

User Manual

DA14585 Voice RCU Software
Manual

UM-B-086

Abstract

This document describes the software of the DA14585 Voice Remote Control Unit reference design
application, based on the DA14585 Bluetooth 5.0 SoC with Audio Interface.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 2 of 100 © 2022 Renesas Electronics

Contents

Abstract .. 1

Contents ... 2

Figures .. 4

Tables ... 5

1 Terms and Definitions ... 6

2 References ... 7

3 Introduction .. 8

4 Features .. 8

5 System Architecture ... 9

6 Using the Reference Design Board ... 11

6.1 Connecting the Debugger ... 11

6.2 Building and Downloading the Firmware .. 12

6.3 Using the Hardware .. 14

6.3.1 Connecting and Testing the Keypad and Sound ... 14

6.3.2 Testing the Motion, Trackpad, Slider, IR and LED functionality 24

6.3.3 Firmware Updating Using SUOTA ... 25

7 Software Architecture ... 27

7.1 General Description .. 27

7.2 Low Level Drivers (LLDs) .. 28

7.3 Modules ... 28

7.4 Including Modules in the Project ... 29

7.5 User RCU Application ... 30

7.6 Configuration Files .. 32

7.6.1 User Configuration Files .. 32

7.6.2 Module Configuration Files .. 33

7.7 Project Folder Structure .. 34

8 Modules .. 35

8.1 Keyboard Module .. 35

8.1.1 Description ... 35

8.1.2 Configuration ... 36

8.1.3 Design Considerations... 38

8.2 Audio Module .. 38

8.2.1 Description ... 38

8.2.2 Configuration ... 39

8.3 BLE Stream Module .. 40

8.3.1 Description ... 40

8.3.2 Configuration ... 42

8.3.3 Design Considerations... 42

8.4 Motion Module ... 43

8.4.1 Description ... 43

8.4.2 Configuration ... 43

8.5 Touchpad Module ... 44

8.5.1 Description ... 44

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 3 of 100 © 2022 Renesas Electronics

8.5.2 Configuration ... 46

8.6 IR Module .. 47

8.6.1 Description ... 47

8.6.2 Configuration ... 47

8.6.3 Design Considerations... 48

8.7 GPIO Keys Module ... 48

8.7.1 Description ... 48

8.7.2 Configuration ... 49

8.7.3 Design Considerations... 49

8.8 HID Report Module ... 50

8.8.1 Description ... 50

8.8.2 Configuration ... 50

8.9 Advertising FSM Module ... 51

8.9.1 Description ... 51

8.9.2 Configuration ... 57

8.10 Connection FSM Module... 58

8.10.1 Description ... 58

8.10.2 Configuration ... 64

8.11 LED Indicators Module .. 66

8.11.1 Description ... 66

8.11.2 Configuration ... 67

8.11.3 Design Considerations... 68

8.12 Sound Indicator Module .. 69

8.12.1 Description ... 69

8.12.2 Configuration ... 69

8.13 Power Manager Module .. 70

8.13.1 Description ... 70

8.13.2 Configuration ... 70

8.13.3 Design Considerations... 70

8.14 Wakeup Controller Module ... 71

8.14.1 Description ... 71

8.14.2 Configuration ... 71

8.15 Timer Controller Module .. 72

8.15.1 Description ... 72

8.15.2 Configuration ... 72

8.15.3 Design Considerations... 72

8.16 SysTick Controller Module .. 73

8.16.1 Description ... 73

8.16.2 Configuration ... 73

8.16.3 Design Considerations... 73

9 BLE Services ... 74

9.1 Dialog Audio Service ... 74

9.1.1 Control Point Characteristic ... 74

9.1.1.1 Control Point Commands .. 74

9.1.1.2 Control Point Notifications ... 76

9.1.2 Device Configuration Characteristic .. 77

9.1.3 Audio Data Report Characteristic .. 78

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 4 of 100 © 2022 Renesas Electronics

9.2 HID Over GATT Profile ... 79

9.2.1 Description ... 79

9.2.1.1 Vendor-Defined Reports for Audio Stream 79

9.2.1.2 Vendor-Defined Report for Gyro/Accelerometer Sensor 80

9.2.2 Configuration ... 80

Appendix A Reconnect the RCU from Scratch .. 82

Appendix B Build and Download the Firmware to Other Hardware ... 84

B.1 ProDK Kit Configuration .. 89

B.1.1 app_audio_config.h ... 89

B.1.2 app_bmi160_config.h .. 90

B.1.3 app_kbd_matrix.h .. 91

B.1.4 app_kbd_scan_matrix.h... 92

B.1.5 app_motion_config.h ... 93

B.1.6 user_config.h ... 93

B.1.7 user_periph_setup.h .. 94

B.1.7.1 Shuttle Board Connection over I2C ... 94

B.1.7.2 Shuttle Board Connection over SPI ... 95

Appendix C Create SUOTA Image ... 96

Appendix D Slider Gestures ... 97

Revision History .. 99

Figures

Figure 1: System Block Diagram ... 9
Figure 2: Voice RCU with Trackpad .. 11
Figure 3: Connecting the Debugger .. 11
Figure 4: Software Architecture Diagram .. 27
Figure 5: Keyboard Module Block Diagram ... 35
Figure 6: Audio Module Block Diagram ... 38
Figure 7: BLE Stream Module Block Diagram... 40
Figure 8: Motion Module Block Diagram ... 43
Figure 9: Touchpad Module Block Diagram .. 44
Figure 10 Touchpad Module - Tracking State Machine .. 46
Figure 11: IR Module Block Diagram .. 47
Figure 12: GPIO Keys Module Block Diagram .. 48
Figure 13: HID Report Module Block Diagram .. 50
Figure 14: Advertising FSM State Transition Diagram .. 57
Figure 15: LED Indicators Module Block Diagram .. 66
Figure 16: LED Connection to GPIO Pin ... 66
Figure 17: Sound Indicator Module Block Diagram ... 69
Figure 18: Power Manager Module Block Diagram .. 70
Figure 19: Wakeup Controller Module Block Diagram .. 71
Figure 20: Timer Controller Module Block Diagram .. 72
Figure 21: SysTick Controller Module Block Diagram ... 73
Figure 22: ProDK with a QFN40 DA14585 .. 89
Figure 23: Microphone Pins and Cables ... 89
Figure 24: BMI160 Shuttle Board .. 90
Figure 25: Shuttle Board Connector .. 90
Figure 26: 4 x 4 Keyboard ... 91
Figure 27: Create SUOTA Image .. 96

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 5 of 100 © 2022 Renesas Electronics

Tables

Table 1: Voice RCU Key Peripheral Components .. 9
Table 2: Debug Connector Pinout ... 10
Table 3: Test Connector Pinout ... 10
Table 4: Steps for Building and Downloading the Firmware ... 12
Table 5: Steps for Connecting and Testing the Keypad and Sound ... 14
Table 6: LED Functionality .. 24
Table 7: Steps for Firmware Updating Using SUOTA ... 25
Table 8: Audio Stream In-Band Commands .. 31
Table 9: Compressed Audio Bit Rate .. 39
Table 10: ADV_IDLE State Transitions ... 52
Table 11: ADV_DIRECTED State Transitions ... 52
Table 12: ADV_UNDIRECTED State Transitions ... 53
Table 13: ADV_UNDIRECTED_LIM State Transitions ... 54
Table 14: ADV_UNDIRECTED_NO_PAIRING State Transitions ... 54
Table 15: ADV_UNDIRECTED_SLOW State Transitions ... 55
Table 16: ADV_FSM_EVENT_PENDING State Transitions ... 55
Table 17: IDLE_ST State Transitions .. 60
Table 18: ADVERTISING_ST State Transitions ... 60
Table 19: CONNECTION_IN_PROGRESS_ST State Transitions ... 61
Table 20: CONNECTED_PAIRING_ST State Transitions .. 61
Table 21: CONNECTED_ST State Transitions ... 62
Table 22: POWEROFF_ST State Transitions ... 63
Table 23: DISCONNECTED_INIT_ST State Transitions .. 63
Table 24: WAITING_DISCONNECTION_AFTER_POWEROFF State Transitions 63
Table 25: Dialog Audio Service Characteristics .. 74
Table 26: Control Point Command Structure .. 74
Table 27: Control Point Commands .. 74
Table 28: Set ATT Packet Size Command Parameters .. 75
Table 29: Set Connection Parameters Command Parameters ... 75
Table 30: Emulate Key Press Command Parameters .. 75
Table 31: Control Point Notification Structure ... 76
Table 32: Control Point Notifications ... 76
Table 33: Keyboard Key Report Fields ... 76
Table 34: Debug Info Report Fields .. 77
Table 35: Connection Parameter Report Fields .. 77
Table 36: ATT packet size report fields ... 77
Table 37: Device Configuration Structure ... 77
Table 38: Audio Stream Configuration Report Fields .. 78
Table 39: Vendor-Defined HID Reports for Audio Stream Functionality ... 79
Table 40: Vendor Defined HID Reports for Gyro/Accelerometer Sensor .. 80
Table 41: Reconnect the RCU from Scratch ... 82
Table 42: Build and Download the Firmware to Other Hardware .. 84
Table 43: Microphone Connection .. 89
Table 44: Special Keys .. 91
Table 45: Keyboard Definitions ... 92
Table 46: Keyboard Connection .. 92
Table 47: Module Configuration .. 93
Table 48: I2C Pin Configuration .. 94
Table 49: Shuttle Board Connection over I2C ... 94
Table 50: SPI Pin Definitions ... 95
Table 51: Shuttle Board Connection over SPI... 95
Table 52: Slider Gestures .. 97

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 6 of 100 © 2022 Renesas Electronics

1 Terms and Definitions

ADPCM Adaptive Differential Pulse-Code Modulation

ATT ATTribute (protocol)

BLE Bluetooth low energy

CCC Client Characteristic Configuration

DIS Device Information Service

DLE Data packet Length Extension

EEPROM Electrically Erasable Programmable Read Only Memory

FSM Finite State Machine

GAP Generic Access Profile

GATT Generic ATTribute profile

GPIO General Purpose Input Output

GUI Graphical User Interface

HID Human Interface Device

HOGP HID Over GATT Profile

I2C Inter-Integrated Circuit (bus)

IMA Interactive Multimedia Association

L2CAP Logical Link Control and Adaptation Protocol

LED Light Emitting Diode

LLD Low Level Driver

MITM Man In The Middle

NVM Non-Volatile Memory (Flash or EEPROM)

PCB Printed Circuit Board

PCM Pulse Code Modulation

PDM Pulse Density Modulation

PTT Push To Talk

RAM Random Access Memory

RCU Remote Control Unit

SoC System on a Chip

SPI Serial Peripheral Interface

SWD Serial Wire Debug

USB Universal Serial Bus

UUID Universally Unique IDentifier

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 7 of 100 © 2022 Renesas Electronics

2 References

[1] DA14585 Bluetooth 5.0 SoC with Audio Interface, Datasheet, Dialog Semiconductor.

[2] UM-B-080 DA14585/586 SDK 6 Software Developer’s Guide, User Manual, Dialog
Semiconductor.

[3] UM-B-079 DA14585/586 SDK 6 Software Platform Reference, User Manual, Dialog
Semiconductor.

[4] UM-B-049 DA1458x Getting started with Development Kit - Pro, User Manual, Dialog
Semiconductor.

[5] UM-B-009 DA14580 Keyboard reference application, User Manual, Dialog Semiconductor.

[6] UM-B-037 DA14580 Remote control BLE & IR reference application, User Manual, Dialog
Semiconductor.

[7] AN-B-10 DA1458x using SUOTA, Application Note, Dialog Semiconductor.

[8] HID over GATT Profile, Specification, Bluetooth SIG.

[9] HID Service, Specification, Bluetooth SIG.

[10] Battery Service, Specification, Bluetooth SIG.

[11] Device Information Service, Specification, Bluetooth SIG.

[12] Bluetooth core 5.0, Specification, Bluetooth SIG.

[13] Bluetooth SIG website: Specification Adopted Documents, Bluetooth SIG.

[14] Universal Serial Bus - Device Class Definition for Human Interface, Specification, USB
Implementers’ Forum.

[15] Universal Serial Bus - HID Usage Tables, Specification, USB Implementers’ Forum.

[16] UM-B-087 DA14585 Voice RCU Hardware Manual, User manual, Dialog Semiconductor.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 8 of 100 © 2022 Renesas Electronics

3 Introduction

This document describes the software of the Voice Remote Control Unit reference design, which is
based on the DA14585 Bluetooth® low energy 5.0 SoC with Audio Interface. This user guide
describes the software architecture and the software components that can be optionally included to
implement various features of the Voice RCU reference design. It also describes the functionality of
each component, as well as the mechanism to enable and configure it. Finally, it briefly describes the
hardware components used in the Voice RCU reference design. The hardware is described in detail
in the Voice RCU hardware manual [16].

The developer is suggested to get familiar with the DA14585 software and hardware, looking into the
development kit [4], software developer's guide [2], the software platform reference manual [3] and
the DA14580 Keyboard Reference application [5].

4 Features

The Voice RCU reference design supports the following features:

● 12 keys in a 4 x 3 matrix (customizable)

● On-board non-volatile Flash memory for storing the firmware and the bonding information

● Simultaneous key presses

● Programmable key debouncing

● Key de-ghosting

● Audio capturing using a PDM microphone

● 16-bit, 8 kHz or 16 kHz Audio IMA ADPCM encoder

● Adaptive audio sampling rate

● Audio data transfer over HOGP or custom Dialog Audio BLE service

● Audio buffering capabilities exceeding 1 second

● Pointing device functionality using a gyro/accelerometer sensor

● Pointing device functionality using a trackpad

● Advanced user input using a touch slider

● Infra-Red (IR) LED transmitter

● Two LEDs for indicating RCU state

● A magnetic buzzer for indicating RCU state

● Software Update Over The Air (SUOTA)

● Low external component count

● Ultra-low power operation

● Host demo application with audio capabilities for Android platform

The reference application is based on the HID over GATT Profile [8]. It is an adaptation of the USB
HID specification for operation over a Bluetooth Low Energy wireless link. The HID over GATT profile
requires the Generic Attribute Profile (GATT), the Battery Service and the Device Information
Service. The remote application implements the HID Device role. The GATT role is Server and the
GAP role is Peripheral.

