
Tool News

RENESAS TOOL NEWS on April 16, 2006: RSO-M3T-MR308-060416D

Notes on Using the Real-Time OSes
M3T-MR308K/4 and -MR308S/4

Please take note of the following problems in using the real-time OSes M3T-MR308K/4 and -
MR308S/4, which are used for the M16C/80 and M32C/80 series of MCUs:

On issuing isus_tsk service calls
On using the Task Pause function
On issuing get_tim and iget_tim service calls

1. Versions Concerned
Real-time OSes M3T-MR308K/4 and -MR308KS/4 V.4.00 Release 00 and V.4.00 Release 01
(for the M16C/80 and M32C/80 MCU series)

2. Problem on Issuing isus_tsk Service Calls
2.1 Description

Consider the case where a service call* has been issued which brings the task
having issued this service call to the WAITING state.
If an interrupt has been requested while the above-mentioned service call is being
serviced, and the interrupt handler has issued an isus_tsk service call, this service
call returns E_OK as its return value, but the target task of the isus_tsk service call
will not go to the WAITING-SUSPENDED state.
* Any one of the service calls described in Condition 2.2-(1) below.

2.2 Conditions
This problem may occur if the following conditions are all satisfied:
(1) A task issues any one of the following service calls:

wai_sem, twai_sem, wai_flg, twai_flg, snd_dtq, tsnd_dtq, rcv_mbx,
trcv_mbx, get_mpf, tget_mpf, vsnd_dtq, and vtsnd_dtq

(2) The target object of the service call in (1) has a property of TA_TPRI. Note,
however, that if this object is an event flag* that has a property of

TA_WMUL as well as TA_TPRI and has not of TA_CLR, it is not involved in
this problem.

(3) Several tasks other than the task in (1) already join the queue that the task
in (1) is to join.

(4) While the service call in (1) is serviced, an interrupt is requested, and the
invoked interrupt handler issues an isus_tsk service call.

(5) The target task of the isus_tsk service call issued in (4) is the one that has
issued a service call in (1).

* Any event flag can have properties of TA_CLR; TA_WSGL or TA_WMUL; and
TA_TPRI or TA_TFIFO.

2.3 Workaround
Perform the following procedures to make the target task go to the WAITING-
SUSPENDED state:
(1) Issue an ista_tsk service call to invoke the task to go to the WAITING-

SUSPENDED state.

(2) Then issue a sus_tsk service call from the above task.

Example:
Presumption: The DoSuspend task has the highest priority
 among all the tasks.
--
void handler(void)
 {

 /* Comment out isus_tsk and issue ista_tsk to invoke task to
 go to WAITING-SUSPENDED state; pass target task ID to ista_tsk
 as an invoking code */

 /* isus_tsk(ID_task1); */
 ista_tsk(ID_DoSuspend,(VP_INT)ID_task1);

 }

 void DoSuspend(VP_INT tskid)
 {

 sus_tsk(tskid);
 }
--

2.4 Schedule of Fixing the Problem
We plan to fix this problem in the next release of the M3T-MR308K/4 and -
MR308S/4.

3. Problem on Using the Task Pause Function
3.1 Description

Consider the case where the debugging of a program
containing the Task Pause function is performed.
If the Task Pause button is pressed while a service call is
being serviced, the target task of the service call does not
enter the pause state but goes to the object-waiting state
though it is displayed in the debugger screen that the task
has entered the pause state.
As a result, Pause or Remove Pause operations cannot be
performed thereafter.

3.2 Conditions
This problem may occur if the following conditions are all
satisfied:
(1) A task issues any one of the following service

calls:
wai_sem, twai_sem, wai_flg, twai_flg, snd_dtq,
tsnd_dtq, rcv_mbx, trcv_mbx, get_mpf, tget_mpf,
vsnd_dtq, and vtsnd_dtq

(2) The target object of the service call in (1) has a
property of TA_TPRI. Note, however, that if this
object is an event flag* that has a property of
TA_WMUL as well as TA_TPRI and has not of
TA_CLR, the object is not involved in this problem.

(3) Several tasks other than the task in (1) already
join the queue that the task in (1) is to join.

(4) Either of the following emulator debuggers is
used:
- the M32C PC7501 emulator debugger V.1.00
Release 00
- the M32C PC4701 emulator debugger V.1.00

Release 00

* Any event flag can have properties of TA_CLR;
TA_WSGL or TA_WMUL; and TA_TPRI or TA_TFIFO.

3.3 Workaround
If this problem occurs, reset your debugger to restart
debugging.

3.4 Schedule of Fixing the Problem
We plan to fix this problem in the next release of the
M32C emulator debugger.

4. Problem on Issuing get_tim and iget_tim Service Calls
4.1 Description

If you acquire system time by issuing a get_tim or
iget_tim service call, the upper 16 bits of ltime, a member
of a structure giving system time, will have an incorrect
value.

4.2 Condition
This problem may occur if the interrupt period for
acquiring system time is set to a value other than 1 ms in
the configuration file.

Example:
--
system{
 tic_nume = 2;
 tic_deno = 1;

};
--

4.3 Workaround
Set the interrupt period for acquiring system time to 1 ms
in the configuration file.

Example:

--
system{
 tic_nume = 1;
 tic_deno = 1;

};
--

4.4 Schedule of Fixing the Problem
We plan to fix this problem in the next release of the
M3T-MR308K/4 and -MR308S/4.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

