RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A0103A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed	_78/G23 Rev. 1.21	Information Category	Technical Notification		
		Lot No.				
Applicable Product	RL78/G23 Group	All lots	Reference Document	RL78/G23 User's Man Rev. 1.21 R01UH0896EJ0121 (N		

This document describes misstatements found in the RL78/G23 User's Manual: Hardware Rev. 1.21 (R01UH0896EJ0121).

Corrections

Applicable Item	Applicable Page	Contents
8.3.4 Realtime clock control register 1 (RTCC1)	Page 473	Incorrect descriptions revised
Figure 8-19 Procedure for Reading Realtime Clock	Page 485	Incorrect descriptions revised
Figure 8-20 Procedure for Writing Realtime Clock	Page 486	Incorrect descriptions revised
37.3.2 Supply current characteristics	Page 1410 to Page 1427	Incorrect descriptions revised
37.6.4 Comparator characteristics	Page 1475	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		(Corrections and Applicable Item	S	Pages in this
No.		Document No.	English	R01UH0896EJ0121	document for corrections
1	8.3.4 F	Realtime clock contr	ol register 1 (RTCC1)	Page 473	Page 3
2	Figure	8-19 Procedure for	Reading Realtime Clock	Page 485	Page 4
3	Figure	8-20 Procedure for	Writing Realtime Clock	Page 486	Page 4
4	37.3.2	Supply current chai	racteristics	Page 1410 to Page 1427	Page 5 to Page 18
5	37.6.4	Comparator charac	teristics	Page 1475	Page 19

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G23 Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0103A/E	Jan. 19, 2023	First edition issued
		Corrections No.1 to No.5 revised (this document)

1. 8.3.4 Realtime clock control register 1 (RTCC1) (Page 473)

Incorrect:

Figure 8 - 5 Format of Realtime Clock Control Register 1 (RTCC1) (2/2)

RWAIT	Wait control of real-time clock
0	Counting proceeds.
1	Stops the SEC to YEAR counters. Counter values are readable and writable.
Be sure to writ So that the 16- or writing within After setting th written (RWST When the inter having overflow	s the operation of the counter. e 1 to this bit to read or write the counter value. bit internal counter continues to run, return the value of this bit to 0 on completion of reading n one second. is bit to 1, it takes up to one cycle of fRTCCK until the counter value can be actually read or = 1).Notes 1, 2 nal counter (16 bits) overflows while the setting of this bit is 1, an indicator of the counter wed is retained after RWAIT has become 0, after which counting up continues. n the second count register has been written to, the overflow is not retained

Date: Jan. 19, 2023

Correct:

Figure 8 - 5 Format of Realtime Clock Control Register 1 (RTCC1) (2/2)

RWAIT	Wait control of real-time clock
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value
Be sure to write	s the operation of the counter. e 1 to this bit to read or write the counter value. bit internal counter continues to run, return the value of this bit to 0 on completion of reading
interrupt is enab	n one second. When reading or writing to the counter is required while generation of the alarm led, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the
next constant-pe	
written (RWST When the inter having overflow	is bit to 1, it takes up to one cycle of fRTCCK until the counter value can be actually read or = 1).Notes 1, 2 nal counter (16 bits) overflows while the setting of this bit is 1, an indicator of the counter ved is retained after RWAIT has become 0, after which counting up continues. n the second count register has been written to, the overflow is not retained

2. Figure 8-19 Procedure for Reading Realtime Clock (Page 485)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

3. Figure 8-20 Procedure for Writing Realtime Clock (Page 486)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
- Cautions 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counting is in progress (RTCE = 1), rewrite the values of the MIN register after disabling interrupt processing of INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written.

Date: Jan. 19, 2023

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When reading to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
- Cautions 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counting is in progress (RTCE = 1), rewrite the values of the MIN register after disabling interrupt processing of INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written.

