

RX Family

R01AN3610EJ0100 Rev.1.00 Capacitive Touch Sensor Correction for Accuracy Enhancement Jan 18, 2017

Introduction

This application note details the procedure for enhancing capacitance detection accuracy of the Capacitive Touch Sensor Unit (CTSU herein) by correcting variations of the internal current-controlled oscillator (ICO herein). The objective of this method is to calculate a coefficient (factor), and multiply CTSU ICO values by it.

Target Device

RX113, RX130, RX231, RX230

Contents

1.	Outli	ne	3
2.		Gain Correction	6
2.1	I The	eoretical Value	7
2.2		Correction Register	
2.3		Correction Measurements	
2	2.3.1	1st Correction Measurement	9
2	2.3.2	2nd Correction Measurement	0
2	2.3.3	Correction Coefficient Calculation12	2
3.	ICO	Correction Software Explanation16	6
3.1	I File	e Configuration	6
3.2	2 Op	tion Setting Memory	6
3.3	B Co	nstants1	7
3.4	4 Fur	nctions18	8
3.5	5 Fui	nction Specifications	9
3	3.5.1	main	9
3	3.5.2	R_Set_Cap_Touch_Create19	9
3	3.5.3	correcton_CTSU_sensor_ico	0
3	3.5.4	correction_CTSU_sensor_selection	0
3	3.5.5	correction_CTSU_register_parameter_set	1
3	3.5.6	correction_CTSU_register_txd_set	2
3	3.5.7	DTC_Set_Initial_of_CTSU	2
3	3.5.8	correction_CTSU_register_set	3
3	3.5.9	R_Set_CTSU_Correction_Mode	3
3	3.5.10	correction_CTSU_measurement_start	4
3	3.5.11	correction_CTSU_1st_coefficient_create	4
3	3.5.12	correction_CTSU_2nd_standard_val_create2	5
		correction_CTSU_2nd_coefficient_create	
3	3.5.14	correction_CTSU_16point_coefficient_create	6
		correction_sensor_magnification_set	
3	3.5.16	correction_sensor_cnt_create	6
4.	Flow	chart2	7
4.1	I Ma	in function: main()2	7
4.2	2 Ca	pacity Touch Creation Function: R_Set_Cap_Touch_Create()24	8
4.3	3 Sei	nsor ICO Correction Function: correction_CTSU_sensor_ico()	9

1. Outline

Measurement of capacitance, using the CTSU, relies on the operation of a Current-Controlled Oscillator (ICO). Operation of the CTSU and the underlying component circuits is detailed in R30AN0218. The CTSU outputs counter values representing the measured capacitance for a TS Pin. However, due to variation in the characteristics of the current controlled oscillators, two MCUs operating under identical conditions may not produce identical outputs. Variations observed may be up to 20 percent of the threshold. This application note explains these variations and describes the procedure to correct the same.

Figure 1.1 shows an overview of the entire process for converting capacitance to the measurement count value.

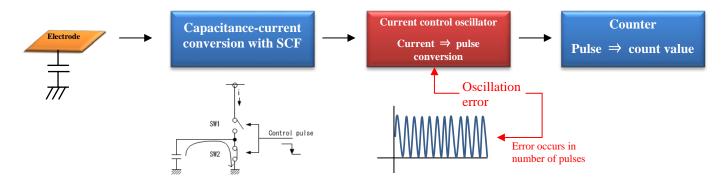
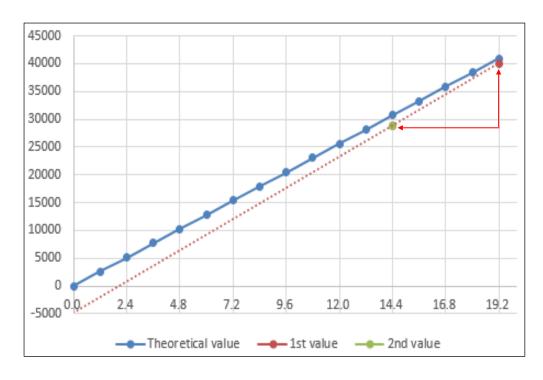



Figure 1.1 Capacitance Conversion Overview

RX Family

In ICO oscillation error correction, as shown in Figure 1.1, the correction coefficient is determined by calculating two values from two different current values, and then correcting the measurement count value. Figure 1.2 and Figure 1.3 show the correction data graph.

Horizontal axis: current value Vertical axis: count value

Figure 1.2 Correction Coefficient

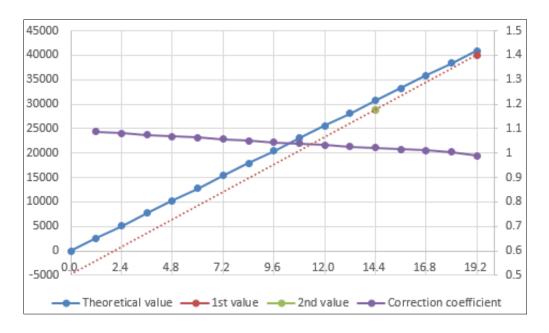
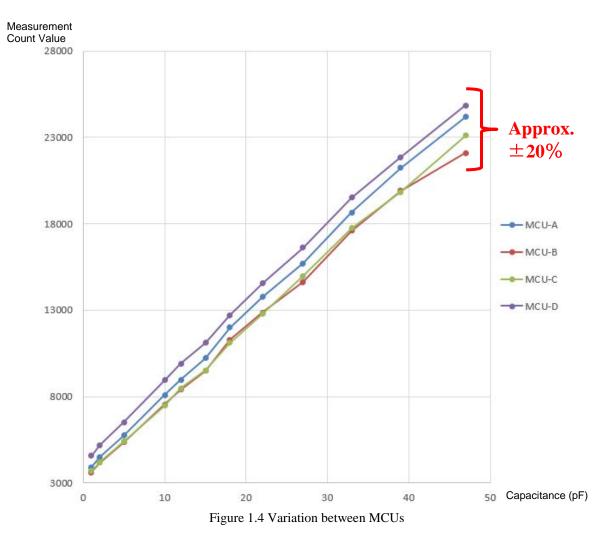


Figure 1.3 Correction Coefficient


The oscillation error is corrected by multiplying the measurement count value by the correction coefficient.

