
Tool News

RENESAS TOOL NEWS on October 20, 2011: 111027/tn1

A Note on Using the C/C++ Compiler Package
for the SuperH RISC engine MCU Family V.9

When using the C/C++ compiler package V.9 for the SuperH RISC engine family of MCUs, take
note of the following problems:

With using the -global_volatile=1 option (SHC-0082)
With referencing the address of the function whose name is the same as that of a local
static variable (SHC-0083)
With performing bitwise OR (|) operation of -1 or bitwise AND (&) operation of 0 with a
function call or a volatile-qualified variable (SHC-0084)
With executing a loop containing the conditional operator or an if statement with a loop
counter (SHC-0085)
With updating the value of the variable referenced in a loop containing the conditional
operator or an if statement by using any statement except an assignment one (SHC-0086)
With using the function that accesses both a parameter to be saved on the stack and the
stack area reserved in the function within the same control block (SHC-0087)
With referencing an array element of type char twice or more times in a function (SHC-
0088)

Here, SHC-XXXX at the end of each item is a consecutive number for indexing the problem in
the compiler concerned.

1. Problem with Using the -global_volatile=1 Option (SHC-0082)

 Versions Concerned:
 V.9.00 Release 00 through V.9.04 Release 00

 Description:
 If the -global_volatile=1 option is used, incorrect values may be
 stored on registers R0-R7 or FR0-FR11, and the program not be operated
 properly.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Neither option -optimize=0 nor -optimize=debug_only is selected.
 (2) Option -global_volatile=1 is selected.
 (3) Option -noscope is not selected.
 (4) In the program exist a number of functions whose optimizing ranges
 are divided.
 Here, the following message is dispatched when the -message option
 is selected:
 C0101 (I) Optimizing range divided in function "function name"

 Example:

 member[9].func(0x1000, -1, 0);

 Correct results of compilation:
 --
 MOV #72,R1
 SHLL2 R1
 MOV #16,R5
 ADD R1,R12
 MOV #0,R7 ; On 4th argument of func(), 0 stored.
 AND R11,R2
 MOV #-1,R6 ; On 3rd argument of func(), -1 stored.
 SHLL8 R5 ; On 2nd argument of func(), 0x1000 stored.
 LDS R2,FPSCR
 MOV.L L28+10,R1 ; _func__5ClassFUiiT1
 JSR @R1
 MOV R12,R4 ; On 1st argument of func() (this pointer),
 &member[9] stored.
 --
 If the problem arises, not &member[9] but an indefinite value 0x120
 is stored on R4. As a result, "this pointer" points to an incorrect
 address within the func().

 Results of compilation where problem arises:
 --
 MOV #72,R4
 MOV #16,R5
 SHLL2 R4 ; On 1st argument (this pointer) of func(),
 0x120 stored in error.
 ADD R12,R1
 MOV #0,R7 ; On 4th argument of func(), 0 stored.

 AND R11,R2
 MOV #-1,R6 ; On 3rd argument of func(), -1 stored.
 SHLL8 R5 ; On 2nd argument of func(), 0x1000 stored.
 MOV.L L28+8,R1 ; _func__5ClassFUiiT1
 JSR @R1
 LDS R2,FPSCR
 --

 Workaround
 To avoid this problem, use any of the following:
 (1) Use option -optimize=0 or -optimize=debug_only.
 (2) Use option -global_volatile=0.
 (3) Use option -noscope.
 (4) Divide the function in Condition (4) until the message
 C0101 (I) is not dispatched even if the -message option is
 selected.

2. Problem with Referencing the Address of the Function Whose Name is

 the Same as That of a Local Static Variable (SHC-0083)

 Versions Concerned:
 V.9.00 Release 00 through V.9.04 Release 00

 Description:
 If a static variable declared in a function is referenced, and then
 the address of another function with the same name as the variable is
 referenced in the same file, not the address of the function but that
 of the variable may be referenced.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Function A references a static variable declared.
 (2) In the file where function A is defined exists function B, and in
 function B, the reference to the address of function C with the
 same name as the static variable in (1) or a function call is made.
 (3) The reference to the address of function C or the function call in
 (2) is made after the reference to the static variable in (1).
 This condition includes the case where functions A and C are the
 same.

