

RL78/G14, H8/36109

Migration Guide from H8 to RL78: Realtime Clock (RTC)

Introduction

This application note describes how to migrate the Realtime Clock (RTC) of the H8/36109 to the Real-time Clock (RTC) of the RL78/G14.

Target Device

RL78/G14, H8/36109

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Functions of Realtime Clock (RTC) of H8/36109 and Real-time Clock (RTC) of RL78/G1	
2.	Summary of Differences between Functions	.5
3.	Comparison between Registers	.6
4.	Sample Code for real-time clock	. 8
5.	Documents for Reference	. 8
Rev	ision History	.9

1. Functions of Realtime Clock (RTC) of H8/36109 and Real-time Clock (RTC) of RL78/G14

Table 1.1 shows the functions of the Realtime Clock (RTC) of H8/36109, and Table 1.2 shows the functions of the Real-time Clock (RTC) of RL78/G14.

Table 1.1 Function of Realtime Clock (RTC) of H8/36109			
Function	Explanation		
Realtime Clock (RTC) This is a timer used to count time ranging from a second to a wee There are five kinds of RTC interrupts: week interrupts, day interrupts, minute interrupts, and second interrupts. Note that you cannot use multiple interrupts simultaneously.			
Free running counter	When a clock other than 32.768 kHz is selected, the RTC is disabled and operates as an 8-bit free running counter. When the RTC operates as an 8-bit free running counter, RSECDR enables counter values to be read. An interrupt can be generated by setting 1 to the FOIE bit in RTCCR2 and enabling an overflow interrupt of the free running counter.		
Clock Output	When TMOW bit of PMR1 register is set to 1, TMOW pin outputs clock signals (ϕ /4 to ϕ /32).		

Table 1.2 Functions of Real-time clock (RTC) of RL78/G14			
Function	Explanation		
Real-time Clock	 The count of year, month, week, day, hour, minutes and second can be performed when the subsystem clock (f_{SUB} = 32.768 kHz) is selected as the operation clock. When the low-speed oscillation clock (f_{IL} = 15 kHz) is selected, only the constant-period interrupt function is available. 		
Constant-period interrupt function	 The interrupt request signal is generated at a period of 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day, or 1 month when the subsystem clock (f_{SUB} = 32.768 kHz) is selected as the operation clock. The constant-period interrupt interval is calculated with the constant-period x (f_{SUB} / f_{IL}) when the low-speed oscillation clock (f_{IL} = 15 kHz) is selected as the operation clock. 		
Alarm interrupt function	The interrupt request signal is generated at the specified alarm day of the week, hour, and minute when the subsystem clock (f_{SUB} = 32.768 kHz) is selected as the operation clock.		
Pin output function of 1 Hz	The 1-Hz pin output function is available when the subsystem clock (f_{SUB} = 32.768 kHz) is selected as the operation clock.		

Remark. Different products are provided with different functions. For details, refer to the appropriate user's manuals (hardware).

Table 1.3 shows Real-time Clock (RTC) of RL78/G14 corresponding to the Realtime Clock (RTC) of H8/36109.

Table 1.3 Corresponde	ence between Functions
H8/36109	RL78/G14
RTC	RTC
Realtime Clock (RTC)	Real-time Clock
Free running counter	None (None)
Clock Output	None (None)
None	Constant-period interrupt function
None	Alarm interrupt function
None	Pin output function of 1 Hz

 Table 1.3
 Correspondence between Functions

Note. The free running counter function of H8/36109 realtime clock (RTC) can be replaced by various timers of RL78/G14. The function of the RTC clock output pin of H8/36109 can be replaced by the clock output/buzzer output controller of RL78/G14.

Remark. Different products are provided with different functions. For details, refer to the appropriate user's manuals (hardware).

2. Summary of Differences between Functions

Table 2.1 summarizes the differences between the functions of the Realtime Clock (RTC) of H8/36109 and Real-time Clock of RL78/G14.

Table 2.1 Summary of Differences between Functions				
Item	H8/36109	RL78/G14		
	Realtime Clock (RTC)	Real-time Clock (RTC)		
Count sources	RTC: 32.768kHz	fsub, fil		
	Free running Counter: φ/8 - φ/8192			
Clock count	Second, Minute, Hour, Day, and Week	Second, Minute, Hour, Day, Week, Month,		
		Year		
Counter value initialization timing	None (Initial setting of RTC register)	When a reset occurs		
Interrupt source	RTC	Alarm interrupt		
	- Second Periodic Interrupt	Constant-period interrupt		
	- Minute Periodic Interrupt	- Once per 0.5s (synchronized with second		
	- Hour Periodic Interrupt	count up)		
	- Day Periodic Interrupt	- Once per 1 s (same time as second count		
	- Week Periodic Interrupt	up)		
	Free running Counter	- Once per 1 m (second 00 of every minute)		
	- Overflow Interrupt	- Once per 1 hour (minute 00 and second 00 of every hour)		
		- Once per 1 day (hour 00, minute 00, and second 00 of every day)		
		- Once per 1 month (Day 1, hour 00 a.m.,		
		minute 00, and second 00 of every month)		
Setting by BCD code	Yes	Yes		
Watch error correction	None	Yes		
of real-time clock				

3. Comparison between Registers

Table 3.1 and Table 3.2 compares the registers for the H8/36109 Realtime Clock (RTC) and the registers for the RL78/G14 Real-time Clock (RTC).