The reference application exposes the following services:

● Device Information Service

● HID Over GATT Profile (HOGP)

● Battery Service

● GAP Service

● GATT Service

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 9 of 100 © 2022 Renesas Electronics

● SUOTA Service (optional)

● Custom Dialog Audio Service (optional)

For more information see the HID over GATT Profile [8], the HID Service Specification [9], the Device
Information Specification [11] and the Battery Service Specification [10]. The Bluetooth Core 5.0
Specification [12] contains detailed information about GATT and GAP.

5 System Architecture

The system architecture of the Voice RCU reference design is depicted in Figure 1.

DA14585 BLE SoC with Audio Interface

Debug connectorSPI Flash Gyro/Accelerometer

Keyboard matrixTrackpad / Slider

SPI bus

I2C bus
Column

GPIOs

Row

GPIOs
Int

Two AAA

batteries

Mic Buzzer
IR

transmitter

Int

Figure 1: System Block Diagram

The system is based on DA14585 Bluetooth low energy SoC with Audio Interface. All peripheral
devices are directly connected to the DA14585, minimizing the external component count.

Two AAA batteries connected in series supply a nominal voltage of 3 V to the system power rail.
DA14585 and all peripheral devices are powered by this rail.

The system features two data buses:

● The I2C bus, to which the trackpad or slider controller is connected. Slider and trackpad cannot
coexist due to physical limitations.

● The SPI bus which is shared between the SPI Flash memory and the gyro/accelerometer sensor.
Care must be taken to keep the chip select (CS) signal of the gyro/accelerometer sensor de-
asserted during in-system programming of the SPI Flash memory.

The rest of the peripheral devices are connected to DA14585 GPIO pins. The peripheral devices
used in the RCU reference design are listed in Table 1.

Table 1: Voice RCU Key Peripheral Components

Block Part Number Interface Comments

Flash Memory Macronix

MX25R2035F
SPI External Flash memory with SPI interface used to

store the firmware and the bonding data

Key Matrix - 7 GPIOs 12 keys, 4 x 3 key matrix configuration

Gyro/Accelerometer Bosch BMI160 SPI, interrupt

line

Accelerometer and gyro sensor used for the pointing

device functionality

Trackpad Controller Azoteq IQS572 I2C, interrupt

line

Trackpad controller used in the trackpad add-on

module

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 10 of 100 © 2022 Renesas Electronics

Block Part Number Interface Comments

Slider/Scroll Wheel

Controller
Azoteq IQS263 I2C, interrupt

line

Trackpad controller used in the scroll wheel add-on

module

Buzzer CUI

CSS-I4B20-SMT

1 GPIO Magnetic buzzer for sound indications

IR LED Kingbright

WP7113F3BT
1 GPIO IR LED transmitter

Microphone Knowles

SPK0838HT4H-B
PDM PDM microphone for audio capture

Debug Connector - SWD, UART 2 x 5 pins 1.27 mm pitch female connector with SWD

debug and UART interface

The reference design board features a debug connector which can be used to connect a debugger to
the CPU, perform in-system programming of the SPI Flash memory and connect to a console to log
the debugging messages. The pinout of the debug connection is depicted in Table 2.

Table 2: Debug Connector Pinout

Pin Signal Pin Signal

1 UART Tx 2 UART Rx

3 Debugger SWCLK 4 Debugger SWDIO

5 - 6 Reset

7 Power supply (Note 1) 8 GND

9 Power supply (Note 1) 10 GND

Note 1 The system power supply can be switched between battery supply and debug connector supply, using
the switch located at the left side of the RCU reference design.

The reference design board also features a test connector, the pinout of which is depicted in Table 3.

Table 3: Test Connector Pinout

Pin Signal Pin Signal

1 - 2 -

3 GND 4 GND

5 GND 6 GND

7 P2_6 (I2C SCL) 8 P0_7 (Buzzer)

9 P2_7 (touchpad interrupt) 10 P2_5 (I2C SDA)

11 P2_4 (Keyboard row 4) 12 P2_8 (Keyboard column 1)

13 P2_3 (Keyboard row 3) 14 P0_2 (Keyboard column 3)

15 P2_2 (Keyboard row 2) 16 P0_1 (Keyboard column 2)

17 P2_1 (Keyboard row 1) 18 SWCLK

19 SWDIO 20 VBAT3V

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 11 of 100 © 2022 Renesas Electronics

6 Using the Reference Design Board

Reset

button

LEDs

Power

switch

Trackpad

Microphone

DA14585

Motion

sensor
SPI Flash

Figure 2: Voice RCU with Trackpad

Connect the debugger as shown in Figure 3 and follow the steps in Table 4 to build and download
the firmware. Section 6.3 explains how to use the hardware.

6.1 Connecting the Debugger

Figure 3: Connecting the Debugger

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 12 of 100 © 2022 Renesas Electronics

6.2 Building and Downloading the Firmware

Table 4: Steps for Building and Downloading the Firmware

1 After you unzip the release archive,

you will find these contents.

2 Double click file rcu_585.uvprojx in
projects\target_apps\rcu\rcu_585\

Keil_5.

3 Open file user_config.h from the

user_config group in the Keil

development environment and make
sure either HAS_TOUCHPAD_TRACKPAD

or HAS_TOUCHPAD_SLIDER is defined,

depending your RCU configuration.

4 If you want to use the audio feature
with custom HID reports instead of
the custom Dialog Audio service,
make sure that
AUDIO_USE_CUSTOM_PROFILE is

undefined.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 13 of 100 © 2022 Renesas Electronics

5 Make sure you have a license for
code size over 32K, by opening menu
License Management from the File
menu. If no license is shown, please

contact Keil to obtain a license.

6 Build the project by pressing key F7,

or click the Build button.

If you want to:

● Build and download the firmware
to other hardware, follow the steps

in Table 42.

● Convert the output to a SUOTA
image follow the steps in

Appendix C.

7 Start a debugging session by
pressing Ctrl+F5 or by using the

Debug menu.

8 Press key F5 or click the Run button

to start code execution.

http://www.keil.com/

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 14 of 100 © 2022 Renesas Electronics

6.3 Using the Hardware

6.3.1 Connecting and Testing the Keypad and Sound

Table 5: Steps for Connecting and Testing the Keypad and Sound

1
Install the Dialog Voice RCU app
from the Google Play Store.

2
Open the application on your
Android device.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 15 of 100 © 2022 Renesas Electronics

3 Make sure Bluetooth is enabled.

4

Tap on SCAN and press a button on
the RCU so that it starts advertising.

If the RCU was already paired with
your device and you want to
reconnect the RCU from scratch,
follow the steps in Table 41 first.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 16 of 100 © 2022 Renesas Electronics

5
Select the RCU and wait while it
connects and initializes.

6
The screen where you can test the
keypad appears.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 17 of 100 © 2022 Renesas Electronics

7
Press # on the RCU to toggle
between the MOUSE and KEYPAD
mappings.

8
Tap on the app menu and select
Sound to test the audio functionality.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 18 of 100 © 2022 Renesas Electronics

9 The Sound screen appears.

10
Select the required audio bit rate.
When Automatic is chosen, the bit
rate adapts dynamically.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 19 of 100 © 2022 Renesas Electronics

11

Let the language be automatically
detected or select among English,
Chinese, Dutch, French, German,
Greek, Italian, Japanese, Korean,
Russian, and Spanish.

12

Select the operating mode of the
application:

● Live Capture: record audio and
playback (see step 13).

● Voice Command: record audio,
recognize and process the
command (see step 14).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 20 of 100 © 2022 Renesas Electronics

13
When Live Capture is chosen, you
may attempt Voice Recognition
after the audio is captured.

14
When Voice Command is chosen,
you may select where to submit your
keyword.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 21 of 100 © 2022 Renesas Electronics

15
You may also opt to automatically
open the first result that is returned.

16

If at any point the RCU is
disconnected, the Microphone
button will be disabled. Press any
key to reconnect the microphone.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 22 of 100 © 2022 Renesas Electronics

17

Press the Microphone button to
start capturing audio and press it
again to stop.

The asterisk (*) button on the RCU
can be used as PTT (Push To Talk).
Press it and keep it pressed to
capture audio. Release it to stop.

18
You may use the diskette button to
save the audio. If you receive this
warning, select "ALLOW".

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 23 of 100 © 2022 Renesas Electronics

19
When audio is saved, a notification
appears for a short time. You may
use the Play button to play it back.

20
While the audio is played back, you
may use the Pause button to stop it.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 24 of 100 © 2022 Renesas Electronics

6.3.2 Testing the Motion, Trackpad, Slider, IR and LED functionality

The motion, trackpad, slider, IR and LED functionality depends on definitions in file user_config.h:

● Motion: To test the motion data that the BMI160 sensor provides, you need a Nexus device with
a special driver installed and HAS_MOTION must be defined (key # on the RCU activates the

motion data and key 1 serves as the click button).

● Trackpad: To test the trackpad HAS_TOUCHPAD_TRACKPAD must be defined.

● IR transmitter: To test the IR transmitter you need an RC5 compatible receiver and HAS_IR must

be defined.

● LEDs: To test the LEDs HAS_LED_INDICATORS must be defined. The functionality of the green and

red LEDs is defined in projects\target_apps\rcu\rcu_585\src\config\app_leds_config.h

as listed in Table 6. To use the ramp on/off values LED_USE_RAMP_FEATURE must be defined.

Table 6: LED Functionality

Condition LED Blinks On Time

(ms)

Period

(ms)

Ramp On

Time (ms)

Ramp Off

Time (ms)

RCU connected Green 1 100 - - -

RCU disconnected Green 3 50 150 - -

RCU advertising Red Continuous 500 1000 200 200

Connection in

progress
Green Continuous 20 100 - -

Battery low Red (with

Green off)
15 400 2000 200 200

SUOTA in progress Red Continuous 150 1000 - -

Motion active Green Continuous 50 1000 - -

IR on Red 1 1000 - - -

IR off Red 2 100 200 - -

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 25 of 100 © 2022 Renesas Electronics

6.3.3 Firmware Updating Using SUOTA

Table 7: Steps for Firmware Updating Using SUOTA

1
Install the Dialog SUOTA app from
the Google Play Store.

2
Make sure that the RCU is properly
paired in the Android Bluetooth
settings.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 26 of 100 © 2022 Renesas Electronics

3

Open the application on your
Android device and make sure that
Show Paired Devices is selected in
the application menu.

4

Select DA14585 RCU and proceed
with the firmware update as
described in AN-B-10 (see Ref. [7]).

Refer to Appendix C for creating the
SUOTA firmware image.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 27 of 100 © 2022 Renesas Electronics

7 Software Architecture

7.1 General Description

The software architecture of the Voice RCU is depicted in Figure 4.

Audio CB

Audio

processing

Audio

sampling

DA14585

Audio unit

peripheral

Keyboard

CB

Key

detection,

processing,

buffering

Key

scanning

GPIOs

Report CB

Report

generation,

Report

FIFO

HOGPD

Profile

Stream

FIFO

L2CAP

Stream

notification

generation

CON FSM

CB

Connection

and

advertising

FSM

CON FSM

BLE

adaptation

Motion

Motion data

acquisition

Touchpad

Touchpad

event

detection

Accelerom

eter/Gyro

sensor

Trackpad

controller

Accelerome

ter/gyro

sensor

PDM

Microphone

LLD

Touchpad

controller

LLD

Acc./gyro

sensor LLD
GPIO LLD

IR

IR

waveform

generation

timer0 LLD

LED

pattern

generation

LED

waveform

generation

timer1 LLD

Buzzer

melody

generation

Buzzer

waveform

generation

Application

Module

library

Module

platform

adaptation

Low level

drivers

Hardware BLE Radio

S
c
h

e
d

u
le

r

BLE Stack

Message

handlersRCU Application

Asynchronous

operations
Synchronous

operations

HOGPD

BLE

adaptation

Touch CB

Figure 4: Software Architecture Diagram

The RCU software consists of:

● Low Level Drivers (LLDs) for accessing the hardware peripherals

● Modules, each implementing a specific function

● RCU application, implementing the RCU functionality using the API provided by the modules
and the DA14585 SDK.

The RCU software consists of a synchronous and an asynchronous part.

The synchronous part is controlled by a scheduler, which is used for scheduling kernel tasks,
processing events and delivering messages to the tasks. The scheduler is called from the main
application loop. The RCU application runs as a task and registers message handlers to the kernel.
The scheduler calls these message handlers to deliver messages to the application. Some of these
messages may be handled by the modules, the rest of them are handled by the RCU application.
The RCU application can also send messages to other tasks. In this case, the application must allow
the main loop to run and call the scheduler to process the messages.

The asynchronous part is interrupt driven. Interrupt service routines only perform time critical
operations, in order to keep the CPU in the interrupt context for as short a time as possible. The main
processing is performed in the main loop. Kernel messages generated by asynchronous operations
can be synchronized with the kernel at this point.

The following modules are included in the RCU reference design software:

● Audio: Audio samples are captured from a PDM microphone using the audio unit peripheral of
DA14585.

● Touchpad: Action events are captured using either an Azoteq IQS572 trackpad controller or an
Azoteq IQS263 slider and scroll wheel controller.

● Motion: Accelerometer and gyroscope data are capture using a BMI160 sensor.

● Keyboard: Key actions are detected using a key matrix connected to GPIO pins.

● IR: InfraRed (IR) waveforms are generated using an IR LED connected to a GPIO to transmit IR
codes.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 28 of 100 © 2022 Renesas Electronics

● LED indicators: On/off and ramp patterns are generated to drive LEDs connected to GPIO pins.

● Buzzer: Melodies can be played using a magnetic buzzer connected to a GPIO pin.

● Connection FSM: Handles the connection with the BLE host (advertising, connection,
disconnection, pairing, encryption, etc.).

● BLE stream: Data are streamed to the BLE host using notifications.

● HID report: Human Interface Device (HID) reports are generated and sent to the BLE host using
the HID Over GATT profile (HOGP).

