Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

Application Note

78K0/Kx2-L

Sample Program (Initial Settings)

LED Lighting Switch Control

This document summarizes the initial settings for the sample program and describes basic initial settings for the microcontroller. In the sample program, the two switch inputs and lighting of the three LEDs are controlled, after the basic initial settings for the microcontroller, such as selecting the clock frequency or I/O port, have been performed.

Target devices 78K0/KY2-L microcontroller 78K0/KA2-L microcontroller 78K0/KB2-L microcontroller 78K0/KC2-L microcontroller CONTENTS

CHAP	TER 1 OVERVIEW	
СНАР	TER 2 CIRCUIT DIAGRAM	
2.1	Circuit Diagram	
2.2	Used Devices Other than Microcontroller	4
CHAP	TER 3 SOFTWARE	5
3.1	Included Files	5
3.2	Internal Peripheral Functions to Be Used	
3.3	Initial Settings and Operation Overview	6
3.4	Flow Chart	7
CHAP	TER 4 SETTING METHODS	8
4.1	Setting Up Option Byte	
4.2	Setting Up Vector Table	
4.3	Specifying ROM and RAM Sizes	16
4.4	Setting Up Stack Pointer	17
4.5	Setting Up and Controlling Watchdog Timer	18
4.6	Setting Up Clock	
4.7	Setting Up Ports	27
4.8	Main Processing	34
-	PTER 5 RELATED DOCUMENTS	
	NDIX A PROGRAM LIST	
APPE	NDIX B USING 78K0/KC2-L 44-PIN PRODUCTS	54
APPE	NDIX C REVISION HISTORY	55

Document No. U19685EJ1V0AN00 (1st edition) Date Published September 2009 N

- The information in this document is current as of May, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC
 Electronics products are not taken measures to prevent radioactive rays in the product design. When customers
 use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate
 sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in
 order to avoid risks of the damages to property (including public or social property) or injury (including death) to
 persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

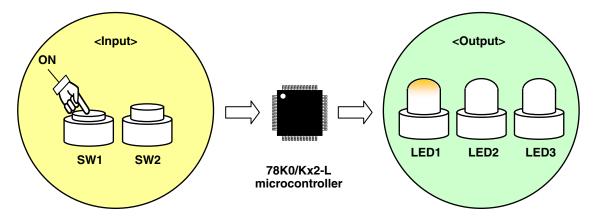
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

CHAPTER 1 OVERVIEW

In this sample program, the basic initial settings for the 78K0/Kx2-L microcontroller, such as setting up the option byte, selecting the clock frequency, and setting up I/O ports are performed. In the main processing operation after completion of the initial settings, the lighting of the three LEDs is controlled by using the two switch inputs.


(1) Primary initial settings

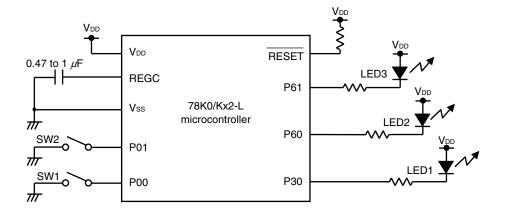
<Option byte settings>

- Allowing the internal low-speed oscillator to be programmed to stop
- Disabling the watchdog timer
- Setting the internal high-speed oscillation clock frequency to 8 MHz
- Disabling LVI from being started by default
- <Settings during initialization immediately after a reset ends>
- Specifying the ROM and RAM sizes
- Specifying that the CPU clock run on the internal high-speed oscillation clock (4 MHz)
- Stopping the internal low-speed oscillator
- Setting up I/O ports
- Disabling peripheral hardware not to be used

(2) Main processing operation

Lighting of the LEDs (LED1, LED2, LED3) is controlled by detecting switch inputs (SW1, SW2) with the 78K0/Kx2-L microcontroller.

Switch	n Input	LED Output				
SW1	SW2	LED1	LED2	LED3		
OFF	OFF	OFF	OFF	OFF		
ON	OFF	ON	OFF	OFF		
OFF	ON	OFF	ON	OFF		
ON	ON	OFF	OFF	ON		


Caution For cautions when using the device, refer to the <u>78K0/Kx2-L User's Manual</u>.

CHAPTER 2 CIRCUIT DIAGRAM

This chapter provides a circuit diagram and describes the devices used in this sample program other than the microcontroller.

2.1 Circuit Diagram

A circuit diagram is shown below.

Cautions 1. Use the microcontroller at a voltage in the range of 1.8 V \leq V_{DD} \leq 5.5 V.

- 2. Connect the AVREF pin directly to VDD.
- 3. Connect the AVss pin directly to GND (only for the 78K0/KC2-L and 78K0/KB2-L microcontrollers).
- 4. Connect REGC to Vss via a capacitor (0.47 to 1 μ F).
- 5. For the 78K0/KY2-L and 78K0/KA2-L, Vss is also used as the ground potential for the A/D converter. Be sure to connect Vss to a stable GND.
- 6. Handle unused pins that are not shown in the circuit diagram as follows:
 - I/O ports: Set them to output mode and leave them open (unconnected).
 - Input ports: Connect them independently to VDD or VSS via a resistor.
- 7. In this sample program, the P121/X1/TOOLC0 and P122/X2/EXCLK/TOOLD0 pins are used for on-chip debugging.

2.2 Used Devices Other than Microcontroller

The following devices are used in addition to the microcontroller:

(1) Switches (SW1, SW2)

These switches are used as inputs to control the lighting of the LEDs.

(2) LEDs (LED1, LED2, LED3)

The LEDs are used as outputs corresponding to switch inputs.

CHAPTER 3 SOFTWARE

This chapter describes the files included in the compressed file to be downloaded, internal peripheral functions of the microcontroller to be used, and initial settings and provides an operation overview of the sample program and a flow chart.

3.1 Included Files

The following table shows the files included in the compressed file to be downloaded.

File Name	Description	Compressed (*.zip) File Included		
		ZIP	PM 4 14 1 32	
main.asm (Assembly language version) main.c (C language version)	Source file for hardware initialization processing and main processing of microcontroller	● Note	● Note	
op.asm	Assembler source file for setting the option byte (This file is used for setting up the watchdog timer and internal low- speed oscillator and selecting the internal high-speed oscillation clock frequency.)	•	•	
Kx2-L_Init.prw	Work space file for integrated development environment PM+		•	
Kx2-L_Init.prj	Project file for integrated development environment PM+		•	

Note "main.asm" is included with the assembly language version, and "main.c" with the C language version.

Remark

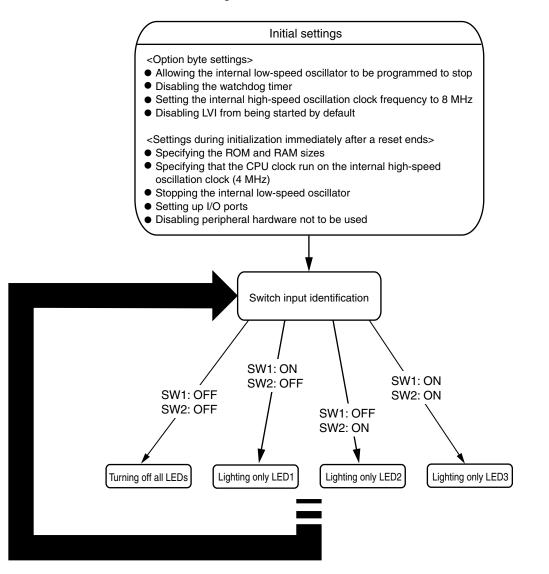
: Only the source file is included.

ZIP

: The files to be used with integrated development environment PM+ are included.

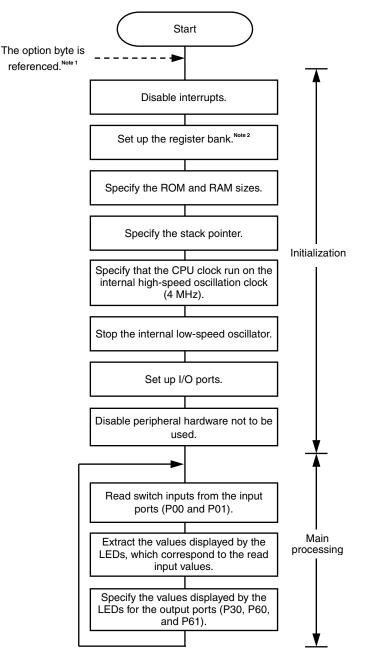
3.2 Internal Peripheral Functions to Be Used

The following internal peripheral functions of the microcontroller are used in this sample program.


- Input ports (for switch inputs): P00, P01
- Output ports (for lighting LEDs): P30, P60, P61

3.3 Initial Settings and Operation Overview

In this sample program, initial settings including the selection of the clock frequency and setting of the I/O ports are performed.


After completion of the initial settings, the lighting of the three LEDs (LED1, LED2, LED3) is controlled in accordance with the combination of the two switch inputs (SW1, SW2).

The details are described in the state transition diagram shown below.

3.4 Flow Chart

A flow chart for the sample program is shown below.

- **Notes 1.** The option byte is automatically referenced by the microcontroller immediately after a reset ends. In this sample program, the following settings are specified using the option byte:
 - Allowing the internal low-speed oscillator to be programmed to stop
 - Disabling the watchdog timer
 - Setting the internal high-speed oscillation clock frequency to 8 MHz
 - Disabling LVI from being started by default
 - 2. The general-purpose registers of the 78K0/Kx2-L Series microcontrollers are configured in four register banks so that the registers used for normal processing and those used when an interrupt occurs can be changed on a bank basis in order to create an efficient program. In this sample program, only register bank 0 is used.

CHAPTER 4 SETTING METHODS

This chapter describes how to set up the option byte, vector table, watchdog timer, and I/O ports, how to specify the ROM and RAM sizes, stack pointer, and clock frequency, and provides details about the main processing.

To execute a program written in C, another program that performs ROMization to integrate the former program into the system and starts a user-created program (main function) is required. The latter program is called a startup routine. In general, a startup routine is the first program that runs after the microcontroller is reset (initialized). It initially sets up the hardware such as the CPU, memory, and I/O ports and specifies the initial settings for running the main processing routine. In general, the startup routine, the main routine, and then subroutines are executed, and interrupts are serviced.

In the C version of this sample program, clock settings and initial settings for peripheral hardware are specified using the hdwinit function, after which the main function is executed. Therefore, the main processing is included in the main function. In the assembly language version, the microcontroller is reset (initialized), a program is executed from the IRESET address written at address 0000H in the vector table, clock settings and initial settings for peripheral hardware are specified as by the hdwinit function in the C version, and then the main processing begins.

In this sample program, the peripheral hardware units that are not to be used are disabled. To use them, set up the corresponding registers in accordance with the purpose for using them and their functions.

For details about the startup routine, refer to the chapter about the startup routine in the <u>CC78K0 Operation User's</u> <u>Manual</u>.

For how to set register, refer to the <u>78K0/Kx2-L User's Manual</u>.

For assembler instructions, refer to the 78K/0 Series Instructions User's Manual.

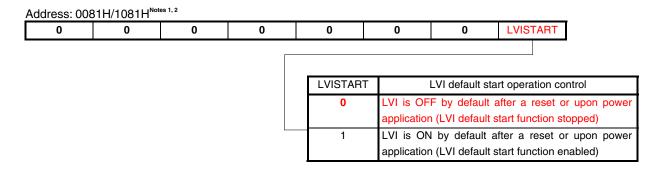
4.1 Setting Up Option Byte

The option byte must be set. The following items are set with the option byte.