4. 37.3.2 Supply current characteristics (Page 1410 to Page 1427)

Incorrect:

37.3.2 Supply current characteristics

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le EV_{DD0} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fiH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.3	_	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.3		
					Normal	VDD = 5.0 V		3.0	5.0	mA
					operation	VDD = 1.8 V		3.0	5.0	1

	, ,	Normal	VDD = 5.0 V	0.8	1.3	mA
Squ	luare wave input	operation	VDD = 1.8 V	0.7	1.3	
	, ,	Normal	VDD = 5.0 V	0.9	1.4	mA
Res	esonator connection	operation	VDD = 1.8 V	0.8	1.4	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Jan. 19, 2023

Correct:

37.3.2 Supply current characteristics

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \ 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \ \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	5		fiH = 32 MHz ^{Note 2}	Basic	VDD = 5.0 V		1.3	—	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.3	_	
					Normal	VDD = 5.0 V		3.0	5.0	mA
					operation	VDD = 1.8 V		3.0	5.0	1

		fMX = 8 MHzNote 4,	Normal	VDD = 5.0 V	0.8	1.3	mA
		Square wave input	operation	VDD = 1.8 V	0.7	1.3	
		fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.9	1.4	mA
		Resonator connection	operation	VDD = 1.8 V	0.8	1.4	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

· The currents in the "Typ." column do not include the operating currents of the peripheral modules.

- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(1/4)

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating		fSUB = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.2	5.5	μA
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.5	5.8	

		TA = +85°C	5.2	20.9
		TA = +105°C	7.7	38.5

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D... converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.
- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC. 32-bit interval timer. and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Jan. 19, 2023

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

current mode clock operation Low-speed on-chip operation	C 3.2 5.5 μA
$T_{A} = +25^{\circ}$	
	C 3.5 5.8

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.

- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

(2/4)

7.7

38.5

TA = +105°C

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Item	Symbol		02 00 12				Тур.	Max.	Unit
Supply	IDD2	HALT mode		fiH = 32 MHz ^{Note 3}	VDD = 5.0 V		0.54	1.93	mA
currentNote 1	Note 2		(high-speed main) mode		VDD = 1.8 V		0.53	1.92	

			VDD = 5.0 V	0.12	0.47	mA
		Square wave input	VDD = 1.8 V	0.10	0.44	
		fMX = 8 MHzNote 5,	VDD = 5.0 V	0.21	0.58	mA
		Resonator connection	VDD = 1.8 V	0.20	0.57	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents

flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. **The currents in the Max**... column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.

- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified

Date: Jan. 19, 2023

(3/4)

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Item	Symbol		Cond	ditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode		fiH = 32 MHzNote 3	VDD = 5.0 V		0.54	1.93	mA
current ^{Note 1}	Note 2		(high-speed main) mode		VDD = 1.8 V		0.53	1.92	

		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.12	0.47	mA
		Square wave input	VDD = 1.8 V	0.10	0.44	
		fMX = 8 MHzNote 5,	VDD = 5.0 V	0.21	0.58	mA
		Resonator connection	VDD = 1.8 V	0.20	0.57	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents

flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

• The currents in the "Typ." column do not include the operating currents of the peripheral modules.

 The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.

- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fiH: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

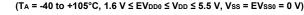
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(3/4)

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

ltem	Symbol		I	Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.53	2.31	μA
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.65	2.38	
				1	TA = +50°C		0.80	4.95	1


$T_{\Lambda} = \pm 105^{\circ}C$	3.40	30.20	
TA = +105 C	3.40	50.20	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC...
 32-bit interval timer, and watchdog timer.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing into. the RTC. 32-bit interval timer, and watchdog timer.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents. flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC. 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the

currents flowing into the RTC. 32-bit interval timer, and watchdog timer.

- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

© 2023 Renesas Electronics Corporation. All rights reserved.

(4/4)

Date: Jan. 19. 2023

•		,		· ,					• •
Item	Symbol		(Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.53	2.31	μA
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.65	2.38	
					TA = +50°C		0.80	4.95	

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM

	T1 - 1405°C	2.40	30.20	
	TA = +105°C	3.40	30.20	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).
- **Note 6.** The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). The current flowing into the RTC is included.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

(4/4)

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with

128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fiH = 32 MHz ^{Note 2}	Basic	VDD = 5.0 V		1.4	_	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.4	Ι	
					Normal	VDD = 5.0 V		3.0	5.0	mA
					operation	VDD = 1.8 V		3.0	5.0	

		fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.8	1.3	mA
		Square wave input	operation	VDD = 1.8 V	0.7	1.3	
		fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.9	1.4	mA
		Resonator connection	operation	VDD = 1.8 V	0.8	1.4	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Jan. 19, 2023