In conventional ICO correction processing, the current supplied to the ICO was matched with the reference ICO counter by the current offset function. In this method, the offset amount of the capacitance to be measured could be corrected, but the ICO gain characteristic (slope), which differs with each MCU, could not be corrected. Expressed in a linear function, offset value b in y = ax+b can be corrected, but gain characteristic coefficient a cannot.

- y : Correction count value
- a : Gain characteristic per MCU
- x : Measurement count value
- b : MCU measurement offset value

In the correction process, accuracy is improved by correcting the ICO oscillation error of approximately $\pm 20\%$ (correct *a* above) for each MCU before correcting the current offset and count error due to the difference in parasitic capacitance. Figure 1.4 shows an example in which the relationship between capacitance and measurement count value is measured for four samples. As you can see, the gain characteristic and offset value differ for each sample.

This application explains how to improve the difference in ICO characteristics of each MCU using the calibration function and software-based correction.

2. ICO Gain Correction

Actions needed to perform ICO correction are shown in Figure 2.1. ICO gain correction requires the CTSU to be operated in "calibration mode" during initialization. Once correction coefficients are calculated, the CTSU is placed back in normal operating mode and all measured counter values are multiplied with a correction coefficient.

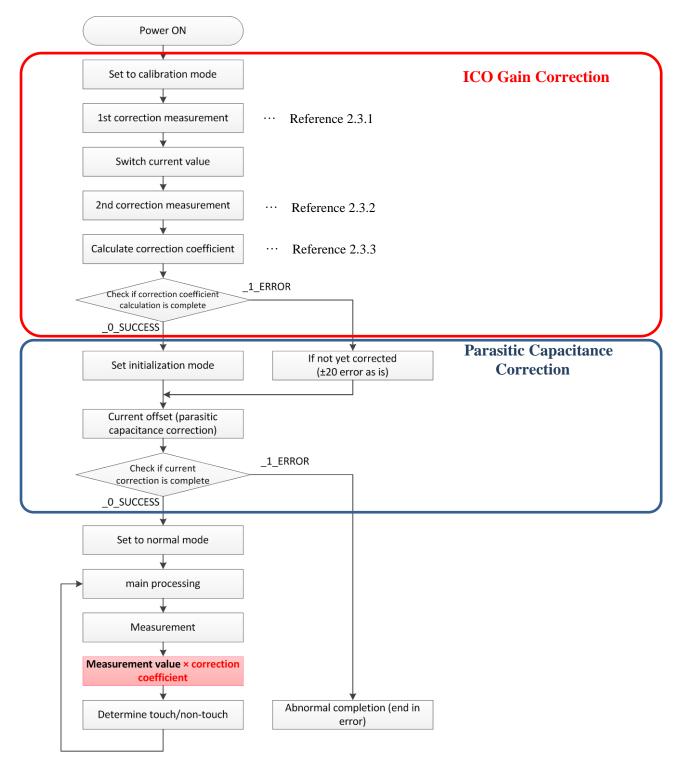
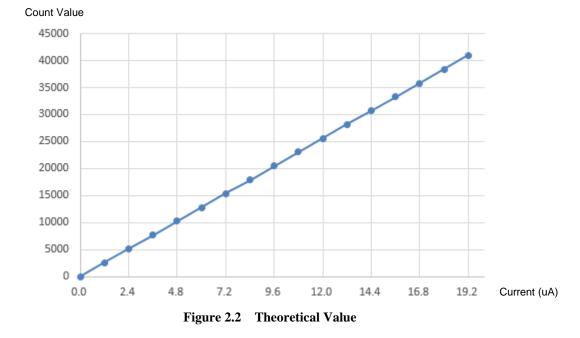


Figure 2.1 Correction Overview Flowchart

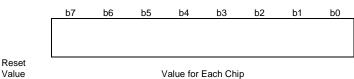

2.1 Theoretical Value

ICO gain correction is carried out by making reference to the theoretical values output by an ideal ICO. Table 2.1 below shows the theoretical count value output when a corresponding input current (I) value is used. The count value output is determined by counting the number of pulses output from the ICO every 0.526ms (the measurement time unit). Figure 2.2 is a graphical representation of the theoretical output shown in Table 2.1.

Measurement time is determined by the measurement frequency and number of measurements.

Current Value (uA)	Count Value	Current Value (uA)	Count Value
0.0	0	10.8	23040
1.2	2560	12.0	25600
2.4	5120	13.2	28160
3.6	7680	14.4	30720
4.8	10240	15.6	33280
6.0	12800	16.8	35840
7.2	15360	18.0	38400
8.4	17920	19.2	40960
9.6	20480	-	-

Table 2.1Theoretical Value



2.2 ICO Correction Register

The CTSU reference current adjustment register (CTSUTRMR) and the CTSU error status register (CTSUERRS) are two additional SFRs used for ICO correction measurement. Registers structures for CTSUTRMR and CTSUERRS are shown below.

