

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 1 of 19

Subject

= = = Be sure to read this note = = =

C Compiler Package for M32R Family

V.4.30 release 00

Release Notes 4th Edition

Renesas Solutions Corp.

February 27, 2008

Welcome to the C Compiler Package for M32R Family (abbreviated as CC32R) V.4.30
Release 00. This document contains supplementary descriptions to the electronic User's
Manual.
Please read this release note while you refer to a corresponding item in electronic User's
Manual.

Renesas Technology Corp. and Renesas Solutions Corp. reserve the right to change the contents of this
release note without notice for improvements on characteristics, etc.

Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks
of Microsoft Corporation in the United States and other countries.
HP-UX is a registered trademark of Hewlett-Packard Company.
Sun, Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. or
other countries, and are used under license.
UNIX is a registered trademark of The Open Group in the United States and other countries.
IBM and AT are registered trademarks of International Business Machines Corporation.
HP9000 is a product name of Hewlett-Packard Company.
SPARC and SPARCstation are registered trademarks of SPARC International, Inc.
Intel and Pentium are registered trademarks of Intel Corporation.
i386, i486, and MMX are trademarks of Intel Corporation.
Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the U.S. and other
countries.
All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

===

COPYRIGHT(C) 2008 Renesas Technology Corp. and Renesas Solutions Corp.

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 2 of 19

1. Changes from V.4.20 Release 1

The changes from the previous version are as follows.

64-bit integer arithmetic function library added (standard library):
A set of functions to perform 64-bit integer arithmetic operations have been added. As for
the integer type in C language, these functions can perform the four fundamental
operations in arithmetic, as well as bitwise, shift and compare operations in the 64-bit range.
For details please see "Chapter-13 The set of 64-bit integer arithmetic functions" in M3T-
CC32R User's Manual <C Compiler> .

Section specification for the base register facility supported (C compiler):
The "wildcard specification" in access control files has been made possible to add a section
specification in it. As a result, by altering the output destination for a symbol to which the
base register is applied by using #pragma SECTION beforehand and then specifying the
altered section in a section-specified wildcard, it is now possible to apply the base register to
multiple symbols collectively.
For details please see "(3) Object registration line, A.1.7.2 The Access Control File Syntax,
A.1 Base Register Function" in M3T-CC32R User's Manual <C Compiler> .

Access control file output facility expanded (map generator):
This facility has been improved so that when creating an access control file from the load
module, static-declared objects and local variables will also be output.
(Debugging information is required for the creation of access control files.)

Map output during link error supported (linker):
Even when an error occurs during a link operation where a map generation (-M) operation
is specified, a temporary link map file will now be generated. Although this is essentially
temporary information because the addresses in it differ from those generated during
normal link, it will prove effective when analyzing the cause of a link error that occurred for
reasons of section allocation, etc.

csv symbol map file output supported (map generator):
A facility to generate a csv format symbol map file has been added. The option to be
specified to use this facility is -c or -c16. Because the file is in csv format, it can be input to
Microsoft Excel or other spreadsheet software to create a table showing the relationship
between addresses and symbols.
(Debugging information is required for the output of csv symbol maps.)
For details please see "Chapter-5 Csv symbol map output, Part-3 Map generator map32R" in
M3T-CC32R User's Manual <Assembler> .

S format sort output (load module converter):
The S1, S2 and S3 records (data) can now be output in order of addresses.
(Other records are output to the same lines as conventionally output.)

Warning suppressing option for nested comments added (C compiler):
An option to suppress the generation of a warning for the "/*" or "//" that denotes the
beginning of a comment within another comment (-warn_suppress_nested_comment)
has been added.

Default upper limit of the symbol count was changed (C compiler):

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 3 of 19

The default upper limit of symbol count of when -XX=... option was not specified was
changed to 40,000. (In V.4.20, this number was 10,000.)

Integrated Development Environment HEW 3.01.04 was attached:
HEW that had attached was revised to V.3.01.04.
Furthermore, because the latest version of HEW is 3.01.05 at Sep.1,2004, HEW that is
attached to this package is not a latest version. Therefore, please confirm the details of HEW
3.01.05 by referring to the tool news that shows below, and install and update HEW if it is
necessary.
RSO-HEW-040801D: Integrated Development Environment HEW Revised to V.3.01.05 (August 1, 2004)
[http://tool-support.renesas.com/eng/toolnews/n040801/tn5.htm]

The eight problems as follows have been fixed:
A problem on reading out data in memory using pointers, the illegal address may be
accessed. (C Compiler)

•

•

•

•

•

•

•

•

A problem on making a change to a variable by using a bit-field and referencing this
result, CC32R will generate incorrect code for this reference. (C Compiler)
The power functions (powf5, powf, and pow) may return a wrong value. (C Standard
Library)
A problem on rebuilding standard libraries in the Windows version, a imperfection
library will be made. (Standard Library, PC version Only)
A problem on floating constants with an exponent part, CC32R will exchange them to
incorrect data. (C Compiler)
A problem on displaying a value less than 0.5 by using a formatted output function such
as printf, a incorrect value will be shown. (Standard Library)
A problem on the same two or more indirection references that use a parameter of a
function, the compiler uses the value to which an indirection reference was made before
the function call (C Compiler)
A problem on statements or expressions in parallelism where only the types of operators
for the operations of type float are different from each other, the compiler deletes one or
more expressions of them (C Compiler)

Erratas of User's Manuals
User's manuals have some mistypes. So, please read these manuals while correcting to the
contents as following table.

