
 Application Note

R11AN0065EU0101 Rev.1.01 Page 1 of 13
Aug 22, 2017

Renesas Synergy™ Platform

CAN HAL Driver Module Guide
Introduction
This module guide will enable you to effectively use a module in your own design. Upon completion of this guide, you
will be able to add this module to your own design, configure it correctly for the target application and write code, using
the included application project code as a reference and an efficient starting point. References to more detailed API
descriptions and suggestions of other application projects that illustrate more advanced uses of the module are included
in this document and should be valuable resources for creating more complex designs.

The Controller Area Network (CAN) HAL module is a generic API for a CAN network. The CAN HAL module is
implemented on r_can and supports the CAN peripherals available on Renesas Synergy microcontroller hardware. A
user-callback function must be defined, which the driver invokes when transmit, receive or error interrupts are received.
The callback returns a parameter that indicates the channel, mailbox and event.

Contents

1. CAN HAL Module Features ... 2

2. CAN HAL Module APIs Overview .. 2

3. CAN HAL Module Operational Overview ... 3
3.1 CAN HAL Module Important Operational Notes and Limitations .. 4

4. Including the CAN HAL Module in an Application .. 4

5. Configuring the CAN HAL Module ... 5
5.1 CAN HAL Module Clock Configuration.. 6
5.2 CAN HAL Module Pin Configuration ... 7
5.3 CAN HAL Module Bit Rate Calculation ... 7
5.4 Setting the CAN HAL Module Mailbox Group Masks .. 8

6. Using the CAN HAL Module in an Application.. 8

7. The CAN HAL Module Application Project ... 9

8. Customizing the CAN HAL Module for a Target Application ... 11

9. Running the CAN HAL Module Application Project .. 11

10. CAN HAL Module Conclusion .. 12

11. CAN HAL Module Next Steps .. 12

12. CAN HAL Module Reference Information .. 12

R11AN0065EU0101
Rev.1.01

Aug 22, 2017

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 2 of 13
Aug 22, 2017

1. CAN HAL Module Features
• Supports both standard (11-bit) and extended (29-bit) messaging format.
• Support for bit-timing configuration as defined in the CAN specification.
• Support for up to 32 transmit or receive mailboxes with standard or extended ID frames.
• Receive mailboxes can be configured to capture either data or remote CAN frames.
• Supports a user-callback function when transmit, receive or error interrupts are received.

Figure 1 CAN HAL Module Organization, Options, and Stack Implementations

2. CAN HAL Module APIs Overview
The CAN HAL defines APIs for opening, closing, writing, (transmitting) and reading (receiving) CAN data; it also
provides some additional functions, such as control, Infoget and VersionGet to assist in processing more
complex commands. A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

Table 1 CAN HAL Module API Summary

Function Name Example API Call and Description
.open g_can0.p_api->open(g_can0.p_ctrl, g_can0.p_cfg)

The open API configures CAN Channel 0. This function must be called before any
other CAN functions.
Note: This call is made automatically during system initialization, prior to entering

the users thread. Unless the user closes the module, open will not need to
be called.

.close g_can0.p_api->close(g_can0.p_ctrl)
The close API handles the clean-up of internal driver data.

.read g_can0.p_api->read (g_can0.p_ctrl, p_args->mailbox,
&receiveFrame)
The read API reads received CAN data.

.write g_can0.p_api->write (g_can0.p_ctrl, 0, &transmitFrame)
The write API write data into the CAN transmit frame buffer and send it out.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 3 of 13
Aug 22, 2017

Function Name Example API Call and Description
.control g_can0.p_api->control(g_can0.p_ctrl, CAN_COMMAND_MODE_SWITCH,

&mode); with can_mode_t mode = CAN_MODE_LOOPBACK_INTERNAL;
The control API can change the CAN mode of operation.

.infoGet g_can0.p_api->infoGet(g_can0.p_ctrl, p_info)
The infoGet API retrieves the CAN mode of operation.

.versionGet g_can0.p_api->versionGet(version)
The versionGet API retrieves the module version information.

Note: For details on operation and definitions for the function data structures, typedefs, defines, API data,
API structures and function variables, review the SSP User’s Manual API References for the
associated module.

