

© 2022 Renesas Electronics Corporation Page 1 of 7

AN-1137
Serial Output Tips & Techniques

Author: Yu-Han Sun

Date: September 19, 2016

Introduction

This app note demonstrates various ways to

output data serially from the GreenPAK devices.

We will cover GreenPAK4 and GreenPAK5 devices

but some of these techniques can apply to older

PAKs as well. First, serial data is a pattern of

logical 1s and 0s used to communicate with

another device, such as an MCU, that will

interpret the 1s and 0s for its own use. The data

could represent device ID, serialized parallel data,

or an arbitrary pattern. This app note explains the

six basic serial output techniques using GreenPAK

components from the simple pattern generator to

the more complex 8-state state machine.

To follow along, download the GP files

Serial_Output_Techniques_PAK4,

Serial_Output_Techniques_PAK5_Horizontal and

Serial_Output_Techniques_PAK5_Vertical. The

first file contains general techniques and the latter

two contain state machine examples.

PGEN

The simplest to understand, the PGEN is already

designed to be a pattern generator. Each rising

edge of CLK shifts out the next bit in the pattern

and wraps around.

• Make matrix connections as shown in

Figure 9.

• Configure Pattern with the desired serial

data. (max. 16-bis)

FSM and SPI

This example is written in another app note, AN-

1083. FSM counter data is converted to serial

data via the SPI block. The output pin is preset to

PIN12 for SLG46620V. To start-up the SPI, the

nCSB input needs a high to low transition. For a

detailed explanation, read AN-1083 SPI Parallel

to Serial Converter.

• Make matrix connections as shown in

Figure 9.

• Set SPI to ‘P2S’ mode

• Set Byte Selection to [15:0] or [7:0]

• Set PAR input data source to ‘FSM0[7:0]

FSM1[7:0]’

• Configure Counter Data with the desired

pattern.

Figure 1. PGEN Properties

Figure 2. SPI Properties

https://www.dialog-semiconductor.com/search?keywords=AN-1083&f%5B0%5D=search_category%3AResources
https://www.dialog-semiconductor.com/search?keywords=AN-1083&f%5B0%5D=search_category%3AResources
https://www.dialog-semiconductor.com/search?keywords=AN-1083&f%5B0%5D=search_category%3AResources
https://www.dialog-semiconductor.com/search?keywords=AN-1083&f%5B0%5D=search_category%3AResources

© 2022 Renesas Electronics Corporation Page 2 of 7

Serial Output Tips & Techniques

DFF chain

A pattern is stored in D Flip Flops where each DFF

stores one bit. By connecting DFFs in a register

string, data is clocked out serially. The number of

DFFs is linearly proportional to the number of bits

in the pattern.

• Make matrix connections as shown in

Figure 8.

• Connect the nSET/nRESET input to POR

where applicable.

Configure the initial polarity and nSET/nRESET of

each DFF with the corresponding bit in the data.

Follow Figures 3a, 3b, 4a, and 4b.

Binary code DFFs

We covered how to make patterns by shifting data

out one at a time either through the PGEN, the

SPI or DFFs. Another way is to generate a pattern

of states and set the output for each state. This is

called a state machine and the pattern is

dependent on the order that the states appear.

The GreenPAK 5 ASM is easy to configure, but for

all other non-ASM devices, we can use binary or

gray code to select the order of states. For binary

code, the states are {000, 001, 010, 011, 100,

101, 110, 111} in that order. We will need three

DFFs, one for each bit and a 3-bit LUT to

configure the output pattern.

Figure 3a & 3b. Set Initial High and Low for DFFs with nSet/nReset option

Figure 4a & 4b. Set Initial High and Low for DFFs without nSet/nReset

© 2022 Renesas Electronics Corporation Page 3 of 7

Serial Output Tips & Techniques

The number of DFFs used is exponentially

proportional to the number of bits in the pattern

(power of 2). The only caveat is the propagation

glitches between state transitions. This happens

because transitions are level sensitive and binary

code could change multiple bits simultaneously.

To avoid glitches, the output should be synced to

the falling edge of clock, or filtered.

• Make matrix connections as shown in

Figure 9.

• Connect the nSET/nRESET input to POR

where applicable.

• Configure the initial polarity to High, and Q

output polarity to Inverted(nQ)

• Configure the OUT of the Look-Up-Table

with the desired pattern in the order of binary

states from 000... to…111.