Each module can be independently included or excluded according to the needs of the application.
The user RCU application uses the included modules to implement the application functionality.
Since modules are isolated from each other, information cannot flow across modules. This is the task
of the user application.

Example:

In a typical RCU use case the user presses the Push-To-Talk (PTT) key on the RCU to stream audio
captured by the microphone to the BLE host. Three modules are used by the application to perform
the operations required by this case: Keyboard, Audio and BLE Stream.

The Keyboard Module detects the key press and calls its callback function to report the key press to
the application. The application checks this key and, since this is the PTT key, it commands the
audio module to start capturing data.

The Audio Module starts the audio sampling. Audio data are buffered in the audio module's FIFO.
Its callback is called whenever a certain amount of data is available in the FIFO.

The application checks if there is enough free space in the FIFO of the BLE Stream Module. In this
case, the application gets a pointer to the free space and passes it to the encoder of the Audio
Module. The encoder encodes the available data in the audio FIFO and writes the encoded data to
the FIFO of the BLE Stream. The application then checks if there are data in the BLE Stream FIFO,
and if so, it asks the BLE Stream Module to send the data to the BLE stack.

7.2 Low Level Drivers (LLDs)

LLDs are used for accessing hardware peripherals. Some of the required LLDs are provided by the
SDK. New LLDs have been included in the scope of the RCU application for accessing peripherals,
such as motion sensor or touchpad controllers. These LLDs may use other LLDs (such as I2C or SPI
bus LLDs) provided by the SDK.

7.3 Modules

Each module performs a very specific function. It provides an API that enables the initialization and
control of the module, as well as the data exchange between the module and the application. The
API provides for example functions to initialize, start or stop the module, get data from the module or
provide data to the module.

A callback function can optionally be registered to the module, to allow notification of the application,
whenever there is an event to the module. This callback function can be called, for example, when
the module can provide new data to the application, or when there is a change in the module's state.

Each module may use one or more LLDs to access the hardware peripherals, or have direct access
to the BLE stack.

Each module consists of the following parts:

● Module library consisting of a set of functions implementing the functionality of the module. This
part is platform independent and can be shared across projects, even for different target
processors.

● Platform adaptation layer that is used for accessing the platform-dependent APIs. This layer
consists of a set of functions that enables the module library to access the platform-specific
hardware. The layer lies between the module library and the LLDs or the BLE stack.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 29 of 100 © 2022 Renesas Electronics

The module library consists of files named app_[module_name].c and app_[module_name].h and

implements the module API. The module library may:

● Have a function that is called from the main application's loop, for executing module specific
tasks, such as running state machines.

● Use its callback to notify the application about new data or state changes.

● Register its own callbacks with LLDs, to be triggered by interrupts.

The functions of the module library call functions from the platform adaptation layer to access the
LLDs and the BLE stack.

The platform adaptation layer consists of files named port_[module_name].c and

port_[module_name].h and adapts the module library function calls to the API provided by the LLDs

and the BLE stack. These APIs are platform-dependent. They depend on the platform processor and
on the external hardware peripherals.

Each module has only one module library. However, it may have one or more platform adaptation
layers to support multiple processors or hardware peripherals. In this case, the names of the platform
adaptation files may have an additional postfix to define the hardware peripheral that they support.
The module library uses a structure of pointers to platform adaptation functions, which can be
modified by the application to override the default implementation.

Example:

In the Motion Module a Finite State Machine (FSM) is implemented in the motion library for
handling the motion data acquisition in file app_motion.c. The motion library provides a function in

its API (which is declared in file app_motion.h) that must be call periodically from the application, in

order to operate the FSM.

The motion library uses the motion platform adaptation layer (implemented in file port_motion.c)

to request motion data from the sensor. The motion adaptation layer adapts this call to a call in the
BMI160 sensor LLD, and returns the motion data to the motion library. When a different sensor is to
be used, a second motion adaptation layer can be used, that adapts the calls from the motion library
to the API of LLD of the new sensor.

7.4 Including Modules in the Project

A module can be included in the project by defining the appropriate symbol in file user_config.h, as

described in the corresponding module API header file. For example, define HAS_AUDIO in the file

user_config.h to include the audio module.

During execution of the application a module must perform are six basic operations:

● Module initialization. This can be done by calling the module's initialization function in function
user_on_init().

● Declaration of the GPIOs used by the module. This can be done by calling the module's GPIO
reservation function from within function GPIO_reservations().

● Initialization of the GPIOs used by the module. Pins must be reinitialized every time the
system wakes up from sleep. This can be done by calling the module's GPIO initialization
function in function set_pad_functions().

● Execution of asynchronous operations (e.g. state machine execution) while the BLE core is
powered. This can be done by calling the appropriate module function in the function
user_on_ble_powered(). This function must return true, if the system must remain powered, in

order to process kernel messages. It can also return true to force the system to call this function
again, in order to continue processing after running the main loop once.

● Execution of asynchronous operations (e.g. audio encoding) while the system is powered.
This can be done by calling the appropriate module function in the function
user_on_system_powered(). This function must return APP_KEEP_POWERED, if the system must

remain powered, in order to continue processing after running the main loop once. It can also
return APP_BLE_WAKEUP, in order to force the BLE core to wake up.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 30 of 100 © 2022 Renesas Electronics

● Execution of operations upon BLE disconnection (e.g. stop the BLE stream). This can be
done by calling the appropriate module function from within function user_on_disconnect().

To facilitate module integration within the application, the array user_module_config[] is defined in

the file user_modules_config.h. When a module is included in the application, a structure of type

module_config_t can be added in the user_module_config[] array. This structure has the following

members:

● init: pointer to the function that initializes the module.

● on_disconnect: pointer to the module's function that executes actions upon BLE disconnection.

● on_ble_powered: pointer to the module's function that executes asynchronous operations while

the BLE core is powered.

● on_system_powered: pointer to the module's function that executes asynchronous operations

while the system is powered.

● pins_config: pointer to a structure that contains the module's GPIO configuration. This structure

is used for GPIO reservation. If the init_gpios member is NULL, the structure is also used for

GPIO initialization after the system wakes up.

● init_gpios: pointer to the module's function that initializes the GPIOs after the system wakes

up. This function is used when a special initialization must be performed, that cannot be declared
in file pins_config.h.

The application uses the user_module_config[] array to call the module functions provided, to

reserve and initialize the GPIOs when required.

If the user application needs to perform additional actions, it can override the module's default
behavior by defining a user defined function in the user_module_config[] array and then call the

corresponding module's function from within this user defined function.

7.5 User RCU Application

The user RCU application implements the RCU functionality using the required modules and SDK
API. The application establishes the following connections between the modules and the SDK to
achieve the desired information flow:

● Keyboard, Touchpad — HID Report, to generate and send HID keyboard reports to the host
upon key or touchpad events.

● Keyboard — Audio, to control audio sampling when the PTT key is pressed.

● Keyboard —Motion, to control motion activation when the motion key is pressed.

● Keyboard — IR, to transmit IR waveforms when a key is pressed.

● Keyboard, Touchpad — Connection FSM, to start advertising on a key or touchpad event.

● Audio — BLE Stream, to stream the encoded data to the BLE host.

● Motion, Trackpad — BLE Stack, to send data from these modules to the BLE stack using the
SDK API.

The user RCU application is implemented in four different files:

● user_rcu.c

○ Implements SDK callback functions.

○ Implements main loop functions.

○ Handles BLE connection using the Connection FSM Module.

○ Handles BLE services.

○ Handles SUOTA operations.

○ Handles system sleep.

○ Creates and sends HID keyboard reports using the HID Report Module.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 31 of 100 © 2022 Renesas Electronics

● user_rcu_kbd.c

○ Handles the keyboard using the Keyboard Module.

○ Detects audio key presses and calls the appropriate functions of user_rcu_audio.c.

○ Detects motion key presses and calls the appropriate functions of user_rcu_motion.c.

● user_rcu_audio.c

○ Handles audio sampling and encoding using the Audio Module.

○ Sends encoded audio data to the BLE host using the BLE Stream Module.

○ Handles audio control commands from the BLE host over the Dialog Audio Service or
vendor-specific HID reports.

○ Sends control and configuration notifications to the BLE host over the custom audio profile or
vendor-specific HID reports.

○ Optionally adapts the audio encoder parameters automatically to the available BLE channel
bandwidth.

○ Calculates the optimal audio packet size.

● user_rcu_motion.c

○ Handles motion using the Motion Module.

○ Handles a trackpad or slider using the Touchpad Module.

○ Creates and sends HID mouse reports on trackpad track events.

○ Creates HID keyboard reports on trackpad or slider events using the HID Report Module.

The audio packet size is the number of bytes of encoded audio sent in one ATT packet. It is
calculated dynamically according to the current connection interval, the ATT_MTU, the BLE packet

length and the maximum number of packets per connection event. The packet size must be large
enough to achieve the required bandwidth, achieved by reducing the L2CAP header and ATT header
overhead. Its maximum size is (ATT_MTU - 3) bytes, since notifications are used for audio data

transmission. When Data packet Length Extension (DLE) is used, the packet length can be larger
than the audio packet size, so the packet size must be kept as small as possible, in order to reduce
retransmission time when packets are dropped due to communication errors.

There is no dependency between audio sampling size, audio sample buffer size, number of samples
encoded at a time and audio packet size. As a result, each of these parameters can be fine-tuned
independently. The audio sampling size can be adjusted to optimize the interrupt frequency. The
audio sample buffer size depends on the system delay from the time data samples are available to
the time they are encoded. This buffer can be quite small, when the system is very responsive. The
number of samples encoded at a time determines how long the CPU is occupied with the audio
encoding. A higher number of samples blocks the main loop for a longer time, and requires a larger
audio sample buffer size to hold the encoder input data.

In-band audio commands are supported. The application can add custom commands in-band with
the encoded audio data. This is achieved using a user-defined escape character. The application can
insert the escape character followed by one byte for the command and its parameters. Bits 7 to 4
contain the command opcode, while bits 3 to 0 contain the optional command parameter. The format
of the commands is provided in Table 8.

Table 8: Audio Stream In-Band Commands

Command Description Command Code Parameter Command Byte

Audio stream reset 0x00 - 0x00

Set IMA ADPCM mode 0x10 0x00: 64 kbit/s 0x10

0x01: 48 kbit/s 0x11

0x02: 32 kbit/s 0x12

0x03: 24 kbit/s 0x13

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 32 of 100 © 2022 Renesas Electronics

Byte stuffing is used for audio data bytes that have the same value as the escape character. In that
case the escape character is transmitted twice.

When audio stream begins, an audio stream reset command is transmitted first, followed by a set

IMA ADPCM mode command. The ADPCM mode can be changed at any time during audio streaming

by inserting a new set IMA ADPCM mode command in the stream data. The Audio Module supports

in-band control characters as described in Section 8.2.1.

Option STREAM_FIFO_NUM_OF_HIGH_PRIORITY_BYTES can be set as described in Section 8.3.2 to

ensure that there is always space available in the BLE stream for in-band commands. In that case,
the function app_stream_fifo_get_priority_write_dataptr() can be used to insert in-band

commands into the audio stream.

7.6 Configuration Files

Configuration files are used for configuring the RCU software without having to modify the source
code. There are two different sets of configuration files:

● User configuration files located in project group user_config.

● Module configuration files located in project group modules_config.

Configuration files belong to the project. Each project target can have its own configuration file set.
Configuration files are stored in folder \src\config under the project folder. These files are used for

all project targets.

A new project target can be added in folder \src\config\variants, in its own subfolder, containing

the configuration files that differ from the main project target. This subfolder must be placed before
\src\config in the target's options C++ include paths. The compiler will first check the subfolder in

the folder \src\config\variants for a configuration file. When it is not found, the configuration file

located in \src\config will be used.

The configuration files used are statically included at compile time when the project is built, in order
to optimize the code size of the application.

7.6.1 User Configuration Files

User configuration files are used to configure the target system and the user application. These are
the standard SDK configuration files with the following modifications and additions:

1. In file da1458x_config_advanced.h:

a. CFG_NB_PRF has been added, to set the maximum number of BLE profiles.

b. DB_HEAP_SZ, MSG_HEAP_SZ and NON_RET_HEAP_SZ have been defined to optimize the memory

used by the BLE stack heaps.

c. The maximum supported TX and RX data packet lengths have been reduced to optimize the
memory used by the BLE stack.

2. In file da1458x_config_basic.h:

a. CFG_APP_SECURITY has been undefined. The Connection FSM Module is used instead.

3. In file user_callback_config.h:

a. Structure user_app_callback has been modified to work with the Connection FSM Module.

b. Functions have been added in structure app_main_loop_callbacks.

c. Device information service, battery service, and HOGP have been added in array
user_prf_funcs[].

4. In file user_config.h:

a. Default configuration has been adapted to the RCU application requirements.

b. Symbols have been added for including modules.

c. Configuration for debugging options has been added.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 33 of 100 © 2022 Renesas Electronics

5. In file user_modules_config.h:

a. Modules not used in the RCU application have been excluded.

b. Table user_module_config has been added for including modules as described in Section

7.4.

6. In file user_periph_setup.h:

a. The UART pin configuration has been updated.

b. The SPI and I2C bus pin configurations have been added.

7. In file user_profiles_config.h:

a. HOGP and custom1 profile have been added.

b. DIS information has been updated.

8. File user_hogpd_config.h has been added for configuring the HOGP profile.

9. File user_pwr_mgr_config.h has been added for configuring the power manager.

7.6.2 Module Configuration Files

Each module can be configured using a configuration file named app_[module_name]_config.h,

without having to modify the source code of the module. This file can be used to:

● Enable or disable various features of the module (e.g. multi-bonding, in-band audio commands),

● Configure operational parameters of the module (e.g. key debouncing time, audio sampling rate),

● Set the configuration of the GPIO pins used by the module's platform adaptation layer,

● Initialize the structure of pointers to platform adaptation layer functions.

The link between the module library and the platform adaptation layer is defined in the configuration
file, allowing the application to define different platform adaptation layers according to the system
configuration.

