LENESAS Tool News

RENESAS TOOL NEWS on February 16, 2005: RSO-SHC-050216D

A Note on Using
the C/C++ Compiler Package V.8
for the SuperH RISC Engine Family

Please take note of the following problems in using the C/C++ compiler package V.8 for the
SuperH RISC engine family:

e Eleven problems experienced in the compiler

1. Product and Versions Concerned
The C/C++ compiler Packages V.8.00.00 through V.8.00.04
for the SuperH RISC engine family are concerned.

2. Description
The following 11 problems arise:

(1)

Loops containing a controlling expression may be
executed an incorrect number of times (SHC-0008).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. The optimize=1 option is selected.

2. A program loop exists.

3. The increment or decrement of the controlled

variable in the loop in Condition 2 is 1.
4. The above loop contains an if statement.
5. Either condition 5a or 5b below is met.

5a. The controlling expression in the if statement
in Condition 4 compares the controlled
variable in the loop in Condition 2 with an
invariant in the loop (variable c in Example 1

below).

5b. The initial value or the upper limit of the
controlled variable in the loop in Condition 2
is an invariant in the loop (variable c in
Example 2 below).

6. The invariant in Condition 5a or 5b is of type int.

Example 1:
int b[100];
unsigned int c=0;
void funcl() {
unsigned int i;
for(i=0;i<=100;i++) { // Executed infinite times.
if(i'=c) {
b[i]=0;

int b[100];

unsigned int c=0;

void func2() {
unsigned int i;

for(i=0;i<c;i++) { // Executed once or more
// even if c = 0.
if(i'=5){
b[i]=0;
b
b
b
- Workaround

This problem can be circumvented in any of the
following ways:
1. Use the optimize=0 option.
2. Use the size option.
3. Qualify the controlled variable in the loop in
Condition 2 as volatile.
4. Replace the invariant in Condition 5 with its value.

(2)

Do-while loops to be executed only once may be
repeated twice or more (SHC-0010).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. The optimize=1 option is selected.

2. A do-while loop exists.

3. The controlled variable in the loop in Condition 2 is
of type int, signed int, long, or signed long.
4. The controlling expression in the loop in Condition
2 checks whether its controlled variable is less
than, less than or equal to, greater than, or greater
than or equal to a constant.
The comparison operator, the initial value of the
controlled variable, its incremented or decremented
value in the loop, and the constant to be compared
in the controlling expression satisfy any of the
following conditions, 5a through 5d:

5.

5a.

5b.

5c.

If the controlled variable of the loop is less
than the constant to be compared, the
following relations are all held:

- The incremented or decremented value is
positive.

- The constant to be compared is less than or
equal to the initial value of the controlled
variable.

- 0x00000000 <= (constant - initial value -
1) <= Ox7FFFFFFF.

If the controlled variable of the loop is less
than or equal to the constant to be
compared, the following relations are all
held:

- The incremented or decremented value is
positive.

- The constant to be compared is less than
the initial value of the controlled variable.

- 0x00000000 <= (constant - initial value -
1) <= Ox7FFFFFF F.

If the controlled variable of the loop is
greater than the constant to be compared,

the following relations are all held:

- The incremented or decremented value is
negative.

- The constant to be compared is greater
than or equal to the initial value of the
controlled variable.

- Ox00000000 <= (initial value - constant -
1) <= Ox7FFFFFFF.

5d. If the controlled variable of the loop is
greater than or equal to the constant to be
compared the following relations are all held:
- The incremented or decremented value is
negative.
- The constant to be compared is greater
than the initial value of the controlled
variable.
- 0x00000000 <= (initial value - constant -
1) <= Ox7FFFFFFF.

Example:
int func() {
int count=0;
int limit=0x60000000;
do {
count++;
limit += 0x10000000;
} while(limit < -0x60000000);
// If executed correctly, the expression is FALSE
// after the first looping, and the loop is exited.
return (count); // "count" takes another value
// than the correct "1".

- Workaround
This problem can be circumvented in any of the
following ways:
1. Use the optimize=0 option.
2. Change the type of the loop in Condition 2 to a
pre-tested one.
3. Qualify the controlled variable in the loop as
volatile.

(3) When 1 is compared with a signed bit field of 1 bit wide
or with the result of an operation performed on that of
any comparison, the incorrect result may be obtained
(SHC-0011).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. The conditions stated below are all met.

la. The optimize=1 option is selected.
1b. A signed bit field of 1 bit wide is used.