<< C/C++ Compiler >>
Page Place Before Correction After Correction
CC32R-v
 (5/434)

Chapter 7 Embedd
ed Applications Pr
ogramming

7.4 About start-up file start.ms i
n HEW

7.4 About start-up file start.ms in Hi
gh-performance Embedded Workshop

cc32R-8
(20/434)

2.2 Compatibility
with an old versio
n

(N/A) Map output during link error suppor
ted (-MAP option):
Even when an error occurs during a
 link operation where a map generat
ion (cc32R: -MAP option, lnk32R: -M
option) operation is specified, a temp
orary link map file will now be gen
erated. Although this is essentially te
mporary information because the ad
dresses in it differ from those genera
ted during normal link, it will prove
 effective when analyzing the cause
of a link error that occurred for reas
ons of section allocation, etc.

(To be continued to the next page)

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 4 of 19

(Continued from the previous page)
Page Place Before Correction After Correction
cc32R-10
 (22/434)

3.1.3 Command Li
ne Syntax and Rul
es
Figure 3.1 cc32RC
ommand Line Syn
tax

-warn_suppressed_nested_comment -warn_suppress_nested_comment

cc32R-57
 (69/434)

4.6 Limitations for
 C Language
Table 4.20 Limitati
ons on C Languag
e Coding (1/2)
Declaration /
Valid Number of
characters in exter
nal and internal i
dentifiers and mac
ro names

Up to 31 characters Up to 240 characters

cc32R-109
(121/434)

7.4 (The title of th
is section)

7.4 About start-up file start.ms in
HEW

7.4 About start-up file start.ms in
High-performance Embedded Wor
kshop

cc32R-109
(121/434)

7.4 About start-up
 file start.ms in H
EW
Main text

The HEW generates a file "start.m
s" when creating new project. This
 file was modified from one that
was using with the TM and the
User's Manual.

The High-performance Embedded
Workshop generates a file "start.m
s" when creating new project. This
 file was modified from one that
was using with the TM and the
User's Manual.

cc32R-109
(121/434)

7.4 About start-up
 file start.ms in H
EW
Main text

Fundamentally, the contents of the
se start.ms are nearly equal. How
ever, the start.ms HEW generated
can be controled by the assembler
 as32R with setting following para
mter into -D option. If you will
modify this start.ms, be careful in
 this point.

Fundamentally, the contents of the
se start.ms are nearly equal. How
ever, the start.ms High-performanc
e Embedded Workshop generated
can be controled by the assembler
 as32R with setting following para
mter into -D option. If you will
modify this start.ms, be careful in
 this point.

cc32R-109
(121/434)

7.4 About start-up
 file start.ms in H
EW
Table 7.3. (The titl
e of this table)

Table 7.3. Meaning of control sym
bols of start.ms the HEW generate
d

Table 7.3. Meaning of control sym
bols of start.ms the High-performa
nce Embedded Workshop generate
d

cc32R-109
(121/434)

7.4 About start-up
 file start.ms in H
EW
Table 7.3. Meanin
g of control symb
ols of start.ms the
 HEW generated

Item name of HEW project Name
 creating dialog

Item name of High-performance E
mbedded Workshop project Name
 creating dialog

cc32R-109
(121/434)

10.2.8 Registers
ANSI-C 6.5.1 Stora
ge-class specifiers
<The extent to wh
ich objects can act
ually be placed in
 registers by use
of the register stor
age-class specifier.
>

The register storage-class specifier
is ignored.

The register storage-class specifier
will be accepted, but the all regist
er specified objects may not be all
ocated for registers. A compiler ju
dges which object should be alloc
ated a register.
There is no limit to the number o
f register declarations.

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 5 of 19

2. Precautions to be observed when installing

Please pay attention to the following point, in starting installation.

About the license ID
You need to input a license ID in the middle step of installation. Before you start installing
CC32R, check your license ID.
Also, if you obtained this version by utilizing the online version up or version up
purchasing, see the License ID certificate of the old version of CC32R. (This version can
install by using license ID of the version subsequent to V.1.00 Release 4 or later.)

Necessary memory and HDD capacity
In order that CC32R operates comfortably, it requires at least 64 Mbytes of memory and a
hard disk drive having 500 Mbytes or more of space.

Precautions about operating environment
The CC32R does not run under Windows 3.1 and Windows NT3.5x or earlier.

Precautions about the file name and directory name
The file name and directory name of the source program must follow the precautions
described below:

Directory and file names that contain multi-byte character (ex. Japanese-Kanji) cannot be used. •

•

•

•

•

•

•

Only one priod (.) can be used in a file name.
Network path names cannot be used. Assign the path to a drive name.
Shortcuts cannot be used.
Directory and file names that contain a space character cannot be used.
The "..." symbol cannot be used as a means of specifying two or more directories.
A file name in length of 128 characters or more including path specification cannot be used.