 Example:
 --

 extern void clock(void);
 void foo(void)
 {
 static int clock = 1; // Condition (1)
 clock++;
 }
 void foo2(void)
 {
 clock(); // Conditions (2) and (3)
 }
 --

 Results of compilation:
 --
 _foo2:
 MOV.L L12,R2 ; __$clock$2 ; References static variable
 in error.
 JMP @R2
 NOP
 --

 Workaround:
 To avoid this problem, use any of the following:
 (1) Give a different name to function C in Condition (2) from the
 static variable in Condition (1).
 (2) Assign the address of function C to a volatile variable before
 the reference to the static variable in Condition (1).
 (3) Change the order of placing functions so that Condition (3)
 cannot be met. For instance, interchange foo() with foo2() in
 Example above.

 Example modified where Workaround (2) used:
 --
 extern void clock(void);

 //// Add the following block ////
 void dummy(){
 volatile FUN_t f = &clock; // Address of function (C) in
 Condition (3) assigned to
 volatile variable
 f();
 }
 //// Block added ends ////

 void foo(void)

 {
 static int clock = 1; // Condition (1)
 clock++;
 }

 void foo2(void)
 {
 clock(); // Conditions (2) and (3)
 }
 --

3. Problem with Performing Bitwise OR (|) Operation of -1 or Bitwise

 AND (&) Operation of 0 with a Function Call or a Volatile-Qualified

 Variable (SHC-0084)

 Versions Concerned:
 V.9.02 Release 00 through V.9.04 Release 00

 Description:
 If bitwise OR (|) operation of -1 or bitwise AND (&) operation of 0
 with a function call or a volatile-qualified variable is performed,
 the function may not be called or the volatile-qualified variable
 not be referenced.

 Conditions
 This problem may arise if the following conditions are all satisfied:
 (1) Bitwise OR (|) operation or bitwise AND (&) operation is performed
 whose operand is of any type of the following:
 long long, signed long long, and unsigned long long
 (2) The operation in (1) satisfies either of the following:
 (2-1) An operand of bitwise OR operation is -1.
 (2-2) An operand of bitwise AND operation is 0.
 Here, the operand can be a constant substituted for a variable by
 optimization of constant propagation (including that of external
 constants qualified to be const).
 (3) The other operand of the operation in (2) is any of the following:
 (3-1) A variable qualified to be volatile
 (3-2) An external variable with the -volatile=1 option used
 (3-3) A function call
 (3-4) An expression containing any of the operands listed in
 (3-1), (3-2), and (3-3)

 Example:

 long long a;
 int sub();
 main(){
 long long x;
 x = -1LL; // Condition (2-1)
 a = ((long long)(sub()+2)) | x; // Conditions (1), (2-1), (3-4)
 }

 If the above example is compiled, the expression
 ((long long)(sub()+2)) | -1LL
 is deleted in error, and the function call sub() is not made.

 Results of compilation:

 _main:
 MOV.L L11+2,R6 ; _a
 MOV #-1,R2 ; H'FFFFFFFF
 MOV.L R2,@R6 ; part of variable a
 RTS
 MOV.L R2,@(4,R6) ; part of variable a

 Workaround:
 To avoid this problem, assign constant -1 or 0 in Condition (2) to
 a volatile-qualified variable; then use it instead of the constant.

 Example modified:
 --
 long long a;
 int sub();
 main(){
 volatile long long x; // Volatile-qualified variable used
 instead of constant in Condition (2).
 x = -1LL; // Condition (2-1)
 a = ((long long)(sub()+2)) | x; // Conditions (1) and (3-4)
 }
 --

4. Problem with Executing a Loop Containing the Conditional Operator or

 an if Statement with a Loop Counter (SHC-0085)

 Versions Concerned:
 V.9.00 Release 00 through V.9.04 Release 00

 Description:
 If a loop contains the conditional operator (?:) or an if expression
 including a loop counter, the conditional operator or the if statement
 may be incorrectly evaluated.