- (1) Internal low-speed oscillator oscillation control
- (2) Watchdog timer interval time setting
- (3) Watchdog timer counter operation setting
- (4) Watchdog timer window open period setting
- (5) LVI default start operation control
- (6) Internal high-speed oscillation clock frequency selection
- (7) On-chip debug operation control

Figure 4-1. Format of Option Byte (Address: 0080H/1080H)

Address: 0080H/1080H^{Note}


0	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	LSROSC	
			LSROSC		Internal low	v-speed oscilla	ator operation	
			0		oped by softw of the RCM re		when 1 is writt	en to bit
			1	Cannot be st bit)	topped (not st	opped even if	1 is written to the	LSRSTO
			WDCS2	WDCS1	WDCS0	W(otob		
			0		0	2 ⁷ /fi∟ (3.88 m	dog timer overflov	wume
			0	0	1	2 /1⊫ (3.88 m 2 ⁸ /f⊫ (7.76 m	-	
			0	1	0	2 [°] /f⊾ (15.52 i	,	
			0	1	1	2 ¹⁰ /fi∟ (31.03		
			1	0	0	2 ¹² /fi∟ (124.1)		
			1	0	1	2 ¹⁴ /fi∟ (496.48		
			1	1	0	2 ¹⁵ /fı∟ (992.9		
			1	1	1	2 ¹⁷ /f⊫ (3.97 s		
			WDTON	-		-	unter/illegal acces	
			0	access detec	tion operation	disabled	stopped after re	
			1		eration enable ction operation		started after re-	set), illeg
			WINDOW1	WINDOW0	Wa	atchdog timer v	window open peri	od
			0	0	25%			
			0	1	50%			
			1 1	0	75% 100%			

- **Note** Set a value that is the same as that of 0080H to 1080H because 0080H and 1080H are switched during the boot swap operation.
- Cautions 1. The combination of WDCS2 = WDCS1 = WDCS0 = 0 and WINDOW1 = WINDOW0 = 0 is prohibited.
 - 2. The watchdog timer continues its operation during self programming and EEPROM emulation of the flash memory. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.
 - If LSROSC = 0 (oscillation can be stopped by software), the count clock is not supplied to the watchdog timer in the HALT and STOP modes, regardless of the setting of bit 0 (LSRSTOP) of the internal oscillation mode register (RCM).

When 8-bit timer H1 runs on the internal low-speed oscillation clock, the count clock is supplied to 8-bit timer H1 even in the HALT/STOP mode.

- 4. Be sure to clear bit 7 to 0.
- Remarks 1. fill: Internal low-speed oscillation clock frequency
 - **2.** (): fi∟ = 33 kHz (MAX.)
 - 3. The values written in red in the above figure are specified in this sample program.

Figure 4-2. Format of Option Byte (Address: 0081H/1081H)

- **Notes 1.** LVISTART can only be written by using a dedicated flash memory programmer. It cannot be set during self programming or boot swap operation during self programming. However, because 0081H and 1081H are switched during the boot swap operation, set a value that is the same as that of 0081H to 1081H.
 - 2. To change the setting for the LVI default start, set the value to 0081H again after batch erasure (chip erasure) of the flash memory. The setting cannot be changed after the memory of the specified block is erased.

Caution Be sure to clear bits 7 to 1 to "0".

Remark The values written in red in the above figure are specified in this sample program.

Figure 4-3. Format of Option Byte (Address: 0082H/1082H)

Address: 008	32H/1082H [№]	ote						
0	0	0	0	0	0	0	R4M8MSEL]
			Г					-
				R4M8MSEL	Internal hig	h-speed osci	llation clock frequ	iency selectio
					8 MHz (TYF			
			L	1	4 MHz (TYF	,		

- **Note** Set a value that is the same as that of 0082H to 1082H because 0082H and 1082H are switched during the boot swap operation.
- Caution Be sure to clear bits 7 to 1 to "0".
- **Remark** The values written in red in the above figure are specified in this sample program.

0	0	0	-	CDCK TOP	1	1	OCDPSEL	OCDONB	
					OCDONB		Transition of o	n-chip debug r	node
					0	Not shiftin reset ends	g to on-chip de	bug mode imr	nediately aft
					1	Shifting to ends	on-chip debug	node immedia	tely after a r
					OCDPSEL	Pin	selection used c	luring on-chip	debugging
					0 TOOLC1/P31, TOOLD1/P32				
					1	TOOLC0/X1, TOOLD0/X2			
					OCDCK STOP		high-speed osc of the STOP ins		
					0	(However,	high-speed os internal high-s o CPU and perip	peed oscillati	on clock is
					1	the terms of the t	gh-speed oscilla		

Figure 4-4. Format of Option Byte (Address: 0083H/1083H)

- **Note** Set a value that is the same as that of 0083H to 1083H because 0083H and 1083H are switched during the boot swap operation.
- Caution Be sure to clear bits 7 to 5 to "0" and set bits 3 and 2 to "1".
- Remark The values written in red in the above figure are specified in this sample program.

Address: 008	4H/1084H ^{Note}						
0	0	0	0	0	0	OCDEN1	OCDEN0
			OCDE	N1 OCDI	EN0	On-chip deb	oug operation control
			0	0	Opera	ation disabled	
			0	1	Settin	g prohibited	
			1	0	Opera	ation enabled.	Does not erase data of the
					flash	memory in case	authentication of the on-chip
					debug	g security ID fails	з.
			1	1	Opera	ation enabled.	Erases data of the flash
					memo	ory in case au	uthentication of the on-chip
					debu	g security ID fails	S.

Figure 4-5. Format of Option Byte (Address: 0084H/1084H)

- **Note** Set a value that is the same as that of 0084H to 1084H because 0084H and 1084H are switched during the boot swap operation.
- Cautions 1. Be sure to clear bits 7 to 2 to "0".
 - To perform on-chip debugging, the linker option must be set up in addition to the option byte. To perform on-chip debugging, select [Linker Options] in the PM+ [Tool] menu, and then select [On-Chip Debug [-go]]. For details about on-chip debugging, refer to CHAPTER 26 ON-CHIP DEBUG FUNCTION in the <u>78K0/Kx2-L User's Manual</u>.

– Load Module File[-o] Output File Name:				
a.imf			•	Browse
☑ Output Symbol Informat	tion[-g]			
Create Error List File[-e]				
Output File Name:				
a.elk			-	Browse
On-Chip Debug(-go)	bytes			
- Security ID[-gi]				
ID: FFFFFFFFFFFFFFFF	FFF	Н		
Command Line Options:				
-oa.lmf -go256 -pa.map				~

The values specified for the option byte, above, are as follows in the program.

TOPTIONB	CSEG AT	0080H
DB	01101110B	
DB	0000000B	
DB	0000000B	
DB	00011111B	
DB	00000010B	

To use C language, prepare an assembly language source file (file name: "*.asm (*: arbitrary)") such as the one shown below, specify it as the project source file, and build it with other source files (main.c).

TOPTIONB	CSEG	AT	0080н
DE	B 01101	110B	
DE	00000	000B	
DE	00000	000B	
DE	B 00011	111B	
DE	00000	010в	
END			

[Column] What are CSEG (Code Segment), DSEG (Data Segment), and BSEG (Bit Segment)? CSEG, DSEG, and BSEG are pseudo instructions which indicate where generated codes of instructions, data, or the like are to be allocated. Instructions and data which are described after such pseudo instructions have been issued are allocated in the ROM area with a CSEG pseudo instruction, in the RAM area with a DSEG pseudo instruction, and in the saddr area in RAM with a BSEG pseudo instruction. For example, to allocate the option byte setting content to addresses starting from 0080H in the internal ROM (flash memory), first, the CSEG pseudo instruction and AT attribute are used to specify 0080H as the address. Next, the DB pseudo instruction is used to define values that are to be set to addresses following 0080H, which are then described in the program coded in assembly language. The DB and DW pseudo instructions can be used only in a ROM area specified with the CSEG pseudo instruction. Descriptions of the DB or DW pseudo instructions in a RAM area specified with the DSEG or BSEG pseudo instruction will not cause errors, but must not be used. In this case, an object is generated and debug operation can be performed, since with MINICUBE2 (on-chip debug emulator) or SM+ (system simulator), coded instructions and data are expanded to the RAM area. With an actual device, however, operation is disabled since these cannot be expanded to the RAM area. For details of the CSEG, DSEG, and BSEG pseudo instructions, refer to the RA78K0 Language User's Manual.

4.2 Setting Up Vector Table

In the vector table area, the program start address, which is used when branching occurs due to the generation of resets and various interrupt requests, is stored. In this sample program, interrupts are not serviced, so only the reset vector which is used during reset start is set.

This setting is required when coding in assembly language. When coding in C language, this setting is not required.

[Setting example] Setting up only the reset vector to be used when starting a reset (same as in the sample program settings)

Address	
XVECT1 CSEG AT 0000H	
<1> DW RESET_START ;0000H RESET input, POC, L	VI, WDT
XVECT2 CSEG AT 0004H	
DW IINIT ;0004H INTLVI	
DW IINIT ;0006H INTPO	
DW IINIT ;0008H INTP1	
DW IINIT ;000AH INTP2	
<2>	
••• (Omitted) •••	
DW IINIT ;003AH INTP10	
DW IINIT ;003CH INTP11	
DW IINIT ;003EH BRK	
••• (Omitted) •••	
· ************************************	
; * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
;	
; Servicing interrupts by using unnecessary interrupt s	sources
; •************************************	****
<3> ···· XMAIN CSEG UNIT	
IINIT:	
; If an unnecessary interrupt occurred, the processing	branchos to this line
; The processing then returns to the initial original	Dianches to this ine.
	1 processing because no
progogging is porformed here	l processing because no
processing is performed here.	l processing because no

Immediately after the reset ends, the program starts from the address (RESET_START at <1>, above) specified using the reset vector.

In this sample program, vector table addresses except 0000H are not used. IINIT is specified for all remaining vector table addresses (<2> above). If these settings are specified, even if an interrupt occurs, the processing branches to IINIT (<3> above), and then returns from the interrupt without performing processing, assuming the interrupt to be unnecessary.

[Column] What are #pragma directives?

#pragma directives are preprocessing instructions which are used in the C language and are coded at the beginning of source programs.

The following are major #pragma directives.

- #pragma sfr: Operations related to the SFR area can be specified at the C source level.
- #pragma ei: The El instruction can be specified at the C source level.
- #pragma di: The DI instruction can be specified at the C source level.
- #pragma nop: The NOP instruction can be specified at the C source level. (The clock can be advanced without operating the CPU.)
- #pragma interrupt: Interrupt functions can be specified at the C source level.

For details about the #pragma directives, refer to the chapter regarding expansion functions, in the <u>CC78K0 Language User's Manual</u>.

4.3 Specifying ROM and RAM Sizes

The ROM and internal high-speed RAM capacities of a 78K0/Kx2-L Series microcontroller vary depending on the model. Therefore, the memory size switching register (IMS) must be set up during initialization.

The default project device settings (device file settings) are as follows:

78K0/KY2-L: μPD78F0557 78K0/KA2-L: μPD78F0567 78K0/KB2-L: μPD78F0578 78K0/KC2-L: μPD78F0588

The values specified for the IMS register for each model are written in the sample source. Therefore, change the values according to the microcontroller to use.