When introducing the SQMlint (MISRA C Rule Checker).
Please be sure to install the SQMlint after the CC32R.
If the CC32R is installed after the SQMlint, that cannot use the function of the SQMlint.
For details, refer to the manual or release note that are attached to the SQMlint.

In the case that a old version CC32R was installed.
If a old version CC32R was installed, please uninstall this older CC32R.
To uninstall CC32R, open [Control Panel] - [Add/Remove programs], select "CC32R V.x.xx
Release x" (x mean the CC32R version number), and click [Add/Remove] button.

Entering user registration
To be eligible for upgrade information, technical support, and other services, you must be
registered as a user with Renesas. Unless you are a registered user, the said services cannot
be received.

When you've installed the CC32R, the following file is created.

C:\mtool\support\cc32r\regist.txt

(It is in the case the directory was chosen in installation supposed as C:\mtool.)

Copy all contents of the regist.txt file and paste them into a file, then send it to the
electronic mail address given below.

regist_tool@renesas.com

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 6 of 19

If you are not using an electronic mail, output the contents of the regist.txt file to a
printer and send the printout to Renesas by facsimile. See the License ID Certificate
included with your product to find the address to be sent.
(If you use facsimile, a some number of days may be required until completion of user

registration. Please use e-mail, as much as possible.)

For information on our policy concerning the protection of personal information, please
refer to the Renesas Technology Homepage.
URL: http://www.renesas.com/fmwk.jsp?cnt=privacy.htm&fp=/privacy/&site=i
The information we receive via the User Registration Form aids us greatly in our
customer support activities. We provide Renesas Technology and related companies,
distributors, etc., with essential user information (electronically or on paper) that will
further help them provide customer support.
If you do not wish to have your user information provided to other related companies,
please contact us to let us know. Note, however, this will limit our ability to provide
complete product support.

Precautions about settings of environment variables
The environment variables listed below must always be set. If one of these variables
remains unset or an invalid path is specified, an error may occur when running the software.
(These variables do not need to be set when running the CC32R from TM.)

M32RLIB
M32RBIN
M32RINC
M32RTMP

Precautions about virus check programs
If this software is started while a virus check program is resident in memory, it may not
operate properly. In such a case, remove the virus check program from memory before you
start the software.

How to get the latest information of CC32R
Renesas has an internet home page in the URL shown below. The latest information on
Renesas Development Environmen are published here.
http://www.renesas.com/en/tools

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 7 of 19

3. Installing CC32R

How to install CC32R

Execute the installer by the method of items as follows (A or B).
[A. In the case of installing from the included CD]

Execute each installation program as shown in Table 1, in accordance with OS and language
that you are using.
(The drive letter of CD-ROM (Q:) differs each in PC. Please confirm yours.)

Table 1 CC32R file name of installer (The drive letter of CD-ROM is supposed with "Q:".)

Supported OS Languages Installer names
English Q:\CC32R\WINE\SETUP.EXE

Windows 98 / SE
Windows Me
Windows NT 4.0
Windows 2000
Windows XP

Japanese Q:\CC32R\WINJ\SETUP.EXE

[B. In the case of utilizing online version up]
Download installer files and install by the method that is written to the tool homepage.

 In the case of the online version up the installer will ask the directory ("Save files in folder") that receives
extracting data at the first step. As for this directory, designate the directory that does not exist whether
there is content. If you designate the directory that has some contents, please check them and continue by
push "Yes to All", or push "Cancel" and install again with selecting another directory that does not exist.

Follow the messages displayed on the screen as you install CC32R.
[Installing the HEW]

To use CC32R in the HEW, follow the procedure described below to install the HEW from the
CC32R installer. (If you already have the HEW or CC32R installed in your computer, uninstall
them first.)

 If the HEW installer does not start... If in step (1) the HEW installer does not start, temporarily stop
installing CC32R and install only the HEW first. Then invoke the CC32R installer.

 HEW was renewed to 3.01.05 at Aug.1,2004, but HEW that is attached to this package (HEW 3.01.04) is
older than it. Therefore, please confirm the details of HEW 3.01.05 by referring to the tool news that
shows below, and install and update HEW if it is necessary.
RSO-HEW-040801D: Integrated Development Environment HEW Revised to V.3.01.05 (August 1, 2004)
[http://tool-support.renesas.com/eng/toolnews/n040801/tn5.htm]

(1) Launch the CC32R installer, and the installer for the HEW will start up. Follow its
instructions as you install the HEW.

(2) The CC32R installer is paused. After confirming that the HEW installer has finished, the
installation of CC32R will resume.

[Installing the TM]
A change has been made to enable the installer for TM to be started from the CC32R installer.(If
you already have the TM installed in your computer, uninstall it first.)

(1) In the course of installation procedure, you will be asked "Do you wish to start the TM
installer?" So press [Y] for Yes to start the TM installer.

(2) The CC32R installer is paused at the dialog with following message: "TM installation is
finished, then push OK.".
After confirming that the TM installer has finished, press [OK] to resume the installation of
CC32R.