Table 2 Status Return Values

Name Description
SSP_SUCCESS API Call Successful.
SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.
SSP_ERR_HW_LOCKED Lock already owned by another user.
SSP_ERR_CAN_MODE_SWITCH_FAILED Channel failed to switch modes.
SSP_ERR_CAN_INIT_FAILED Channel failed to initialize.
SSP_ERR_ASSERTION Null pointer presented.
SSP_ERR_NOT_OPEN Port is not open.
SSP_ERR_CAN_DATA_UNAVAILABLE No data available.
SSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is not setup for receive.
SSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at this time.
SSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup for receive and cannot send.

Note: Lower-level drivers may return common error codes. Refer to the SSP User’s Manual API References
for the associated module for a definition of all relevant status return values.

3. CAN HAL Module Operational Overview
The CAN HAL module controls CAN peripherals on Synergy microcontrollers according to the user configuration. The
API provides open, close, read, write, control and information functions. The driver allows for bit-timing as defined in
the CAN specification. The driver can be configured for up to 32 transmit or receive mailboxes with standard or
extended ID frames. Receive mailboxes can be configured to capture either data or remote CAN frames. The user
callback is invoked with channel, mailbox and event information when transmit, receive, or error interrupt occurs.

Using the CAN IDs and Masks

Each CAN Mailbox configured to receive messages has an ID and Mask set. Incoming messages are placed in the
lowest mailbox where the following is true:

Incoming ID & Mailbox Mask == Mailbox ID & Mailbox Mask

Example 1: A mailbox with an ID of 0x25 and a mask of 0x1FFFFFFF can receive messages with IDs of 0x25.

Example 2: A mailbox with an ID of 0x25 and a mask of 0x1FFFFFF0 can receive messages with IDs of 0x20 through
0x2F.

Using the CAN HAL Module Test Modes

The CAN Module has three test modes: listen only, external loopback and internal loopback.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 4 of 13
Aug 22, 2017

• In listen-only mode, valid data frames and remote frames can be received; however, only recessive bits can be sent
on the CAN bus. The ACK bit, overload flag, and active error flag cannot be sent. Listen-only mode can be used for
baud rate detection

• In external-loopback mode, the protocol module treats its own transmitted messages as those received by the CAN
transceiver and stores them into the receive mailbox. To be independent from external stimulation, the protocol
module generates the ACK bit. Connect the CTX and CRX pins to the transceiver.

• Internal-loopback mode is similar to external-loopback mode, excepting that the protocol controller performs
internal loopback from the internal CTX pin to the internal CRX pin. The input value of the external CRX pin is
ignored. The external CTX pin outputs only recessive bits. The CTX and CRX pins are not required to be connected
to the CAN bus or any external device.

Changing the CAN HAL Module Operating Modes

The CAN module can be switched between modes using the control API. Pass the
CAN_COMMAND_MODE_SWITCH and a pointer to a can_mode_t variable to set to the desired mode in the
control API.

Table 3 CAN modes and can_mode_t values

Mode can_mode_t value Reason for use
Normal CAN_MODE_NORMAL Normal operation mode
Internal
Loopback

CAN_MODE_LOOPBACK_INTERNAL Internal loopback testing

External
Loopback

CAN_MODE_LOOPBACK_EXTERNAL External loopback testing

Listen Only CAN_MODE_LISTEN Baud rate detection
Halt CAN_MODE_HALT Mailbox configuration and test mode setting
Sleep CAN_MODE_SLEEP Stops the clock supply to the CAN module

reducing current consumption
Exit Sleep CAN_MODE_EXIT_SLEEP Internal use only
Reset CAN_MODE_RESET Communication configuration

Note: See the CAN HAL Module API Summary table example of a control API for setting loopback mode.

3.1 CAN HAL Module Important Operational Notes and Limitations
3.1.1 CAN HAL Module Operational Notes
• The user application must start the main-clock oscillator (CANMCLK or XTAL) at run-time using the CGC

Interface, if it has not already started (for example, if it is not used as the MCU clock source.)
• For S7, S5, S3 and S1 MCUs: the following clock restriction must be satisfied for the CAN HAL module when the

clock source is the main-clock oscillator (CANMCLK): fPCLKB >= fCANCLK (XTAL / Baud Rate Prescaler)
• For S7, S5 and S3 MCUs: the source of the peripheral module clocks must be PLL for the CAN HAL module when

the clock source is PCLKB.
• For S3 MCUs: the clock frequency ratio of PCLKA and PCLKB must be 2:1 when using the CAN HAL module.