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fIH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.4	—	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.4	—	
					Normal	VDD = 5.0 V		3.0	5.0	mA
					operation	VDD = 1.8 V		3.0	5.0	
										1

		fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.8	1.3	mA
		Square wave input	operation	VDD = 1.8 V	0.7	1.3	
		fmx = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.9	1.4	mA
		Resonator connection	operation	VDD = 1.8 V	0.8	1.4	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

· The currents in the "Typ." column do not include the operating currents of the peripheral modules.

 The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating		fSUB = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.3	6.1	μA
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.6	6.3	
			mode	oscillator operation						1

_							
				TA = +85°C	5.3	25.6	
				TA = +105°C	 7.9	55.3	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. **The currents in the Max**...

column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the. data flash memory is being rewritten.

- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC. 32-bit. interval timer. and watchdog timer.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Jan. 19, 2023

- 2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM
- $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fsub = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.3	6.1	μA
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		3.6	6.3	

			TA = +85°C	5.3	25.6
			TA = +105°C	7.9	55.3

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with

128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

Item	Symbol		Conc	litions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode		fiH = 32 MHz ^{Note 3}	VDD = 5.0 V		0.57	1.97	mA
current ^{Note 1}	Note 2		(high-speed main) mode		VDD = 1.8 V		0.56	1.96	

		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.12	0.47	mA
		Square wave input	VDD = 1.8 V	0.10	0.44	
		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.21	0.58	mA
		Resonator connection	VDD = 1.8 V	0.20	0.57	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D... converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Jan. 19, 2023

(3/4)

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

•				· · ·					•
Item	Symbol		Cond	ditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	HS	fiH = 32 MHz ^{Note 3}	VDD = 5.0 V		0.57	1.97	mA
current ^{Note 1}	Note 2		(high-speed main) mode		VDD = 1.8 V		0.56	1.96	

Т							
			fMX = 8 MHz ^{Note 5} , Square wave input	VDD = 5.0 V	0.12	0.47	mA
				VDD = 1.8 V	0.10	0.44	
			fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.21	0.58	mA
			Resonator connection	VDD = 1.8 V	0.20	0.57	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

- · The currents in the "Typ." column do not include the operating currents of the peripheral modules.
- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(3/4)

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with

128- to 256-Kbyte flash ROM

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = 0 \text{ V})$

ltem	Symbol			Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.62	2.94	μA
current Note 1	Note 2		operation mode I ow-speed on-chip oscillator	TA = +25°C		0.74	3.00		
				1	TA = +50°C		0.88	6.00	

TA = +105°C	4 16	45.16	
	4.10	40.10	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. <u>The currents in the Max</u>. column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the. data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing into.

the RTC, 32-bit interval timer, and watchdog timer.

- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents. flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. <u>They.do.not</u>. include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC. 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC. 32-bit interval timer, and watchdog timer.

Date: Jan. 19, 2023

(4/4)

2. 30- to 64-pin package products with 192- to 256-Kbyte flash ROM and 80-pin package product with 128- to 256-Kbyte flash ROM

Item	Symbol		(Conditions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.62	2.94	μA
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.74	3.00	
					TA = +50°C		0.88	6.00]

-						
			TA = +105°C	4.16	45.16	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).
- **Note 6.** The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). The current flowing into the RTC is included.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(4/4)

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package

products

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating		fiH = 32 MHz ^{Note 2}	Basic	VDD = 5.0 V		1.6	_	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.5		
					Normal	VDD = 5.0 V		3.5	5.6	mA
					operation	VDD = 1.8 V		3.5	5.6	

_								
			fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.9	1.5	mA
			Square wave input	operation	VDD = 1.8 V	0.9	1.5	
			, o in iz	Normal	VDD = 5.0 V	1.0	1.6	mA
			Resonator connection	operation	VDD = 1.8 V	1.0	1.6	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.
- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fil: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Jan. 19, 2023

