CS+ CX Compiler Package

Outline

When using the CS+ CX Compiler package, note the following point.

1. Mathematical library function atan (No.19)

* The number after the note is the note's identification number.

1. Mathematical Library Function atan (No.19)

1.1 Applicable Products

CX V1.10 to V1.31

1.2 Details

If the absolute value of the argument of the math library function atan is larger than $3.59539 \mathrm{e}+307$, the return value becomes invalid: ± 1.373400766945016 is returned instead of an expected value of ± 1.570796326794897.

1.3 Conditions

The return value becomes invalid when both of the following conditions (1) and (2) are met.
(1) The absolute value of argument of atan is larger than $3.59539 \mathrm{e}+307$.
(2) A library that uses the FPU(Note) is linked.

Note: The applicable library is libf64.lib, which is located directly under <Installation path>\CS+\CACXICXIV1.xx\liblibl850e2v3f.

* $\mathrm{V} 1 . \mathrm{xx}$ indicates the version number.

1.4 Examples

Below is an example of the error. The parts corresponding to the error conditions are shown in red.
[C source]

```
volatile double \(x, y\);
void func(void) \{
    \(x=3.59540 \mathrm{e}+307 ; \quad / /\) Condition (1)
    \(y=\operatorname{atan}(x) ;\)
    \}
```

Line 3:
Condition (1) is met because a value larger than $3.59539 \mathrm{e}+307$ is specified as the variable for the argument of atan.

Line 4:

The atan's return value is 1.373400766945016 , which is invalid.

1.5 Workaround

As shown in the example below, check if the argument of atan meets condition (1) ${ }^{\text {(Note) }}$. If condition (1) is met, set ± 1.570796326794897 as the return value instead of the return value of atan.
Note: The return value of the atan function that handles 8-byte floating-point type converges to $\pm \pi / 2$ when the absolute value of the argument exceeds approximately 10^{17}. Therefore, $\pm 1 e+307$ is used as the decision value for the argument in the example below.
[C source]

```
volatile double \(x, y\);
void func(void) \{
    if \((x>1 e+307) \quad / /\) Check if \(x\) is larger than \(1 e+307\).
            \(y=1.570796326794897 ;\)
            else if \((x<-1 e+307) \quad / / \quad\) Check if \(x\) is smaller than \(-1 e+307\)
            \(y=-1.570796326794897 ;\)
            else
            \(y=\operatorname{atan}(x) ;\)
    \}
```


1.6 Schedule for Fixing the Problem

There is no schedule for fixing this problem.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Sep.01.19	-	First edition issued

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

The past news contents have been based on information at the time of publication. Now changed or invalid information may be included.
URLs in Tool News also may be subject to change or become invalid without prior notice.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061 Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