The pin configuration is defined using an array of elements of type pin_type_t. Each array element

configures one pin. Structure pin_type_t has the following members:

port: The GPIO port of the pin.

pin: The GPIO pin of the pin.

high: Pin inactive level. Set to 1 for active low, set to 0 for active high.

mode_function: Sets the mode (INPUT, INPUT_PULLUP, INPUT_PULLDOWN or OUTPUT as defined in

GPIO_PUPD enumeration) and the function (as defined in GPIO_FUNCTION

enumeration).

An enumeration could also be used to define the pin names. Let us examine, for example, the
definition of the audio pins. The following enumeration is used to define the audio pin names:

enum audio_pin_ids {

 AUDIO_CLK_PIN,

 AUDIO_DATA_PIN,

};

The pins are active high, connected to the PDM peripheral, the clock pin is an output and the data
pin is an input. The pin configuration array then is the following:

static const pin_type_t app_audio_pins[] = {

 [AUDIO_CLK_PIN] = { .port = GPIO_PORT_1,

 .pin = GPIO_PIN_1,

 .high = 0,

 .mode_function = OUTPUT | PID_PDM_CLK },

 [AUDIO_DATA_PIN] = { .port = GPIO_PORT_1,

 .pin = GPIO_PIN_0,

 .high = 0,

 .mode_function = INPUT | PID_PDM_DATA },

};

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 34 of 100 © 2022 Renesas Electronics

7.7 Project Folder Structure

The RCU reference design code software is organized in three folders:

● SDK_585: This folder contains the DA14585 SDK.

● Modules_library: This folder contains the modules library and the platform adaptation layer for

DA14585. Each module is stored in a separate subfolder. The platform adaptation layer files for
DA14585 are stored in subfolder \port_58x.

● projects\target_apps\rcu: This folder contains the RCU application. It contains the following

subfolders:

○ src: Non DA14585-specific application code.

○ src\drivers: Non DA14585-specific LLDs.

○ src\platform: Non DA14585-specific code.

○ rcu_585\src\profiles: DA14585 BLE profiles that are not included in the SDK.

○ rcu_585\src\config: Reference design project configuration files.

○ rcu_585\src\config\variants\ProDK: Project configuration files for the ProDK target.

○ rcu_585\Keil_5: Keil project folder.

○ rcu_585\Keil_5\out_585: Reference design project output folder.

○ rcu_585\Keil_5\out_585_ProDK: Project output folder for the ProDK target.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 35 of 100 © 2022 Renesas Electronics

8 Modules

8.1 Keyboard Module

8.1.1 Description

The Keyboard Module enables the detection and processing of key actions of a keyboard matrix. The
block diagram of the Keyboard Module is depicted in Figure 5.

Key detection,

processing, buffering

File app_kbd.c

Key scanning

File port_kbd.c

Keyboard configuration

File app_kbd_config.h

GPIO LLD

DA14585 SDK

GPIO pins

Figure 5: Keyboard Module Block Diagram

Features

● Keys organized in a 16 x 16 matrix

● Simultaneous key-presses

● Key debouncing with programmable press and release debouncing times

● Key de-ghosting

● Key event buffering

● Custom keys for application specific tasks

● Passcode mode

Keyboard Scanning

The keyboard matrix is connected to GPIO pins. Row pins are configured as outputs and column
pins are configured as inputs. The internal pull-up resistor of the DA14585 GPIO pins is used to set
the input to a high state when no key is pressed. The keyboard matrix is scanned one row at a time.
The GPIO LLD is used to set the corresponding pin to a low state and read the status of the column
pins. One scan cycle is completed when all rows have been scanned.

The keyboard scanning algorithm is implemented in file port_kbd.c. Implementation details can be

found in Ref. [5].

Key event processing is implemented in file app_kbd.c. Status (pressed or release) for all keys in the

key matrix is provided by file port_kbd.c. Keys are debounced to detect key press or release events.

Key press events are de-ghosted. Valid key press or release events are recorded in the key buffer.

The application can poll the key buffer to get the code of a key event as defined in the kbd_keymap

table. Multiple codes can be defined for each key. The user can use one or more Fn function keys to
select the appropriate key code. The Fn key can be used as a modifier key, pressed simultaneously
with the normal key, or it can be used as an Fn lock key. In the latter case, a second set of key
codes is used for all keys until the Fn lock key is pressed again to unlock the Fn state.

Custom Key Handling

The Keyboard Module enables special handling of specific keys that are defined as custom keys.
These keys are scanned, debounced and de-ghosted as normal keys but the generated key events

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 36 of 100 © 2022 Renesas Electronics

are not inserted in the key buffer. The application is notified directly to handle the key event and to
perform custom actions. Key combinations can also be used to generate custom key events.

Passcode Mode

Passcode mode enables the use of the keyboard for entering a numeric passcode. The application
can set the Keyboard Module in Passcode mode by calling the function app_kbd_start_passcode().

The Keyboard Module assembles the passcode after each numeric key press and notifies the
application when the user presses the Enter key (keyboard: key code 0x28, keypad: key code 0x58).
A custom enter key can also be defined in the configuration file of the Keyboard Module.

Callback Function

The application can register a callback function to receive notifications from the Keyboard Module.
The following notifications are supported:

● Key action notification. A key has been pressed or released. Custom keys are not included.
The key event can be acquired from the key buffer.

● Custom key notification. A custom key has been pressed or released.

● Fn lock activated notification. This is only available when the Fn lock feature is enabled.

● Fn lock deactivated notification. This is only available when the Fn lock feature is enabled.

● Passcode entered notification. In Passcode mode the user has entered the code followed by
the Enter key. The passcode can be acquired by calling the app_kbd_get_passcode() function.

The Keyboard Module is enabled by defining the symbol HAS_KBD in file user_config.h.

Files app_kbd.c, port_kbd.c, app_kbd_config.h, app_kbd_matrix.h and app_kbd_scan_matrix.h

must be included in the project.

8.1.2 Configuration

The following keyboard parameters are defined in file app_kbd_config.h:

● KBD_KEYCODE_BUFFER_SIZE sets the size of the key buffer.

● KBD_DEBOUNCE_BUFFER_SIZE sets the number of keys that can be debounced at the same time.

● Define ALTERNATIVE_SCAN_TIMES_ON to use different full and partial scan periods. Full scan

cycles are used to detect any key press. Partial scan cycles are used to scan for key events only
in the rows that have a key pressed.

Additional parameters are defined in the kbd_params structure:

● Set scan_always_active to true to force continuous keyboard scanning. The system will be

forced to stay active in this case.

● Set has_fn_lock to true to have the Fn key functioning as Fn lock key. When set to false the

Fn key will function as a key modifier.

● Set passcode_enter_key to the code of a custom key used to complete the passcode entry, in

addition to the Enter keys of the keyboard and the keypad.

● Set notify_callback to the function that is to be called by the Keyboard Module to send a

notification to the application.

● Set key_detect_callback to the function that is to be called by the Keyboard Module to report a

key press or release. Only the key status, row and column are reported.

● Set row_scan_time_in_us to the delay (in μs) from row activation until the column inputs are

sampled.

● Set full_scan_cycle_in_us to the duration (in μs) of a full scan cycle. All rows in are scanned in

a full scan cycle.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 37 of 100 © 2022 Renesas Electronics

● Set partial_scan_cycle_in_us to the duration (in μs) of a partial scan cycle. Only rows having

key activity are scanned. The remaining idle rows are monitored for key activity. When a key of
an idle row is pressed a full scan cycle is initiated.

● Set press_debounce_counter_in_us to the duration (in μs) of key press debouncing. This time

must be a multiple of the partial scan cycle duration.

● Set release_debounce_counter_in_us to the time (in μs) for key release debouncing. This time

must be a multiple of the partial scan cycle duration.

The key matrix pin configuration is defined in file app_kbd_scan_matrix.h:

● KBD_NR_COLUMN_INPUTS sets the total number of key matrix column inputs.

● KBD_NR_ROW_OUTPUTS sets the total number of key matrix row outputs.

● COLUMN_INPUT_x_PORT and COLUMN_INPUT_x_PIN define the pin to which column input x is

connected. x is in the range of 0 to (KBD_NR_COLUMN_INPUTS-1).

● ROW_OUTPUT_y_PORT and ROW_OUTPUT_y_PIN define the pin to which column input y is connected.

y is in the range of 0 to (KBD_NR_ROW_OUTPUTS-1).

Matrix key assignment is defined in file app_kbd_matrix.h.

Key codes are defined in table kbd_keymap. Multiple key sets can be defined in this table. The first

set is used by default. The user can switch to another set using Fn as modifier key. Key codes can
be one of the following:

● Regular key the value of which is in the range of 1 to 255.

● Modifier key (such as LEFT/RIGHT SHIFT, ALT, CTRL, GUI), the value of which is in the range
of 1 to 255. Macro KBD_MODIFIER_KEY can be used to generate the key code. Modifier keys for

HID normal keyboard reports can have one of the following values:

LEFT CTRL: 0x01
LEFT SHIFT: 0x02
LEFT ALT: 0x04
LEFT GUI: 0x08 (e.g. the left Windows key)
RIGHT CTRL: 0x10
RIGHT SHIFT: 0x20
RIGHT ALT: 0x40
RIGHT GUI: 0x80 (e.g. the right Windows key)

● Special key, the value of which is in the range of 1 to 127. Macro KBD_SPECIAL_KEY can be used

to generate the key code.

● Fn modifier key. This key is used to switch to another key set. Macro KBD_FN_LOCK_KEY can be

used to generate the key code.

● Custom key, the value of which is in the range of 1 to 15. Macro KBD_CUSTOM_KEY can be used to

generate the key code.

● KEY_UNUSED when the key in the key matrix is not used.

● K_CODE when there is no key code for the specific key but the key must be examined for ghosting.

Key combinations can be used to generate custom key events when MULTI_KEY_COMBINATIONS_ON

is defined. The maximum number of keys used for a key combination is defined using the symbol
MULTI_KEY_NUM_OF_KEYS. Key combinations are defined in table multi_key_combinations, which

specifies the row and column of each key in a key combination. If a key is not used (e.g. two keys are
needed when MULTI_KEY_NUM_OF_KEYS is 3) its row and column can be set to MULTI_KEY_NOT_USED.

Macro KBD_KEY_TO_NOTIFY_CODE can be used to generate the appropriate notification code from the

custom key code.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 38 of 100 © 2022 Renesas Electronics

8.1.3 Design Considerations

Keyboard scanning is more efficient when the matrix is defined as 3 (rows) x 4 (columns), instead of
4 x 3. All matrix configuration settings then have to be transposed. A 4 x 3 matrix configuration has
been selected here, because it is easier to match the key configuration to the physical keyboard.

The kbd_params.row_scan_time_in_us has been set to 150 μs to allow the column input signal to

settle when scanning a new row. This time can be fine-tuned if external pull-up resistors are used for
the column pins. When this value is set too low, the column inputs may not have settled when being
sampled by the software.

8.2 Audio Module

8.2.1 Description

The Audio Module enables the processing of the audio signal captured by a PDM microphone
connected to the DA14585 audio unit. The block diagram of the Audio Module is depicted in Figure 6.

File app_audio.c

Audio processing

File port_audio.c

Audio sampling

DA14585 SDK

PDM mic. LLD DA14585 Audio unit

Audio configuration

File app_audio_config.h

File app_audio_codec.c

PDM-to-PCMDMA
24bit sample

buffer

PDM

Mic
16bit sample

buffer

Pre-

processing

IMA ADPCM

encoder

Figure 6: Audio Module Block Diagram

Sample Processing

The audio unit converts the PDM bit stream to 24-bit PCM samples. The 24-bit samples are stored
left-aligned in 32-bit words, with bits 0 to 7 set to 0. The PDM microphone LLD transfers the PCM
data from the audio unit output to a circular buffer using a DMA channel of the DMA controller. An
interrupt is generated whenever a certain amount of samples are transferred to the circular buffer.

The 24-bit samples are preprocessed and then transferred to a smaller 16-bit sample buffer.
Preprocessing may include a DC blocking filter to remove the DC component of the signal and it
converts the 24-bit samples to 16-bit samples. It may also include dropping a certain amount of
samples at the beginning of the audio stream to remove clicking and transient effects.

Finally, an IMA ADPCM encoder is used to encode the PCM data and deliver them to the buffer
provided by the application.

Buffer Handling

The application allocates a buffer and calls function app_audio_encode(), passing a pointer to this

buffer and the buffer size as parameters. This function performs the audio signal preprocessing and
encoding, placing the encoded data in the buffer allocated by the application, and returns the number
of encoded data bytes placed in the buffer. The return value may be smaller than the size of the
buffer, or even 0 when there are not enough audio samples available for processing.

Optionally, the application can register a callback function, that is called in response to the interrupt
generated by the DMA controller, when new data are available in the 24-bit sample buffer.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 39 of 100 © 2022 Renesas Electronics

In-Band Commands

The IMA ADPCM encoder also supports in-band commands. The application can add custom
commands in-band with the encoded audio data. This is achieved by using a user defined escape
character and byte stuffing technique, as described in Section 7.5.

During data encoding, the encoder checks whether the encoded data contains a value equal to the
escape character used for in-band commands. In that case, the encoder performs byte stuffing by
sending the escape character value twice.

On the host side, the decoder must detect escape characters and remove byte stuffing, when it
detects two consecutive escape characters. Then it must process in-band commands, when one
escape character is followed by a byte that is not equal to the escape character.

Encoding

The Audio Module can be dynamically configured to use either an 8 kHz or 16 kHz sampling rate.
Adapting the sampling rate is performed by the DA14585 audio unit. Furthermore, the IMA ADPCM
encoder compression can be dynamically configured to use 3 or 4 bits per sample. The resulting
compressed audio bit rates are listed in Table 9.

Table 9: Compressed Audio Bit Rate

Bit Rate Bits per Sample Sampling Rate IMA ADPCM Compression

64 kbit/s 16 16 kHz 4 bits per sample

48 kbit/s 16 16 kHz 3 bits per sample

32 kbit/s 16 8 kHz 4 bits per sample

24 kbit/s 16 8 kHz 3 bits per sample

The Audio Module is enabled by defining the symbol HAS_AUDIO in file user_config.h.

Files app_audio.c, app_audio_codec.c, port_audio.c and app_audio_config.h must be included in

the project.