CTSU Reference Current Adjustment Register (CTSUTRMR)

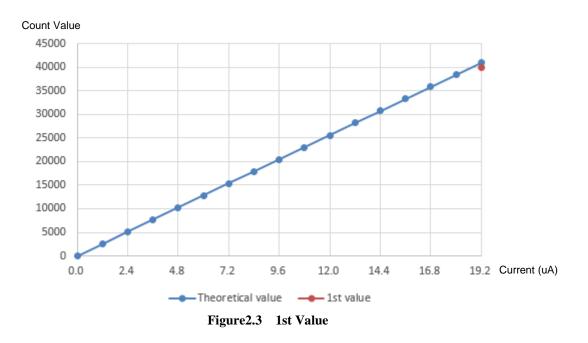
Address 007F FFBEh

Note : The CTSUTRMR register is programmed at the time of factory shipment with the reference current value adjusted to certain conditions pertaining to each chip. This value is accessed during the ICO gain correction.

CTSU Error Status Register (CTSUERRS)

Address 000A 091Ch

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	CTSUI COMP	-	-	-	-	-	-	-	CTS UTS OC	-	-	-	CTS UDR V	CTS UTS OD	CTSU	SPMD
Reset Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Bit	Symbol	Bit Name	Function	Read/Write
b1-b0	CTSUSPMD	Calibration mode bit	b1 b0 0 0 : Capacitance measurement mode 0 1 : Setting disabled 1 0 : Calibration mode 1 1 : Setting disabled	R/W
b2	CTSUTSOD	TS pin fixed output bit	0 : Capacitance measurement mode 1 : TS pin fixed output (High/Low output)	R/W
b3	CTSUDRV	Calibration mode bit setting 3	0 : Capacitance measurement mode 1 : Calibration setting 3	R/W
b6-b4	-	Reserved bit	Reads out 0. When writing, specify 0.	R/W
b7	CTSUTSOC	Calibration mode bit setting 7	0 : Capacitance measurement mode 1 : Calibration setting 7	R/W
b14-b8	-	Reserved bit	Reads out 0. When writing, specify 0.	R/W
b15	CTSUICOMP	TSCAP voltage abnormal monitoring bit	0 : TSCAP voltage normal 1 : TSCAP voltage abnormal	R

The ICO gain correction method requires operating the CTSU in "Calibration mode" by setting the CTSUERRS SFR bits CTSUSPMD (b1:b0) to 0b10. Then, it measures two current (I) values; first with CTSUTRMR set to the factory programmed value (19.2uA) then with CTSUTRMR set to 0xFF. The sensor counter values obtained are used to calculate the calibration coefficients.

2.3 ICO Correction Measurements

2.3.1 1st Correction Measurement

The 1st correction measurement is started when the CTSUTRMR register is set to the factory programmed value which is configured to always supply 19.2uA to the ICO. The measured sensor counter value is designated as the "1st value," as shown in Figure 2.3.

The 1st value shown in Figure 2.3 is an example of an ICO with an oscillation frequency lower than that of the theoretical value of 19.2uA. Some ICOs have higher oscillation frequencies, but we will base our explanation here on an ICO with a lower than ideal oscillation frequency.

2.3.2 2nd Correction Measurement

The 2nd correction measurement is taken after changing the supply current to the ICO, which is done by writing 0xFF to the CTSUTRMR register.

CTSUTRMR is trimmed before shipping to ensure that a 19.2uA current is supplied to the CTSU. Due to variations between MCUs, due to the manufacturing process, the set value of each MCU differs.

In this sample, correction is implemented by creating a slope from the current values measured at two different points. The correction coefficient accuracy can be improved by taking the 1st correction measurement at 19.2uA and the 2nd correction measurement with a large current difference. In order to accomplish this, the measurement is taken at the maximum current difference by inputting the maximum 0xFF value that can be set in CTSUTRMR.

*CTSU reference current adjustment register value: as the setting value is increased, the current providing to ICO decreases.

After the CTSUTRMR supply current has been changed, a measurement is taken in the same manner as the 1st measurement and the count value is obtained. This becomes the 2nd value, as shown in Figure 2.4.

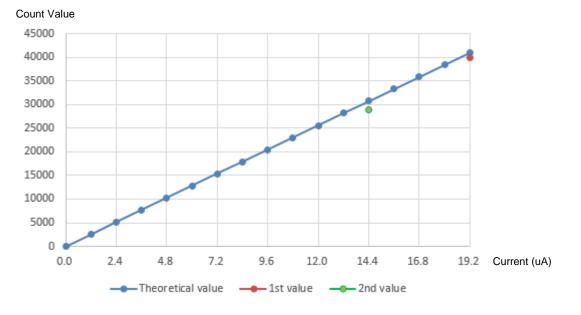


Figure 2.4 2nd Value

The 16-point correction coefficient for 1.2uA to 19.2uA is calculated from the count of the 1st and 2nd values, then IOC correction is implemented. Figure 2.5 shows the correction coefficients.

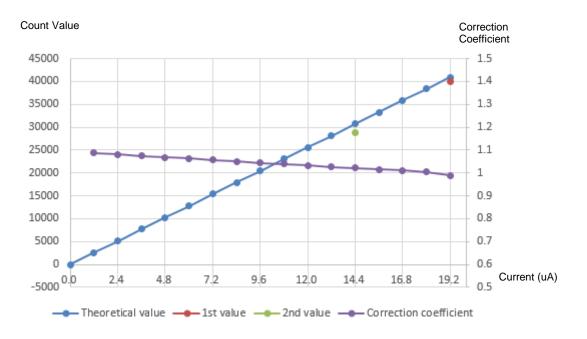


Figure 2.5 Correction Coefficient

2.3.3 Correction Coefficient Calculation

The steps for calculating the 16-point correction coefficient for 1.2uA to 19.2uA are listed below.