Operation is not guaranteed for other settings.
• For S1 MCUs: the clock frequency ratio of ICLK and PCLKB must be 2:1 when using the CAN HAL module.

Operation is not guaranteed for other settings.
• SJW (Synchronization Jump Width) is often given by the bus administrator. Select 1 <= SJW <= 4.
• Time segment and SJW settings must adhere to the following constraints: TS1 > TS2 >= SJW.

3.1.2 CAN HAL Module Limitations
Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4. Including the CAN HAL Module in an Application
This section describes how to include the CAN HAL module in an application using the SSP configurator.

Note: It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User’s Manual to learn how to manage each of these important steps in creating SSP-based applications.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 5 of 13
Aug 22, 2017

To add the CAN Driver to an application, simply add it to a HAL/ Common Stack or any thread using the stacks selection
sequence given in the following table. (The default name for the CAN HAL module is g_can0. This name can be changed
in the associated Properties window.)

Table 4 CAN HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence
g_can0 CAN Driver on r_can Threads New Stack> Driver> Connectivity> CAN Driver on r_can

When the CAN HAL module on r_can is added to the thread stack as shown in the following figure, the configurator
automatically adds the needed lower-level drivers. Any drivers that need additional configuration information are
highlighted in red. Modules with a Gray band are individual modules that stand alone.

Figure 2 CAN HAL Module Stack

5. Configuring the CAN HAL Module
The CAN HAL module must be configured by the user for the desired operation. The SSP configuration window
automatically identifies (by highlighting the block in red) any required configuration selections, such as interrupts or
operating modes, which must be configured for lower-level modules for successful operation. Only those properties that
can be changed without causing conflicts are available for modification. Other properties are ‘locked’ and not available
for changes, and are identified with a lock icon for the ‘locked’ property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less-error prone than previous ‘manual’ approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP Configurator, and are shown in the following tables for easy reference.

Note: You may want to open your ISDE, create the CAN HAL module and explore the property settings in parallel
with looking over the following configuration table settings; this helps to orient you and can be a useful ‘hands-
on’ approach to learning the ins and outs of developing with SSP.

Table 5 Configuration Settings for the CAN HAL Module on r_can

ISDE Property Value Description

Parameter Checking Enabled, Disabled,
BSP (Default: BSP)

Selects if code for parameter checking is to be
included in the build.

Error Interrupt Priority Disabled, Priority 0-15
(Default: Disabled)

Specify error interrupt priority 0-15 (required).

Receive Mailbox
Interrupt Priority

Disabled, Priority 0-15
(Default: Disabled)

Specify error interrupt priority 0-15 (required).

Transmit Mailbox
Interrupt Priority

Disabled, Priority 0-15
(Default: Disabled)

Specify error interrupt priority 0-15 (required).

Name Default: g_can0 CAN driver module name.
Channel 0, 1 Specify if CAN channel to use 0 or 1 (S7G2 only).
Baud Rate Prescaler Default 5 Specify baud rate prescaler(0-1023).
Time Segment 1 15 Time Quanta Specify time segment 1 value. (4-16).
Time Segment 2 8 Time Quanta Specify time segment 2 value (2-8).

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 6 of 13
Aug 22, 2017

ISDE Property Value Description

Synchronization Jump
Width

2 Time Quanta Specify Synchronization Jump Width value (1-4).

Clock Source PCLKB (S7G2 and
S3A7), CANMCLK
(Default: CANMCLK)

CAN clock source, CANMCLK or PCLKB (S7G2
and S3A7 only).

Callback NULL A user callback function can be registered
in can_api_t::open. If this callback function is
provided, it is called from the interrupt service
routine (ISR) each time any interrupt occurs.

Overwrite/Overrun
mode

Overwrite Mode,
Overrun mode
(Default: Overwrite
mode)

Select whether receive mailbox will be overwritten
or overrun if data is not read in time.

Standard or Extended
ID Mode

Standard ID Mode,
Extended ID Mode
(Default: Standard ID
Mode)

Select whether the driver will use the CAN
standard or extended IDs.

Number of Mailboxes 32 Mailboxes Select 4, 8, 16 or 32 mailboxes.
Mailbox [0] ID …
Mailbox [31] ID

Default n Select the receive ID for mailbox 0, between 0 and
0x7ff when using standard IDs, between 0 and
0x1FFFFFFF when using extended IDs. Value is
not used when the mailbox is set as transmit type.