[Example] Using the µPD78F0586

• Assembly language

	;;	Specify the ROM and RAM sizes
	;;;	Note that the values to specify vary depending on the model. Enable the settings for the model to use. (The uPD78F0588 is the default model.)
De	lete	; Setting when using uPD78F0581 or uPD78F0586 ; MOV IMS, #042H ; Specify the ROM and RAM sizes
		; Setting when using uPD78F0582 or uPD78F0587 ;MOV IMS, #004H ; Specify the ROM and RAM sizes
A	dd ;	; Setting when using uPD78F0583 or uPD78F0588 ; * *;MOV IMS, #0C8H ; Specify the ROM and RAM sizes

To use the μ PD78F0586, add a semicolon (;) before MOV on the line under Setting when using uPD78F0583 or uPD78F0588 to disable the line by commenting it out. Next, delete the semicolon (;) before MOV on the line under Setting when using uPD78F0581 or uPD78F0586 to enable the line. The IMS settings can be changed to those for the μ PD78F0586.

• C language

/*	Specify the ROM and RAM sizes
	Note that the values to specify vary depending on the model. Enable the settings for the model to use. (The uPD78F0588 is the default model.)
Delete /* and */.	<pre>/* Setting when using uPD78F0581 or uPD78F0586 */ /*IMS = 0x42;*/</pre>
	/* Setting when using uPD78F0582 or uPD78F0587 */
	/*IMS = 0x04;*/ /* Specify the ROM and RAM sizes */
Add /* and */.	/* Setting when using uPD78F0583 or uPD78F0588 */ /*IMS = 0xC8;*/ /* Specify the ROM and RAM sizes */
·	

To use the μ PD78F0586, add /* before and */ after IMS = 0xC8; on the line under /* Setting when using uPD78F0583 or uPD78F0588 */ to disable the line by commenting it out. Next, delete /* before and */ after IMS = 0x42; on the line under /* Setting when using uPD78F0581 or uPD78F0586 */ to enable the line. The IMS settings can be changed to those for the μ PD78F0586.

4.4 Setting Up Stack Pointer

A stack area is a memory area in which data, such as of program counters, register values, and PSW (program status word) is temporarily stored. A stack area can be specified only in the internal high-speed RAM. The start address of this stack area is specified using a stack pointer to allocate the stack area.

A stack area is used when the following instructions are executed or interrupts occur.

- PUSH, CALL, CALLT, CALLF interrupt: Allocating data to a stack area
- POP, RET, RETI:
 Restoring data from a stack area

A stack area must be allocated when coding in assembly language. When coding in C language, this setting is not required, because a stack area is automatically allocated in the startup routine.

[Example] Using the first 32 bytes in the internal high-speed RAM as the stack area (Same as in the sample program settings)

DSTK DSEG STACKEND: STACKTOP:	IHRAM DS 20H	A stack area is allocated at the start of the internal high- speed RAM.
• • • (Omitted) • •	••	
XMAIN CSEG RESET_START:	UNIT	
• • • (Omitted) • • MOVW	•• SP, #STACKTOP	A stack pointer is set up immediately after a reset ends.

By writing the above code, the first 32 bytes in the internal high-speed RAM can be allocated as the stack area.

The start address in the internal high-speed RAM varies depending on the device. The stack is allocated to the area of the following addresses:

78K0/KY2-L: 0FD80H to 0FD9FH 78K0/KA2-L: 0FD00H to 0FD1FH 78K0/KB2-L: 0FC00H to 0FC1FH 78K0/KC2-L: 0FB00H to 0FB1FH

In this sample program, the start of the internal high-speed RAM is specified without writing an absolute address by using the DSEG pseudo instruction IHRAM^{Note}.

Note For details, refer to the RA78K0 Language User's Manual.

4.5 Setting Up and Controlling Watchdog Timer

The watchdog timer is set up using the option byte. For details, refer to 4.1 Setting Up Option Byte.

When using the watchdog timer (when WDTON is 1), the watchdog timer is controlled using the watchdog timer enable register (WDTE). The watchdog timer counter is cleared and then starts counting again when ACH is written to WDTE. WDTE is set to 9AH^{Note} by generating a reset signal.

Note The WDTE reset value varies depending on the value specified for WDTON of the option byte (0080H).

WDTON Setting	WDTE Reset Value
0 (Watchdog timer count operation disabled)	1AH
1 (Watchdog timer count operation enabled)	9AH

- Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 3. The value read from WDTE is 9AH/1AH (this differs from the written value (ACH)).

[Column] Binary-value description

To describe a binary value, append "B" or "Y" after the binary value in assembly language, or append "0b" or "0B" before the binary value in C language.

[Column] hdwinit function and main function

To create a program in C language, the hdwinit function is called to initialize peripheral devices (SFR) immediately after the CPU is reset. Initial settings, such as setting up the I/O ports and selecting the clock frequency are therefore basically included in the hdwinit function.

The main function is called after calling the hdwinit function, so main processing is included in the main function.

Do not call the hdwinit function from the main function. In this case, the hdwinit function is executed twice and the watchdog timer setting, which is only allowed to be specified once is executed twice. As a result, an internal reset signal is generated during the second execution disabling the program to advance from the initial setting.

For details, refer to the <u>CC78K0 Language User's Manual</u> and <u>Processing to be executed first</u> under Programming on the NEC Electronics FAQ Web page.

4.6 Setting Up Clock

The CPU clock signal (fcPu) and the clock signal supplied to the peripheral hardware (fPRs) are generated by dividing the frequency of the main system clock signal (fxP).

(1) Selecting the clock operation mode

Select the clock operation mode by using the clock operation mode select register (OSCCTL).

SCCTL									
EXCLK	OSCSEL	EXCLKS ^{Note}	OSCSELS	S ^{Note} 0	RSWOSC	AMPHXT	0		
		RSWOSC	WOSC AMPHXT XT1 oscillator oscillation mode selection						
		0	0	Low power consumption oscillation (default)					
		0	1	Normal oscillation	n				
		1	х	Ultra-low power of	consumption o	scillation			
		EXCLK	OSCSEL	High-speed system operation		P121/X1 pin	P122/X2/EXCLM pin		
		0	0	Input port mode		Input port			
		0	1	X1 oscillation mode Crystal/ceramic resonator conne					
		1	1 0 Input port mode Input port						
		1	1	External clock in	out mode	Input port	External clock inp		

Figure 4-6. Format of Clock Operation Mode Select Register (OSCCTL)

Note EXCLKS and OSCSELS can be used only for a device in which the subsystem clock is used (78K0/KC2-L). For details, refer to (3) Specifying the operating mode of the subsystem clock pin.

Cautions 1. To change the value of EXCLK and OSCSEL, be sure to confirm that bit 7 (MSTOP) of the main OSC control register (MOC) is 1 (the X1 oscillator stops or the external clock from the EXCLK pin is disabled).

- 2. Be sure to clear the following bits to 0: 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L: Bits 5 to 0 78K0/KC2-L: Bits 3 and 0
- 3. The XT1 oscillator is a circuit with low amplification in order to achieve low-power consumption. Note the following points when designing the circuit.
 - Make the wiring between the XT1 and XT2 pins and the resonators as short as possible, and minimize the parasitic capacitance and wiring resistance. Note this particularly when the ultra-low power consumption oscillation (RSWOSC = 1) is selected.
 - Place a ground pattern that has the same potential as Vss as much as possible near the XT1 oscillator.
 - Be sure that the signal lines between the XT1 and XT2 pins, and the resonators do not cross with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- 4. For details about these cautions, refer to CHAPTER 5 CLOCK GENERATOR in the <u>78K0/Kx2-L</u> <u>User's Manual</u>.

Remarks 1. x: don't care

(2) Selecting the CPU clock (fcPu) and specifying the division ratio

Select the CPU clock (fcPu) and specify the division ratio by using the processor clock control register (PCC).

220									
0	XTSTART ^{NOB1}	CLS ^{Note 2}	CSS ^{Note 2}	0	PC	C2	PCC1	PCC0	
				CSS	PCC2	PCC1	PCC0	CPU clock (fcpu) selection	
				0	0	0	0	fxp	
				0	0	0	1	fxp/2	
				0	0	1	0	fxp/2 ²	
				0	0	1	1	fxp/2 ³	
				0	1	0	0	fxp/2 ⁴	
				1	0	0	0	fsuв/2	
				1	0	0	1		
				1	0	1	0		
				1	0	1	1		
				1	1	0	0		
				(Other than	the abov	e	Setting prohibited	
				CLS			CPU cl	ock status	
				0	0 Main system clock				
				1					

Figure 4-7	Format of Processor	Clock Control	Register (PCC)
------------	---------------------	---------------	----------------

- **Notes 1.** XTSTART can be used only for a device in which the subsystem clock is used (78K0/KC2-L). For details, refer to (3) Specifying the operating mode of the subsystem clock pin.
 - 2. CLS and CSS can be used only for a device in which the subsystem clock is used (78K0/KC2-L).

Cautions 1. Be sure to clear the following bits to 0:

- 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L:
 Bits 7 to 3

 78K0/KC2-L:
 Bits 7 and 3
- 2. The peripheral hardware clock (fPRs) frequency is not divided when the division ratio of the PCC is set.
- 3. Bit 5 is read-only.
- Remarks 1. fxp: Main system clock frequency
 - 2. fsub: Subsystem clock frequency
 - 3. The values written in red in the above figure are specified in this sample program.

CPU Clock	Minimum Instruction Execution Time: 2/fcpu						
(fcpu)		Main System Clock		Subsystem Clock ^{Note 2}			
	High-Speed System Clock ^{Note 1} Internal High-Speed Oscillation Clock ^{Note 1}						
	10 MHz Operation	8 MHz (TYP.) Operation	4 MHz (TYP.) Operation	32.768 kHz Operation			
fхр	0.2 μs (TYP.)	0.25 μs (TYP.)	0.5 μs (TYP.)	-			
fxp/2	0.4 μs (TYP.)	0.5 μs (TYP.)	1.0 μs (TYP.)	-			
fxp/2 ²	0.8 μs (TYP.)	1.0 <i>μ</i> s (TYP.)	2.0 μs (TYP.)	-			
fxp/2 ³	1.6 <i>μ</i> s (TYP.)	2.0 μs (TYP.)	4.0 μs (TYP.)	-			
fxp/2 ⁴	3.2 μs (TYP.)	4.0 μs (TYP.)	8.0 μs (TYP.)	-			
fsuв/2	-		-	122.1 <i>µ</i> s			

The fastest instruction can be executed in 2 clocks of the CPU clock in the 78K0/Kx2-L microcontrollers. Therefore, the relationship between the CPU clock (fcPu) and the minimum instruction execution time is as follows:

- **Notes 1.** The main clock mode register (MCM) is used to set the main system clock supplied to CPU clock (high-speed system clock/internal high-speed oscillation clock).
 - 2. This can be used only for a device in which the subsystem clock is used (78K0/KC2-L).

(3) Specifying the operating mode of the subsystem clock pin^{Note}

The operating mode of the subsystem clock pin can be specified using bit 6 (XTSTART) of the processor clock control register (PCC) and bits 5 and 4 (EXCLKS, OSCSELS) of the clock operation mode select register (OSCCTL).

Note This setting can be specified only for a device in which the subsystem clock is used (78K0/KC2-L).

The following table shows the relationship between the values of XTSTART, EXCLKS, and OSCSELS and the operating mode of the subsystem clock pin.