■ Magnification calculation of 19.2uA theoretical value

1st magnification = $\frac{1 \text{ st value}}{19.2 \text{ uA theoretical value}} = \frac{40040}{40960} = 0.978$ Refer to Table

2nd correction reference data calculation

2nd correction reference data = $\frac{(1stCTSUTRMR value + 273)}{528}$ × 19.2uA theoretical value

$$=\frac{(116+273)\times40960}{528}=30176$$

Magnification calculation of 2nd correction reference data

2nd magnification = $\frac{2 \text{nd value}}{2 \text{nd correction reference data}} = \frac{28807}{30176} = 0.954$

Calculation of 16-point coefficient for 1.2uA to 19.2uA

Difference of 1st and 2nd magnification = 1st magnification – 2nd magnification (or 2nd magnification – 1st magnification)

$$= 1001 - 978 = 23$$

Change rate per 1 point = $\frac{\text{Difference of 1st and 2nd magnification} \times 19.2\text{uA theorectical value}}{19.2\text{uA theoretcial value} - 2\text{nd correction reference data}} = \frac{23 \times 40960}{40960 - 30176} = 87$

16-point magnification =
$$(1st \text{ magnification} + \frac{\text{Change rate per 1 point × N}}{16})/1024$$

*N: point number

$$=$$
 (1001 + $\frac{87 \times N}{16}$) / 1024

Note : In the sample code, when describing the integer operation of division processing for the MCU, in order to reduce calculation error due to fractional truncation, a 10-bit shift to the left is implemented before the division in consideration of the third decimal place and to reduce processing error. In addition, a process to add the denominator divided by 2 is implemented as a workaround for quantization error due to further truncation of decimal points.

Figure 2.6 shows the factor by which the gain has changed at 16 intervals of 1.2μ A. This "factor of change" is referred as the "magnification value". The inverse of the magnification value is used as a multiplier to correct the measured sensor count value to the expected ideal sensor count value. The inverse of the magnification value is the correction coefficient. Table 2.2 shows the results

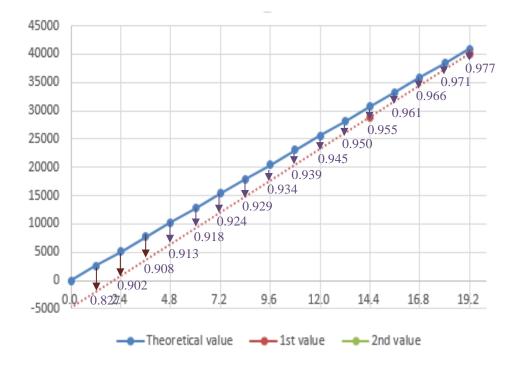


Figure 2.6 Magnification

Ν	Magnification	Correction Coefficient (1/magnification)
0 (19.2uA)	0.977	1.023
1 (18.0uA)	0.971	1.029
2 (16.8uA)	0.966	1.034
3 (15.6uA)	0.961	1.040
4 (14.4uA)	0.955	1.046
5 (13.2uA)	0.950	1.052
6 (12.0uA)	0.945	1.058
7 (10.8u)	0.939	1.064
8 (9.6uA)	0.934	1.070
9 (8.4uA)	0.929	1.076
10 (7.2uA)	0.924	1.082
11 (6.0uA)	0.918	1.088
12 (4.8uA)	0.913	1.094
13 (3.6uA)	0.908	1.101
14 (2.4uA.)	0.902	1.107
15 (1.2uA)	0.897	1.114

 Table 2.2
 Correction Coefficient

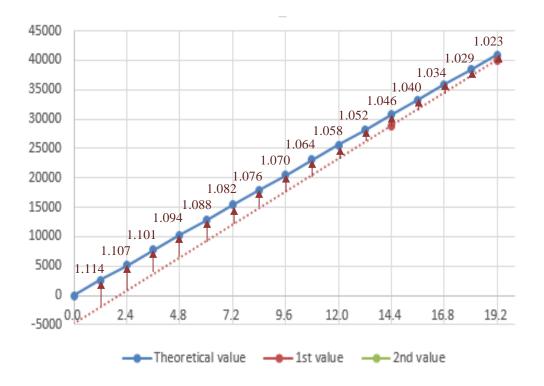


Figure 2.7 Correction Coefficient

3. ICO Correction Software Explanation

3.1 File Configuration

Table 3.1 Lists the ICO correction processing files. Files automatically generated by the integrated development environment are not included in the list.

File Name	Description	Notes
r_main.c	main processing source file	
r_ctsu.c	CTSU control source file	
r_ctsu_physical_driver.c	CTSU physical driver source file	
r_dtc.c	DTC control source file	
r_touch_API.c	Touch API source file	
r_ctsu.h	CTSU control header file	
r_dtc.h	DTC control header file	
r_touch_API.h	Touch API header file	

Table 3.1 Files Used by ICO Software

3.2 Option Setting Memory

Table 3.2 lists the status of each option setting memory. Please set the optimal value for your system as needed.

Table 3.2	Option Setting Memory
10010 0.2	option ootting moniory

MCU	Symbol	Address	Setting Value	Description
RX113	DTC.DTCVBR	0x00007C00	dtc_vector60 (0x00007CF0)	DTC transfer address
RX231			dtc_vector61 (0x00007CF4)	
RX230				
RX130		0x00002400	dtc_vector60 (0x000024F0)	
			dtc_vector61 (0x000024F4)	

3.3 Constants

Table 3.3 shows the constants used for ICO correction.