 Here, a loop counter is a variable for controlling the iterations of
 a loop. It is incremented or decremented by a fixed integer value on
 each iteration and evaluated to decide when the iteration should be
 terminated.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) neither option -optimize=0 nor -optimize=debug_only is selected.
 (2) In the program exists a loop containing a loop counter.
 (3) The initial and maximum values of the loop counter in (2) are
 constants.
 Here, constants can be those substituted for variables by
 optimization of constant propagation (including that of external
 constants qualified to be const).
 (4) In the loop in (2) exists the conditional operator (?:) or an if
 statement.
 (5) The controlling expression of the conditional operator or the if
 statement in (4) satisfies all the following:
 (5-1) It is a comparison expression containing a relational
 operator <, >, <=, or >=.
 (5-2) One operand is the loop counter in (2).
 (5-3) The other operand is an integer constant equal to or smaller
 than the maximum value of the loop counter.
 Here, an integer constant can be the one substituted for
 a variable by optimization of constant propagation
 (including that of external constants qualified to be const).

 Example:
 --
 int main(void) {
 int j;
 char a1[6],a2[6],a3[6];
 for (j = 0; j < 6; j++){ // Conditions (2), (3), (4)
 if ((j >= 0 && j < 2) || (j >= 4 && j < 6)) // Condition (5)
 a1[j] = 1;

 else
 a1[j] = 0;
 if (j < 4) // Condition (5)
 a2[j] = 2;
 else
 a2[j] = 0;
 if (j >= 0 && j < 1) // Condition (5)
 a3[j] = 3;
 else
 a3[j] = 0;
 }
 }
 --
 If the above example is compiled with the -cpu=sh4a -speed option
 used, the problem arises at the expression "j < 2," which exists in
 the first Condition (5).

 Results of compilation:
 --
 MOV #0,R6 ; H'00000000
 MOV #2,R1 ; H'00000002
 MOV R15,R4
 MOV R15,R5
 ADD #8,R4
 MOV R1,R13
 ADD #16,R5
 MOV R6,R7
 MOV R15,R2
 MOV #1,R12 ; H'00000001
 MOV #3,R9 ; H'00000003
 MOV #6,R14 ; H'00000006
 MOV #4,R10 ; H'00000004
 L11:
 CMP/PZ R6
 MOV.B R12,@R4 ; a1[] . . . (A) a1[3] is set to 1 in error.
 BF/S L12
 MOV.B R13,@R2 ; a2[]
 CMP/GE R12,R6
 BT L12
 MOV.B R9,@R5 ; a3[]
 L15:
 ADD #1,R6
 CMP/GE R14,R6
 ADD #1,R5
 ADD #1,R4

 BT/S L17
 ADD #1,R2
 DT R1 ; (B) If j(R6) is 3, R1 becomes -1.
 BF L11 ; (C) Jumps to L11 in error.
 CMP/GE R10,R6
 BT L20
 MOV.B R7,@R4 ; a1[] . . . (D) a1[3] should be set to 0.
 BRA L12
 MOV.B R13,@R2 ; a2[]
 L20:
 CMP/GE R14,R6
 BF L22
 BRA L23
 MOV.B R7,@R4 ; a1[]
 L22:
 MOV.B R12,@R4 ; a1[]
 L23:
 MOV.B R7,@R2 ; a2[]
 L12:
 BRA L15
 MOV.B R7,@R5 ; a3[]
 L17:

 --
 In the above results of compilation, if j(R6) is 3, R1 becomes
 -1 at (B). So the program jumps to L11 at (C), and a1[3] is set to
 1 at (A) in error.

 If correctly executed, the program does not jump at (C), and
 a1[3] is set to 0 at (D).

 Workaround:
 To avoid this problem, use either of the following:
 (1) Use option -optimize=0 or -optimize=debug_only.
 (2) Qualify the loop counter in Condition (2) to be volatile.