8.2.2 Configuration

The Audio Module configuration is specified in file app_audio_config.h. The following configuration

options can be defined:

● Define AUDIO_CONTROL_ESCAPE_VALUE to the escape character value used for in-band commands.

When AUDIO_CONTROL_ESCAPE_VALUE is not defined, in-band commands cannot be used and the

encoder will not perform byte stuffing.

● Define CFG_AUDIO_ADAPTIVE_RATE to allow dynamic IMA ADPCM mode changing. When

CFG_AUDIO_ADAPTIVE_RATE is not defined, the mode defined in ADPCM_DEFAULT_MODE will be used.

● Define CFG_AUDIO_DC_BLOCK to enable the DC blocking filter during audio signal preprocessing.

The DC blocking filter must always be enabled when the DA14585 audio unit is used, because
the DC component of the output signal is quite large compared to the signal amplitude.

● Define CFG_AUDIO_CLICK_STARTUP_CLEAN to drop a certain amount of samples at the beginning of

the audio stream to remove clicking and transient effects.

● Define CFG_AUDIO_CONFIGURABLE_SAMPLING_RATE when the hardware audio peripheral can

perform audio sampling at 8 kHz and 16 kHz. When only 16 kHz sampling is supported by the
hardware peripheral, software down-sampling must be performed to use 8 kHz sampling modes.

● Define CFG_AUDIO_USE_32BIT_SAMPLING to support the 32-bit sampling output of the DA14585

audio unit.

● When CFG_AUDIO_USE_32BIT_SAMPLING is defined, AUDIO_SAMPLING_OFFSET defines the number

of bits that the samples are shifted to the right, when they are converted into 16-bit samples. The
output data of the DA14585 audio unit are located at bits 31 to 8, so AUDIO_SAMPLING_OFFSET

must be defined as 8. Only 16 bits of the samples will be used, so the eight most significant bits

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 40 of 100 © 2022 Renesas Electronics

will be discarded. When a number of least significant bits must be discarded to attenuate the
signal, this number must be added to the AUDIO_SAMPLING_OFFSET value.

● Define AUDIO_BUFFER_NR_SLOTS to specify the size (in slots) of the 24-bit sample buffer and

AUDIO_NR_SAMP_PER_SLOT to specify the number of samples per slot. The single buffer contains

(AUDIO_NR_SAMP_PER_SLOT * AUDIO_BUFFER_NR_SLOTS) samples. An interrupt is generated when

DMA fills a slot with data read from the audio unit. The reason why it is treated as a number of
slots is to simplify buffer handling.

● AUDIO_SBUF_SIZE defines the size of the 16-bit sample buffer.

● AUDIO_NOTIFICATION_CB defines the function called when AUDIO_NR_SAMP_PER_SLOT samples

have been transferred to the 24-bit sample buffer. This function is called in interrupt context.

The following debugging configuration options can be used during evaluation and testing of the Audio
Module:

● Define CFG_AUDIO_EMULATE_PDM_MIC to emulate microphone input using a software generated

waveform. A sine waveform is used by default.

● Define CFG_AUDIO_EMULATE_PDM_MIC_TRIANGULAR to emulate microphone input using a software

generated triangular waveform.

● Define CFG_AUDIO_UART_DEBUG to print to the debug console special characters indicating the

audio process progress.

● Define USE_AUDIO_MARK to use a GPIO pin to mark the audio data sampling. The GPIO pin level

is high while audio data are transferred from the audio peripheral to the buffer. The GPIO pin is
defined by AUDIO_MARK_PORT and AUDIO_MARK_PIN.

● Define CFG_AUDIO_DEBUG_ENC_AUDIO_TO_UART to send encoded audio data to the UART port.

● Define CFG_AUDIO_DEBUG_PDM_TO_UART to send PDM microphone samples to the UART port.

8.3 BLE Stream Module

8.3.1 Description

The BLE Stream Module enables data streaming from the BLE peripheral to the BLE host. This
module achieves a high data throughput by maximizing the number of packets sent in each
connection event and minimizing the processing time required.

L2CAP

DA14585 SDK

BLE StackStream FIFO

File app_stream.c

Stream notification

generation

File port_stream.c

BLE Stream configuration

File app_stream_config.h

Figure 7: BLE Stream Module Block Diagram

Data are streamed to the host using GATT notifications. To reduce the processing time, the BLE
Stream Module - instead of using the corresponding GATT profile - delivers the notification packets
directly to L2CAP using the appropriate handle, which is acquired when the GATT server database is
created.

The BLE Stream Module uses a FIFO to buffer the data before sending them to L2CAP. Data from
this FIFO are copied to the L2CAP buffers before each connection event. The FIFO can be packet
based or non-packet based. In both cases the packet size cannot exceed (ATT MTU - 3) bytes.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 41 of 100 © 2022 Renesas Electronics

● A packet based FIFO consists of a list of data packets. The application can place a packet in the
FIFO. The BLE stream will transfer this packet to the L2CAP buffers. The packet size of a packet
based FIFO can be predefined or variable.

● A non-packet based FIFO consists of a circular buffer. The application can add data to the FIFO
without any constraint on the data length. The BLE stream creates packets of data and sends
them to L2CAP. The size of the packets is configurable at run time.

The BLE Stream Module is enabled by defining symbol HAS_BLE_STREAM in the file user_config.h.

Files app_stream.c, port_stream.c and app_stream_config.h must be included in the project.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 42 of 100 © 2022 Renesas Electronics

8.3.2 Configuration

The BLE Stream Module configuration is specified in file app_stream_config.h.

● When CFG_APP_STREAM_PACKET_BASED is defined, a packet based stream FIFO is used. In this

case:

○ APP_STREAM_MAX_PACKET_FIFO_LEN sets the maximum number of packets in the FIFO.

○ When CFG_APP_STREAM_FIFO_PREDEFINED is defined, the size of each packet in the FIFO is

predefined to the value of APP_STREAM_PACKET_SIZE.

○ When CFG_APP_STREAM_FIFO_PREDEFINED is not defined, packets of variable length can be

added to the FIFO. The memory for each packet is allocated from a buffer, the size of which
is set to APP_STREAM_FIFO_SIZE.

● When CFG_APP_STREAM_PACKET_BASED is not defined, a non-packet based stream FIFO is used.

In this case:

○ APP_STREAM_FIFO_SIZE sets the size of the FIFO.

○ STREAM_FIFO_NUM_OF_HIGH_PRIORITY_BYTES defines the number of bytes reserved for high

priority data, such as audio in-band commands. These bytes are never used when adding
normal data to the FIFO. Function app_stream_fifo_get_priority_write_dataptr() can

be used to add high priority data to the FIFO.

8.3.3 Design Considerations

Packet based FIFO implementation is simple. Memory used for FIFO can be split in many segments
allowing easier handling by the linker. However, the packet size is fixed and must be considered by
the application when adding packets to the FIFO.

Non-packet based FIFO implementation is more complex, but allows decoupling of the BLE packet
size from the data added to the FIFO. The packet size can be changed dynamically without the need
to reconstruct the data packets.

The number of L2CAP buffers must be carefully selected to allow the storage of an adequate number
of data packets, to take advantage of the maximum number of packets per connection event. This
number can be set by defining CFG_NUM_OF_BLE_TX_BUFFERS in file da1458x_config_advanced.h.

For example, when the packet length is 27 and ATT MTU is 77, three link layer packets (one ATT

packet) are needed to send 74 bytes (payload: 20, 27, 27 bytes). When the number of link layer
buffers is five, only one ATT packet can be placed in the link layer buffers, limiting the number of
packets per connection event to three. Therefore, to maximize the throughput, the number of link
layer buffers must be incremented to at least six, holding at least the packets for the next two
connection events.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 43 of 100 © 2022 Renesas Electronics

8.4 Motion Module

8.4.1 Description

The Motion Module is used for acquiring data from a combined gyroscope/accelerometer sensor.

Motion state machine

File app_motion.c

Motion configuration

File app_motion_config.h

Motion data acquisition

File port_motion.c

Acc./gyro sensor LLD

bmi160.c

Accelerometer/

gyro sensor

BMI160 configuration

File app_bmi160_config.h

Figure 8: Motion Module Block Diagram

A Finite State Machine (FSM) is used for waking up, initializing, handling and powering down the
sensor. The sensor LLD is used to access the sensor. An adaptation layer between the FSM and the
LLD is implemented in file port_motion.c to condition the raw data acquired by the sensor.

The Motion Module is enabled by defining symbol HAS_MOTION in the file user_config.h.

Files app_motion.c, port_motion.c, bmi160.c, bmi160_support.c, app_bmi160_config.h and

app_motion_config.h must be included in the project.

8.4.2 Configuration

The BMI160 sensor configuration is set in file app_bmi160_config.h:

● MOTION_IF sets the sensor communication interface, either SPI or I2C.

● Define INCLUDE_BMI160ACC to enable the accelerometer.

● Define INCLUDE_BMI160GYR to enable the gyroscope.

● Define INCLUDE_BMI160TEM to enable the temperature measurement.

The Motion Module configuration is defined in file app_motion_config.h:

● The gyroscope/accelerometer sensor type is selected by defining the corresponding symbol:

○ BMI160 for the BMI160 sensor.

○ BMI055 for the BMI055 sensor.

● Sensor placement (top or bottom side of the PCB, placement rotation) is specified in order to
assign the measurements acquired for the sensor to the proper physical axis (X, Y or Z)

○ Define MOTION_PCB_BOTTOM when the sensor is placed at the bottom side of the PCB.

○ Set MOTION_ROTATION to the rotation angle of the sensor in degrees (0, 90, 180 or 270).

● Set MOTION_DEACTIVATION_TIMEOUT_IN_MS to the time (in ms) that the sensor will remain active

after calling the stop function to deactivate it. This timeout is used when the motion feature is
deactivated for a short time. In that case the sensor remains active to ensure smooth operation.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 44 of 100 © 2022 Renesas Electronics

8.5 Touchpad Module

8.5.1 Description

Overview

The Touchpad Module offers interaction with trackpad/touch devices and provides an application
layer for managing a large variety of touch events and gestures, as well as forwarding these to the
user application for further processing. The block diagram of the Touchpad Module is depicted in
Figure 9.

Touchpad event

handling

File app_touchpad.c

Touchpad event

adaptation

File port_touchpad.c

Touchpad configuration

File app_touchpad_config.h

Trackpad/slider driver

File touchpad_iqs_xxx.c

I2C LLD

DA14585 SDK

Figure 9: Touchpad Module Block Diagram

Depending on the configuration, the Touchpad Module may support either trackpad modules
(defining HAS_TOUCHPAD_TRACKPAD will enable the driving of Azoteq's IQS572 IC) or simple slider

touch modules (defining HAS_TOUCHPAD_SLIDER will enable the driving of Azoteq's IQS263 IC).

In order to use the Touchpad Module, the user must either define HAS_TOUCHPAD_TRACKPAD or

HAS_TOUCHPAD_SLIDER in the file user_config.h.

The files app_touchpad.c and port_touchpad.c must be included in the project.

Operation

Apart from the initialization and de-initialization functions, the Touchpad Module provides a polling
function, that can be used by the user application to poll it periodically for any existing touch events.
When there are any new touch events, the module polling will trigger the execution of the touchpad
module's callback functions. Configuration and registration of the touch event callback functions must
be done in the file app_touchpad_config.h.

As mentioned above, the Touchpad Module can either work with trackpad ICs or with simpler slider
ICs. The two variations of the RCU touch controller ICs can be seen below:

Touchpad Operation

The touch events produced by the Touchpad Module consist of a touch action and a set of
coordinates related to the touch action. The supported touch actions are listed below:

● APP_TOUCHPAD_RESET

● APP_TOUCHPAD_RELEASE

● APP_TOUCHPAD_TRACK_STARTED

● APP_TOUCHPAD_TRACKING

● APP_TOUCHPAD_TRACK_STOPPED

● APP_TOUCHPAD_TAP_UP

● APP_TOUCHPAD_TAP_DOWN

● APP_TOUCHPAD_TAP_RIGHT

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 45 of 100 © 2022 Renesas Electronics

● APP_TOUCHPAD_TAP_LEFT

● APP_TOUCHPAD_SINGLE_FINGER_TAP

● APP_TOUCHPAD_TOUCH_AND_HOLD

● APP_TOUCHPAD_SWIPE_LEFT

● APP_TOUCHPAD_SWIPE_RIGHT

● APP_TOUCHPAD_SWIPE_UP

● APP_TOUCHPAD_SWIPE_DOWN

● APP_TOUCHPAD_ZOOM_IN

● APP_TOUCHPAD_ZOOM_OUT

● APP_TOUCHPAD_DOUBLE_FINGER_TAP

● APP_TOUCHPAD_SCROLL_UP

● APP_TOUCHPAD_SCROLL_DOWN

● APP_TOUCHPAD_SCROLL_RIGHT

● APP_TOUCHPAD_SCROLL_LEFT

● APP_TOUCHPAD_FLICK_LEFT

● APP_TOUCHPAD_FLICK_RIGHT

● APP_TOUCHPAD_ROTATE_LEFT

● APP_TOUCHPAD_ROTATE_RIGHT

● APP_TOUCHPAD_NO_EVENT

The Touchpad Module uses a special callback function user_touchpad_special_eventCB() to notify

the user application of touch events.

Trackpad Operation

When the trackpad variation is used, tracking actions are handled separately. Additionally, the
Touchpad Module uses an internal state machine to determine whether tracking has started, is
ongoing or has stopped.

The tracking state machine uses a separate callback function user_touchpad_track_eventCB() to

notify the user application of tracking related events. Figure 10 represents the tracking FSM.

In addition to the separate tracking callback function, the Touchpad Module also provides the
function app_touchpad_get_last_track_info(). When called, this function returns the last absolute

coordinates and the coordinate differences between the newest tracking data and the oldest tracking
data (deltaX and deltaY) and refreshes the oldest tracking data with the current ones. This function
helps translating the movement of the finger on the trackpad into HID Mouse reports.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 46 of 100 © 2022 Renesas Electronics

APP_TOUCHPAD_STATE_TRACKING

APP_TOUCHPAD_STATE_NORMAL

trackOccured == false

trackOccured == true
(generates an event with APP_TOUCHPAD_TRACK_STARTED action)

trackOccured==false
(generates an event with APP_TOUCHPAD_TRACK_STOPPED action)

trackOccured == true
(generates an event with APP_TOUCHPAD_TRACKING action

Figure 10 Touchpad Module - Tracking State Machine

8.5.2 Configuration

The Touchpad Module configuration can be modified via the file app_touchpad_config.h.