Table 3.3 Constants (**r_ctsu.h**)

	r_c	stus.h
Constant Name	Setting Value	Description
CTSU_INPUT_FREQUENCY	32000000	PCLKB operation clock (Hz)
	(Default)	32000000 (=32MHz)
		27000000 (=27MH)
		24000000 (=24MHz)
		16000000 (=16MHz)
		8000000 (=8MHz)
CTSU_INPUT_FREQUENCY_DIV	32	CTSU_INPUT_FREQUENCY/ 1000000
	(Default)	
CORRECTION_AVERAGE	32	Average number of calibration measurements
_0_NORMAL	0	Normal measurement mode
_1_CORRECTION	1	Calibration measurement mode
_0_1ST	0	1st measurement flag
_1_2ND	1	2nd measurement flag
_19_2UA	40960	Correction reference data when supplying 19.2uA
_18_0UA	38400	Correction reference data when supplying 18.0uA
_16_8UA	35840	Correction reference data when supplying 16.8uA
_15_6UA	33280	Correction reference data when supplying 15.6uA
_14_4UA	30720	Correction reference data when supplying 14.4uA
_13_2UA	28160	Correction reference data when supplying 13.2uA
_12_0UA	25600	Correction reference data when supplying 12.0uA
_10_8UA	23040	Correction reference data when supplying 10.8uA
_09_6UA	20480	Correction reference data when supplying 9.6uA
_08_4UA	17920	Correction reference data when supplying 8.4uA
_07_2UA	15360	Correction reference data when supplying 7.2uA
_06_0UA	12800	Correction reference data when supplying 6.0uA
_04_8UA	10240	Correction reference data when supplying 4.8uA
_03_6UA	7680	Correction reference data when supplying 3.6uA
_02_4UA	5120	Correction reference data when supplying 2.4uA
_01_2UA	2560	Correction reference data when supplying 1.2uA

3.4 Functions

Table 3.4 lists the functions used for ICO correction.

Table 3.4 Functions

Function Name	Description
main()	System main function
correction_CTSU_sensor_ico()	Sensor ICO correction function
correction_CTSU_sensor_selection()	Sensor correction sensor selection function
correction_CTSU_register_parameter_set()	ICO correction CTSU register value setting function
correction_CTSU_register_txd_set()	ICO correction transmission measurement parameter setting function
DTC_Set_Initial_of_CTSU()	CTSU DTC initialization function
correction_CTSU_register_set()	ICO correction CTSU register setting function
correction_CTSU_measurement_start()	ICO correction measurement start function
correction_CTSU_1st_coefficient_create()	1st magnification correction reference data calculation function
correction_CTSU_2nd_standard_val_create()	2nd correction reference data calculation function
correction_CTSU_2nd_coefficient_create()	2nd coefficient correction reference data calculation function
correction_CTSU_16point_coefficient_create()	1.2uA - 19.2uA correction coefficient calculation function
correction_sensor_magnification_set()	Measurement time-based correction coefficient magnification setting function
correction_sensor_cnt_create()	Measurement value correction creation function
R_Set_Cap_Touch_Create()	Capacitance touch creation function
R_Set_CTSU_Correction_Mode()	ICO correction measurement mode setting function

3.5 Function Specifications

Function specifications for ICO correction are described below.

3.5.1 main

main()	
Outline	System main function
Declaration	void main(void)
Description	This function controls the overall system.
Call Function	R_Set_Cap_Touch_Create()
	R_CMT0_Create()
	R_CMT0_Start()
	R_Set_Cap_Touch_Measurement_Start() *1
	R_Get_Cap_Touch_Data_Check() *1
	R_Get_Cap_Touch_Initial_Status() *1
	R_Set_Cap_Touch_Result_Create() *1
	R_Get_Cap_Touch_Result() *1
	R_Set_Cap_Touch_Initial_Tuning() *1
	R_Set_Cap_Touch_Next_Method_Change() *1
Argument	
Return Value	-
*1 Refer to Touch A	PI Reference Guide.

3.5.2 R_Set_Cap_Touch_Create

R_Set_Cap_Touch_Create()						
Outline Capacitance touch creation function						
Declaration void R_Set_Cap_Touch_Create(void)						
Description	This function is called in the main function to implement settings to measure capacitance touch.					
Call Function	<pre>correction_CTSU_sensor_ico()</pre>					
	touch_parameter_address_set()					
	CTSU_register_initial_value_ram_set()					
	DTC_Set_Initial_of_CTSU()					
	initial_port_set()					
	R_Set_CTSU_All_Register()					
	DTC_transmit_data_set()					
	touch_parameter_set()					
	R_Set_Cap_Touch_Tuning_Cntrol()					
	R_Set_Cap_Touch_Offset_Timing()					
Argument						
Return Value	-					

3.5.3 correcton_CTSU_sensor_ico

correcton_CTSU_	_sensor_ico()
Outline	Sensor ICO correction function
Declaration	uint8_t correcton_CTSU_sensor_ico(void)
Description	This function is called in the R_Set_Cap_Touch_Create function to implement sensor
	ICO correction.
Call Function	<pre>correction_CTSU_sensor_selection()</pre>
	<pre>correction_CTSU_register_parameter_set()</pre>
	<u>correction CTSU register txd set()</u>
	DTC_Set_Initial_of_CTSU()
	<pre>correction_CTSU_register_set()</pre>
	R_Set_CTSU_Correction_Mode()
	correction_CTSU_measurement_start()
	<pre>correction_CTSU_1st_coefficient_create()</pre>
	<pre>correction_CTSU_2nd_standard_val_create()</pre>
	<pre>correction_CTSU_2nd_coefficient_create()</pre>
	<pre>correction_CTSU_16point_coefficient_create()</pre>
Argument	· ·
Return Value	0x00: Normal completion (success)
	0x01: Abnormal completion (error)