[NOTE]
The data you input in the middle of installation is necessary to create a file for user registration.

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 8 of 19

Setting PC environment
If you use on DOS prompt, please set environment variables like Table 2.
The environment variables marked by "Auto" in Table 2, you do not need to be set because
the installer automatically rewrites AUTOEXEC.BAT.

Table 2 Example of setting PC environment variables
(The directory name of the installation is supposed with "C:\mtool" .)

Environment names Example of settings
M32RBIN Auto (SET M32RBIN=C:\mtool\bin32R)
M32RLIB Auto (SET M32RLIB=C:\mtool\lib32R)
M32RINC Auto (SET M32RINC=C:\mtool\inc32R)
M32RTMP Auto (SET M32RTMP=C:\mtool\TMP)
M32RKIN SET M32RKIN=euc
M32RKOUT SET M32RKOUT=euc
Command path Auto (PATH %M32RBIN%;%PATH%)

[NOTES]
In this setup example, products are installed by "C:\mtool" of the installer. If you wish to install
products in a different directory, change the setup contents to the one you want.

•

•

•

If you use from HEW (High-performance Embedded Workshop) or TM (Tool Manager), you do
not need to be set these environment variables.

How to browse the electronic manual
To see these electronic manuals, use a PDF file displaying program, like a "Adobe Acrobat
Reader". So install it in your computer as necessary.

About the Acrobat Reader
Download "Adobe Acrobat Reader" from following URL of Adobe Systems Incorporated.
The latest Acrobat Reader can be downloaded from this home page. Please refer to the
following URL about the environment can be use and the latest information for Acrobat
Reader.

 http://www.adobe.com/
When using CC32R, there are following two methods for displaying an electronic manual:

1. The electronic manuals are registered in the start menu when installing by default.
Choose the necessary electronic manual file from menu
[Start] [Programs] [RENESAS-TOOLS] [CC32R V.x.xx Release x]
(x expresses version number etc.)

2. Open by double-clicking an electronic manual file
The electronic manuals are installed in the below C:\mtool\manual by installation
directory of default (C:\mtool). Double-click these files to open an electronic manual by
Acrobat Reader.It is possible to read manuals, that you open by double-clicking these
files (extension .pdf).

The following Table 3 lists the electronic manual files.
Table 3 Electronic manual file names

Languages Manual names PDF file names
English M3T-CC32R User's Manual < C Compiler >

M3T-CC32R User's Manual < Assembler >
MAP Viewer User's Manual

CC32Rue.pdf
AS32Rue.pdf
mapue.pdf

Japanese M3T-CC32R User's Manual < C Compiler >
M3T-CC32R User's Manual < Assembler >
MAP Viewer User's Manual

CC32Ruj.pdf
AS32Ruj.pdf
mapuj.pdf

[NOTE] (About User's Manual of MAP Viewer)
MAP Viewer can be used even if it combines with CC32R. (In this manual, MAP
Viewer is used with NC30WA.)

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 9 of 19

4. Precautions on using of V.4.30 Release 00

There are precautions on usage about this version.

 On the bitwise shift operator, if the right parameter is unsigned, the compiler
may not compile normally. (C Compiler)
Published to RENESAS TOOL NEWS on March 1, 2006: RSO-M3T-CC32R-060301D
(Under preparation)

If there is an integer type constant expression that has bitwise shift operator with an
unsigned type on its right parameter in a C source code, the compiler displays a warning
message as follows.
 "xxxx", line XX: warning: shift count greater than number of bits

(xxxx means a filename, and XX means a line number of a filename.)

If such constant expression is wrote at the size of a bit-field member of a structure, this
number is recognized different from original. Otherwise, a compile error may be displayed.

Conditions
This problem occurs if the following conditions are satisfied:

(1)
(2)

(3)

(1)

(2)

There is an integer type constant expression that has a bitwise shift operator.
In the expression shown by (1), the bitwise shift operator has unsigned integer type at
the right parameter.
The expression shown by (1) is used to show one of following (a)-(e) value.
(a) a bit-field member of a structure
(b) the size of an array
(c) the value of an enumeration constant
(d) the value of a case constant
(e) a place that shows a numerical value other than the above (a)-(d)

Cautions:
If the condition (3)(a) is satisfied, the compiler regards the bit-field size as not the constant
expression value but the size of original type. Therefore, if the warning message above is
displayed, please confirm the constant expression that above (1)-(3) suggested is not used
at a bit-field member of a structure.
If the codition (3)(b)-(d) is satisfied, a compiler error will occur.
If the codition (3)(e) is satisfied, the warning message above is displayed, but the generated
code is correct.

Examples
 a bit-field member of a structure
the warning message is displayed.
The size of member b01 is not 4-bits but 16-bits (the size of short type).