Mailbox [0] Type …
Mailbox [31] Type

N = 0: Transmit
Mailbox; N = 1 …31:
Receive Mailbox

Select whether the mailbox is used for receive or
transmit.

Mailbox [0] Frame Type
… Mailbox [31] Frame
Type

N = 0: Remote
Mailbox; N = 1 …31:
Data Mailbox

Select whether the mailbox is used to capture data
frames or remote frames (receive only).

Mailbox 0-3 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 0-3.

Mailbox 4 - 7 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 4-7.

Mailbox 8 - 11 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 8 -11.

Mailbox 12 - 15 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 12 -15.

Mailbox 16 - 19 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 16 -19.

Mailbox 20 - 23 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 20 -23.

Mailbox 24 - 27 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 24 -27.

Mailbox 28 - 31 Group
Mask

Default: 0x1FFF FFFF Select the Mask for mailboxes 28 -31.

Note: The example values and defaults are for a project using the Synergy S7G2 MCU. Other MCUs may
have different default values and available configuration settings. Most of the property settings for
lower-level modules are fairly intuitive and usually can be determined by inspection of the associated
Properties window from the SSP configurator.

5.1 CAN HAL Module Clock Configuration
The CAN peripheral uses the CANMCLK (main-clock oscillator) or PCLKB (S7G2 or S3A7 only) as its clock source
(fCAN, CAN System Clock.) Using the PCLKB with the default of 60 MHz and the Synergy default, (S7G2 DK) CAN
configuration provides a CAN bit rate of 500 Kbit.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 7 of 13
Aug 22, 2017

To set the PCLKB frequency, use the clock configurator in e2 studio (Clocks tab in the configurator.)
To change the clock frequency at run-time, use the CGC Interface. Refer to the CGC module guide for details on
configuring clocks.

5.2 CAN HAL Module Pin Configuration
The CAN peripheral module uses the pins on the MCU to communicate to external devices connected on the CAN bus.
Under Peripherals, select CAN and then CAN0 for channel 0 or CAN1 (S7G2 and S3A7 only) for channel 1. The
operation mode for the channel must be enabled and the CRXn and CTXn pins must be selected to match your PC
board layout. The pin configurator sets appropriate CAN pin configuration in the pin_cfg field for the associated pin.
The following table lists the method for selecting the pins within the SSP configuration window and the subsequent
table demonstrates an example selection for the CAN pins.

Note: The operation mode selected determines what peripheral signals are available and the MCU pins required.

Table 6 Pin Selection Sequence for CAN Driver on r_can

Resource ISDE Tab Pin selection Sequence

CAN Pins Select Peripherals > CAN>CAN0
Note: The selection sequence assumes CAN0 is the desired hardware target for the driver.

Table 6: Pin Configuration Settings for CAN0

Pin Configuration
Property

Value Description

Operation Mode Disabled, Enabled Enable the mode to use CAN0
CRX None, P202, P402

(Default: P402)
CAN0_CRX0

CTX None, P203 P401
(Default: P401)

CAN0_CTX0

Note: The example values are for a project using the Synergy S7G2 MCU and the SK-S7G2 Kit. Other
Synergy MCUs and other Synergy Kits may have different available pin configuration settings.

5.3 CAN HAL Module Bit Rate Calculation
A time quanta (Tq) is one bit-time of the CAN communication clock, fCANCLK. This is not the CAN bit-time but the
internal clock period of the CAN peripheral. The frequency is determined by the baud-rate prescaler value and the CAN
source clock, fCAN (CANMCLK or PCLKB). One bit-time is divided into a number of time quanta, Tqtot. One time
quantum is equal to the period of the fCANCLK. Each bitrate register is then given a certain number of Tq of the total
of Tq that make up one CAN-bit period. The default ISDE bitrate setting (S7G2 DK template) is 500 Kbps for a fCAN
at 60 MHz (using PCLKB.)

The formulas to calculate the bitrate register settings are as follows:

fCAN = (fPCLKB or fCANMCLK)

The baud-rate prescaler scales the CAN peripheral clock down.

fCANCLK = fCAN/ Baud Rate Prescaler = 60 MHz (default)/ 5(default) = 12 MHz

One time quantum is one clock period of the CAN clock.

Tqtot =1/fCANCLK

Tqtot is the total number of CAN peripheral clock cycles during one CAN bit time and is by the peripheral built by the
sum of the “time segments” and “SS” which is always 1.

Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2) = 15 + 8 + 1 = 24 (default)

The bitrate is then:

Bitrate = fCANCLK/Tqtot = 12 MHz / 24 = 500Kbps

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 8 of 13
Aug 22, 2017

Important notes:

• The user application must start the main-clock oscillator (CANMCLK or XTAL) at run-time using the CGC
Interface if it is not already started (for example, if it is not used as the MCU clock source.)

• For S7G2, S3A7 and S124 MCUs: the following clock restriction must be satisfied for the CAN module when the
clock source is the main-clock oscillator (CANMCLK): fPCLKB >= fCANCLK (fCAN / baud-rate prescaler)

• For S7G2 and S3A7 MCUs: the source of the peripheral module clocks must be PLL for the CAN HAL module
when the clock source is PCLKB.

• For S3A7 MCUs: the clock frequency ratio, PCLKA and PCLKB must be 2:1 when using the CAN HAL module.
Operation is not guaranteed for other settings.

• For S124 MCUs: the clock frequency ratio of ICLK and PCLKB must be 2:1 when using the CAN HAL module.
Operation is not guaranteed for other settings.

• SJW (Synchronization Jump Width) is often given by the bus administrator. Select 1 <= SJW <= 4.

Table 7 Configurator sample values for different CAN bit-rate

fCAN
(either
PCLKB
or CAN
MCLK)

Baud
Rate
Prescalar

fCANCLK =
fCAN/Baude
Rate
Prescalar

Time
Segment
1
(TSEG1)

Time
Segment
2
(TSEG2)

Synchronization
Jump Width (SS)

Tqtot =
TSEG1
+
TSEG2
+SS

Bitrate =
fCANCLK/Tqtot

240 10 24 15 8 1 24 1 Mbps
60 5 12 15 8 1 24 500 kbps
240 48 5 16 2 2 20 250 kbps
240 96 2.5 16 2 2 20 125 kbps

5.4 Setting the CAN HAL Module Mailbox Group Masks
There are eight mailbox group-masks, one for each group of four mailboxes. These masks allow the mailboxes to be
configured to receive more than one ID. If the mask is all ones (0x7ff for standard IDs or 0x1FFFFFFF for extended ID)
the mailboxes within the group do not mask any bits of the ID, requiring all bits of the mailbox ID to match the mailbox
ID before a message is captured. If any bits of the mask are set to zero, those bits are not necessary to match the same
bits of the mailbox ID. For example, if Mailbox ID 1 is set to 0x7ff and Mailbox 0-3 Group Mask is set to 0x7ff,
mailbox 1 only captures messages with the ID of 0x7ff. If the mailbox 0-3 group mask is set to 0x7fe, mailbox 1 still
captures messages with IDs of 0x7f, but also captures messages with IDs of 0x7fe.

6. Using the CAN HAL Module in an Application
A CAN application requires a minimum of two nodes to demonstrate CAN communication. One node can be a
transmitter, while the other can be a receiver (or both can behave as a transmitter and receiver).

The typical steps in using the CAN module in an application are:

1. Initialize the CAN HAL module using the open API.
2. (Optional) Enter internal loopback or external loopback test modes using control API.
3. (Optional) Information about the module status, including bit rate, can be retrieved using the infoGet API.
4. To transmit a message:

A. Create and configure the CAN frame ensuring correct ID and frame type.
B. Write the CAN frame to a mailbox configured in transmit mode using the write API.

5. To receive a message: read from a mailbox that has received a frame using the read API.
6. Close the CAN HAL module using the close API (if needed.)

These common steps are illustrated in a typical operational flow diagram in the following figure:

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 9 of 13
Aug 22, 2017

Figure 3 Flow Diagram of a Typical CAN HAL Module Application

7. The CAN HAL Module Application Project
The application project associated with this module guide illustrates the steps in a full design. You may want to import
and open the application project within the ISDE and view the configuration settings for the CAN HAL module. You
can also read the code (can_tx_rx.c) used to demonstrate the CAN APIs in a complete design.