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package products

(T_A = -40 to +105°C, 1.6 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V. V_{SS} = EV_{SS0} = EV_{SS1} = 0 V)

(1/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	HS	fiH = 32 MHzNote 2	Basic	VDD = 5.0 V		1.6	_	mA
current Note 1		mode	(high-speed main) mode		operation	VDD = 1.8 V		1.5	Ι	
					Normal	VDD = 5.0 V		3.5	5.6	mA
					operation	VDD = 1.8 V		3.5	5.6	

		fMX = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	0.9	1.5	mA
		Square wave input	vave input operation	VDD = 1.8 V	0.9	1.5	
		fmx = 8 MHz ^{Note 4} ,	Normal	VDD = 5.0 V	1.0	1.6	mA
		Resonator connection	operation	VDD = 1.8 V	1.0	1.6	

Note 1. The listed currents are the total currents flowing into VDD, EVDD0 and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVss0, EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.
The currents in the "Typ." column do not include the operating currents of the peripheral modules.
The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those

flowing while the data flash memory is being rewritten.

- Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

Remark 3. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package

products

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le EV_{DD0} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = 0 \text{ V})$

(2/4)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating		fSUB = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.8	7.7	μA
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		4.1	8.0	
			mouo	oboliator operation					[]	1

			TA = +85°C	6.8	39.8	
			TA = +105°C	10.8	87.4	

Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. <u>The currents in the Max</u>, column include the peripheral operation current, but do not include those flowing into the A/D, converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the.

data flash memory is being rewritten.

- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Jan. 19, 2023

- 3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package products
- (T_A = -40 to +105°C, 1.6 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS0} = EV_{SS1} = 0 V)

Item	Symbol			Conditions			Min.	Тур.	Max.	Unit
Supply	IDD1	Operating	Subsystem	fsub = 32.768 kHz ^{Note 2} ,	Normal	TA = -40°C		3.8	7.7	μA
current Note 1		mode	clock operation mode	Low-speed on-chip oscillator operation	operation	TA = +25°C		4.1	8.0	
				•						

		TA = +85°C	6.8	39.8
		TA = +105°C	10.8	87.4

- Note 1. The listed currents are the total currents flowing into VDD, EVDD0 and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVss0, EVss1. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).

Remark 1. fiL: Low-speed on-chip oscillator clock frequency Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

(2/4)

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package

products

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 ≤ VDD ≤ 5.5 V, Vss = EVss0 = 0 V)

Item	Symbol		Conc	litions		Min.	Тур.	Max.	Unit
Supply	IDD2	HALT mode		fiH = 32 MHz ^{Note 3}	VDD = 5.0 V		0.60	2.00	mA
current ^{Note 1}	Note 2		(high-speed main) mode		VDD = 1.8 V		0.59	1.99	

		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.13	0.48	mA
		Square wave input	VDD = 1.8 V	0.11	0.45	
		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.22	0.59	mA
		Resonator connection	VDD = 1.8 V	0.21	0.58	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Max... column include the peripheral operation current, but do not include those flowing into the A/D... converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the... data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- Remark 1. fiH: High-speed on-chip oscillator clock frequency
- Remark 2. fim: Middle-speed on-chip oscillator clock frequency
- Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

Date: Jan. 19, 2023

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package

products

(3/4)

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Item	Symbol		Conditions					Max.	Unit
Supply	IDD2	HALT mode		fIH = 32 MHzNote 3	VDD = 5.0 V		0.60	2.00	mA
currentNote 1 Not	Note 2		(high-speed main) mode		VDD = 1.8 V		0.59	1.99	

		inite ,	VDD = 5.0 V	0.13	0.48	mA
		Square wave input	VDD = 1.8 V	0.11	0.45	
		fMX = 8 MHz ^{Note 5} ,	VDD = 5.0 V	0.22	0.59	mA
		Resonator connection	VDD = 1.8 V	0.21	0.58	

Note 1. The listed currents are the total currents flowing into VDD, EVDD0 and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVss0, EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.
 The currents in the "Typ." column do not include the operating currents of the peripheral modules.

- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency

Remark 2. fim: Middle-speed on-chip oscillator clock frequency

Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 4. The typical value for the ambient operating temperature (TA) is 25°C unless otherwise specified.