5. Problem with Updating the Value of the Variable Referenced in a Loop

 Containing the Conditional Operator or an if Statement by Using Any

 Statement except an Assignment One (SHC-0086)

 Version Concerned:

 V.9.04 Release 00

 Description:
 Suppose that the value of the external or static variable is
 referenced in a loop containing a conditional operator or an if
 statement. If the value of the above variable is updated by using
 any statement except the one assigned to the variable, after the
 loop is exited, the variable may resume the value before updated.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Neither option -optimize=0 nor -optimize=debug_only is selected.
 (2) Option -noscope is not selected.
 (3) In the program exist a number of functions whose optimizing ranges
 are divided.
 Here, the following message is dispatched when the -message option
 is selected:
 C0101 (I) Optimizing range divided in function "function name"
 NOTE: The function specified in C0101 (I) is hereafter called the
 function in Condition (3)
 (4) In the function in (3) exists a loop containing the conditional
 operator (?:) or an if statement.
 (5) The loop in (4) does not have any loop inside of it and is not
 an infinite loop.
 (6) Declared is an external or static variable that satisfies the
 following:
 (6-1) In the loop in (4), it is neither defined nor referenced.
 (6-2) In the function in (3), it is defined or referenced.
 (7) The variable in (6) is not qualified to be volatile, and the
 -global_volatile=1 option is not used.
 (8) The external or static variable in (6) is updated in the loop
 in (4) by using any statement except the one assigned to the
 variable. (An example of the above statement is a function call.)

 Example:
 --
 int aaa,xxx=0,yyy=0,n; // Condition (7)
 void sub(void);
 void func(void) // Condition (3)
 {

 aaa = 0; // Condition (6)

 for (i = 0; i < n ;i++) { // Conditions (4) and (5)
 if(xxx == yyy){

 sub(); // Condition (8)
 }
 }

 }
 void sub(void)
 {
 aaa++;
 }
 --

 Results of compilation:
 --
 _func:

 MOV.L @R9,R13 ; aaa . . . (A)
 MOV.L L17+8,R12 ; _n
 MOV.L L17+12,R10 ; _yyy
 MOV.L L17+16,R11 ; _xxx
 BRA L11
 MOV #0,R14 ; H'00000000
 L12:
 MOV.L @R10,R6 ; yyy
 MOV.L @R11,R2 ; xxx
 CMP/EQ R6,R2
 BF L14
 BSR _sub ; aaa++; . . . (B)
 NOP
 L14:
 ADD #1,R14
 L11:
 MOV.L @R12,R2 ; n
 CMP/GE R2,R14
 BF L12 ; if (i < n)
 MOV.L R13,@R9 ; aaa . . . (C)

 _sub:
 MOV.L L17,R6 ; _aaa
 MOV.L @R6,R2 ; aaa
 ADD #1,R2
 RTS
 MOV.L R2,@R6 ; aaa
 --
 In the above results of compilation, the value of aaa loaded into
 R13 from aaa at (aA) is written from aaa to R13 at (C). So when the

 loop is exited, the value of aaa incremented at (B) resumes the
 value held at immediately before the loop begins.

 Workaround:
 To avoid this problem, use any of the following:
 (1) Use option -optimize=0 or -optimize=debug_only.
 (2) Use option -noscope.
 (3) Use option -global_volatile=1.
 (4) Qualify the variable in Condition (6) to be volatile.
 (5) Reference the variable in Condition (6) within the loop in
 Condition (4).
 (6) Divide the function in Condition (3) until the message C0101 (I)
 is not dispatched even if the -message option is selected.