3.5.4 correction_CTSU_sensor_selection

correction_CTSU_	sensor_selection()
Outline	ICO correction sensor selection function
Declaration	<pre>uint8_t correction_CTSU_sensor_selection(void)</pre>
Description	This function is called in the correction_CTSU_sensor_ico function and selects the sensor for correction.
	The function selects the sensor with the lowest number among all sensors used by the application.
Call Function	-
Argument	· ·
Return Value	0x00: Normal completion (Sensor number for correction selected) 0x01: Abnormal completion (Sensor number for correction not selected)

3.5.5 correction_CTSU_register_parameter_set

correction_CTS	J_register_parameter_set()
Outline	ICO correction CTSU register value setting function
Declaration	<pre>void correction_CTSU_register_parameter_set(void)</pre>
Description	This function is called in the correction_CTSU_sensor_ico to implement the correction CTSU register setting. The contents of the setting are lists below.
	CTSU Control Register 0 (CTSUCR0)

CTSU Control Register 0 (CTSUCR0)		
Symbol	Set Value	Description
CTSUSNZ	0	Wait period low power consumption function disabled.
CTSUTXVSEL	0	Selects Vcc

CTSU Control Register 1 (CTSUCR1)			
Symbol	Set Value	Description	
CTSUPON	1	Power ON	
CTSUCSW	1	Capacitance switch ON	
CTSUATUNE0	0	Normal operation mode	
CTSUATUNE1	0	Normal output	
CTSUCLK	0	PCLK (no division)	
CTSUMD	1	Auto-capacitance multi-scan mode	

CTSU Synchronous Noise Reduction Setting Register (CTSUSDPRS)			
Symbol	Set Value	Description	
CTSUPRRATIO	3	Recommended value	
CTSUPRMODE	2	62 pulse (recommended value)	
CTSUOFF	0	High-frequency noise reduction function ON	

CTSU Sensor Stabilization Wait Period Register (CTSUSST)		
Symbol Set Value Description		Description
CTSUSST	16	Fixed value

CTSU High-Pass Noise Reduction Control Register (CTSUDCLKC)		
Symbol	Set Value	Description
CTSUSSMOD	0	Fixed value
CTSUSSCNT	3	Fixed value

Call Function Argument Return Value

-

-

-

-

3.5.6 correction_CTSU_register_txd_set

correction_CTSL	J_register_txd_set(()		
Outline	ICO correction tran	sfer measurement pa	rameter setting function	
Declaration	void correction_	_CTSU_register_tx	d_set(void)	
Description	operation clock, it s filter frequency) to operation clock. It a CTSU High-frequ	sets the capacitance m 0.5MHz and the meas also sets the current o uency noise reduction	CTSU_sensor_ico functi neasurement frequency urement time to 0.5ms ffset setting to 0. spectrum dispersion co	(switched capacity according to the
	(CTSUSSC) = 0	<0700		
	CTSU sensor off	fset register 0 (CTSUS	600) = 0x0000	
	Operation Clock		sor Offset Register 1 (C	,
		CTSURICOA	CTSUSDPA	CTSUICOG
	32MHz	15	31 (divide by 64)	1
	27MHz		26 (divide by 54)	
	24MHz		23 (divide by 48)	
	16MHz		15 (divide by 32)	
	8MHz		7 (divide by 16)	
Call Function		-		
Argument	-			
Return Value	_	-		
Noturn value				

3.5.7 DTC_Set_Initial_of_CTSU

DTC_Set_Initial_	_of_CTSU()
Outline	CTSU DTC initialization function
Declaration	<pre>void DTC_Set_Initial_of_CTSU(void)</pre>
Description	This function is called by the correction_CTSU_sensor_ico function to initialize the CTSU data transmission.
Call Function Argument Return Value	-

correction_CTSU	J_register_set()	
Outline	ICO correction CTSU register setting function	
Declaration	<pre>uint16_t correction_CTSU_register_set(void)</pre>	
Description	This function is called in the correction_CTSU_sensor_ico to implement the CTSU register correction settings. Based on the correction settings, the following register setting functions are called.	
Call Function	R_Set_CTSU_TSCAP_Discharge()	
	MPC_CTSU_set()	
	R_Set_CTSU_Module_Operation()	
	R_Set_CTSU_Transmit_Power_Supply()	
	R_Set_CTSU_Power_Operation_Mode()	
	R_Set_CTSU_Power_Capacity_Adjustment()	
	R_Set_CTSU_Operation_Clock()	
	R_Set_CTSU_Sensor_Stabilization_Wait_Time()	
	R_Set_CTSU_Power_Supply()	
	R_Set_CTSU_Measurement_Mode()	
	R_Set_CTSU_Synchronous_Noise_Reduction()	
	R_Set_CTSU_Measurement_Channel()	
	R_Set_CTSU_Channel_Enable0()	
	R_Set_CTSU_Channel_Transmit_Receive0()	
	R_Set_CTSU_High_Pass_Noise_Reduction()	
Argument		
Return Value	0x0000: Normal completion	
	0x0001-0xFFFF: Abnormal completion	

3.5.8 correction_CTSU_register_set

3.5.9 R_Set_CTSU_Correction_Mode

-

-

-

R_Set_CTSU_C	Correction_Mode()
Outline	ICO correction measurement mode setting function
Declaration	<pre>void R_Set_CTSU_Correction_Mode(void)</pre>
Description	This function is called in the correction_CTSU_sensor_ico function to set the following, which in turns implements the correction measurement mode setting.