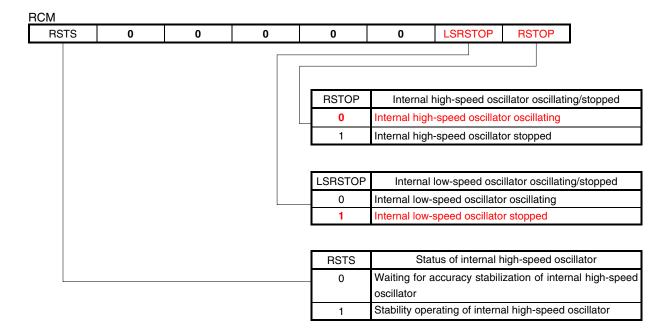
PCC	OS	CCTL	Subsystem Clock Pin	P123/XT1 Pin	P124/XT2/EXCLKS
Bit 5	Bit 5	Bit 4	Operating Mode		Pin
XTSTART	EXCLKS	OSCSELS			
0	0	0	Input port mode	Input port	
0	0	1	XT1 oscillation mode	Crystal resonator connection	
0	1	0	Input port mode	Input port	
0	1	1	External clock input mode	Input port	External clock input
1	х	х	XT1 oscillation mode	Crystal resonator connection	

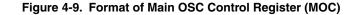
Caution Confirm that bit 5 (CLS) of the processor clock control register (PCC) is 0 (the CPU runs on the main system clock) when changing the current values of XTSTART, EXCLKS, and OSCSELS.

- Remarks 1. x: don't care
 - 2. The values written in red in the above figure are specified in this sample program.

(4) Specifying the operating mode of the internal oscillators

Specify the operating mode of the internal high-speed and low-speed oscillators by using the internal oscillation mode register (RCM).




Figure 4-8. Format of Internal Oscillation Mode Register (RCM)

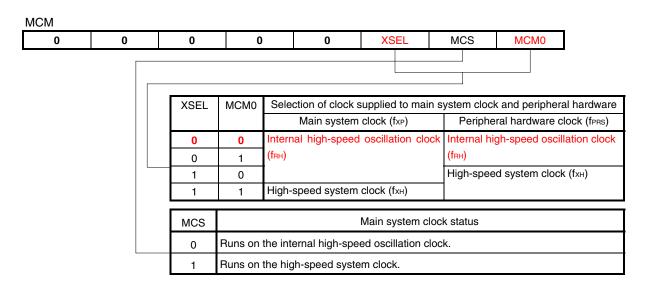
- Cautions 1. The value of this register is 00H immediately after a reset ends, but automatically changes to 80H after internal high-speed oscillator has been stabilized.
 - 2. Bit 7 is read-only.
 - 3. Be sure to clear bits 6 to 2 to "0".
 - 4. When setting RSTOP to 1, be sure to confirm that the CPU runs on a clock other than the internal high-speed oscillation clock. Specifically, set under either of the following conditions.
 - a. 78K0/KY2-L, 78K0/KA2-L, and 78K0/KB2-L
 - When MCS = 1 (when the CPU runs on the high-speed system clock)
 - b. 78K0/KC2-L
 - When MCS = 1 and CLS = 0 (when the CPU runs on the high-speed system clock)
 - When CLS = 1 (when the CPU runs on the subsystem clock)

In addition, stop peripheral hardware that runs on the internal high-speed oscillation clock before setting RSTOP to 1.

(5) Specifying the operating mode of the high-speed system clock

Specify the operating mode of the high-speed system clock by using the main OSC control register (MOC).

OC								
MSTOP 0		0	0	0	0	0	0	
		MSTOP	OP Control of high-speed system clock					
			X1	oscillation mo	- · ·	,	al clock input mo	ode
		0	X1 oscillat	or operating		External clock fr	om EXCLK pin	is enabled
		1	X1 oscillat	X1 oscillator stopped External clock from EXCLK pin is of			is disable	

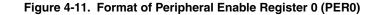

- Cautions 1. When setting MSTOP to 1, be sure to confirm that the CPU runs on a clock other than the high-speed system clock. Specifically, set under either of the following conditions.
 - a. 78K0/KY2-L, 78K0/KA2-L, and 78K0/KB2-L
 - When MCS = 0 (when the CPU runs on the internal high-speed oscillation clock)
 - b. 78K0/KC2-L
 - When MCS = 0 and CLS = 0 (when the CPU runs on the internal high-speed oscillation clock)
 - When CLS = 1 (when the CPU runs on the subsystem clock)

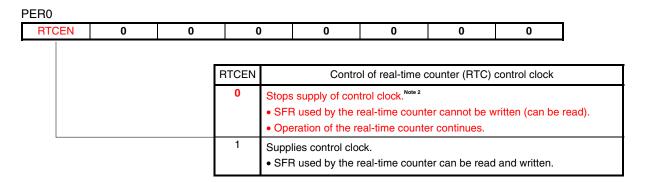
In addition, stop peripheral hardware that runs on the high-speed system clock before setting MSTOP to 1.

- 2. Do not clear MSTOP to 0 while bit 6 (OSCSEL) of the clock operation mode select register (OSCCTL) is 0 (input port mode).
- 3. The peripheral hardware cannot operate when the peripheral hardware clock is stopped. To resume the operation of the peripheral hardware after the peripheral hardware clock has been stopped, initialize the peripheral hardware.
- 4. Be sure to clear bits 6 to 0 to "0".

(6) Selecting the main system clock and the clock to supply to the peripheral hardware

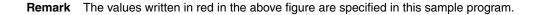
Select the main system clock to supply to the CPU and the clock to supply to the peripheral hardware by using the main clock mode register (MCM).




Cautions 1. Bit 1 is read-only.

- 2. XSEL can be changed only once immediately after a reset ends.
- 3. Do not rewrite MCM0 when the CPU runs on the subsystem clock.
- 4. A clock other than fPRs is supplied to the following peripherals regardless of the settings of XSEL and MCM0.
 - Watchdog timer (that runs on the internal low-speed oscillation clock)
 - When "fi∟", "fi∟/2⁶", or "fi∟/2¹⁵" is selected as the count clock for 8-bit timer H1 (that runs on the internal low-speed oscillation clock)
 - Peripheral hardware for which an external clock is selected as the clock source (except when the external count clock of TM00 is selected (TI000 pin valid edge))

(7) Controlling the real-time counter control clock


Control the real-time counter^{Note 2} control clock by using peripheral enable register 0 (PER0)^{Note 1}.

Notes 1. The PER0 register is used only in the 78K0/KC2-L.

- 2. Power consumption can be further reduced by stopping the supply of the real-time counter control clock.
- Cautions 1. The control clock supply stopped by clearing RTCEN to 0 is the clock to be used when writeaccessing the registers (such as the RTCC0 register) to be used for the real-time counter (RTC) from the CPU. The RTC operating clock (fsub) does not stop, even if RTCEN is cleared to 0.
 - 2. Be sure to clear bits 6 to 0 to "0".

An example of writing the values specified in (1) to (7) in the program is shown below.

• Assembly language

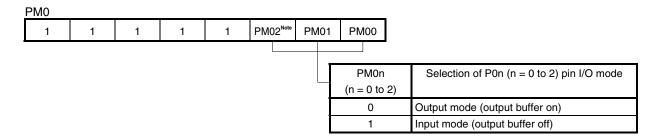
MOV	OSCCTL,	#00000000B
MOV	PCC,	#00000001B
MOV	RCM,	#00000010B
MOV	MOC,	#10000000B
MOV	MCM,	#00000000B
MOV	PER0,	#00000000B

• C language

OSCCTL	=	0b00000000;
PCC	=	0b0000001;
RCM	=	0b0000010;
MOC	=	0b10000000;
MCM	=	0b00000000;
per0	=	0b0000000;

4.7 Setting Up Ports

	78K0/KY2-L	78K0/KA2-L	78K0/KB2-L	78K0/	KC2-L
				44-Pin Product	48-Pin Product
Port 0	P00, P01	P00, P01	P00, P01	P00, P01	P00 to P02
Port 1	-	-	P10 to P17	P10 to P17	P10 to P17
Port 2	P20 to P23	P20 to P25	P20 to P23	P20 to P27	P20 to P27
Port 3	P30	P30 to P32	P30 to P33	P30 to P33	P30 to P33
Port 4	-	-	-	P40, P41	P40 to P42
Port 6	P60, P61	P60, P61	P60, P61	P60 to P63	P60 to P63
Port 7	_	_	_	P70 to P73	P70 to P75
Port 12	P121 to P122, P125	P121 to P122, P125	P120 to P122, P125	P120 to P125	P120 to P125


Caution The on-chip ports vary depending on the product, so the ports to set up also vary.

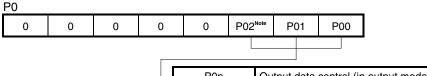
(1) Specifying ports as input or output ports

The PMxx registers are used to specify whether ports are used as input ports or output ports. Ports are specified as input ports immediately after a reset ends.

The PMxx format is described, taking the PM0 register as an example.

Figure 4-12. Format of Port Mode Register 0 (PM0)

Note This bit is used only in 78K0/KC2-L 48-pin products.


Caution Be sure to set the following bits to 1:

- 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L, 78K0/KC2-L (44-pin products): Bits 7 to 2
- 78K0/KC2-L (48-pin products): Bits 7 to 3

(2) Setting up the output latches of output ports

The Pxx registers are used to set up the output latches of output ports to high level or low level. The output latches of output ports are set to low-level output immediately after a reset ends. The Pxx format is described, taking the P0 register as an example.

Figure 4-13. Format of Port Register 0 (P0)

P0n (n = 0 to 2)	Output data control (in output mode)	Input data read (in input mode)
(11 = 0.10.2)	Output 0.	Input low level.
1	Output 1.	Input high level.

Note This bit is used only in 78K0/KC2-L 48-pin products.

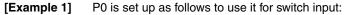
Caution	n Be sure to clear the following bits to 0:			
	• 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L, 78K0/KC2-L (44-pin products):	Bits 7 to 2		
	 78K0/KC2-L (48-pin products): 	Bits 7 to 3		

• 78K0/KC2-L (48-pin products):

(3) Specifying the connections of internal pull-up resistors to input ports

The PUxx registers are used to specify whether internal pull-up resistors are connected to input ports. Internal pull-up resistors are not connected immediately after a reset ends.

The PUxx format is described, taking the PU0 register as an example.

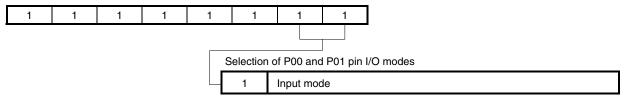

Figure 4-14. Format of Pull-up Resistor Option Register 0 (PU0)

PU0								
0	0	0	0	0	PU02 ^{Note}	PU01	PU00	
						Ī	PU0n	Connection of P0n (n = 0 to 2) pin internal
							(n = 0 to 2)	pull-up resistor
							0	Internal pull-up resistor is not connected.
						Ι	1	Internal pull-up resistor is connected.

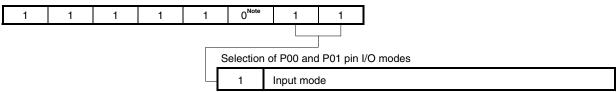
Note This bit is used only in 78K0/KC2-L 48-pin products.

Caution Be sure to clear the following bits to 0:

- 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L, 78K0/KC2-L (44-pin products): Bits 7 to 2
- Bits 7 to 3 • 78K0/KC2-L (48-pin products):

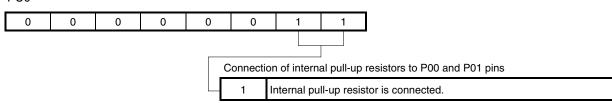


- P00 and P01 are specified as input ports.
- An internal pull-up resistor is connected to P00 and P01.