6. Problem with Using the Function That Accesses Both a Parameter to Be

 Saved on the Stack and the Stack Area Reserved in the Function within

 the Same Control Block (SHC-0087)

 Versions Concerned:
 V.9.00 Release 00 through V.9.04 Release 00

 Description:
 If a function accesses both a parameter to be saved on the stack and
 the stack area reserved in the function within the same control block,
 incorrect access may be made.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Neither option -optimize=0 nor -optimize=debug_only is selected.
 (2) Option -cpu=sh2afpu, -cpu=sh4, or -cpu=sh4a is selected.
 (3) Option -fpu=single is not selected.
 (4) A function takes a parameter to be saved on the stack.
 (5) The type of the parameter in (4) is any of the following and is
 not qualified to be volatile:
 (5-1) double
 (5-2) long double
 (5-3) structure or union one of whose members is of type double or
 long double
 (6) A stack area is reserved in the function in (4) for other purposes
 than for saving and restoring registers.
 The following case meets this condition:

 In the compile list, the value of the .STACK instruction
 of the function in (4) is greater than the size of the stack
 area used to save registers at the front of the function.
 (7) The variable of type float, double, or long double that has
 been assigned to the stack area in (6) is accessed.
 (8) The parameter in (5) is referenced.
 Note that when Condition (5-3) is met, Condition (8) is met only
 if a member of type double or long double is accessed; neither
 the structure nor union.
 (9) Between the access to the stack area in (7) and the reference
 in (9) exists none of the following:
 if statement, switch statement, for statement, while statement,
 do-while statement, goto statement, and conditional operator

 Example when option -cpu=sh2afpu used:
 --
 struct tbl {
 double x[2];
 };
 void sub(float a, double b);
 void func(struct tbl s){ // Conditions (4) and (5-3)
 float y[4]; // Condition (6)
 sub(y[3],s.x[1]); // Conditions (7), (8), and (9)
 }
 --

 Results of compilation:
 --
 _func:
 .STACK _func=16 ; Condition (6)
 ADD #-16,R15
 FMOV.S @(24,R15),FR6
 MOV #28,R0 ; H'0000001C
 FMOV.S @(R0,R15),FR7; s.x[]
 FMOV.S FR7,FR4 ; (A) Lower 4 bytes of s.x[1] transferred
 in error.
 MOV.L L11+2,R2 ; _sub
 JMP @R2
 ADD #16,R15
 --
 In the above results of compilation, y[3] is not transferred to FR4
 at (A), but the lower 4 bytes of s.x[1] are done.

 Workaround:
 To avoid this problem, use any of the following:

 (1) Use option -optimize=0 or -optimize=debug_only.
 (2) Use option -fpu=single.
 (3) Qualify the parameter in Condition (4) to be volatile.
 Example modified

 void func(volatile struct tbl s){

7. Problem with Referencing an Array Element of Type char Twice or

 More Times in a Function (SHC-0088)

 Versions Concerned:
 V.9.04 Release 00

 Description:
 If an array element of type char, signed char, or unsigned char is
 referenced twice or more times in a function, the address of
 the array element may be wrong.

 Conditions:
 This problem may arise if the condition group A or B is satisfied:

 Condition group A
 The following conditions, (A1) to (A6), are all met:
 (A1) Neither option -optimize=0 nor -optimize=debug_only is selected.
 (A2) An array of type char, signed char, or unsigned char;
 or a pointer to char, signed char, or unsigned char is declared.
 (A3) An element of the array in (A2) is referenced twice or more
 times in a function.
 Here, the reference to an element can be an indirect reference
 expression equivalent to an array reference.
 Example of an indirect reference expression:
 *(a+exp) is equivalent to a[exp]
 (A4) The subscript expression indicating the array element in (A3)
 is an addition or subtraction expression, and one of its
 operands is a variable and the other is any constant except 0.
 In the example of an indirect reference expression in (A3),
 the subscript expression is exp.
 And a constant can be one substituted for a variable by
 optimization of constant propagation (including that of
 external constants qualified to be const).
 (A5) The variable in (A4) is of type char, signed char, unsigned

 char, short, signed short, or unsigned short.
 (A6) The value of the subscript expression in (A4) is greater than
 the maximum value expressible in the type of the variable
 in (A5).