● TOUCH_PAD_MODULE defines which touchpad IC is connected to the RCU motherboard.

○ When HAS_TOUCHPAD_TRACKPAD is defined the Azoteq IQS572 trackpad IC will be used

○ When HAS_TOUCHPAD_SLIDER is defined the Azoteq IQS263 slider IC will be used.

● When TOUCHPAD_STATIC_EVENT_SETUP is defined, the user can configure the touch events of

which the application can be notified, at compile time. Otherwise, these events can be modified
during run time.

● APP_TOUCH_MAX_SLIDE_ACCUMULATED_EVENTS: When the slider IC is used, this symbol defines the

minimum number of slide events needed to notify the user application about a valid slide event.
This number defines the slide sensitivity.

● APP_TOUCH_COORDS_*: These symbols are specific for the IQS263 slider IC and describe the tap

direction boundaries (Up, Down, Left, Right).

● TOUCH_INT_PORT, TOUCH_INT_PIN: These symbols define the GPIO pin that is used to receive

interrupts from the touch ICs.

● TOUCHPAD_INT_POLARITY: Depending on the Touchpad Module that is used, this symbol defines

the interrupt polarity of the touch ICs.

● user_touchpad_track_eventCB: Pointer to the user application function that will handle the

incoming tracking events (if tracking is supported).

● user_touchpad_special_eventCB: Pointer to the user application function that will handle all

incoming touch events (except tracking events).

● app_touchpad_funcs: A structure of platform specific functions required for the module's proper

behavior and functionality.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 47 of 100 © 2022 Renesas Electronics

8.6 IR Module

8.6.1 Description

The IR Module is used for transmitting key codes using an IR LED connected to a GPIO pin of the
DA14585.

IR

File app_ir.c

IR configuration

File app_ir_config.h

IR waveform generation

File port_ir.c, ir_driver.c

Timer0 LLD

DA14585 SDK

Figure 11: IR Module Block Diagram

The IR Module uses Timer 0 of the DA14585 to generate the waveform that drives the IR transmitter.
The module can be configured to generate waveforms compatible with various protocols such as
Philips RC-5, Sony SIRC and NEC.

The following waveform parameters can be defined in the configuration file to implement the
waveform generation for a specific protocol:

● Carrier frequency

● Carrier duty-cycle

● Number of carrier cycles for logic 1 mark

● Number of carrier cycles for logic 1 space

● Number of carrier cycles for logic 0 mark

● Number of carrier cycles for logic 0 space

● A function must be implemented for the specific protocol to send the proper sequence of 1 and 0
symbols to form the IR message.

Detailed IR functionality description and implementation is provided in Ref. [6].

The IR Module is enabled by defining symbol HAS_IR in the file user_config.h.

Files app_ir.c, port_ir.c, ir_driver.c and app_ir_config.h must be included in the project.

8.6.2 Configuration

The IR Module parameters are defined in the file app_ir_config.h.

The main configuration is defined in structure ir_params. The following parameters can be set:

● use_ble_sync: The IR transmission is synchronized with the BLE end event. The IR transmitter is

activated after the completion of the BLE event.

● max_repeat: The maximum number of times a key code is transmitted when the transmission is

not stopped by the application (e.g. while the corresponding key is kept pressed).

● protocol_params: A pointer to a structure of type ir_protocol_params_t, which holds the

parameters used for the waveform generation according to the protocol used. The structure
ir_protocol_params_t has the following members:

○ timer_freq: The frequency (in MHz) of Timer 0 used for the IR waveform generation (2 MHz,

4 MHz, 8 MHz or 16 MHz).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 48 of 100 © 2022 Renesas Electronics

○ carrier_period: The IR carrier clock period (in timer clock cycles).

○ carrier_on_time: The IR carrier on-time (in timer clock cycles) which defines the carrier duty

cycle.

○ logic_one_mark: The IR logic 1 mark duration (in carrier clock cycles).

○ logic_one_space: The IR logic 1 space duration (in carrier clock cycles).

○ logic_zero_mark: The IR logic 0 mark duration (in carrier clock cycles).

○ logic_zero_space: The IR logic 0 space duration (in carrier clock cycles).

○ repeat_time: The message repeat time (in carrier clock cycles).

○ repeat_type: The message repeat type, either IR_REPEAT_FROM_CODE_FIFO or

IR_REPEAT_FROM_REPEAT_FIFO.

● send_command_callback: Pointer to the function that called for constructing the IR message to be

transmitted.

8.6.3 Design Considerations

Only the Philips RC-5 protocol has been implemented and tested. Example code and configuration
for Sony SIRC and NEC protocols is provided for reference. Parameters protocol_params and

send_command_callback can be customized to implement the required IR protocol.

8.7 GPIO Keys Module

8.7.1 Description

The GPIO Keys Module initializes, checks and processes GPIOs for key presses or releases. The
block diagram of the GPIO Keys Module is depicted in Figure 12.

GPIO Keys configuration

File app_gpio_keys_config.h

Key checking,

debouncing

File app_gpio_keys.c

Pin initialization and

sampling

File port_gpio_keys.c

DA14585 SDK

GPIO pinsGPIO LLD

Module platform adaptation

SysTick controller module

Wake-up controller

module

Figure 12: GPIO Keys Module Block Diagram

The GPIO Keys Module has the following features:

● Supports maximum eight keys

● Selectable polarity (active low or active high)

● Key debouncing with configurable debouncing time and sampling period

The keys are connected to GPIO pins which are configured as inputs. When no key is pressed, the
internal resistors of the DA14585 pins define the appropriate input level:

● Active-low keys: a pull-up resistor is used to define a high input level.

● Active-high keys: a pull-down resistor is used to define a low input level.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 49 of 100 © 2022 Renesas Electronics

The keys are sampled using the SysTick Controller Module described in Section 8.16 and the
Wakeup Controller Module described in Section 8.14. The GPIO LLD is used to read the status of the
pins. One sampling cycle is completed when the status of all pins has been read.

The key sampling is implemented in the file port_gpio_keys.c.

The keys are debounced in the file app_gpio_keys.c in order to detect key press or release events.

The application can register a callback function to receive notifications of key press/release events.

The GPIO Keys Module is enabled by defining symbol HAS_GPIO_KEYS in the file user_config.h.

Files app_gpio_keys.c, port_gpio_keys.c and app_gpio_keys_config.h must be included in the

project.

8.7.2 Configuration

The GPIO Keys Module parameters are defined in the file app_gpio_keys_config.h.

● GPIO_NUM_OF_KEYS defines the number of keys to be used.

● GPIO_KEY_x_PORT and GPIO_KEY_x_PIN define the pin to which key x is connected. x is in the

range of 0 to (GPIO_NUM_OF_KEYS - 1).

● GPIO_KEY_x_POLARITY defines the polarity (ACTIVE_LOW or ACTIVE_HIGH) of the pin to which key x

is connected. x is in the range of 0 to (GPIO_NUM_OF_KEYS - 1).

● GPIO_DEBOUNCE_TIME_IN_MS defines the time (in ms) during which samples are collected to

determine the status of a key.

● GPIO_DEBOUNCE_PERIOD_IN_US defines the sampling period (in μs) for key debouncing.

● APP_GPIO_KEYS_NOTIFICATION_CB: Pointer to the function called to notify the application that a

key has been pressed or released. This function is called in interrupt context during debouncing.

Key names are defined in the gpio_key enumeration. These names should be used to reference the

keys when checking their status or handling a notification.

8.7.3 Design Considerations

The number of contiguous similar samples needed to decide the status of a key during debouncing is
(GPIO_DEBOUNCE_TIME_IN_MS * 1000 / GPIO_DEBOUNCE_PERIOD_IN_US).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 50 of 100 © 2022 Renesas Electronics

8.8 HID Report Module

8.8.1 Description

The HID Report Module enables the generation, buffering and transmission of HID reports via the
HID Over GATT Profile (HOGP).

HOGP

DA14585 SDK

BLE Stack
HID report generation,

buffering, transission

File app_hid_report.c

HID report configuration

File app_hid_report_config.h

HOGP application

File app_hogpd.c

Figure 13: HID Report Module Block Diagram

The HID Report Module has the following features:

● Normal HID keyboard report handling

● Normal HID keyboard report rollover handling

● Extended HID keyboard report handling

● Report FIFO

HID reports can be added in the FIFO using their HID report index. Reports are sent from the FIFO to
the HOGP. A single FIFO is used for all HID reports. The memory space of the FIFO is pre-allocated.

Special handling is implemented for normal and extended keyboard reports. The differences between
these report types are described in Ref. [5].

New reports are created for key events by appending the new key event to the events reported in the
previous report of the same type. Keys are added to the report when they are pressed and removed
when they are released.

Key rollover is implemented for normal keyboard reports, when more than six keys are pressed
simultaneously.

The HID Report Module is enabled by defining symbol HAS_HID_REPORT in the file user_config.h.

Files app_hid_report.c and app_hid_report_config.h must be included in the project.

8.8.2 Configuration

The HID Report Module configuration is specified in file app_hid_report_config.h. The following

configuration options can be defined:

● HID_REPORT_FIFO_SIZE sets the number of HID key reports that can be stored in the report FIFO.

● HID_REPORT_MAX_REPORT_SIZE sets the maximum size of the reports that can be stored in the

report FIFO.

● HID_REPORT_ROLL_OVER_BUF_SIZE sets the size of the rollover buffer. It must be greater than 6,

since this is the maximum number of simultaneous keys that can be reported in a normal HID
keyboard report. HID_REPORT_ROLL_OVER_BUF_SIZE must be greater or equal to the number of

keys that can be detected simultaneously by the Keyboard Module as defined in Section 8.1.2.

● Define HID_REPORT_HISTORY to enable reporting of any events happened while disconnected.

● HID_REPORT_NORMAL_REPORT_IDX sets the index of the normal HID keyboard report.

● HID_REPORT_NORMAL_REPORT_SIZE sets the size of the normal HID keyboard report.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 51 of 100 © 2022 Renesas Electronics

● HID_REPORT_EXTENDED_REPORT_IDX sets the index of the extended HID keyboard report.

● HID_REPORT_EXTENDED_REPORT_SIZE sets the size of the extended HID keyboard report.

● APP_HID_REPORT_SEND_CB points to the callback function which the HID Report Module calls to

notify the application that a report has been sent to HOGP.

8.9 Advertising FSM Module

8.9.1 Description

Overview

The Advertising FSM Module implements a straightforward BLE Finite State Machine (FSM) that
manages BLE advertising related events and functions. It provides a simple API to the Connection
FSM Module for easy advertising management: procedures for starting and stopping advertising as
well as giving back notifications of every advertising related event.

Advertising FSM States

The Advertising FSM states are listed below:

● ADV_IDLE: The Advertising FSM is Idle. It is waiting for incoming advertising related events.

● ADV_UNDIRECTED: The FSM is currently doing Undirected Advertising. Pairing is allowed during

this advertising type. For more information, see the array adv_fsm_config.adv_params

[ADV_SETTING_UNDIRECTED] in the Advertising FSM configuration file app_adv_fsm_config.h.

● ADV_UNDIRECTED_LIM: The FSM is currently doing Undirected Limited Advertising. Pairing is not

allowed during this advertising type. This advertising type is usually used when the device wants
to reconnect to a known host that does not have a public address. For more information, see the
configuration array adv_fsm_config.adv_params[ADV_SETTING_UNDIRECTED_LIM] in the

Advertising FSM configuration file app_adv_fsm_config.h.

● ADV_UNDIRECTED_NO_PAIRING: The FSM is currently doing Undirected Advertising. Pairing is not

allowed during this advertising type. For more information, see the configuration array
adv_fsm_config.adv_params[ADV_SETTING_UNDIRECTED_NO_PAIR] in the Advertising FSM

configuration file app_adv_fsm_config.h.

● ADV_UNDIRECTED_SLOW: The FSM is currently doing Slow Undirected Advertising. Pairing is

allowed during this advertising type. For more information, see the configuration array
adv_fsm_config.adv_params[ADV_SETTING_SLOW] in the Advertising FSM configuration file

app_adv_fsm_config.h.

● ADV_UNDIRECTED_SPECIAL: The FSM is currently doing Special Undirected Advertising. Pairing is

allowed during this advertising type. The payload of this advertising type is set by using the
app_adv_fsm_set_special_adv_data() function. For more information, see the configuration

array adv_fsm_config.adv_params[ADV_SETTING_SPECIAL] in the Advertising FSM configuration

file app_adv_fsm_config.h.

● ADV_FSM_EVENT_PENDING: The FSM is currently waiting for a previous operation to be completed

in order to handle a pending event, queued by the application or the Connection FSM Module.

● ADV_DIRECTED: The FSM is currently performing Directed Advertising to a host.

Advertising FSM Events

The Advertising FSM events are listed below. Events marked as output events are events generated
by the Advertising FSM Module, while the rest of the events (marked as input events) are used by
the Connection FSM Module or the user application to drive the Advertising FSM.

● Output Events:

○ UND_ADV_COMPLETED: This event will occur when an Undirected Advertising cycle completes.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 52 of 100 © 2022 Renesas Electronics

○ DIR_ADV_COMPLETED: This event will occur when a Directed Advertising cycle completes.

○ UND_ADV_TIMED_OUT: This event will occur when the Undirected Advertising Timer expires,

which will trigger the Advertising FSM Module to stop the ongoing Undirected Advertising
cycle (which will eventually result in an UND_ADV_COMPLETED event).

○ DIR_ADV_INTERRUPTED: This event will occur when an ongoing Directed Advertising cycle gets

interrupted, due to a connection request.

○ UND_ADV_INTERRUPTED: This event will occur when an ongoing Undirected Advertising cycle

gets interrupted, due to a connection request.

● Input Events:

○ START_ADV: This event is used to tell the Advertising FSM Module to start an Undirected

Advertising cycle, using the settings provided in the configuration table adv_fsm_config.

adv_params[ADV_SETTING_UNDIRECTED].