(Same as in the sample program settings)

PM0

• 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L, 78K0/KC2-L (44-pin products)



• 78K0/KC2-L (48-pin products)

Note Unused pins are assumed to be output port pins.

PU0

In this sample program, switch input signals (SW1 and SW2) are used as low-active signals. Therefore, a low-level signal (0) is input to the switch input ports (P00 and P01) when the switches are turned on and a high-level signal (1) is input when the switches are turned off.

The relationship between the switch input signals (SW1 and SW2) and switch input ports (P00 and P01) is as follows:

Switch	n Input	Switch Input Port		
SW1	SW2	P00	P01	
On	On	0	0	
Off	On	1	0	
On	Off	0	1	
Off	Off	1	1	

These settings are specified in the program as follows:

• 78K0/KY2-L, 78K0/KA2-L, 78K0/KB2-L, 78K0/KC2-L (44-pin products)

[Assembly language]

MOV	P0,	#0000000B
MOV	PM0,	#11111111B
MOV	PUO,	#00000011B

[C language]

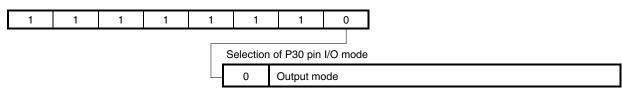
PO	= 0b0000000;	
PM0	= 0b11111111;	
PU0	= 0b0000011;	

• 78K0/KC2-L (48-pin products)

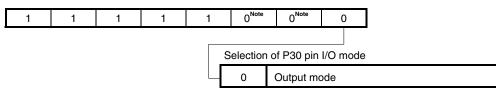
[Assembly language]

MOV	P0,	#0000000B
MOV	PMO,	#1111011B
MOV	PU0,	#0000011B

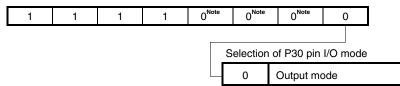
[C language]


P0	= 0b0000000;	
PM0	= 0b11111011;	
PU0	= 0b0000011;	

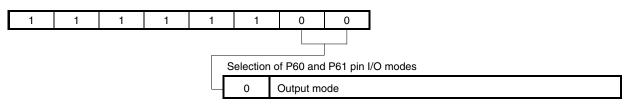
[Example 2] P3 and P6 are set up as follows to turn on the LEDs:

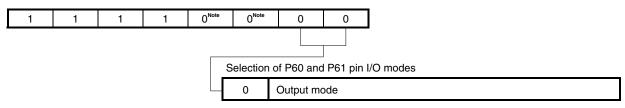

- P30, P60, and P61 are specified as output ports.
- The P30, P60, and P61 output latches are set to high-level output. (Same as in the sample program settings)

PM3

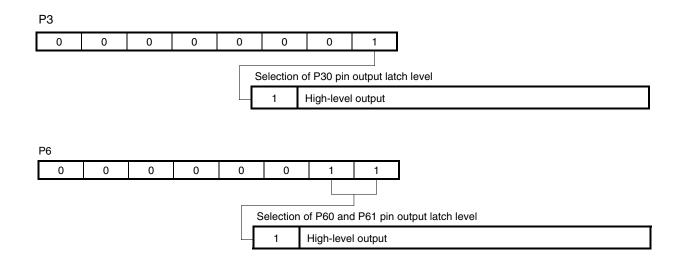

• 78K0/KY2-L

• 78K0/KA2-L


• 78K0/KB2-L and 78K0/KC2-L


Note Unused pins are assumed to be output port pins.

PM6


• 78K0/KY2-L, 78K0/KA2-L, and 78K0/KB2-L

• 78K0/KC2-L

Note Unused pins are assumed to be output port pins.

In this sample program, the signals used to turn on the LEDs (LED1, LED2, and LED3) are used as active-low signals. Therefore, the LEDs are turned on if 0 is output from the LED output ports (P30, P60, and P61) or turned off if 1 is output from the ports.

The relationship between the values of the LED output ports (P30, P60, and P61) and whether the LEDs are turned on (LED1, LED2, and LED3) is as follows:

LE	D Output P	ort	LED Status		
P30	P60	P61	LED1	LED2	LED3
0	1	1	On	Off	Off
1	0	1	Off	On	Off
1	1	0	Off	Off	On
1	1	1	Off	Off	Off

These settings are specified in the program as follows:

• 78K0/KY2-L

[Assembly language]

MOV	ΡЗ,	#0000001B
MOV	PM3,	#11111110B
MOV	Рб,	#00000011B
MOV	PM6,	#11111100B

[C language]

P3	= 0b0000001;	
PM3	= 0b1111110;	
P6	= 0b0000011;	
PM6	= 0b11111100;	

• 78K0/KA2-L

[Assembly language]

MOV	ΡЗ,	#0000001B
MOV	PM3,	#11111000B
MOV	Рб,	#00000011B
MOV	PM6,	#11111100B

[C language]

P3	= 0b0000001;
PM3	= 0b11111000;
P6	= 0b0000011;
PM6	= 0b11111100;

• 78K0/KB2-L

[Assembly language]

MOV	P3,	#0000001B
MOV	ΡМЗ,	#11110000B
MOV	Рб,	#0000011B
MOV	PM6,	#1111100B

[C language]

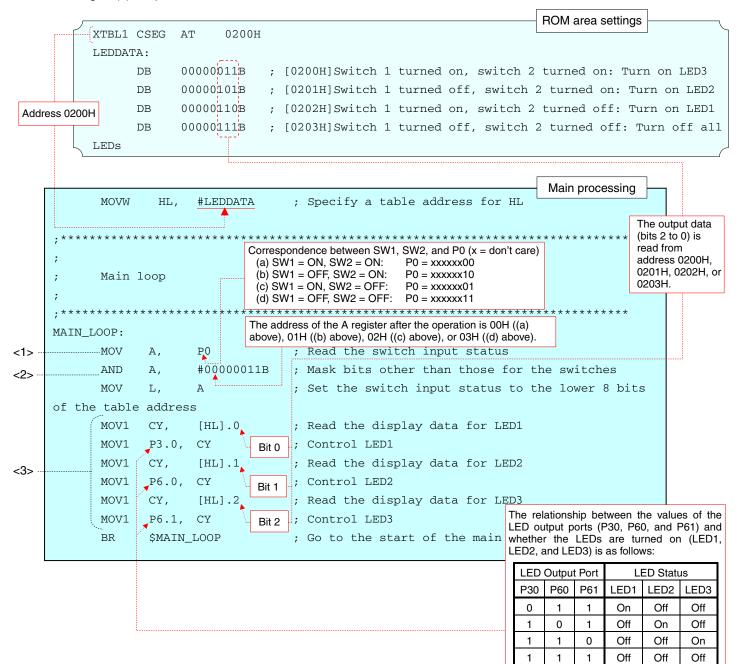
Р3	=	0b0000001;
PM3	=	0b11110000;
P6	=	0b00000011;
PM6	=	0b11111100;

• 78K0/KC2-L

[Assembly language]

MOV	ΡЗ,	#0000001B
MOV	PM3,	#11110000B
MOV	Рб,	#0000011B
MOV	РМб,	#11110000B
	MOV MOV	MOV PM3, MOV P6,

[C language]


Р3	=	0b0000001;
PM3	=	0b11110000;
P6	=	0b00000011;
PM6	=	0b11110000;

4.8 Main Processing

The following operations are performed with the main processing in assembly language.

- <1> Read data from P0.
- <2> Among the read eight bits, clear the bits other than those for the switch input ports (P00 and P01) to 0.
- <3> Read the data to output in accordance with the combination of the P00 and P01 input levels from addresses 0200H to 0203H (in the LEDDATA table), and then sequentially output the values of each bit to P30, P60, and P61.

By performing operations <1> and <2>, only the combination of the inputs of the switches (SW1 and SW2) connected to P00 and P01 can be determined. In this sample program, the signals from the switches are used as active-low signals. Therefore, a low-level signal (0) is input to P00 and P01 if the switches are turned on and a high-level signal (1) is input to P00 and P01 if the switches are turned off.

The main processing in C language operates similarly to that in assembly language.

P00 = 1, P01 = 0

P00 = 0, P01 = 1

P00 = 1, P01 = 1

SW1 = ON, SW2 = OFF

SW1 = OFF, SW2 = OFF

In C language, the correspondence between the input data and output data is specified as an array.

```
Main loop
void main(void)
                                    Four units of data are defined in the brackets
{
                                    wherein output data is specified.
  const unsigned char aLedOut[4]
  = {0b00000011,0b00000101,0b00000110,0b00000111};
                                              /* Table for turning on the LEDs */
  unsigned char ucSwitchBuffer;
                                              /* Switch input data storage area */
  while(1){
    /* Acquire valid switch information */
    ucSwitchBuffer = ( P0 & 0b0000011 );
    /* Read the data to display from the table and display */
    P6 = ( ( aLedOut[ucSwitchBuffer] >> 1 ) & Ob00000011 ); /* Turn on LED2 and LED3 */
  }
}
   The correspondences between the input data and output data are as follows:
                               ucSwitchBuffer
                                                       LED Status
       Switch Input
                      P00, P01
                                            aLedOut
    SW1 = ON, SW2 = ON
                    P00 = 0, P01 = 0
                               0b0000000
                                           0b0000011
                                                    Turn on only LED3.
    SW1 = OFF, SW2 = ON
```

0b0000001

0b0000010

0b0000011

0b0000101

0b00000110

0b00000111

Turn on only LED2.

Turn on only LED1.

Turn off all LEDs.

CHAPTER 5 RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Document Name	English	
78K0/Kx2-L User's Manual	<u>PDF</u>	
78K/0 Series Instructions User's Manual	PDF	
RA78K0 Assembler Package User's Manual	Language	<u>PDF</u>
	Operation	<u>PDF</u>
CC78K0 C Compiler User's Manual	Language	PDF
	Operation	PDF
PM+ Project Manager User's Manual	PDF	

As a program list example, the 78K0/KC2-L microcontroller source program is shown below.

```
    main.asm (assembly language version)

 ;
    NEC Electronics 78K0/KC2-L Series
 ;
 78K0/KC2-L Series Sample Program (Initial Settings)
 LED Lighting Switch Control
 ;<<History>>
    2009.1.--
              Release
 ;<<Overview>>
 ; This sample program initializes the microcontroller by specifying settings such as
 ; selecting the clock frequency and setting up I/O ports. After the initialization,
 ; three LED lights are controlled by two switches in the main loop.
 ; <Primary initial settings>
 ; (Option byte settings)
 ; - Allowing the internal low-speed oscillator to be programmed to stop
 ; - Disabling the watchdog timer
 ; - Setting the internal high-speed oscillation clock frequency to 8 MHz
 ; - Disabling LVI from being started by default
 ; (Settings during initialization immediately after a reset ends)
 ; - Specifying the ROM and RAM sizes
 ; - Specifying that the CPU clock run on the internal high-speed oscillation clock (4 MHz)
 ; - Stopping the internal low-speed oscillator
 ; - Setting up I/O ports
 ; - Disabling peripheral hardware not to be used
 ;
 ; <Switch input and LED status>
 ;
 :
   Switch 1 Switch 2
                    LED1
                                    LED3
                            LED2
 ;
    (P00) (P01)
                 (P30)
                          (P60)
                                    (P61)
   ;
 ;
   |-
             OFF
                  OFF
                          OFF
                                    OFF
 ;
   OFF
                          ON
          OFF
                  ON
                            OFF
                                    OFF
 ;
  OFF
          ON
                    OFF
                          ON
                                    OFF
 ;
 :
   ON
          ON
                 OFF
                          OFF
                                    ON
```