[Source file] sample1.c

 struct SBtag {
 short b01:1<<(unsigned)2; /* Condition(1),(2) and (3a) */
 short b02:1;
 };

 the size of an array
The warning messages and the error message as follows are displayed.
error: array: subscript must be positive, non-zero, integral value

[Source file] sample2.c

 int array[8>>1u]; /* Condition(1),(2) and (3b) */

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 10 of 19

(3)

(4)

(5)

 the value of an enumeration constant
The warning messages and the error message as follows are displayed.
error: enumeration-constant out of range

[Source file] sample3.c

 enum Etag {
 A,
 B = 2<<(unsigned)2 /* Condition(1),(2) and (3c) */
 };

 the value of a case constant
The warning messages and the error message as follows are displayed.
error: unable to evaluate case label (out of range?)

[Source file] sample4.c

 int func4(int key)
 {
 switch (key) {
 case ((3*8)>>(7UL-5)): /* Condition(1),(2) and (3d) */
 return 1;
 }
 return 0;
 }

 a place that shows a numerical value other than the above example 1 to 4.
The warning message is displayed, but the generated code is correct.

[Source file] sample5.c

 int data = 0x8000>>12u; /* Condition(1),(2) and (3e) */

Solutions
Append a (signed) cast at the right parameter of shift operator, in the following methods.

 [Circumvention of source file sample1.c]

 struct SBtag {
 short b01:1<<(signed)(unsigned)2; /* Append (signed) cast */
 short b02:1;
 };

[Circumvention of source file sample2.c]

 int array[8>>(signed)1u]; /* Append (signed) cast */

 [Circumvention of source file sample3.c]

 enum Etag {
 A,
 B = 2<<(signed)(unsigned)2 /* Append (signed) cast */
 };

[Circumvention of source file sample4.c]

 int func4(int key)
 {
 switch (key) {
 case ((3*8)>>(signed)(7UL-5)): /* Append (signed) cast */
 return 1;
 }
 return 0;
 }

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 11 of 19

 [Circumvention of source file sample5.c]

 int data = 0x8000>>(signed)12u; /* Append (signed) cast */

 On setting the address value of an object containing a structure, array or
union using the #pragma ADDRESS directive, CC32R may generate
incorrect code for this reference. (C Compiler)
Published to RENESAS TOOL NEWS on February 16, 2005: RSO-M3T-CC32R-050216D

Consider that a #pragma ADDRESS directive is used for defining the address of an object
that is an array or structure; or a union that has members of type array or structure.
If a member or element placed at any address except the beginning address of the object is
accessed (read or written) or referenced by an address operator (&), incorrect code is
generated using the address of the member or element placed at the beginning of the object.

Conditions
This problem occurs if the following conditions are satisfied:

(1)

(2)

(3)

Any of the following three objects is declared outside of a function:
(a) A structure
(b) An array
(c) A union having members of type array or structure
A #pragma ADDRESS directive is used for defining the object in (1).

For a member or element placed at any address except the beginning address of the
object, either of the following is performed:
(a) Accessing (reading or writing)
(b) Referencing by an address operator (&)

Examples
[Source file] sample1.c

 #pragma ADDRESS data1 0x10000 /* Condition (2) */
 struct stg1 {
 int a;
 int b;
 } data1; /* Condition (1)-(a) */

 void func1(void)
 {
 data1.b = 3; /* Condition (3)-(a) */
 }

[Source file] sample2.c

 #pragma ADDRESS data2 0x20000 /* Condition (2) */
 short data2[10]; /* Condition (1)-(b) */
 short *d2;

 void func2(void)
 {
 d2 = &data2[3]; /* Condition (3)-(b) */
 }

[Source file example 3] sample3.c

 union utg3 {
 double a[10];
 struct {
 int b;

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 12 of 19

 double c[5];
 } d;
 } data3; /* Condition (1)-(c) */

 #pragma ADDRESS data3 0x30000 /* Condition (2) */

 void func3(int i)
 {
 data3.d.c[i] = /* Condition (3)-(a) */
 data3.a[4]; /* Condition (3)-(a) */
 }

Solutions
Access the object using the address cast to a pointer. It is convenient to use macros shown
in the examples below:

[Modification of sample1.c]

 #define data1 (*(struct stg1*) 0x10000) /* Converted to macro */

 struct stg1 {
 int a;
 int b;
 } /* data1 */ ; /* Only stg1 declared; data1 commented out */
 void func1(void)
 {
 data1.b = 3; /* Replaced by macro */
 }

[Modification of sample2.c]

 #define data2 ((short *) 0x20000) /* Converted to macro */

 /* short data2[10]; */ /* data2 commented out */
 short *d2;

 void func2(void)
 {
 d2 = &data2[3]; /* Replaced by macro */
 }

[Modification of sample3.c]

 union utg3 {
 double a[10];
 struct {
 int b;
 double c[5];
 } d;
 } /* data3 */ ; /* Only utg3 declared; data3 commented out */

 #define data3 (*(union utg3*) 0x30000) /* Converted to macro */

 void func3(int i)
 {
 data3.d.c[i] = /* Replaced by macro */
 data3.a[4]; /* Replaced by macro */
 }

 On making a function call using a pointer pointing to a function whose type
has been converted by a cast operator, CC32R may describe an error. (C
Compiler)
Published to RENESAS TOOL NEWS on December 1, 2004: RSO-M3T-CC32R-041201D

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 13 of 19

When a function call is made using a pointer pointing to a function whose type has been
converted by casting, the following error may arise even if both types of each parameter and
its argument match with each other:

error: type of argument does not match with prototype

Conditions
This problem occurs if the following conditions are all satisfied:

(1)

(2)

The type of a pointer or integer is converted to another pointer pointing to a function
by casting, and a function call is made at the same time.
At least one parameter of the function to be called is array type.