Table 3.1 Comparison between Registers (1/2)				
Item	H8/36109	RL78/G14		
	Realtime Clock (RTC)	Real-time Clock (RTC)		
Control of Realtime Clock input clock	MSTCR1 register	PER0 register		
supply	MSTTA bit	RTCEN bit		
Second data register/free running	RSECDR register	SEC register		
counter data register				
RTC Busy	RSECDR register	None		
	BSY bit			
Counting Ten's Position of Seconds	RSECDR register	SEC register		
	SC12 - SC10 bit	SEC40 bit, SEC20 bit,		
		SEC10 bit		
Counting One's Position of Seconds	RSECDR register	SEC register		
	SC03 - SC00 bit	SEC8 bit, SEC4 bit,		
		SEC2 bit, SEC1 bit,		
Minute Data Register	RMINDR register	MIN register		
RTC Busy	RMINDR register	None		
	BSY bit			
Counting Ten's Position of Minutes	RMINDR register	MIN register		
	MN12 - MN10 bit	MIN40 bit, MIN20 bit,		
		MIN10 bit		
Counting One's Position of Minutes	RMINDR register			
	MN03 - MN00 bit	MIN8 bit, MIN4 bit, MIN2 bit, MIN1 bit		
Hour Data Register	RHRDR register	HOUR register		
RTC Busy	RHRDR register	None		
RTC Busy	BSY bit	None		
Counting Top's Desition of Hours				
Counting Ten's Position of Hours	RHRDR register HR11 - HR10 bit	HOUR register		
Counting Opela Desition of Llours		HOUR20 bit, HOUR10 bit		
Counting One's Position of Hours	RHRDR register HR03 - HR00 bit	HOUR register HOUR8 bit, HOUR4 bit,		
		HOUR2 bit, HOUR1 bit		
Day count register	None	DAY register		
Day-of-Week Data Register	RWKDR register	WEEK register		
RTC Busy	RWKDR register	- ·		
KTC Busy	BSY bit	None		
Day-of-Week Counting		WEEK register		
Day-ol-week Counting	RWKDR register WK2 - WK0 bit	WEEK register WEEK4 bit, WEEK2 bit,		
		WEEK4 bit, WEEK2 bit, WEEK1 bit		
Month count register	None	MONTH register		
Year count register	None	YEAR register		
Watch error correction register	None	SUBCUD register		
Setting of watch error correction timing		SUBCUD register		
Setting of watch endr correction timing	None	DEV bit		
Sotting of watch arrar correction value	Nono			
Setting of watch error correction value	None	SUBCUD register		
		F6 bit		

Table 3.1	Comparison	between	Registers ((1/2)
				(/

Table 3.2 Comparison between Registers (2/2)				
Item	H8/36109	RL78/G14		
	Realtime Clock (RTC)	Real-time Clock (RTC)		
RTC Control Register	RTCCR1 register	RTCC0 register		
	RTCCR2 register	RTCC1 register		
RTC Operation Start	RTCCR1 register	RTCC0 register		
	RUN bit	RTCE bit		
Operating Mode	RTCCR1 register	RTCC0 register		
	12/24 bit	AMPM bit		
a.m./p.m.	RTCCR1 register	None		
	PM bit			
Reset	RTCCR1 register	None		
	RST bit			
Interrupt Generation Timing	RTCCR1 register	None		
	INT bit			
Free Running Counter Overflow	RTCCR2 register	None		
Interrupt Enable	FOIE bit			
Week Periodic Interrupt Enable	RTCCR2 register	RTCC0 register		
	WKIE bit	CT2 - CT0 bit		
Day Periodic Interrupt Enable	RTCCR2 register			
	DYIE bit			
Hour Periodic Interrupt Enable	RTCCR2 register			
	HRIE bit			
Minute Periodic Interrupt Enable	RTCCR2 register			
	MNIE bit			
Second Periodic Interrupt Enable	RTCCR2 register			
	SEIE bit			
Clock Source Select Register	RTCCSR register	None		
Clock Output Selection	RTCCSR register	None		
	RCS6 bit, RCS5 bit			
Clock Source Selection	RTCCSR register	OSMC register		
	RCS3 - RCS0 bit	WUTMMCK0 bit		
RTC1HZ pin output control	None	RTCC0 register		
		RCLOE1 bit		
Alarm minute register	None	ALARMWM register		
Alarm hour register	None	ALARMWH register		
Alarm week register	None	ALARMWW register		
Alarm operation control	None	RTCC1 register		
		WALE bit		
Control of alarm interrupt (INTRTC)	None	RTCC1 register		
function operation		WALIE bit		
Alarm detection status flag	None	RTCC1 register		
		WAFG bit		
Constant-period interrupt status flag	None	RTCC1 register		
,		RIFG bit		
Wait status flag of real-time clock	None	RTCC1 register		
		RWST bit		
Wait control of real-time clock	None	RTCC1 register		
	·····•			

4. Sample Code for real-time clock

The sample code for the real-time clock is explained in the following application notes.

• RL78/G13 Real-Time Clock CC-RL (R01AN2590)

The latest versions can be downloaded from the Renesas Electronics website.

5. Documents for Reference

User's Manual:

- RL78/G14 User's Manual: Hardware (R01UH0186)
- H8/36109 Group User's Manual: Hardware (R01UH0294)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News:

The latest information can be downloaded from the Renesas Electronics website.

Revision History

Description		Description	n
Rev.	Date	Page	Summary
1.00	Sep.15, 2020	-	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.