; +-----; * 0 is input to the ports if the switches are turned on and 1 is input to the ports if the switches are turned off. ; * The LEDs are turned off if 1 is output from the ports or turned on if 0 is output from the ports. ; ; ;<<I/O port settings>> ; Input: P00, P01 ; Output: P30, P60, P61 ; * Set all unused ports that can be specified as output ports as output ports. ; Vector table ; ; XVECT1 CSEG AT 0000н DW RESET_START ;0000H RESET input, POC, LVI, WDT CSEG AT XVECT2 0004H DW IINIT ;0004H INTLVI IINIT ;0006H INTP0 DW IINIT ;0008H INTP1 DW ;000AH INTP2 DW IINIT DW IINIT ;000CH INTP3 IINIT ;000EH INTP4 DW DW IINIT ;0010H INTP5 DW IINIT ;0012H INTSRE6 DW IINIT ;0014H INTSR6 ;0016H INTST6 DW IINIT ;0018H INTCSI10 DW IINIT ;001AH INTTMH1 DW IINIT ;001CH INTTMH0 DW IINIT ;001EH INTTM50 DW IINIT IINIT ;0020H INTTM000 DW ;0022H INTTM010 DW IINIT ;0024H INTAD IINIT DW DW IINIT ;0026H INTP6 IINIT ;0028H INTRTCI DW ;002AH INTTM51 DW IINIT DW IINIT ;002CH INTKR DW IINIT ;002EH INTRTC ;0030H INTP7 IINIT DW ;0032H INTP8 DW IINIT DW IINIT ;0034H INTIICA0

DW IINIT ;0036H INTCSI11 ;0038H INTP9 DW IINIT IINIT ;003AH INTP10 DW DW IINIT ;003CH INTP11 IINIT ;003EH BRK DW ; Define the ROM data table ; XTBL1CSEG AT 0200H LEDDATA: DB 00000011B ; [0200H]Switch 1 turned on, switch 2 turned on: Turn on LED3 DB 00000101B ; [0201H]Switch 1 turned off, switch 2 turned on: Turn on LED2 00000110B ; [0202H]Switch 1 turned on, switch 2 turned off: Turn DB on LED1 ; [0203H]Switch 1 turned off, switch 2 turned off: Turn DB 00000111B off all LEDs : Define the memory stack area ; DSTK DSEG IHRAM STACKEND: DS 20H ; Memory stack area = 32 bytes STACKTOP: ; Start address of the memory stack area Servicing interrupts by using unnecessary interrupt sources ; XMAINCSEG UNIT IINIT: If an unnecessary interrupt occurred, the processing branches to this line. : The processing then returns to the initial original processing because no processing ; is performed here.

RETI

Initialization after RESET ; RESET_START: Disable interrupts ,_____ ; Disable interrupts DT Set up the register bank SEL RB0 ; Set up the register bank Specify the ROM and RAM sizes ;------Note that the values to specify vary depending on the model. Enable the settings for the model to use. (The uPD78F0588 is the default model.) ; Setting when using uPD78F0581 or uPD78F0586 ;MOV IMS, #042H ; Specify the ROM and RAM sizes ; Setting when using uPD78F0582 or uPD78F0587 ;MOV IMS, #004H ; Specify the ROM and RAM sizes ; Setting when using uPD78F0583 or uPD78F0588 IMS, #0C8H ; Specify the ROM and RAM sizes MOV Initialize the stack pointer ;------MOVW SP, #STACKTOP ; Initialize the stack pointer _____ Specify the clock frequency Specify the clock frequency so that the device can run on the internal high-speed oscillation clock. ;------OSCCTL,#0000000B ; Clock operation mode MOV ||||+||+----- Be sure to clear this bit to 0 |||| ++----- RSWOSC/AMPHXT ; [XT1 oscillator oscillation mode selection] ; 00: Low power consumption oscillation ; 01: Normal oscillation ; 1x: Ultra-low power consumption oscillation ;

;		++ EXCLKS/OSCSELS
;		[] [Subsystem clock pin operation setting]
;		(P123/XT1, P124/XT2/EXCLKS)
;		Specify the use of the pin as an I/O port pin by specifying
000	by also using	XTSTART
;		++ EXCLK/OSCSEL
;		[High-speed system clock pin operation setting]
;		(P121/X1,P122/X2/EXCLK)
;		00: Input port
;		01: X1 oscillation mode
;		10: Input port
;		11: External clock input mode
	MOV PCC,	#0000001B ; Select the CPU clock (fCPU)
;		+ +++ CSS/PCC2/PCC1/PCC0
;		[CPU clock (fCPU) selection]
;		0000:fXP
;		0001:fXP/2
;		0010:fXP/2^2
;		0011:fXP/2^3
;		0100:fXP/2^4
;		1000:fSUB/2
;		1001:fSUB/2
;		1010:fSUB/2 1011:fSUB/2
;		1100:fSUB/2
		<pre> (Other than the above: Setting prohibited)</pre>
;		+ Be sure to clear this bit to 0
;		+ CLS
;		[CPU clock status]
;		+ XTSTART
;		[Subsystem clock pin operation setting]
;		Specify the use of the pin by also using EXCLKS and OSCSELS
;		+ Be sure to clear this bit to 0
	MOV RCM,	#00000010B ; Select the operating mode of the internal oscillator
;	,	+ RSTOP
;		[Internal high-speed oscillator oscillating/stopped]
;		<pre> 0: Internal high-speed oscillator oscillating</pre>
;		1: Internal high-speed oscillator stopped
;		+ LSRSTOP
;		<pre> [Internal low-speed oscillator oscillating/stopped]</pre>
;		0: Internal low-speed oscillator oscillating
;		1: Internal low-speed oscillator stopped
;		+++++ Be sure to clear this bit to 0
;		+ RSTS
;		[Status of internal high-speed oscillator]

IIIIII Peripheral hardware clock (fPRS) IIIIII = internal high-speed oscillation clock IIIIII 01: Main system clock (fXP) IIIIII = internal high-speed oscillation clock IIIIII = high-speed system clock (fTH) IIIIII [Main system clock status] ++++++++++++++++++++++++++++++++++++			++++++ Be sure to clear this bit to 0
0: X1 oscillator operating/external clock EXCLK pin is enabled 1: X1 oscillator stopped/external clock fr EXCLK pin is disabled MOV MCM, #00000000B ; Select the clock to supply + + XSEL/MCM0: [Clock supplied to main system and 00: Main system clock (fXP) 00: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fFRS) = high-speed system clock (fFR) = Second clock status] +		-	
EXCLK pin is enabled 1: X1 oscillator stopped/external clock for EXCLK pin is disabled MOV MCM, #00000000B ; Select the clock to supply + + XSEL/MCM0: [Clock supplied to main system and peripheral hardware] 00: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc = high-speed system clock (fFRS) = high-speed system clock (fFR) = Second clock status] +++++			
<pre>1: XI oscillator stopped/external clock fa EXCLK pin is disabled MOV MCM, #0000000B ; Select the clock to supply</pre>			
EXCLK pin is disabled MOV MCM, #0000000B ; Select the clock to supply + +XSEL/MCM0: [Clock supplied to main system and 00: Main system clock (fXP) 01: Main system clock (fXP) = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc 10: Main system clock (fXP) = internal high-speed oscillation cloc 10: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fTH) = high-speed system clock (fIH) = Secondower control clock : Supply control clock 1: Supply control clock 1: Supply control clock 1: Supply control clock MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV P0, #111101B ; Specify P00 and P01 as input ports			-
<pre>MOV MCM, #00000000B ; Select the clock to supply + + XSEL/MCMO: [Clock supplied to main system and peripheral hardware] 00: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) Peripheral hardware clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = h</pre>			
<pre> + + XSEL/MCMO: [Clock supplied to main system and peripheral hardware] 00: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = high-speed system clock (fFRS) = high-speed system clock (fFRS) [Main system clock status] +++++</pre>			EXCLK pin is disabled
<pre>(Clock supplied to main system and peripheral hardware] 00: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = high-speed system clock (fPRS) = high-speed system clock (fFRS) = high-speed system clock (fFRS) = high-speed system clock (fFR) [Main system clock status] +++++</pre>	MC	CM, #	0000000B ; Select the clock to supply
<pre> peripheral hardware] 00: Main system clock (fXP) = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc 10: Main system clock (fXP) = internal high-speed oscillation cloc 10: Main system clock (fXP) = internal high-speed oscillation cloc 11: Main system clock (fTH) = high-speed system clock (fTH) + MCS [Main system clock status] +++++ Be sure to clear this bit to 0 MOV PER0, #0000000B ; Control the real-time counter control clock : Supply of control clock : Supply control clock : : Supply control clock : : : : : : : : : : : : : : : : : : :</pre>			+++ XSEL/MCM0:
<pre>1000 Main system clock (fXP) 1000 Main system clock (fXP) 1000 Peripheral hardware clock (fPRS) 1000 Peripheral hardware clock (fXP) 1000 Main system clock (fXP) 1000 Peripheral hardware clock (fPRS) 1000 Peripheral hardware clock (fPRS) 1000 Peripheral hardware clock (fPRS) 1000 Peripheral hardware clock (fIH) 1000 PERO, #0000000B ; Control the real-time counter control clock 1000 PERO, #0000000B ; Control the real-time counter control clock 1000 PERO, #0000000B ; Set the PO0 to PO2 output latches to low 1 1000 PMO, #111101B ; Specify PO0 and PO1 as input ports 1000 PMO2 PMO, #111101B ; Specify PO0 and PO1 as input ports 1000 PMO2 PMO, #10000000B ; Set the PO0 to PO2 output latches to low 1 1000 PMO2 PMO, #111101B ; Specify PO0 and PO1 as input ports 1000 PMO2 PMO2 PMO2 PMO2 PMO2 PMO2 PMO2 PMO2</pre>			<pre> [Clock supplied to main system and</pre>
IIIII = internal high-speed oscillation clock IIIII Peripheral hardware clock (fPRS) IIIII = internal high-speed oscillation clock IIIII = high-speed system clock (fTR) IIIII = high-speed system clock (fTH) IIIII = high-speed system clock (fTH) IIIII = high-speed system clock (fTH) IIIII E sup clock status] ++++++++++++++++++++++++++++++++++++			peripheral hardware]
IIIIII Peripheral hardware clock (fPRS) IIIIII = internal high-speed oscillation cloc IIIIII 01: Main system clock (fXP) IIIIII = internal high-speed oscillation cloc IIIIII = high-speed system clock (fTH) IIIIII Esure to clear this bit to 0 ************************************			00: Main system clock (fXP)
<pre> = internal high-speed oscillation cloc 01: Main system clock (fXP) = internal high-speed oscillation cloc = high-speed system clock (fPRS) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system clock (fIH) = high-speed system cloc</pre>			<pre> = internal high-speed oscillation clock (fl</pre>
<pre>111111111111111111111111111111111111</pre>			Peripheral hardware clock (fPRS)
<pre> internal high-speed oscillation cloc internal high-speed oscillation clock internal high-speed oscillation clock internal high-speed oscillation clock internal high-speed oscillation clock internal high-speed system clock (fIH) internal high-speed system clock status] +</pre>			<pre> = internal high-speed oscillation clock (fl</pre>
IIIIII Peripheral hardware clock (fPRS) IIIIII = internal high-speed oscillation cloc IIIIII 10: Main system clock (fXP) IIIIII = internal high-speed oscillation cloc IIIIII = high-speed system clock (fPRS) IIIIII = high-speed system clock (fIH) IIIII 11: Main system clock (fXP) IIIII = high-speed system clock (fIH) IIIII Ease to clear this bit to 0 ************************************			01: Main system clock (fXP)
<pre> = internal high-speed oscillation cloc 10: Main system clock (fXP) = internal high-speed oscillation cloc Peripheral hardware clock (fPRS) = high-speed system clock (fIH) = treated the system clock status] +++++</pre>			<pre> = internal high-speed oscillation clock (fl</pre>
<pre>10: 10: Main system clock (fXP) 10: Main system clock (fXP) 10: 10: Main system clock (fXP) 10: 10: Main system clock (fPRS) 10: 11: Main system clock (fIH) 10: 11: 12: 12: 12: 12: 12: 12: 12: 12: 12</pre>			Peripheral hardware clock (fPRS)
<pre> = internal high-speed oscillation clos Peripheral hardware clock (fPRS) = high-speed system clock (fIH) = migh-speed system clock (f</pre>			= internal high-speed oscillation clock (fi
<pre>Note in the initial isotropy in the initial isotropy is the provided system clock (fPRS) Note in the initial isotropy isotropy in the initial isotropy isotropy isotropy in the provided system clock (fPRS) Note initial isotropy isotr</pre>			10: Main system clock (fXP)
<pre>Mov PER0, #0000000B ; Control the real-time counter control clock</pre>			<pre> = internal high-speed oscillation clock (fl</pre>
<pre> 11: Main system clock (fXP) = high-speed system clock (fIH) = high-speed system clock (fPRS) = high-speed system clock (fIH) + MCS [Main system clock status] +++++ Be sure to clear this bit to 0 MOV PER0, #0000000B ; Control the real-time counter control clock +++++++ Be sure to clear this bit to 0 + RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock 1: Supply control clock 1: Supply control clock</pre>			Peripheral hardware clock (fPRS)
<pre>initialize port 0 initialize port 0 initial</pre>			= high-speed system clock (fIH)
<pre> Peripheral hardware clock (fPRS) = high-speed system clock (fIH) + MCS [Main system clock status] +++++ Be sure to clear this bit to 0 MOV PER0, #0000000B ; Control the real-time counter control clock ++++++ Be sure to clear this bit to 0 + RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #11111011B ; Specify P00 and P01 as input ports</pre>			11: Main system clock (fXP)
<pre> = high-speed system clock (fIH) + MCS [Main system clock status] +++++ Be sure to clear this bit to 0 MOV PER0, #0000000B ; Control the real-time counter control clock +++++++ Be sure to clear this bit to 0 + RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #1111011B ; Specify P00 and P01 as input ports</pre>			= high-speed system clock (fIH)
<pre>MOV PER0, #0000000B ; Control the real-time counter control clock</pre>			Peripheral hardware clock (fPRS)
IIIII [Main system clock status] HIIII [Main system clock status] HIIIII [Mov PER0, #0000000B ; Control the real-time counter control clock Image: Mov PER0, #0000000B ; Control the real-time counter control clock] Image: Control clock] Image: Control clock Image: Control clock] Image: Control cloc			= high-speed system clock (fIH)
<pre>+++++ Be sure to clear this bit to 0 MOV PER0, #0000000B ; Control the real-time counter control clock</pre>			+ MCS
<pre>MOV PER0, #0000000B ; Control the real-time counter control clock</pre>			[]]] [Main system clock status]
<pre> +++++++ Be sure to clear this bit to 0 + RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #1111011B ; Specify P00 and P01 as input ports</pre>		-	+++++ De sure to clear this bit to 0
<pre>+ RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low l MOV PM0, #1111011B ; Specify P00 and P01 as input ports</pre>	PI	ERO, #	0000000B ; Control the real-time counter control clock
+ RTCEN: [Real-time counter control clock] 0: Stop supply of control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #1111011B ; Specify P00 and P01 as input ports			+++++++ Be sure to clear this bit to 0
0: Stop supply of control clock 1: Supply control clock Initialize port 0 MOV P0, #0000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #11111011B ; Specify P00 and P01 as input ports		-	+ RTCEN:
1: Supply control clock Initialize port 0 MOV P0, #00000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #11111011B ; Specify P00 and P01 as input ports			[Real-time counter control clock]
Initialize port 0 MOV P0, #00000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #11111011B ; Specify P00 and P01 as input ports			0: Stop supply of control clock
Initialize port 0 MOV P0, #00000000B ; Set the P00 to P02 output latches to low 1 MOV PM0, #11111011B ; Specify P00 and P01 as input ports			1: Supply control clock
MOV P0, #0000000B ; Set the P00 to P02 output latches to low l MOV PM0, #11111011B ; Specify P00 and P01 as input ports			
MOV PM0, #11111011B ; Specify P00 and P01 as input ports			
			00000000B ; Set the P00 to P02 output latches to low level
	PN	10, #1	
; Specify P02 as an output port MOV PU0, #00000011B ; Connect internal pull-up resistors to P00			