Gray code DFFs

Similar to the previous example, this one uses

gray code as the state transitioning order {000,

001, 011, 010, 110, 111, 101, 100}, which avoids

transitional glitches. We will need three sets of 3-

bit LUT and DFF, one for each bit and one 3-bit

LUT to configure the output pattern. The number

of DFFs and LUTs used is exponentially

proportional to the number of bits in the pattern

(power of 2). Patterns requiring more than 8

states are highly inefficient in gray code because

it uses too many circuit resources.

• Make matrix connections as shown in

Figure 8.

• Connect the nSET/nRESET input to POR

where applicable.

• Configure the OUT of the 3-bit Look-Up-

Table with the desired pattern in the order of gray

code states from 000... to…100.

Gray Code

Bit2 Bit1 Bit0

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

Table 1. Gray Code Order

Figure 5. Binary code DFFs

Figure 6a, 6b, 6c. DFF Properties

© 2022 Renesas Electronics Corporation Page 4 of 7

Serial Output Tips & Techniques

Pipe Delay

The Pipe Delay is a bunch of DFFs with three

outputs. We can use it as a shift register and

toggle the input such that we cycle through the

states {00, 01, 11 and 10}. A 3-bit shift register

states would look like {000, 001, 011, 111, 110,

100}. Using a shift register for the state machine

also avoids transitional glitches like gray code, but

the number of bits needed is linearly proportional

to the number of bits in the pattern (2x).

• Make matrix connections as shown in

Figure 9.

• Configure the OUT of the 2-bit Look-Up-

Table with the desired pattern in the order of shift

register states 00… to… 10.

GreenPAK5 – 64-bit Horizontal ASM

In the next two designs we will look at using the

ASM to hold the output pattern. ‘Horizontal’ refers

to storing the pattern by rows and ‘Vertical’ refers

to storing the pattern by columns. The rows are

the states and the columns are the outputs. A

horizontal design scrolls through the outputs of

one row and then moves on to the next row.

In Figure 7, each ASM output is windowed for 1

period by the Pipe Delay, configured as in the

previous section. The PGEN generates a pulse

every 8 clocks which is used to transition between

states.

GreenPAK5 – 64-bit Vertical ASM

In the ‘Vertical’ ASM, the design scrolls through

the states of one column and then moves on to

the next column. In Figure 9, each ASM output is

windowed for 8 clock periods by the Gray Code

DFFs. The DFF3 generates a pulse every period

which is used to transition between states.

Figure 7. Pipe Delay Properties

Figure 8. Matrix 1

© 2022 Renesas Electronics Corporation Page 5 of 7

Serial Output Tips & Techniques

Figure 9. Matrix 0

© 2022 Renesas Electronics Corporation Page 6 of 7

Serial Output Tips & Techniques

Conclusion

There are numerous ways to generate a serial

pattern in GreenPAK. The basic forms above

provide a starting point and each of them have

their pros and cons. While the PGEN is simplest

and produces 16 bits, it is available only in

GreenPAK4 and GreenPAK5. The FSM and SPI

buffer is a great alternative but only available in

GreenPAK4, limited to one or two byte length and

requires an extra input. If the pattern is short,

simply use DFFs in a ring structure and set an

initialized value.

There are also state machine alternatives that use

DFF’s and LUT’s to create a code that can help

you generate a pattern. In this app note, we

covered using binary and gray code DFF’s or the

register shifting Pipe Delay to traverse states in a

particular order. Binary and Gray code yields 2^x

pattern bits and the Pipe delay yields 2*x pattern

bits where x is the number of DFF’s used. Both

gray code and the pipe delay eliminate output

glitches that could occur from using binary

counting DFF’s.

Figure 10. GreenPAK5 ASM Horizontal Pattern generator

© 2022 Renesas Electronics Corporation Page 7 of 7

Serial Output Tips & Techniques

Select the form that best suits the circuit

resources available and the length of data needed

to output. Just about any block can store data and

there are more than a few ways to send that data

out as this app note only covers the simplest of

forms. Manipulate or expand by adding more

DFF’s, optimize for long run lengths of 1s or 0s, or

even re-use components to maximize pattern

storage.

Figure 11. GreenPAK5 ASM Vertical Pattern generator

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