Examples
[Source file] sample1.c

 short array[3];

 void foo1(void *ptr1)

 {
 (*(void(*)(int, short arr[]))ptr1)(2,array);
 /* Conditions (1) and (2) */
 }

[Source file] sample2.c

 typedef struct AAA TYPE_A;
 char *ptr2;

 int foo2(TYPE_A array[][3])
 {
 int ans;
 ans = (*(int(*)(TYPE_A arr[][3]))ptr2)(array);
 /* Conditions (1) and (2) */
 return ans;
 }

[Source file example 3] sample3.c

 typedef float TYPE_F[3];
 TYPE_F array;

 void foo3(void)
 {
 (*(void(*)(TYPE_F))0x123400)(array);
 /* Conditions (1) and (2) */
 }

Solutions
When making a function call using a pointer pointing to a function whose type has been
converted by casting, once save the result of casting in another pointer variable, and then
make a function call using this variable.

[Modification of sample1.c]

 short array[3];

 void foo1(void *ptr1)
 {
 void (*callptr1)(int, short arr[])
 /* Define a pointer variable "callptr1" */

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 14 of 19

 = (void (*)(int,short arr[]))ptr1;
 /* Save the cast result in "callptr1" */
 (*callptr1)(2,array); /* Call a function using "callptr1" */
 }

[Modification of sample2.c]

 typedef struct AAA TYPE_A;
 char *ptr2;

 int foo2(TYPE_A array[][3])
 {
 int ans;
 int (*callptr2)(TYPE_A arr[][3]);
 /* Define a pointer variable "callptr2" */
 callptr2 = (int(*)(TYPE_A arr[][3]))ptr2;
 /* Save the cast result in "callptr2" */
 ans = (*callptr2)(array); /* Call a function using "callptr2" */
 return ans;
 }

[Modification of sample3.c]

 typedef float TYPE_F[3];
 void *ptr3;
 TYPE_F array;

 void foo3(void)
 {
 void (*callptr3)(TYPE_F);
 /* Define a pointer variable "callptr3" */
 callptr3 = (void(*)(TYPE_F))0x123400;
 /* Save the cast result in "callptr3" */
 (*callptr3)(array); /* Call a function using "callptr3" */
 }

 On initializing a two-dimensional array of type char using an initializer,
CC32R may generate incorrect code for this reference. (C Compiler)
Published to RENESAS TOOL NEWS on September 16, 2004: RSO-M3T-CC32R-040916D

If a two-dimensional array of type char is declared and at the same time initialized using a
specific type of initializer that contains string literals, the compiler will tell the following
error message:
cg32r: "xxxx", line XX: internal error: illegal IL, size of initializer is larger than name size.

("xxxx" means a source file name.)

Conditions
This problem occurs if the following conditions are all satisfied:

(1)

(2)
(3)
(4)

(1)

A two-dimensional array of type char (except for type pointer) is declared with an
initializer.
In the declaration of the array in (1), its size is neglected.
The initializer in (1) contains two or more string literals (for example, "ab" and "cd").
Among the string literals in (3), the first is enclosed with braces.

Examples
 Statically Initialized Array

[Source file] sample1.c

 char array1[][2] = { /* Conditions (1) and (2) */

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 15 of 19

 {"ab"}, /* Conditions (3) and (4) */
 "cd", /* Condition (3) */
 "ef" /* Condition (3) */
 };

(2)

(1)

(2)

 Statically Initialized Array
[Source file] sample2.c

 extern void array_func(char [][6]);
 void func2(void)
 {
 char array2[][6] = { /* Conditions (1) and (2) */
 {"5678"}, /* Conditions (3) and (4) */
 {"1234"}, /* Condition (3) */
 };
 array_func(array2);
 }

Solutions
This problem can be circumvented in either of the following ways:

Specify the size of the array.

[Circumvention of source file sample1.c]

 char array1[3][2] = { /* Size of 3 specified */
 {"ab"},
 "cd",
 "ef"
 };

[Circumvention of source file sample2.c]

 extern void array_func(char [][6]);
 void func2(void)
 {
 char array2[2][6] = { /* Size of 2 specified */
 {"5678"},
 {"1234"},
 };
 array_func(array2);
 }

Remove the braces enclosing the first string literal.