; P00: Use for switch 1 input ; P01: Use for switch 2 input ; P02: Unused Initialize port 1 ;-----ADPC1, #00000111B ; Specify P10 to P12 as digital I/O ports MOV MOV P1, #0000000B ; Set the P10 to P17 output latches to low level MOV PM1, #0000000B ; Specify P10 to P17 as output ports ; P10 to P17: Unused Initialize port 2 ADPC0, #11111111B ; Specify P20 to P27 as digital I/O ports MOV #00000000B ; Set the P20 to P27 output latches to low level MOV P2, PM2, #0000000B ; Specify P20 to P27 as output ports MOV ; P20 to P27: Unused Initialize port 3 ;------P3, #00000001B ; Set the P30 output latch to high level MOV ; Set the P31 to P33 output latches to low level MOV PM3, #11110000B ; Specify P30 to P33 as output ports ; P30: Use for turning on LED1 ; P31 to P33: Unused ;------Initialize port 4 ;------P4, #00000000B ; Set the P40 to P42 output latches to low level MOV PM4, #11111000B ; Specify P40 to P42 as output ports MOV ; P40 to P42: Unused Initialize port 6 MOV P6, #00000011B ; Set the P60 and P61 output latches to high level ; Set the P62 and P63 output latches to low level MOV РМ6, #11110000В ; Specify P60 to P63 as output ports ; P60: Use for turning on LED2 ; P61: Use for turning on LED3 ; P62 and P63: Unused

;------

;-------MOV P7, #00000000B ; Set the P70 to P75 output latches to low level MOV PM7, #11000000B ; Specify P70 to P75 as output ports ; P70 to P75: Unused Initialize port 12 ;-----P12, #0000000B ; Set the P120 output latch to low level MOV MOV PM12, #11111110B ; Specify P120 as an output port ; P120 to P125: Unused ;------Disable peripheral hardware not to be used ; 16-bit timer/event counter 00 TMC00, #0000000B ; Disable the counter MOV ; 8-bit timer/event counters 50 and 51 TMC50, #0000000B ; Disable timer 50 MOV MOV TMC51, #0000000B ; Disable timer 51 ; 8-bit timers H0 and H1 TMHMDO, #0000000B ; Stop timer H0 MOV MOV #00000000B ; Stop timer H1 TMHMD1, ; Real-time counter MOV RTCC0, #0000000B ; Stop the counter ; Clock output controller MOV CKS, #0000000B ; Stop the clock frequency divider ; A/D converter ADM0, #0000000B ; Stop A/D conversion MOV ; Operational amplifiers AMPOM, #0000000B ; Stop operational amplifier 0 MOV MOV AMP1M, #0000000B ; Stop operational amplifier 1 ; Serial interface UART6 MOV ASIM6, #0000001B ; Disable the interface ; Serial interface IICA MOV IICACTLO, #0000000B; Disable the interface ; Serial interfaces CSI10 and CSI11 CSIM10, #00000000B ; Disable CSI10 MOV #00000000B ; Disable CSI11 MOV CSIM11,

```
; Low-voltage detector
       LVIM, #0000000B ; Disable the detector
    MOV
    ; Interrupts
    MOVW MK0, #0FFFFH
                         ; Disable all interrupts
    MOVW MK1, #0FFFFH
                          ;
    MOV
        EGPCTL0, #00000000B ; Disable the detection of all external interrupts
        EGPCTL1,#0000000B ;
    MOV
    ; Key interrupts
    MOV
        KRM, #0000000B ; Disable all key interrupts
 ;------
   Initialize the general-purpose register
 MOVW HL, #LEDDATA
                    ; Specify the table address for turning on the LEDs
 •_____
    Enable interrupts
   (To use interrupts, enable interrupts here.)
 :
 ΕI
                      ; To enable interrupts,
 ;
                      ; uncomment this line.
    BR
       MAIN_LOOP
                     ; Go to the main loop
 ;
    Main loop
 ;
 MAIN_LOOP:
    MOV
                     ; Read the switch input status
        Α,
            РO
            #00000011B ; Mask bits other than those for the switches
    AND
        A,
                     ; Set the switch input status to the lower 8 bits of the
    MOV
        L,
            А
table address
    MOV1 CY, [HL].0 ; Read the display data for LED1
    MOV1 P3.0, CY
                     ; Control LED1
    MOV1 CY, [HL].1
                     ; Read the display data for LED2
    MOV1 P6.0, CY
                     ; Control LED2
    MOV1 CY, [HL].2
                     ; Read the display data for LED3
    MOV1 P6.1, CY
                     ; Control LED3
    BR
        $MAIN_LOOP
                     ; Go to the start of the main loop
```

```
end
```

 main.c (C language version)
/**************************************
NEC Electropica 78K0/KC2 L Corica
NEC Electronics 78K0/KC2-L Series

78K0/KC2-L Series Sample Program (Initial Settings)

LED Lighting Switch Control

< <history>></history>
2009.1 Release

< <overview>></overview>
This sample program initializes the microcontroller by specifying settings such as
selecting the clock frequency and setting up I/O ports. After the initialization,
three LED lights are controlled by two switches in the main loop.
(Drimory initial actinga)
<primary initial="" settings=""></primary>
(Option byte settings)
- Allowing the internal low-speed oscillator to be programmed to stop
- Disabling the watchdog timer
- Setting the internal high-speed oscillation clock frequency to 8 MHz
- Disabling LVI from being started by default
(Settings during initialization immediately after a reset ends) - Specifying the ROM and RAM sizes
- Specifying that the CPU clock run on the internal high-speed oscillation clock (4 MHz)
- Stopping the internal low-speed oscillator
- Setting up I/O ports
- Disabling peripheral hardware not to be used

<Switch input and LED status>

	Switch (P00)	1 	Switch (P01)	2			LED2 (P60)		LED3 (P61)	
	OFF ON		OFF OFF		OFF ON		OFF OFF		OFF OFF	
	OFF ON	 	ON ON	İ	OFF		ON OFF	Ì	OFF ON	
+-		I 		I 		I		I 		-+

 \ast 0 is input to the ports if the switches are turned on and 1 is input to the ports if the switches are turned off.