(3/4)

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package

products

$(T_A = -40 \text{ to } +105^{\circ}C, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = 0 \text{ V})$

Item	Symbol		Conditions						Unit
	IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.62	3.95	μA
current Note 1	Note 2		operation mode	Low-speed on-chip oscillator operation	TA = +25°C		0.78	4.00	1
					TA = +50°C		1.03	9.16	

_						
			$T_{A} = +105^{\circ}C$	4 64	70 14	
			TA = +103 C	4.04	70.14	

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. <u>The currents in the Max</u>. column include the peripheral operation current, but do not include those flowing into the A/D. converter, LVD circuit, I/Q port, and on-chip pull-up/pull-down resistors, and those flowing while the. data flash memory is being rewritten.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing into.

the RTC, 32-bit interval timer, and watchdog timer.

- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents. flowing into the RTC, 32-bit interval timer, and watchdog timer.
- Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. <u>They.do.not</u>. include the current flowing into the RTC, 32-bit interval timer, and watchdog timer. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC. 32-bit interval timer, and watchdog timer.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Date: Jan. 19, 2023

(4/4)

3. 44- to 80-pin package products with 384- to 768-Kbyte flash ROM and 100- to 128-pin package products

(TA = -40 to +105°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Item	Symbol		Conditions						Unit
Supply IDD2	HALT mode	Subsystem clock	fsub = 32.768 kHz ^{Note 3} ,	TA = -40°C		0.62	3.95	μA	
current Note 1		Low-speed on-chip oscillator operation	TA = +25°C		0.78	4.00			
	oporation	TA = +50°C		1.03	9.16				

TA = +10	5°C	4.64	70.14	
	, 0	1.01	10.11	

- Note 1. The listed currents are the total currents flowing into VDD, EVDD0 and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVss0, EVss1. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
- Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.
- Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1).
- **Note 6.** The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
- **Note 7.** The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
- Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 = 1, 1). The current flowing into the RTC is included.

Remark 1. fil: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

(4/4)

Remark 1. fiL: Low-speed on-chip oscillator clock frequency

Remark 2. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Jan. 19, 2023

5. 37.6.4 Comparator characteristics (Page 1475)

Incorrect:

37.6.4 Comparator characteristics

(TA = -40 to +105°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Item	Symbol	Conditio	Min.	Тур.	Max.	Unit	
Input voltage range	IVREF	C0LVL = 0, C1LVL = 0 Input to the IVREF0 and IVREF1 pins C0LVL = 1, C1LVL = 1		0		VDD - 1.4 and EVDD0	V
				1.4		EVDD0	V
	IVCMP			-0.3		EVDD0 + 0.3	V
Output delay	td	VDD = 3.0 V,	High-speed mode			0.3	μs
		Input slew rate > 1 V/µs	Low-speed mode		3.0		μs
Offset voltage	—	High-speed mode	High-speed mode			50	mV
		Low-speed mode				40	mV
Operation stabilization wait time	t CMP			30			μs
Internal reference voltage	VBGR2			1.4		1.6	V

Date: Jan. 19, 2023

Correct:

37.6.4 Comparator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Item	Symbol	Conditio	Min.	Тур.	Max.	Unit	
Input voltage range	IVREF	Input to the IVREF0 and IVREF1 pins C0LVL = 0, C1LVL = 0 Input to the IVREF0 and IVREF1 pins C0LVL = 1, C1LVL = 1 Input to the IVCMP0 and IVCMP1 pins		0		VDD - 1.4 and EVDD0	V
				1.4		EVDD0	V
	IVCMP			-0.3		EVDD0 + 0.3	V
Output delay	td	VDD = 3.0 V,	High-speed mode			1.5	μs
		Input slew rate > 1 V/µs	Low-speed mode		3.0		μs
Offset voltage	—	High-speed mode				50	mV
		Low-speed mode				40	mV
Operation stabilization wait time	t CMP			30			μs
Internal reference voltage ^{Note}	VBGR2			1.4		1.6	V

Note The internal reference voltage can be selected as comparator reference voltage only when 1.8 V ≤ VDD ≤ 5.5

V.