 Example condition group A met:
 --
 char S,*ary; // Condition (A2)
 void func(char par) // Condition (A5)
 {
 if (ary[par+1] > 10) { // Conditions (A3) and (A4)
 S = ary[par+1]; // Conditions (A3) and (A4)
 }
 return;
 }
 --
 In the above example, Condition (A6) is met if par is 127.

 Results of compilation:
 --
 _func:
 MOV.L L13,R7 ; _ary
 ADD #1,R4
 MOV.L @R7,R0 ; ary
 EXTS.B R4,R1 ; par+1 in Example is sign-extended
 in error.
 MOV.B @(R0,R1),R6; ary[]
 MOV #10,R5 ; H'0000000A
 CMP/GT R5,R6
 BF L12
 MOV.L L13+4,R2 ; _S
 MOV.B R6,@R2 ; S
 --

 Condition group B
 The following conditions, (B1) to (B6), are all met:
 (B1) Neither option -optimize=0 nor -optimize=debug_only is selected.
 (B2) A structure or union is declared a member of which is an array
 of type char, signed char, or unsigned char.
 (B3) An element of the array in (B2) is referenced twice or more
 times in a function.
 (B4) The subscript expression indicating the array element in (B3)
 is any of the following:
 (B4-1) A variable
 (B4-2) An addition expression; one of its operands is a variable

 and the other is a constant.
 (B4-3) A subtract expression; one of its operands is a variable
 and the other is a constant.

 The constant in either (B4-2) or (B4-3) can be one substituted
 for a variable by optimization of constant propagation
 (including that of external constants qualified to be const).

 (B5) The variable in (B4) is of type char, signed char, unsigned
 char, short, signed short, or unsigned short.
 (B6) The offset value of the array element in (B3) from the
 beginning of the structure or union in (B2) is greater than
 the maximum value expressible in the type of the variable
 in (B4).

 Example condition group B met:
 --
 char S;
 struct {
 char dummy[127];
 char mem[8]; // Condition (B6)
 } *st; // Condition (B2)
 void func(char par) // Condition (B5)
 {
 if (st->mem[par] > 10) { // Conditions (B3) and (B4-1)
 S = st->mem[par]; // Conditions (B3) and (B4-1)
 }
 return;
 }
 --
 In the above example, Condition (B6) is met if par is equal to
 or greater than 1.

 Results of compilation:
 --
 _func:
 MOV.L L13,R7 ; _st
 ADD #127,R4
 MOV.L @R7,R0 ; st
 EXTS.B R4,R1 ; par+127 in Example is sign-extended
 in error.
 MOV.B @(R0,R1),R6; st->mem[]
 MOV #10,R5 ; H'0000000A
 CMP/GT R5,R6
 BF L12

 MOV.L L13+4,R2 ; _S
 MOV.B R6,@R2 ; S
 --

 Workaround:
 To avoid this problem, use any of the following:
 (1) Use option -optimize=0 or -optimize=debug_only.
 (2) Qualify any of the following to be volatile:
 - The array in Condition (A2)
 - The array as a member of the structure or union
 in Condition (B2)
 - The structure or union in Condition (B2)
 - The variable as an operand of the subscript expression
 in (A4) and (B4)
 (3) Change the type of the variable in Condition (A4) or (B4) to
 one different from those specified in Condition (A5) or (B5).

 Example modified in condition group B:
 --
 void func(signed int par) // char changed to signed int.
 --

 (4) If Condition (B4-1) is met, convert the type of the variable that
 is an operand of the subscript expression to one different from
 those specified in Condition (B5)

 Example modified:
 --
 st->mem[(signed int)par] // par cast to signed int.
 --

8. Schedule of Fixing the Problems

 All the above problems have already been fixed in the C/C++ compiler
 package V.9.04 Release 01 for the SuperH RISC engine family.
 For details of the latest version, see RENESAS TOOL NEWS Document No.
 111027/tn2 on the Web page at:
 http://tool-support.renesas.com/eng/toolnews/111027/tn2.htm
 This page will be opened on October 27, 2011.

[Disclaimer]

The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