○ START_ADV_LIM: This event is used in order to tell the Advertising FSM Module to start an

Undirected Limited Advertising cycle, using the settings provided in the configuration table
adv_fsm_config.adv_params[ADV_SETTING_UNDIRECTED_LIM].

○ START_ADV_NO_PAIR: This event is used to tell the Advertising FSM Module to start an

Undirected Advertising cycle with no Pairing Allowed, using the settings provided in the
configuration table adv_fsm_config.adv_params[ADV_SETTING_UNDIRECTED_NO_PAIR].

○ START_ADV_DIR: This event is used to tell the Advertising FSM Module to start a Directed

Advertising cycle.

○ STOP_ADV: This event is used to tell the Advertising FSM Module to stop any ongoing

advertising cycle.

○ START_ADV_SPECIAL: This event is used to tell the Advertising FSM Module to start an

Undirected Special Advertising cycle.

Advertising FSM State Transitions

For better understanding of the Advertising FSM Module operation, state transition tables (Table 10
to Table 24) and a state transition diagram (Figure 14) demonstrate all possible state transitions.

Table 10: ADV_IDLE State Transitions

Event Description Next State

START_ADV The FSM will start Undirected Advertising. ADV_UNDIRECTED

START_ADV_DIR The FSM will start Directed Advertising. ADV_DIRECTED

START_ADV_NO_PAIR The FSM will start Undirected Advertising with No Pairing

Allowed.

ADVERTISING_ST

START_ADV_LIM The FSM will start Undirected Limited Advertising. ADV_UNDIRECTED_NO_

PAIRING

STOP_ADV A STOP_ADV event while the FSM is in ADV_IDLE state will

not have any effect, since there is no ongoing advertising

cycle.

ADV_IDLE

START_ADV_SPECIAL If special advertising is supported, the FSM will start

Undirected Special Advertising.

ADV_SPECIAL

Table 11: ADV_DIRECTED State Transitions

Event Description Next State

DIR_ADV_INTERRUPTED The ongoing Directed Advertising cycle was interrupted by
a connection request. The FSM will send a notification
that directed advertising ended (ADV_FSM_DIR_ADV_ENDED)

and go to ADV_IDLE state.

ADV_IDLE

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 53 of 100 © 2022 Renesas Electronics

Event Description Next State

DIR_ADV_COMPLETED The ongoing Directed Advertising cycle was completed.
When the counter of directed advertising repeats has
reached the configured value
adv_fsm_config.directed_advertising_repeats and

adv_fsm_config.disable_undirected_advertise is true,

the FSM will send a notification that directed advertising
has ended and go to ADV_IDLE state.

ADV_IDLE

DIR_ADV_COMPLETED The ongoing Directed Advertising was completed. When
the counter of directed advertising repeats has reached
the configured value
adv_fsm_config.directed_advertising_repeats and

adv_fsm_config.disable_undirected_advertise is

false, the FSM will start Undirected Advertising with No

Pairing Allowed and send a notification that Undirected
Advertising has started (ADV_FSM_UND_ADV_STARTED).

ADV_UNDIRECTED_NO_

PAIRING

START_ADV When one of these events occurs during Directed
Advertising, the FSM will save the event as a pending
event and move to the ADV_FSM_EVENT_PENDING state,

waiting for the ongoing advertising cycle to end and

continue with the saved pending event.

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

Table 12: ADV_UNDIRECTED State Transitions

Event Description Next State

UND_ADV_COMPLETED An ongoing Undirected Advertising cycle was completed
(stopped). When Slow Undirected Advertising is
supported (adv_params[ADV_SETTING_SLOW)].

discoverable_timeout is non-zero), the FSM will start

Slow Undirected Advertising.

ADV_SLOW

UND_ADV_COMPLETED An ongoing Undirected Advertising cycle was completed
(stopped). When Slow Undirected Advertising is NOT
supported (adv_params[ADV_SETTING_SLOW].

discoverable_timeout is zero) the FSM will go to

ADV_IDLE state.

ADV_IDLE

UND_ADV_INTERRUPTED The ongoing Undirected Advertising was interrupted due
to a connection request. The FSM will clear the
Undirected Advertising Timer, send a notification that
Undirected Advertising has ended
(ADV_FSM_UND_ADV_ENDED) and go to ADV_IDLE state.

ADV_IDLE

UND_ADV_TIMED_OUT The Undirected Advertising Timer has expired. The FSM
will stop the ongoing Undirected Advertising cycle and
stay in the same state, waiting for the UND_ADV_COMPLETED

event.

ADV_UNDIRECTED

START_ADV When one of these events occurs during Undirected
Advertising, the FSM will save the event as a pending
event, clear the Undirected Advertising Timer, stop the
ongoing Undirected Advertising and move to the
ADV_FSM_EVENT_PENDING state, waiting for the ongoing

advertising cycle to end and continue with the saved

pending event.

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

START_ADV_SPECIAL

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 54 of 100 © 2022 Renesas Electronics

Table 13: ADV_UNDIRECTED_LIM State Transitions

Event Description Next State

UND_ADV_COMPLETED An ongoing Undirected Advertising cycle was completed
(stopped). When the configuration field adv_fsm_config.

disable_undirected_advertise is true, the FSM will

send a notification that Undirected Limited Advertising has
ended (ADV_FSM_UND_ADV_LIM_ENDED) and go to ADV_IDLE

state.

ADV_IDLE

UND_ADV_COMPLETED An ongoing Undirected Advertising cycle was completed
(stopped). When the configuration field adv_fsm_config.

disable_undirected_advertise is false, the FSM will

start Undirected Advertising with No Pairing Allowed and
send a notification that Undirected Advertising has started
(ADV_FSM_UND_ADV_STARTED).

ADV_UNDIRECTED_NO_

PAIRING

UND_ADV_INTERRUPTED The ongoing Undirected Advertising cycle was interrupted
due to a connection request. The FSM will clear the
Undirected Advertising Timer, send a notification that
Undirected Limited Advertising has ended
(ADV_FSM_UND_ADV_LIM_ENDED) and go to ADV_IDLE state.

ADV_IDLE

UND_ADV_TIMED_OUT The Undirected Advertising Timer has expired. The FSM
will stop the ongoing Undirected Advertising cycle and stay
in the same state, waiting for the UND_ADV_COMPLETED

event.

ADV_UNDIRECTED_LIM

START_ADV When one of these events occurs during Undirected
Limited Advertising, the FSM will save the event as a
pending event, clear the Undirected Advertising Timer,
stop the ongoing Undirected Advertising cycle and move
to the ADV_FSM_EVENT_PENDING state, waiting for the

ongoing advertising cycle to end and continue with the

saved pending event

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

START_ADV_SPECIAL

Table 14: ADV_UNDIRECTED_NO_PAIRING State Transitions

Event Description Next State

UND_ADV_COMPLETED An ongoing Undirected Advertising cycle was completed
(stopped). When Slow Undirected Advertising is supported
(adv_params[ADV_SETTING_SLOW)].discoverable_timeout

is non-zero), the FSM will start Slow Undirected
Advertising and send a notification that Undirected
Advertising has started (ADV_FSM_UND_ADV_STARTED).

ADV_SLOW

UND_ADV_COMPLETED An ongoing undirected advertising cycle was completed
(stopped). When Slow Undirected Advertising is NOT
supported (adv_params[ADV_SETTING_SLOW)].

discoverable_timeout is zero), the FSM will send a

notification that Undirected Advertising has ended
(ADV_FSM_UND_ADV_ENDED) and go to ADV_IDLE state.

ADV_IDLE

UND_ADV_INTERRUPTED The ongoing Undirected Advertising was interrupted due
to a connection request. The FSM will clear the Undirected
Advertising Timer, send a notification that Undirected
Advertising has ended (ADV_FSM_UND_ADV_ENDED) and go to

ADV_IDLE state.

ADV_IDLE

UND_ADV_TIMED_OUT The Undirected Advertising Timer has expired. The FSM
will stop the ongoing Undirected Advertising cycle and stay
in the same state, waiting for the UND_ADV_COMPLETED

event.

ADV_UNDIRECTED_NO_

PAIR

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 55 of 100 © 2022 Renesas Electronics

Event Description Next State

START_ADV When one of these events occurs during Undirected
Advertising, the FSM will save the event as a pending
event, clear the Undirected Advertising Timer, stop the
ongoing Undirected Advertising cycle and move to the
ADV_FSM_EVENT_PENDING state, waiting for the ongoing

advertising to end and continue with the saved pending

event.

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

START_ADV_SPECIAL

Table 15: ADV_UNDIRECTED_SLOW State Transitions

Event Description Next State

UND_ADV_COMPLETED An ongoing undirected advertising cycle was completed
(stopped). The FSM will send a notification that Undirected
Advertising has ended (ADV_FSM_UND_ADV_ENDED) and go to

ADV_IDLE state.

ADV_IDLE

UND_ADV_INTERRUPTED The ongoing Undirected Advertising was interrupted due
to a connection request. The FSM will clear the Undirected
Advertising Timer, send a notification that Undirected
Advertising has ended (ADV_FSM_UND_ADV_ENDED) and go to

ADV_IDLE state.

ADV_IDLE

UND_ADV_TIMED_OUT The Undirected Advertising Timer has expired. The FSM
will stop the ongoing Undirected Advertising cycle and stay
in the same state, waiting for the UND_ADV_COMPLETED

event.

ADV_SLOW

START_ADV When one of these events occurs during Undirected
Advertising, the FSM will save the event as a pending
event, clear the Undirected Advertising Timer, stop the
ongoing Undirected Advertising cycle and move to the
ADV_FSM_EVENT_PENDING state, waiting for the ongoing

advertising to end and continue with the saved pending

event.

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

START_ADV_SPECIAL

Table 16: ADV_FSM_EVENT_PENDING State Transitions

Event Description Next State

UND_ADV_COMPLETED While in FSM pending event state an Undirected
Advertising cycle was completed. The FSM will send a
notification that Undirected Advertising has ended
(ADV_FSM_UND_ADV_ENDED). When there is a valid pending

event (START_ADV_* or STOP_ADV), the FSM will process

that event exactly like when being in ADV_IDLE state.

The next state depends
on the saved/pending

event.

See the ADV_IDLE state

transition table for each
event (START_ADV,
START_ADV_LIM,

START_ADV_DIR,

START_ADV_NO_PAIR,

START_ADV_SPECIAL,

STOP_ADV)

DIR_ADV_COMPLETED While in FSM pending event state a Directed Advertising
cycle was completed. The FSM will send a notification that
Directed Advertising has ended (ADV_FSM_DIR_ADV_ENDED).

When there is a valid pending event (START_ADV_* or

STOP_ADV), the FSM will process that event exactly like

when being in ADV_IDLE state.

The next state depends
on the saved/pending

event.

See the ADV_IDLE state

transition table for each
case of pending event
(START_ADV,

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 56 of 100 © 2022 Renesas Electronics

Event Description Next State

START_ADV_LIM,

START_ADV_DIR,

START_ADV_NO_PAIR,

START_ADV_SPECIAL,

STOP_ADV)

DIR_ADV_INTERRUPTED An ongoing Directed Advertising cycle was interrupted
due to a connection request. The FSM will clear the
pending event(set it to ADV_NO_EVENT), send a notification

that Directed Advertising has ended
(ADV_FSM_DIR_ADV_ENDED) and go to ADV_IDLE state.

ADV_IDLE

UND_ADV_INTERRUPTED An ongoing Undirected Advertising cycle was interrupted
due to a connection request. The FSM will clear the
pending event (set it to ADV_NO_EVENT), send a notification

that Undirected Advertising has ended
(ADV_FSM_UND_ADV_ENDED) and go to ADV_IDLE state.

ADV_IDLE

START_ADV When one of these events occurs during the pending
event state, the FSM will save that event as pending and
stay in the same state, waiting for a trigger by one of the
*_ADV_COMPLETED events.

ADV_FSM_EVENT_

PENDING
START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

STOP_ADV

START_ADV_SPECIAL

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 57 of 100 © 2022 Renesas Electronics

For a better view of the Advertising FSM Module, Figure 14 presents a state transition diagram.

ADV_IDLE

ADV_UNDIRECTED

ADV_UNDIRECTED
_LIM ADV_DIRECTED

ADV_SLOW

ADV_UNDIRECTED
_NO_PAIRING

START_ADV

START_ADV_LIM

START_ADV_NO_PAIR

START_ADV_DIR

UND_ADV_TIMEOUT
(will stop adertise & wait for

UND_ADV_COMPLETED)

(UND_ADV_COMPLETED
&&

ADV_SLOW NOT supported)
||

(UND_ADV_INTERRUPTED)

UND_ADV_COMPLETED
&&

ADV_SLOW supported

(UND_ADV_COMPLETED
&&

ADV_SLOW NOT supported)
||

(UND_ADV_INTERRUPTED)

UND_ADV_TIMEOUT
(will stop adertise & wait for

UND_ADV_COMPLETED)

UND_ADV_COMPLETED
&&

ADV_SLOW supported

UND_ADV_COMPLETED
&&

!disable_undirected_adv

UND_ADV_COMPLETED
&&

ADV_SLOW not supported

UND_ADV_TIMEOUT
(will stop adertise & wait for

UND_ADV_COMPLETED)

(DIR_ADV_INTERRUPTED)
 ||

(DIR_ADV_COMPLETED
&&

 no repeats left
&&

 disable_undirected_adv)

DIR_ADV_COMPLETED
 &&

no repeats left
&&

!disable_undirected_adv

DIR_ADV_COMPLETED
 &&

has repeats left

UND_ADV_TIMEOUT
(will stop advertise & wait for

UND_ADV_COMPLETED)

UND_ADV_COMPLETED

ADV_FSM_PENDING

START_ADV_* || STOP_ADV
START_ADV_* || STOP_ADV

START_ADV_* || STOP_ADV

START_ADV_* || STOP_ADV

*_ADV_COMPLETED &&
pending_action == START_ADV_DIR

*_ADV_COMPLETED &&
pending_action == START_ADV_NO_PAIR

*_ADV_COMPLETED &&
pending_action == START_ADV_LIM

*_ADV_COMPLETED &&
pending_action == START_ADV

Figure 14: Advertising FSM State Transition Diagram

8.9.2 Configuration

The Advertising FSM Module can be configured via the app_adv_fsm_config.h header file.