1c. Equality or inequality (== or !=) between 1
and the signed bit field in Condition 1b is
tested.

2. The conditions stated below are all met.

2a. The optimize=1 option is selected.

2b. Any of the following operations is performed
on the result of any comparison: (1)
subtraction between it and 1, (2) XOR
operation of it and 1, (3) its sign inversion,
and (4) its bitwise inversion.

2c. Equality or inequality (== or !=) between 1
and the result of the operation in Condition
2b is tested.

Examplel:
struct {
char b0:1;
} ST;
void func() {
if (ST.bO!=1){

int a;
void func2() {

int t;
t = ((a & 0x40) == 0);
t=t-1;
t=-t
if(~t==1) {
a=1,;
} else {

a=2;

- Workaround
This problem can be circumvented in either of the
following ways:

1. Use the optimize=0 option.

2. Assign the bit field in Condition 1b or the result of
the operation performed in Condition 2b to a
variable qualified as volatile, and then make the
comparison in Condition 2c.

(4)

When the result of an add or subtract operation
between a variable and 0 or a multiply operation of a
variable by 1 is used in another operation, a change
may incorrectly be made to the value of the variable
(SHC-0012).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. An addition/subtraction of 0 to/from a variable or a
multiplication of a variable by 1 is performed.

2. The result of the operation in Condition 1 is used in
another operation such as addition, subtraction,
bitwise AND, bitwise OR, bitwise XOR, division,
remainder or shift.

int a[4], b;

void func() {
a[3&(b-0)]=0;

b

- Workaround
Don't describe any operation concerned to the operation
in Condition 1.

Example: a[3&b]=0;

(5) When a double-type member of a structure or union for
which "pack" is defined as 1 is referenced, a change
may incorrectly be made to the value of register R2
(SHC-0013).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. A structure or union exists for which pack=1is

used.

2. The structure or union in Condition 1 contains a

member of type double.

3. CPU options cpu=sh4, sh4a, and sh2afpu are used.
Option "size" or "unaligned=runtime" is selected.
5. The runtime-routine "_packl_ld64" is called at

referencing.

B

Example:
#pragma pack 1
struct {
double d;
} ST,
int t;
double d[2];
void func() {
d[t]=ST.d;

- Workaround
This problem can be circumvented in any of the
following ways:

1. Don't define pack as 1.

2. Use the speed option.

3. Use the unaligned=inline option.

(6) In an expression containing both a multiplication and
division by constants, an incorrect result may be
obtained (SHC-0015).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. A multiplication of an unsigned-type expression by
a constant exists.

2. The expression in Condition 1 is divided by a
positive factor of the constant in Condition 1.

3. The result of the multiplication in Condition 1
exceeds the maximum value allowed to the type of
the expression.

Example:
unsigned int a=65536;
unsigned int b;
void func() {
b=(a*65536)/8; // The correct result b=0
((65536*65536)/8 -> 0/8=0)
¥ // replaced by b=65535<<13.
- Workaround
Assign the multiplicative expression in Condition 1 to a
variable qualified as volatile.
Example:

void func() {
volatile unsigned int t=a*65536;
b=t/8;

b

(7) In shift operations, consider each shift count is less than

the bit size of the value to be shifted. When such shifts
are performed more than once, and the total number of
shifts exceeds the bit size of the value to be shifted, an
incorrect result of operation may be obtained (SHC-

0016).

- Conditions
This problem may occur if the following conditions are
all satisfied:
1. Any CPU option parameters except
cpu=[shl|sh2|sh2e|sh2dsp] are used.
2. Either condition 2a or 2b below is met.

2a. Left shifts and multiplications by powers of 2
are performed twice or more, where every
shift count and exponent in powers of 2 is
less than the bit size of the value to be
shifted.

2b. Right shifts and divisions by powers of 2 are
performed twice or more, where every shift
count and exponent in powers of 2 is less
than the bit size of the value to be shifted.

3. The total sum of the shift counts and the
exponents in powers of 2 in 2a or 2b exceeds the
bit size of the value to be shifted.

Example:
int x,y;
void func() {
Xx=y<<31<<1; // he total of shift counts, 32, exceeds
// the bit size of type int.

- Workaround
Assign the result of shifts and/or multiplications in
Condition 2 to a variable qualified as volatile.