[Circumvention of source file sample1.c]

 char array1[][2] = {
 "ab", /* Braces removed */
 "cd",
 "ef"
 };

[Circumvention of source file sample2.c]

 extern void array_func(char [][6]);
 void func2(void)
 {
 char array2[][6] = {
 "5678", /* Braces removed */
 {"1234"},
 };
 array_func(array2);
 }

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 16 of 19

 On using an assignment expression whose left term is of a shorter data type
than the right term and after which is placed an expression that is equivalent
to the right term of the assignment expression, CC32R may generate
incorrect code for this reference. (C Compiler)
Published to RENESAS TOOL NEWS on January 16, 2008: 080116/tn1

Consider the case where an assignment expression whose left term is of a shorter data type
than the right term exists, and after it is placed another expression that contains an
expression equivalent to the right term of the assignment expression.
When the second expression is evaluated, such a value is used that is obtained by casting
the operation result of the right term of the assignment expression to the shorter data type;
not the above operation result itself.

Conditions
This problem may occur if the following conditions are all satisfied:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The optimizing option used in compilation meets either (a) or (b) shown below.
(a) Option -O, -O2, -O3, -O6, or -O7 is used.
(b) Option -Ospace or -Otime is used with -O0, -O1, -O4, and -O5 not used.

An expression exists which contains more than one variable of an integral type and
whose operation result is also of an integral type.
The expression can contain only one variable of an integral type.

An assignment expression exists in which the operation result of the expression in (2)
is assigned to an auto variable of a shorter integral type than the operation result in
(2).

An expression equivalent to the expression in (2) is used as a part of another
expression evaluated after the assignment expression in (3).

Between the assignment in (3) and the use of an expression in (4) exists no possibility
of changing the values of any variables contained in the expression in (2).

The auto variable in (3) is saved on the stack; not on a register.

The operation result of the expression in (2) is saved on a register. This is valid when
the expression contains only one variable.

Notice:
Whether the objects in Conditions (6) and (7) are saved on the stack or a register depends
on your compiler and is not determined by the source code. It should be checked using the
code generated after compilation.

Example
In the operation of expression val_ulong >> 8 below is used the value of val_ulong after
assigned to val_uchar. So the operation result of this expression becomes incorrect.
However, this problem may not arise depending on the descriptions of the program lines
that are omitted below.

 unsigned long func_ulong(unsigned short);
 void func(void)
 {
 unsigned long val_ulong;
 unsigned char val_uchar;
 unsigned int val_another;
 unsigned short val_ushort;
 /*
 .
 */
 val_ulong = func_ulong(val_ushort);
 val_uchar = val_ulong; /* Conditions (2) and (3) */
 val_another = val_ulong >> 8; /* Conditions (4) and (5) */

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 17 of 19

 /*
 .
 */
 }

Solutions
Avoid this problem in either of the following ways:
(1)

(2)

Suppress the optimization in Level 2.

If you are using option -O, -O2, -O3, -O6, or -O7, replace it with -O0, -O1, -O4, or -O5. If
you are using -Ospace or -Otime, use -O0, -O1, -O4, or -O5 at the same time.

Exchange the expressions in Conditions (3) and (4) in their order.

If you are using option -O, -O2, -O3, -O6, or -O7, replace it with -O0, -O1, -O4, or -O5. If
you are using -Ospace or -Otime, use -O0, -O1, -O4, or -O5 at the same time.

Example modified:
 --
 unsigned long func_ulong(unsigned short);
 void func(void)
 {
 .
 val_ulong = func_ulong(val_ushort);
 val_another = val_ulong >> 8; /* Conditions (4) and (5) */
 val_uchar = val_ulong; /* Conditions (2) and (3) */
 .
 }
 --

For a reference
This problem has already been fixed in the V.5.01 Release 00 package. So use the latest
version of the package. Note that the package V.4.30 Release 00 or earlier cannot be
updated to the latest version.

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 18 of 19

5. Software table

Table 4 shows the look of the directory and file that are made after installation.

Table 4 Table of the directory and file after installation
Directory names File names Notes

cc32R.exe Compile driver (V.2.11.00.000)
as32R.exe Assemble driver (V.2.03.00.000)
lnk32R.exe Linker (V.1.11.00.000)
lib32R.exe Librarian (V.1.02.01.000)
lmc32R.exe Load module converter (V.1.12.00.000

bin32R

map32R.exe Map generator (V.1.21.00.000)
cpre.exe Preprocessor (V.2.06.00.000)
cfrt.exe Parser (V.2.23.00.000)
postpar.exe Post parser (V.1.00.01.000)
opt.exe Optimizer (V.1.25.00.000)
cg32R.exe Code generator (V.4.03.00.000)
a032R.exe Macro processor (V.1.00.01.000)
a132R.exe Assembler (V.4.04.01.000)
alis32R.exe List processor (V.1.01.00.000)
parafilt.exe Parallel processor (V.1.00.02.000)
cmerge.exe C source merge processor (V.1.01.01.000)
m32RcR.lib C Library (Small model)
m32RcRM.lib C Library (Medium model)
m32RcRL.lib C Library (Large model)
m32RcR.stk Stack utilize display file for C library (for m32RcR.lib)
m32RcRM.stk Stack utilize display file for C library (for m32RcRM.lib)

lib32R

m32RcRL.stk Stack utilize display file for C library (for m32RcRL.lib)
assert.h, ctype.h, errno.h,
float.h, limits.h, locale.h,
math.h, setjmp.h, signal.h,
stdarg.h, stddef.h, stdio.h,
stdlib.h, string.h, time.h