The application project demonstrates the typical use of the CAN APIs. The application project initializes the CAN HAL
module and transmits a message when the user presses the switch S4 on the SK-S7G2 board. If the switch is not
pressed, the program is in continuous-reception mode. The results are printed on the Debug Console using the common
semi-hosting function. The following table identifies the target versions for the associated software and hardware used
by the application project:

Table 8 Software and Hardware Resources Used by the Application Project

Resource Revision Description
e2 studio 5.3.1 or later Integrated Solution Development Environment
SSP 1.2.0 or later Synergy Software Platform

IAR EW for Synergy 7.71.2 or later IAR Embedded Workbench® for Renesas
Synergy™

SSC 5.3.1 or later Synergy Standalone Configurator
SK-S7G2 v3.0 to v3.1 Starter Kit (2)

A simple flow diagram of the Application project is shown in the following figure:

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 10 of 13
Aug 22, 2017

Figure 4 CAN HAL Module Application Project Flow Diagram

The hal_entry.c file is in the project once it has been imported into the ISDE. You can open this file within the
ISDE and read it along with the following description to help identify key uses of the APIs. The function
can_tx_rx() is called from HAL entry. The can_tx_rx.c file contains the code section to allow semi-hosting to
display results using printf().

The can_tx_rx.h file has the header files which reference the CAN instance structure, definitions of flags for CAN
communication and CAN frame declaration. The can_tx_rx.c file is the entry function for the main program-control
section. The CAN HAL module is initialized using the open API. Inside the ‘forever’ while loop the status of switch S4
and switch S5 is monitored. If a switch is pressed, then the associated CAN transmit function is called. If no switch is
pressed, the module waits for the CAN receive flag to be set for CAN reception. Each switch has a different CAN
message configuration. The CAN transmit function calls the write API to write the frame on the CAN bus. The CAN
receive function calls the read API to read the frame from the CAN bus. The transmitted and received data are
displayed on the console using the printf() function.

The last section is the callback function; this function sets the respective flag as per the CAN event executed.

Note: It is assumed that you are familiar with using printf()with the Debug Console in the Synergy Software
Package. If you are unfamiliar, refer to the “How do I Use Printf() with the Debug Console in the Synergy
Software Package” Knowledge Base article, available as described in the References section at the end of this
document. Alternatively, the user can see results via the watch variables in the debug mode.

A few key properties are configured in this application project to support operations and physical properties required by
the target board and MCU. The following table lists the properties with the values set for this specific project. You can
also open the application project and view these settings in the Properties window as a hands-on exercise.

Table 9 CAN HAL Module Configuration Settings for the Application Project

ISDE Property Value Set
Parameter Checking Disabled
Error Interrupt Priority Priority 4
Receive Mailbox Interrupt Priority Priority 4
Transmit Mailbox Interrupt Priority Priority 4
Name g_can0
Channel 0
Callback can_callback
Mailbox 1 ID 0x7FF
Mailbox 0-3 Group Mask 0x7FF

Message filtering is applied so the CAN node does not receive any message other than the one set in the configurator.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 11 of 13
Aug 22, 2017

8. Customizing the CAN HAL Module for a Target Application
Some configuration settings are normally changed by the developer from those shown in the application project. For
example, you can configure different formats of messages by updating the ID and data length in the code. Note that the
maximum data-size that can be handled over one CAN message is 8 bytes. The CAN bitrate can be changed by
updating the clock settings using the Clock tab in the ISDE.

9. Running the CAN HAL Module Application Project
To run the CAN HAL module application project and to see it execute on a target kit, you can simply import it into your
ISDE, compile, and run debug. For this demonstration, you need two (2) boards and two instances of e2 studio with the
same project imported in both. CAN pins are present on the J7 port. Connect CANH from one board to another; then
connect CANL to the GND. The two instances have different workspaces. Use different port numbers of GDB and
ADM in the debug configurations on both instances of the e2 studio. Use the following table for the pin connections.

Table 10 Pin connectivity for CAN communication between two boards

Board 1 Board 2
CANH CANH
CANL CANL
GND GND

If using the IAR EW for Synergy, you must update the debugger settings by following these steps:

1. Open project properties.
2. Select debugger and change driver to J-Link/ J-Trace.
3. Now select J-Link/ J-Trace and click Connection tab.
4. In USB, select another USB device.

Figure 5 Configuring Debugger in IAR EW for Synergy

Note: These steps are to be followed only when using one PC for both boards. If you are running the application on
two different systems, there is no need to change the debugger configurations.

To implement the CAN HAL module application in a new project, use the following steps for defining, configuring,
auto-generating files, adding code, compiling and debugging on the target kit. Using these steps is a hands-on approach
that can help make the development process with SSP more practical, while just reading over this guide tends to be
more theoretical.