Example:
void func() {
volatile int t=y<<31;
x=t<<1;

by

(8)

In a function containing an infinite loop, the value of a
variable may be loaded from memory even though the

value does not reside in memory (SHC-0020).

- Conditions
This problem may occur if the following conditions are
all satisfied:
1. An infinite loop exists in a function.
2. In the function in Condition 1, a value is assigned
to a variable not qualified as volatilel.
The above variable can be a temporary variable
generated by the compiler. However, if a register is
assigned to such a temporary variable or an auto
variable, this condition is not met.

Example:
int b;
void func() {
inta =0;
if (b) {
while(1) {
a =sub() -a; //"a"is not saved on stack.
sub();
if (a>1){ // "a" is restored as if it were
// saved on stack.
sub();

- Workaround
Don't make the infinite loop be interpreted as so in the
function.

Example:
int loop_flag = 1; // Value of this variable must
not be 1.
int b;
void func() {
inta =0;
if (b) {
while(loop_flag) {

a =sub() - a;
sub();
..... i.f.(:a.>. 1) {
sub();
b

(9)

When an operation is performed on a member of a bit
field through a pointer, an incorrect result may be
obtained (SHC-0023).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1.
2.

A structure or union is used.
A member of the structure or union in Condition 1
is referenced directly (un.b in Example below).

. A pointer variable (p in Example) exists which

points to a member of the structure or union (un.a
in Example) in the same area as the member
referenced in Condition 2.

The pointer in Condition 3 is defined as a local
variable.

. An indirect reference using the pointer in Condition

3 (*p in Example) exists.

. Updated is the value of the area where the

member referenced in Conditions 2 and 3 exist.

. The structure or union itself is not referenced in

the function where references in Conditions 2 and 3
are made.

Example:

typedef union {
unsigned int a;
unsigned int b:32;

> UN;

UN un;

void func() {

int *p=(int *)&un.a;
un.b=1;
*pt=1;

- Workaround
This problem can be circumvented in any of the
following ways:
1. Reference the structure or union itself inside the
function.

Example:
void func() {
int *p=(int *)&un.a;
un; // Inserted
un.b=1;
*p+=1,;

by

2. Define the pointer as a global variable.
3. Use the optimize=0 option.

(10) In a function whose last processing is to call another
function, the function call may incorrectly be replaced by
a JMP instruction (SHC-0029).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1. A function has two or more exits.

2. This function has an exit placed after a function
call, not at the last of the description of the
function.

3. Immediately before the function call in Condition 2
exists another function call.

4. The function calls in Condition 2 and 3 are placed in
different blocks from each other.

5. In the function in Condition 1, the contents of no
registers except the procedure register are not
saved on or restored from the stack.

Example:

// Option -speed selected.

void func(int a, int s) {
switch(a) {
case 1:

switch(s) {
case O:
ng(); // Incorrectly replaced with JMP.
break;
case 1:
ok();
break;
b

f1();
break;

case 2:

f2();
break;

- Workaround
This problem can be circumvented in either of the
following ways:

1.

Add an include function nop() at the last of the
description of the function concerned.

. Place no function call at the last of the description

of the function concerned.

(11)

Copying a structure or union may reserve the stack area
more than necessary (SHC-0021).

- Conditions
This problem may occur if the following conditions are
all satisfied:

1.

An array of structures or unions exists which
include members of type structure or union.
The array in Condition 1 has two or more elements.

. An assignment expression to a structure or union

exists.
The left term of the assignment expression in
Condition 3 is a member of a structure or union in

the array of structures or unions.

Example:

typedef struct {
unsigned char c;

} STO;

typedef struct {

STO s;

» ST;

extern ST A[1000];

extern unsigned short i;

void func(ST *d) {
A[i-1].s=d->s; // Stack reserved redundantly for

A[1000].

- Workaround
This problem can be circumvented in either of the
following ways:
1. Reference the member of a structure or union
stated in Condition 4 using a pointer.

Example:
void func(ST *d) {
ST *pa=&A[i-1];
pa->s=d->s;

¥

2. Expand the assignment expression to a structure
or union in Condition 3 to the one to each member
of the structure or union.

Example:
void func(ST *d) {
A[i-1].s.c=d->s.c;
b

3. Schedule of Fixing the Problems
We plan to fix the above problems in the release of the C/C++ compiler package V.8.00.05
for the SuperH RISC engine family.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

