 3=
.lword	dummyi	; 4=^INT3 interrupt
.lword	dummyi	; 5=TB5 Interrupt : 6=TB4/Hart1 bus collision interrupt
.lword	dummyi	; 7=TB3/Uart0 bus collision interrupt
.lword	dummyi	; 8=SIO4/^INT5 interrupt
.lword	dummyi	; 9=SIO3/^INT4 interrupt
.lword	dummyi	;10=Uart2 bus collision interrupt
.lword	dummyi	;11=DMAU interrupt
lword	dummyi	;13=KEY input interrut
.lword	dummyi	;14=AD interrupt
.lword	dummyi	;15=Uart2 transmit/NACK2 interrupt
.lword	dummyi	;16=Uart2 receive/ACK2 interrupt
.lword	dummyi	;17=Uart0 transmit/NACK0 interrupt
lword	dummyi	;19=Uart1 transmit/NACK1 interrupt
.lword	dummyi	;20=Uart1 receive/ACK1 interrupt
.lword	dummyi	;21=TA0 interrupt
.lword	dummyi	;22=TA1 interrupt
.lword	dummyi	23=TA2 interrupt
lword	dummyi	;25=TA4 interrupt
.lword	dummyi	;26=TB0 interrupt
.lword	dummyi	;27=TB1 interrupt
.lword	dummyi	;28=TB2 interrupt
.lword	dummyi	;29=^INTO interrupt ;30=^INT1 interrupt
lword	dummyi	;31=^INT2 interrupt
.lword	dummyi	;32=
.lword	dummyi	;33=
.lword	dummyi	; 34=
.lword	dummyi	; 35= ; 36=
.lword	dummyi	; 37=
.lword	dummyi	;38=
.lword	dummyi	; 39=
.lword	dummyi	;40=
.lword	dummyi	,4⊥= :42=
.lword	dummyi	;43=
.lword	dummyi	; 44=
.lword	dummyi	;45=
.lword	dummyi	;46=
.lword	dummyi	;4/= :48-
lword	dummyi	;49=
.lword	dummyi	;50=
.lword	dummyi	;51=
.lword	dummyi	;52=
.lword	dummyi	i 53= • 54-
. Iword	dummyi	, J=- ; 55=
.lword	dummyi	;56=
.lword	dummyi	;57=
.lword	dummyi	;58=
.lword	dummyi	;59=
. LWOrd	dummyi	, ou= :61=
.lword	dummyi	;62=

; ;///////////////////////////////////	.lword	dummyi	;63=
;/////////////////////////////////////	;		
<pre>; Non-Maskable interrupt vector table ;////////////////////////////////////</pre>	;//////////////////////////////////////		///////////////////////////////////////
;/////////////////////////////////////	; Non-Maskab	le interrupt vector	able
.section vector,romdata	;//////////////////////////////////////	///////////////////////////////////////	///////////////////////////////////////
	.section	vector,romdata	
.org vvector	.org	vvector	
;	;		
.lword undi ; ffffdc to f Undefined instruction interrup	.lword	undi	; ffffdc to f Undefined instruction interrupt
.lword ovfli ; ffffe0 to 3 Overflow interrupt	.lword	ovfli	; ffffe0 to 3 Overflow interrupt
.lword brki ; ffffe4 to 7 BRK instruction interrupt	.lword	brki	; ffffe4 to 7 BRK instruction interrupt
.lword addri ; ffffe8 to b Address match interrupt	.lword	addri	; ffffe8 to b Address match interrupt
.lword dummyi ; ffffec to f	.lword	dummyi	; ffffec to f
.lword wdti ; fffff0 to 3 Watch-dog timer interrupt	.lword	wdti	; fffff0 to 3 Watch-dog timer interrupt
.lword dummyi ; fffff4 to 7	.lword	dummyi	; fffff4 to 7
.lword nmii ; fffff8 to b NMI interrupt	.lword	nmii	; fffff8 to b NMI interrupt
.lword reset ; fffffc to f RESET	.lword	reset	; fffffc to f RESET
;	;		

.end

Revision history

Boy	Issue date		Revised		
Rev.		Page	Point		
1.00	2004.03.18	-	First edition issued		

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.