CTSU Error Status Register (CTSUERRS)			
Symbol	Setting Value	Setting Description	
CTSUTSOC	1	Calibration setting	
CTSUSPMD	2	Calibration mode	

Call Function

Argument

Return Value

_

3.5.10 correction_CTSU_measurement_start

correction_CTSL	J_measurement_start()	
Outline	ICO correction measurement start function	
Declaration	<pre>void correction_CTSU_measurement_start(void)</pre>	
Description	This function is called in the correcton_CTSU_sensor_ico function and takes correction measurements 32 times. The 32 measurement values are stored in global variables g_correction_1st_val and g_correction_2nd_val.	
Call Function Argument Return Value	- -	

3.5.11 correction_CTSU_1st_coefficient_create

correction_CTSL	J_1st_coefficient_create()
Outline	1st magnification correction reference data calculation function
Declaration	<pre>void correction_CTSU_1st_coefficient_create(void)</pre>
Description	This function is called in the correction_CTSU_sensor_ico function and calculates the 1st (19.2uA) magnification corresponding to the correction reference data. 1st magnification (g_correction_1st_coefficient) = $\frac{1st \text{ value } (g_correction_1st_val)}{19.2uA \text{ correction reference data}}$
	The results of the calculation are stored in global variable g_correction_1st_coefficient.
Call Function	-
Argument	
Return Value	-

3.5.12 correction_CTSU_2nd_standard_val_create

correction_CTSL	J_2nd_standard_val_create()		
Outline	2nd correction reference data calculation function		
Declaration	<pre>void correction_CTSU_2nd_standard_val_create(void)</pre>		
Description	This function is called in the correction_CTSU_sensor_ico function and calculates the 2nd correction reference data.		
	2^{nd} correction reference data = $\frac{(1stCTSUTRMR value+273)}{528}$ × 19.2uA correction reference data		
	The results of the calculation are stored in global variable g_correction_2nd_std_val.		
Call Function	-		
Argument	- ·		
Return Value	-		

3.5.13 correction_CTSU_2nd_coefficient_create

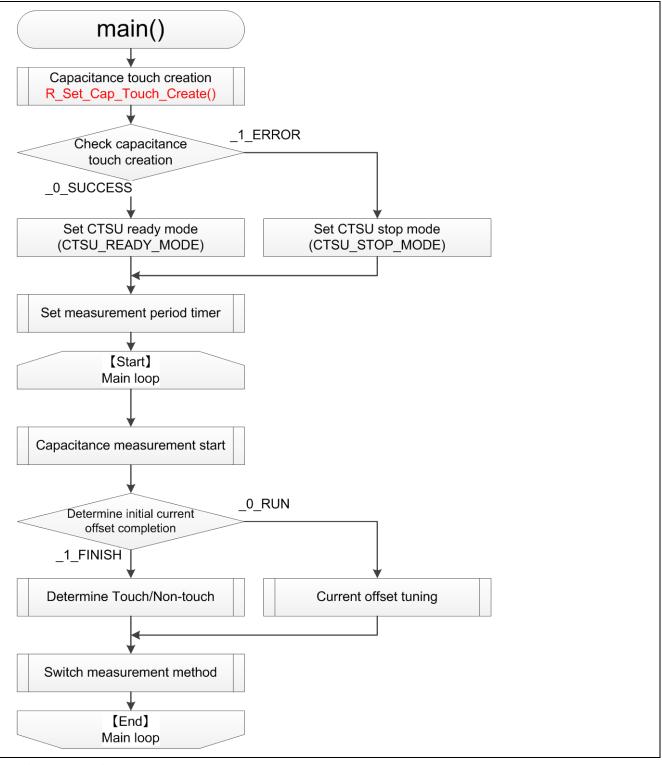
correction_CTSL	J_2nd_coefficient_create()		
Outline	Correction reference data 2nd magnification calculation function		
Declaration	<pre>void correction_CTSU_2nd_coefficient_create(void)</pre>		
Description	This function is called in the correction_CTSU_sensor_ico function and calculates the 2nd magnification corresponding to the 2nd correction reference data.		
	2nd magnification (g_correction_2nd_coefficient) = $\frac{2nd \text{ value}}{g_{correction_2nd_std_val}}$		
	The results of the calculation are stored in global variable g_correction_2nd_coefficient.		
Call Function	-		
Argument			
Return Value	-		

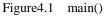
• •
_16point_coefficient_create()
1.2uA - 19.2uA correction coefficient calculation function
<pre>void correction_CTSU_16point_coefficient_create(void)</pre>
This function is called in the correction_CTSU_sensor_ico function and calculates the correction coefficient for 1.2uA to 19.2uA.
The results of the calculation are stored in global variable g_correction_16coefficient[].
-
-

3.5.14 correction_CTSU_16point_coefficient_create

3.5.15 correction_sensor_magnification_set

correction_sensor_magnification_set()		
Outline	Measurement time-based correction coefficient magnification setting	
	function	
Declaration	<pre>void correction_sensor_magnification_set(void)</pre>	
Description	This function is called in the R_Set_CTSU_Measurement_Start to set the magnification corresponding to the current touch measurement period as the touch measurement period 0.5ms correction coefficient.	
	The current touch measurement period is determined based on the PCLKB supply clock, measurement frequency, and number of measurements, and the magnification is set accordingly.	
Call Function	_	
Argument		
Return Value	-	


3.5.16 correction_sensor_cnt_create


correction_senso	r_cnt_create()	
Outline	Correction sensor co	ount create function
Declaration	<pre>uint8_t correction_se uint8_t number)</pre>	ensor_cnt_create(uint8_t method, uint8_t ts_num,
Description		the touch_data_moving_average function and multiplies the orrection coefficient and sets the corrected measurement
Call Function	_	
Argument	uint8_t method	0-9: default measurement method number
Return Value	uint8_t ts_num	Measurement TS number
Outline	uint8_t number	Measurement pointer number
Declaration	Correction measurement	t value : 0-65535

4. Flowchart

4.1 Main function: main()

Figure 4.1 shows the flowchart for the main function.