C Library headers

inc32R

cstddef, cstdio, cstdlib,
exception, new, stdexcept,
typeinfo, new_ecpp.h,
new_std.h

Reserved C Library headers
)+2*!

inc32R\sys

assert.h, ctype.h, errno.h,
float.h, limits.h, locale.h,
math.h, setjmp.h, signal.h,
stdarg.h, stddef.h, stdio.h,
stdlib.h, string.h, time.h

inc32R\com
 ANSI_errno.h, def.h, SBPP

System definition headers
)+3*

strip32R.exe Debug information discarding utility (V.1.00.00.000)
abslist.exe Absolute listing utility (V.1.00.05.000)
stk32R.exe Stack size calculation utility (V.1.00.00.000)
license.txt Development support utility guide (English)
license.sj Development support utility guide (Japanese)
strip32R.txt Utility manual of strip32R (English)
abslist.txt Utility manual of abslist (English)
stk.txt Utility manual of stk32R (English)
strip32R.sj Utility manual of strip32R (Japanese)
abslist.sj Utility manual of abslist (Japanese)

UnSpt32R

)+4*

stk.sj Utility manual of stk32R (Japanese)
~.c
~.h
~.ms
floatlow\~.mo

stack/~.stk

 C Library source files

BUILD.bat

lib32R\src

CLEAN.bat
 C Library build utilities

support/cc32r userinfo.txt
regist.txt Product information record files

smp32R start.ms Startup, Low-level functions example
lib32R tmcpp.exe Preprocessor for TM (V.4.02.00)

REJ10J0517-0400

C Compiler Package for M32R Family V.4.30 Release 00
Release Notes 4th Edition

Rev.4.00 2008.02.27 page 19 of 19

tmcpp.opt tmcpp option setting file for TM
cc32r.mkt Makefile basic setting file for TM
cc32r.opt cc32R option setting file for TM
as32r.opt as32R option setting file for TM
lnk32r.opt lnk32R option setting file for TM
lib32r.opt lib32R option setting file for TM
lmc32r.opt lmc32R option setting file for TM
map32r.opt map32R option setting file for TM
mapviewer.exe Map Viewer (V.3.00.00)
map_inspect.dll DLL file for Map Viewer
mapviewer.hlp Help file for Map Viewer

bin

mapviewer.cnt Help setting file for Map Viewer
CC32Rue.pdf User's manual < C Compiler > [English]
AS32Rue.pdf User's manual < C Compiler > [English]
CC32Ruj.pdf User's manual < C Compiler > [Japanese]
AS32Ruj.pdf User's manual < C Compiler > [Japanese]

manual

mapuj.pdf
Map Viewer Manual
 [English or Japanese (will be selected by the installer)]

NOTES

+2/ The Reserved C Library headers is reserved for future expansion of next CC32R.
Then these headers can not be used now, please do not include them from your C
program.

+3/ The System definition headers are unable to be deleted and modified, because CC32R
refers to them in compiling.
If these files are deleted or changed CC32R does not run normally.

+4/ The program in the UnSpt32R directory differ from the constitution things of other
CC32R regarding the handling of the license and support. Please confirm the document
file "license.txt" in this directory.

REJ10J0517-0400

	Subject
	 1. Changes from V.4.20 Release 1
	64-bit integer arithmetic function library added (standard library):
	Section specification for the base register facility supported (C compiler):
	Access control file output facility expanded (map generator):
	Map output during link error supported (linker):
	csv symbol map file output supported (map generator):
	S format sort output (load module converter):
	Warning suppressing option for nested comments added (C compiler):
	Default upper limit of the symbol count was changed (C compiler):
	Integrated Development Environment HEW 3.01.04 was attached:
	The eight problems as follows have been fixed:
	Erratas of User's Manuals

	 2. Precautions to be observed when installing
	About the license ID
	Necessary memory and HDD capacity
	Precautions about operating environment
	Precautions about the file name and directory name
	When introducing the SQMlint (MISRA C Rule Checker).
	In the case that a old version CC32R was installed.
	Entering user registration
	Precautions about settings of environment variables
	Precautions about virus check programs
	How to get the latest information of CC32R

	 3. Installing CC32R
	How to install CC32R
	Setting PC environment
	How to browse the electronic manual

	 4. Precautions on using of V.4.30 Release 00
	 On the bitwise shift operator, if the right parameter is unsigned, the compiler may not compile normally. (C Compiler)
	 On setting the address value of an object containing a structure, array or union using the #pragma ADDRESS directive, CC32R may generate incorrect code for this reference. (C Compiler)
	 On making a function call using a pointer pointing to a function whose type has been converted by a cast operator, CC32R may describe an error. (C Compiler)
	 On initializing a two-dimensional array of type char using an initializer, CC32R may generate incorrect code for this reference. (C Compiler)
	 On using an assignment expression whose left term is of a shorter data type than the right term and after which is placed an expression that is equivalent to the right term of the assignment expression, CC32R may generate incorrect code for this reference. (C Compiler)

	 5. Software table