* The LEDs are turned off if 1 is output from the ports or turned on if 0 is output from the ports.

```
<<I/O port settings>>
Input: P00, P01
Output: P30, P60, P61
 * Set all unused ports that can be specified as output ports as output ports.
/*_____
Preprocessing directive (#pragma)
*/
             /* SFR names can be described at the C source level */
#pragma SFR
             /* DI instructions can be described at the C source level */
#pragma DI
#pragma EI
             /* EI instructions can be described at the C source level */
#pragma NOP
              /* NOP instructions can be described at the C source level */
Initialization after RESET
void hdwinit( void )
{
/*-----
Disable interrupts
*/
DI();
            /* Disable interrupts */
/*-----
 Specify the ROM and RAM sizes
_____
Note that the values to specify vary depending on the model.
Enable the settings for the model to use. (The uPD78F0588 is the default model.)
*/
 /* Setting when using uPD78F0581 or uPD78F0586 */
 /*IMS = 0x42;*/
               /* Specify the ROM and RAM sizes */
 /* Setting when using uPD78F0582 or uPD78F0587 */
 /*IMS = 0x04;*/
               /* Specify the ROM and RAM sizes */
 /* Setting when using uPD78F0583 or uPD78F0588 */
           /* Specify the ROM and RAM sizes */
IMS = 0xC8;
/*_____
```

Specify the clock frequency

_____ Specify the clock frequency so that the device can run on the internal high-speed oscillation clock. -----*/ OSCCTL = 0b0000000; /* Clock operation mode */ /* ||||+||+---- Be sure to clear this bit to 0 */ /* |||| ++---- RSWOSC/AMPHXT */ /* [XT1 oscillator oscillation mode selection] */ /* 00: Low power consumption oscillation */ /* 01: Normal oscillation */ /* 1x: Ultra-low power consumption oscillation */ ||++----- EXCLKS/OSCSELS */ /* /* [Subsystem clock pin operation setting] */ /* (P123/XT1, P124/XT2/EXCLKS) */ /* Specify the use of the pin as an I/O port pin by specifying 000 by also using XTSTART */ /* ++---- EXCLK/OSCSEL */ /* [High-speed system clock pin operation setting] */ /* (P121/X1,P122/X2/EXCLK) */ /* 00: Input port */ /* 01: X1 oscillation mode */ /* 10: Input port */ /* 11: External clock input mode */ PCC = 0b00000001; /* Select the CPU clock (fCPU) */ /* |||+|+++---- CSS/PCC2/PCC1/PCC0 */ /* [CPU clock (fCPU) selection] */ /* 0000:fXP */ /* 0001:fXP/2 */ /* 0010:fXP/2^2 */ /* 0011:fXP/2^3 */ /* 0100:fXP/2^4 */ /* 1000:fSUB/2 */ /* 1001:fSUB/2 */ /* 1010:fSUB/2 */ /* 1011:fSUB/2 */ /* 1100:fSUB/2 */ /* (Other than the above: Setting prohibited) */ /* ||| +----- Be sure to clear this bit to 0 */ /* | | +----- CLS */ /* [CPU clock status] */ /* +----- XTSTART */ /* [Subsystem clock pin operation setting] */ /* Specify the use of the pin by also using EXCLKS and OSCSELS $^{\star/}$ +----- Be sure to clear this bit to 0 */ /* RCM = 0b00000010; /* Select the operating mode of the internal oscillator */

/* ||||||+---- RSTOP */ /* [Internal high-speed oscillator oscillating/stopped] */ /* 0: Internal high-speed oscillator oscillating */ /* 1: Internal high-speed oscillator stopped */ /* |||||+---- LSRSTOP */ /* [Internal low-speed oscillator oscillating/stopped] */ /* 0: Internal low-speed oscillator oscillating */ /* 1: Internal low-speed oscillator stopped */ /* |+++++----- Be sure to clear this bit to 0 */ +---- RSTS */ /* /* [Status of internal high-speed oscillator] */ MOC = 0b10000000; /* Select the operating mode of the high-speed system clock */ /* |++++++---- Be sure to clear this bit to 0 */ /* +----- MSTOP */ [Control of high-speed system clock operation] */ /* /* 0: X1 oscillator operating/external clock from EXCLK pin is enabled */ /* 1: X1 oscillator stopped/external clock from EXCLK pin is disabled * / MCM = 0b0000000; /* Select the clock to supply */ /* ||||+++---- XSEL/MCM0 */ /* [Clock supplied to main system and peripheral hardware] */ /* 00: Main system clock (fXP) */ /* = internal high-speed oscillation clock (fIH) */ /* Peripheral hardware clock (fPRS) */ /* = internal high-speed oscillation clock (fIH) */ /* 01: Main system clock (fXP) */ /* = internal high-speed oscillation clock (fIH) */ /* Peripheral hardware clock (fPRS) */ /* = internal high-speed oscillation clock (fIH) */ /* 10: Main system clock (fXP) */ /* = internal high-speed oscillation clock (fIH) */ /* Peripheral hardware clock (fPRS) */ /* = high-speed system clock (fIH) */ /* 11: Main system clock (fXP) */ /* = high-speed system clock (fIH) */ /* Peripheral hardware clock (fPRS) */ /* = high-speed system clock (fIH) */ /* |||| +---- MCS */ /* [Main system clock status] */ /* +++++ De sure to clear this bit to 0 */ PER0 = 0b00000000; /* Control the real-time counter control clock */ /* |++++++---- Be sure to clear this bit to 0 */ /* +---- RTCEN: */ /* [Real-time counter control clock] */

```
/*
               0: Stop supply of control clock */
 /*
               1: Supply control clock */
/*-----
 Initialize port 0
-----*/
     = 0b00000000; /* Set the P00 to P02 output latches to low level */
P0
PM0
     = Ob11111011; /* Specify P00 and P01 as input ports */
              /* Specify P02 as an output port */
DIIO
     = 0b00000011; /* Connect internal pull-up resistors to P00 and P01 */
              /* Does not connect an internal pull-up resistor to PO2 */
              /* P00: Use for switch 1 input */
              /* P01: Use for switch 2 input */
              /* P02: Unused */
/*_____
Initialize port 1
-----*/
ADPC1 = 0b00000111; /* Specify P10 to P12 as digital I/O ports */
     = 0b00000000; /* Set the P10 to P17 output latches to low level */
Р1
PM1
     = Ob0000000; /* Specify P10 to P17 as output ports */
              /* P10 to P17: Unused */
/*-----
Initialize port 2
-----*/
ADPC0 = 0b11111111; /* Specify P20 to P27 as digital I/O ports */
P2
     = 0b00000000; /* Set the P20 to P27 output latches to low level */
PM2
     = Ob0000000; /* Specify P20 to P27 as output ports */
              /* P20 to P27: Unused */
/*-----
Initialize port 3
-----*/
    = 0b00000001; /* Set the P30 output latch to high level */
P3
              /* Set the P31 to P33 output latches to low level */
     = Ob11110000; /* Specify P30 to P33 as output ports */
PM3
              /* P30: Use for turning on LED1 */
              /* P31 to P33: Unused */
/*-----
Initialize port 4
*/
Р4
    = 0b00000000; /* Set the P40 to P42 output latches to low level */
PM4
     = Ob11111000; /* Specify P40 to P42 as output ports */
              /* P40 to P42: Unused */
/*_____
```

```
Initialize port 6
-----*/
     = 0b00000011; /* Set the P60 and P61 output latches to high level */
 P6
               /* Set the P62 and P63 output latches to low level */
 PM6
     = Ob11110000; /* Specify P60 to P63 as output ports */
               /* P60: Use for turning on LED2 */
               /* P61: Use for turning on LED3 */
               /* P62 and P63: Unused */
/*-----
 Initialize port 7
*/
 Р7
     = 0b00000000; /* Set the P70 to P75 output latches to low level */
 PM7
     = Ob11000000; /* Specify P70 to P75 as output ports */
               /* P70 to P75: Unused */
/*_____
 Initialize port 12
-----*/
     = 0b00000000;/* Set the P120 output latch to low level */
 P12
 PM12 = Ob11111110; /* Specify P120 as an output port */
               /* P120 to P125: Unused */
/*_____
 Disable peripheral hardware not to be used
-----*/
 /* 16-bit timer/event counter 00 */
 TMC00 = 0b0000000; /* Disable the counter */
 /* 8-bit timer/event counters 50 and 51 */
 TMC50 = 0b0000000; /* Disable timer 50 */
 TMC51 = 0b0000000; /* Disable timer 51 */
 /* 8-bit timers H0 and H1 */
 TMHMD0 = 0b0000000; /* Stop timer H0 */
 TMHMD1 = 0b0000000; /* Stop timer H1 */
 /* Real-time counter */
 RTCC0 = 0b0000000; /* Stop the counter */
 /* Clock output controller */
     = 0b0000000; /* Stop the clock frequency divider */
 CKS
 /* A/D converter */
 ADM0
     = 0b0000000; /* Stop A/D conversion */
 /* Operational amplifiers */
 AMPOM = 0b00000000; /* Stop operational amplifier 0 */
```

```
AMP1M = 0b00000000; /* Stop operational amplifier 1 */
 /* Serial interface UART6 */
 ASIM6 = 0b0000001; /* Disable the interface */
 /* Serial interface IICA */
 IICACTL0 = 0b00000000; /* Disable the interface */
 /* Serial interfaces CSI10 and CSI11 */
 CSIM10 = 0b0000000; /* Disable CSI10 */
 CSIM11 = 0b0000000; /* Disable CSI11 */
 /* Low-voltage detector */
 LVIM = 0b0000000; /* Disable the detector */
 /* Interrupts */
 MK 0
      = 0 \times FFFF;
               /* Disable all interrupts */
      = 0 \times FFFF;
 MK1
 EGPCTL0 = 0b00000000; /* Disable the detection of all external interrupts */
 EGPCTL1 = 0b0000000;
 /* Key interrupts */
 KRM = 0b0000000; /* Disable all key interrupts */
/*_____
 Enable interrupts
 (To use interrupts, enable interrupts here.)
*/
/* EI(); */
                  /* To enable interrupts, */
                /* uncomment this line.*/
}
Main loop
void main(void)
{
 const unsigned char aLedOut[4]
 = {0b00000011,0b00000101,0b00000110,0b00000111}; /* Table for turning on the LEDs */
 unsigned char ucSwitchBuffer;
                                     /* Switch input data storage area */
 while(1){
   /* Acquire valid switch information */
   ucSwitchBuffer = ( P0 & 0b0000011 );
```

```
/* Read the data to display from the table and display */
P3 = ( aLedOut[ucSwitchBuffer] & ObO000001 ); /* Control LED1 */
P6 = ( ( aLedOut[ucSwitchBuffer] >> 1 ) & Ob00000011 ); /* Control LED2 and LED3
*/
}
```

APPENDIX B USING 78K0/KC2-L 44-PIN PRODUCTS

All 78K0/KC2-L sample programs are intended for 48-pin products. To use a 78K0/KC2-L sample program for a 44-pin product, specify the following settings:

(1) Initial settings of ports

- Setting up port 0 Change the value of bit 2 of port mode register 0 (PM0) from "0" to "1".
- Setting up port 4 Change the value of bit 2 of port mode register 4 (PM4) from "0" to "1".
- Setting up port 7 Change the values of bits 5 and 4 of port mode register 7 (PM7) from "00" to "11".

(2) Disabling unused peripheral hardware

Delete the instruction used to set up the clock output selection register (CKS).

APPENDIX C REVISION HISTORY

Edition	Date Published	Page	Revision
1st edition	September 2009	-	_

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française 9, rue Paul Dautier, B.P. 52

78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana Via Fabio Filzi, 25/A

20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706