4.2 Capacity Touch Creation Function: R_Set_Cap_Touch_Create()

Figure 4.2 shows the flowchart for the capacity touch creation function.

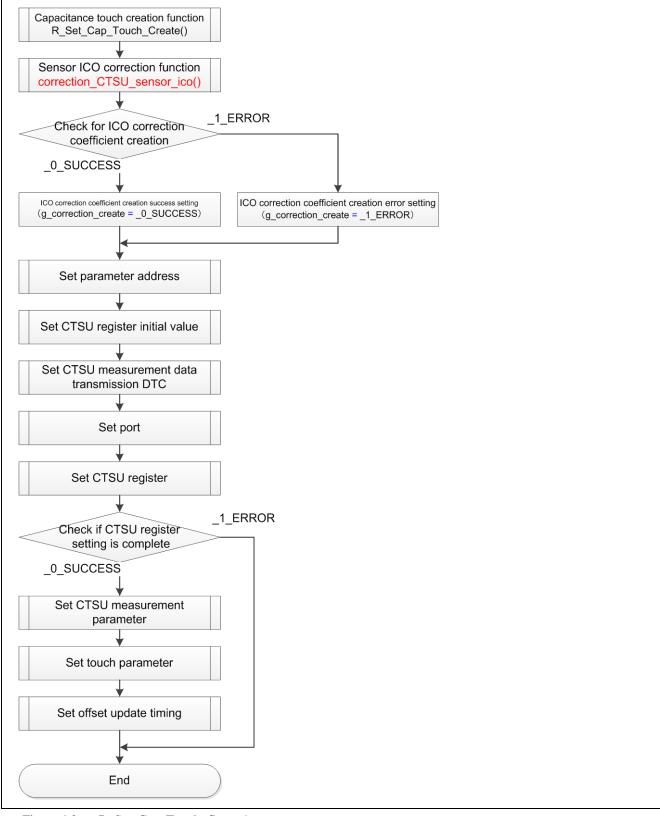


Figure 4.2 R_Set_Cap_Touch_Create()

4.3 Sensor ICO Correction Function: correction_CTSU_sensor_ico()

Figure 4.3 shows the flowchart for the capacity touch creation function.

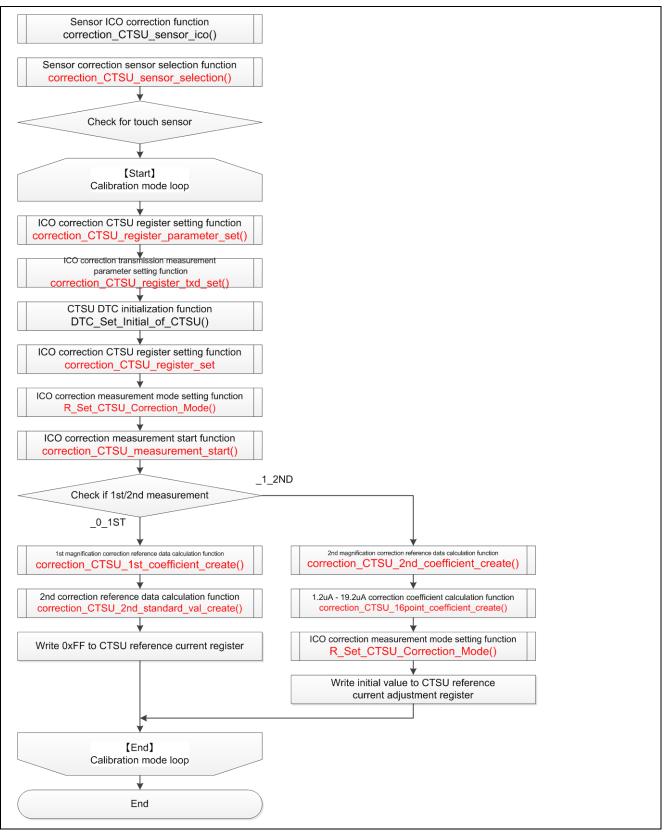


Figure 4.3 correction_CTSU_sensor_ico()

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jan. 18, 2017		Initial version

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not
 access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
 you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or hiological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

(Rev.3.0-1 November 2016)

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renessas.com/" for the latest and detailed information. Renessas Electronics America Inc. 2801 Scott Bevolveard Santa Clara, CA 95050-2549, U.S.A. Tel: +1408-588-6000, Fax: +14408-588-6130 Renessas Electronics Canada Limited 2821 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1908-237-2004 Renessas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1028-585-900 Renessas Electronics Europe Unised Renessas Electronics Europe Jusseldor, Germany Tel: +44-128-585-100, Fax: +449-211-6503-1327 Renessas Electronics (China) Co., Ltd. Room 1709, Quantum Piaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renessas Electronics Hong Kong Limited Unit 1801-1611, 161F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-22-226-0888, Fax: +862-12-226-0989 Renessas Electronics Taiwan Co., Ltd. Unit 301. Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6888, Fax: +852-2475-9670 Renessas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-102 Hyllux Innovation Centre, Singapore 339949 Tel: +856-23-175-9600, Fax: +886-24175-9670 Renessas Electronics Mangapore Pt. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +656-13-0200, Fax: +806-2-7955-9510 Renessas Electronics Malaysia Sdn.Bhd. Unit 1207. Holos H, Menara Anncorp, Anncorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +656-213-0200, Fax: +806-3-7955-9510 Renessas Electronics Malaysia Sdn.Bhd. Unit 1207. Holos H, Menara Anncorp, Anncorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +656-213-0200, Fax: +80-6-7208777