Refer to Importing a Renesas Synergy Project (r11an0023eu0116-synergy-ssp-import-guide.pdf, included in this
package) for instructions on importing the project into e2 studio or IAR EW for Synergy and building/running the
application.

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 12 of 13
Aug 22, 2017

Note: The following steps are in sufficient detail for someone experienced with the basic flow through the Synergy
development process. If these steps are not familiar, refer to the first few chapters of the SSP User’s Manual for
how to accomplish these steps.

1. Connect both SK-S7G2 board to the host PC via a micro USB cable to J19.
2. Start to debug the application.

The output can be viewed in the ISDE Debug Console (e2 studio or terminal I/O (IAR EW for Synergy).

Figure 6 Example Output from CAN Application Project (Board1)

Figure 7 Example Output from CAN Application Project (Board 2)
When switch S4 on board 2 was pressed, the ID 2047 message is received on board 2. The message with ID 2046
message was not received on board 1; the configurator was set to filter out that message. Whenever the board receives a
message of interest, the RX flag is set.

10. CAN HAL Module Conclusion
This module guide has provided all the background information needed to select, add, configure and use the module in
an example project. Many of these steps were time consuming and error-prone activities in previous generations of
embedded systems. The Renesas Synergy Platform makes these steps much less time consuming and removes the
common errors, like conflicting configuration settings or the incorrect selection of lower-level drivers. The use of
high-level APIs (as demonstrated in the application project) illustrate additional development time savings by allowing
work to begin at a high level, avoiding the time required in older development environments to use or, in some cases,
create, lower-level drivers.

11. CAN HAL Module Next Steps
After you have mastered a simple CAN HAL module project, you may want to merge this with other projects where the
data from other modules can be communicated over the CAN bus. For example, if your application has a sensor
interface on the ADC and connects with another board using the CAN bus, you may want to merge the CAN module
and the ADC module together in one project.

12. CAN HAL Module Reference Information
SSP User Manual: Available in html format in the SSP distribution package and as a pdf from the Synergy Gallery.

Links to all the most up-to-date r_can module reference materials and resources are available on the Synergy
Knowledge Base: https://en-
us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowle
dge_Base/r_rtc_Module_Guide_Resources/r_can_HAL_Module_Guide_Resources.

https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/r_rtc_Module_Guide_Resources/r_can_HAL_Module_Guide_Resources
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/r_rtc_Module_Guide_Resources/r_can_HAL_Module_Guide_Resources
https://en-us.knowledgebase.renesas.com/English_Content/Renesas_Synergy%E2%84%A2_Platform/Renesas_Synergy_Knowledge_Base/r_rtc_Module_Guide_Resources/r_can_HAL_Module_Guide_Resources

Renesas Synergy™ Platform CAN HAL Driver Module Guide

R11AN0065EU0101 Rev.1.01 Page 13 of 13
Aug 22, 2017

Website and Support
Support: https://synergygallery.renesas.com/support

Technical Contact Details:

• America: https://renesas.zendesk.com/anonymous_requests/new
• Europe: https://www.renesas.com/en-eu/support/contact.html
• Japan: https://www.renesas.com/ja-jp/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.

https://synergygallery.renesas.com/support
https://renesas.zendesk.com/anonymous_requests/new
https://www.renesas.com/en-eu/support/contact.html
https://www.renesas.com/ja-jp/support/contact.html

Revision History

Rev. Date
Description
Page Summary

1.00 May 15, 2017 Initial Release
1.01 Aug 22, 2017 Application update

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. CAN HAL Module Features
	2. CAN HAL Module APIs Overview
	3. CAN HAL Module Operational Overview
	3.1 CAN HAL Module Important Operational Notes and Limitations

	4. Including the CAN HAL Module in an Application
	5. Configuring the CAN HAL Module
	5.1 CAN HAL Module Clock Configuration
	5.2 CAN HAL Module Pin Configuration
	5.3 CAN HAL Module Bit Rate Calculation
	5.4 Setting the CAN HAL Module Mailbox Group Masks

	6. Using the CAN HAL Module in an Application
	7. The CAN HAL Module Application Project
	8. Customizing the CAN HAL Module for a Target Application
	9. Running the CAN HAL Module Application Project
	10. CAN HAL Module Conclusion
	11. CAN HAL Module Next Steps
	12. CAN HAL Module Reference Information
	Revision History