● APP_DFLT_DEVICE_NAME: This macro defines the default device name when advertising.

● AUTO_APPEND_DEVICE_NAME_IN_ADV_DATA: If this symbol is defined, the APP_DFLT_DEVICE_NAME

will be automatically appended in advertising data. If it does not fit, a partial name will be
appended in the advertising data. The full name will be appended in the scan response data.

● APP_ADV_DATA: The default Undirected Advertising payload.

● HAS_SPECIAL_ADVERTISING: When defined, this symbol enables the usage of Special Undirected

Advertising.

● The adv_fsm_config structure contains configuration information of the Advertising FSM:

○ app_adv_notification_callback: A callback function that should be registered in order to

handle incoming notifications from the Advertising FSM Module.

○ disable_undirected_advertise: When this flag is set to true, the FSM will not start

Undirected Advertising after Directed or Limited Undirected Advertising has ended.

○ directed_advertising_repeats: This parameter sets the number of the repeats of Directed

Advertising (implicitly sets the duration of Directed Advertising).

○ disable_advertising_timeout: When this flag is set to true, this parameter disables the

usage of the Undirected Advertising timer.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 58 of 100 © 2022 Renesas Electronics

● The adv_params array inside the adv_fsm_config structure, contains Undirected Advertising

configuration parameters for the following Undirected Advertising types:

ADV_SETTING_SPECIAL, ADV_SETTING_SLOW, ADV_SETTING_UNDIRECTED_LIM,

ADV_SETTING_UNDIRECTED, ADV_SETTING_UNDIRECTED_NO_PAIR.

For each advertising type ‘x’ the following parameters can be set:

○ adv_params[x].discoverable_timeout: For Undirected Advertising configuration 'x' this

parameter sets the duration of Undirected Advertising for that configuration. Set this
parameter to zero to disable the advertising type specified by ‘x’.

○ adv_params[x].adv_int_min: For Undirected Advertising configuration 'x' this parameter sets

the minimum advertising interval in milliseconds.

○ adv_params[x].adv_int_max: For Undirected Advertising configuration 'x' this parameter sets

the maximum advertising interval in milliseconds.

○ adv_params[x].adv_mode: For Undirected Advertising configuration 'x' this parameter sets

undirected advertising mode

○ adv_params[x].adv_data: For Undirected Advertising configuration 'x' this parameter sets

the undirected advertising data

○ adv_params[x].adv_data_length: For Undirected Advertising configuration 'x' this parameter

sets the undirected advertising data length

○ adv_params[x].scan_rsp_data: For Undirected Advertising configuration 'x' this parameter

sets the undirected advertising scan response data

○ adv_params[x].scan_rsp_data_length: For Undirected Advertising configuration 'x' this

parameter sets the undirected advertising scan response data length

● app_adv_fsm_funcs: A structure of platform specific advertising functions needed for proper

functionality of the Advertising FSM Module.

8.10 Connection FSM Module

8.10.1 Description

Overview

The Connection FSM Module implements a straightforward BLE Finite State Machine (FSM) that
manages BLE connection, disconnection, advertising, bonding, pairing etc. The module provides a
set of functions meant to be used by the user application to feed the FSM with events, as well as give
feedback (indications) back to the application after the events have been handled.

The following sub-sections describe the states of the Connection FSM, as well as all possible events
that may occur during the device's operation. For advertising related functions the Connection FSM
collaborates closely with the Advertising FSM, which is described in Section 8.9.

Connection FSM States

This section enumerates and describes all possible Connection FSM states and events that may
occur during the device's operation, as well as all the possible state transitions after the events have
been handled.

The states of the Connection FSM are the following:

● IDLE_ST: The Connection FSM is idle. There are no active connection, advertising, bonding,

pairing procedures. The FSM either waits for an event to occur or for previous uncompleted
operations to end.

● ADVERTISING_ST: The FSM is advertising. It will be in this state as long as there is an ongoing

advertising cycle. The FSM will leave this state when the advertising ends, either because of an
incoming connection that will interrupt the advertising (will go to CONNECTION_IN_PROGRESS_ST) or

because the advertising cycle has completed (will go to IDLE_ST).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 59 of 100 © 2022 Renesas Electronics

● CONNECTION_IN_PROGRESS_ST: The FSM is processing a connection. The FSM will go to this state

whenever there is a connection in progress and wait for one of the following events:

○ Connection completed (will go to CONNECTED_ST).

○ Connection cancelled (will go to DISCONNECTED_INIT_ST).

○ Disconnection (will start advertising and go to ADVERTISING_ST).

○ Pairing request (will go to CONNECTED_PAIRING_ST).

○ Power off (will terminate the ongoing connection and go to POWEROFF_ST).

● CONNECTED_PAIRING_ST: The FSM is connected and there is an ongoing pairing procedure.

● CONNECTED_ST: The FSM is successfully connected to a host.

● DISCONNECTED_INIT_ST: The FSM will go to this state when waiting for a disconnection to

complete.

● POWEROFF_ST: The FSM will go to this state after a power-off event during an active connection. It

will start the power-off timer and wait for a shutdown event or for power-off timer expiration. Then
it will request disconnection and go to WAITING_DISCONNECTION_AFTER_POWEROFF state.

● WAITING_DISCONNECTION_AFTER_POWEROFF: The FSM will go to this state after a shutdown event

or power-off timer expiration when in POWEROFF_ST, and will wait there until there is a successful

disconnection.

Connection FSM Events

The Connection FSM events are listed below.

● ADV_COMPLETED_EVT: This event indicates that an advertising cycle has completed.

● ALT_PAIR_TIMER_EXP_EVT: This event indicates that the alternate pairing timer has expired, which

is used to give the device time to switch to a new host.

● CONN_CANCELLED_EVT: This event indicates that the connection in progress was cancelled.

● CONN_CMP_EVT: This event indicates that a connection has been completed successfully.

● CONN_REQ_EVT: This event indicates an incoming connection request from a peer device.

● CONN_UPD_RESP_EVT: This event indicates that the connection parameters have been updated.

● DISCONNECT_CMP_EVT: This event indicates that an ongoing connection has been terminated.

● INIT_EVT: This event indicates that the Connection FSM Module must be initialized.

● NEW_HOST_EVT: This event indicates a paring request from an unknown host (i.e. one that was

not previously bonded).

● PAIRING_REQ_EVT: This event indicates an incoming pairing request from a host.

● PARAM_UPD_TIMEOUT_EVT: This event indicates that the required time has passed since the

connection was established and a connection parameter request can now be sent to the host.

● PASSCODE_TIMEOUT_EVT: This event indicates that the RCU has not sent a passcode witin a

specified time.

● PASSKEY_ENTERED: This event indicates that the host is waiting for the RCU to provide the

displayed passcode in order to complete pairing with MITM authentication.

● POWEROFF_EVT: This event indicates that the device will be powered off, because it has been

inactive for a specified time.

● POWEROFF_TIMEOUT_EVT: This event indicates that the power-off timer has expired.

● SHUTDOWN_EVT: This event indicates that the application is ready to proceed with disconnection.

● START_PAIRING_EVT: This event indicates that the application wishes to pair with a new host.

● SWITCH_EVT: This event indicates that the application has requested to switch to a known (i.e.

previously bonded) host. This event is supported when multi-bonding is enabled.

● USER_EVT: This custom event is used to indicate user actions (RCU: button push or touch event).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 60 of 100 © 2022 Renesas Electronics

Connection FSM State Transitions

For every FSM state described above, state transition tables (Table 17 to Table 24) show all the
expected events, how they are handled and the resulting state transitions.

Table 17: IDLE_ST State Transitions

Event Description Next State

INIT_EVT When the NORMALLY_CONNECTABLE configuration is

enabled (set to 1), the FSM will never be in IDLE_ST state

and always try to reconnect by doing Directed or Limited
Undirected Advertising in ADVERTISING_ST state.

ADVERTISING_ST

When the NORMALLY_CONNECTABLE configuration is

disabled (set to 0), the FSM will just send an IDLE

indication to the user application.

IDLE_ST

USER_EVT A custom user event has occurred (RCU: button push or
touch event). The FSM will send an indication that it is
exiting IDLE_ST state, and start advertising in order to

reconnect to a previously connected host (if any).

ADVERTISING_ST

SWITCH_EVT The application has requested to switch to a known host.
The FSM will send an indication that it is exiting IDLE_ST

state, and start advertising in order to reconnect to a

previously connected host (if any).

ADVERTISING_ST

START_PAIRING_EVT The application wishes to pair with a new host. The FSM

will start default Undirected Advertising.

ADVERTISING_ST

ADV_COMPLETED_EVT An advertising cycle has completed. The FSM will

continue advertising with the same type.

ADVERTISING_ST

POWEROFF_EVT The device will be powered off. Since the FSM is already
in IDLE_ST state, there are no additional actions to

perform and it stays in the same state.

IDLE_ST

Table 18: ADVERTISING_ST State Transitions

Event Description Next State

SWITCH_EVT The application has requested to switch to a known host.
The FSM will start Limited Undirected Advertising in order

to reconnect to a previously connected host (if any).

ADVERTISING_ST

START_PAIRING_EVT The application wishes to pair with a new host. The FSM

will start default Undirected Advertising.

ADVERTISING_ST

ADV_COMPLETED_EVT An advertising cycle has completed. The FSM will go to
IDLE_ST state, since advertising is over.

IDLE_ST

POWEROFF_EVT The device will be powered off. The FSM will stop
advertising and stay in the same state, waiting for an
ADV_COMPLETED_EVT event. Then it will switch to IDLE_ST

state.

ADVERTISING_ST

CONN_REQ_EVT A connection request was received from a peer device.
The FSM will interrupt advertising and will move to
CONNECTION_IN_PROGRESS_ST state in order to manage the

incoming connection.

CONNECTION_IN_

PROGRESS_ST

ALT_PAIR_TIMER_EXP_

EVT

Pairing with a new host was not completed within the
specified time. The FSM will stop advertising and move to
IDLE_ST state.

IDLE_ST

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 61 of 100 © 2022 Renesas Electronics

Table 19: CONNECTION_IN_PROGRESS_ST State Transitions

Event Description Next State

ALT_PAIR_TIMER_EXP_

EVT

Pairing with a new host was not completed within the
specified time. The FSM will send a disconnection
request and go to DISCONNECTED_INIT_ST state, waiting

for a DISCONNECT_CMP_EVT event. Then it will start

advertising with no pairing.

DISCONNECTED_INIT_ST

PAIRING_REQ_EVT A pairing request has occurred while a connection is in
progress. The FSM will check whether the pairing
request can be accepted. When it is accepted, the FSM
will send a positive pairing response and switch to
CONNECTED_PAIRING_ST state.

CONNECTED_PAIRING_ST

Otherwise, when the pairing request cannot be
accepted, the FSM will send a negative pairing response

and stay in the same state.

CONNECTION_IN_

PROGRESS_ST

NEW_HOST_EVT A pairing request was received from an unknown host.
The FSM will send a ‘re-initialization’ indication to the
application and stay in the same state, waiting for a
PAIRING_REQ_EVT event.

CONNECTION_IN_

PROGRESS_ST

CONN_CANCELLED_EVT The connection in progress was cancelled. The FSM will
send a disconnection request and switch to
DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event.

DISCONNECTED_INIT_ST

CONN_CMP_EVT A connection has been made successfully. The FSM will
send a ‘connection complete’ indication to the application
and switch to CONNECTED_ST state.

CONNECTED_ST

DISCONNECT_CMP_EVT The ongoing connection has been terminated. The FSM
will start (continue) advertising as before the connection
began and switch to ADVERTISING_ST state.

ADVERTISING_ST

POWEROFF_EVT The device will be powered off. The FSM will send a
disconnection request start the power-off timer (when
available) and switch to POWEROFF_ST state.

POWEROFF_ST

START_PAIRING_EVT The application wishes to pair with a new host. The FSM
will send a disconnection request and move to
DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event. Then it will start default

Undirected Advertising.

DISCONNECTED_INIT_ST

SWITCH_EVT The application has requested to switch to a known host.
The FSM will send a disconnection request and move to
DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event. Then it will start advertising

to reconnect to a previously connected host (if any).

DISCONNECTED_INIT_ST

Table 20: CONNECTED_PAIRING_ST State Transitions

Event Description Next State

PASSKEY_ENTERED The host is waiting for the RCU to provide the displayed
passcode in order to pair securely. The FSM will start a

passcode timer and stay in the same state.

CONNECTED_PAIRING_ST

CONN_CMP_EVT A connection has been completed successfully. The
FSM will check whether the host can be accepted. When
it is accepted, the FSM will switch to CONNECTED_ST state.

CONNECTED_ST

Otherwise, when the host cannot be accepted, the FSM
will send a disconnection request and stay in the same

CONNECTED_PAIRING_ST

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 62 of 100 © 2022 Renesas Electronics

Event Description Next State

state, waitng for a DISCONNECT_CMP_EVT event.

DISCONNECT_CMP_EVT The ongoing connection has been terminated. The FSM

will start default advertising.

ADVERTISING_ST

PASSCODE_TIMEOUT_EVT The RCU has not sent a passcode within the specified
time. The FSM will send a disconnection request and go
to DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event.

DISCONNECTED_INIT_ST

POWEROFF_EVT The device will be power off. The FSM will send a
disconnection request, start the power-off timer (when

available) and switch to POWEROFF_ST state.

POWEROFF_ST

START_PAIRING_EVT The application wishes to pair with a new host. The FSM
will send a disconnect request and go to
DISCONNECTED_INIT_ST state, waiting for

DISCONNECT_CMP_EVT event. Then it will start default

Undirected Advertising.

DISCONNECTED_INIT_ST

SWITCH_EVT The application has requested to switch to a known host.
The FSM will send a disconnection request and move to
DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event. Then it will start advertising

to reconnect to a previously connected host (if any).

DISCONNECTED_INIT_ST

Table 21: CONNECTED_ST State Transitions

Event Description Next State

PAIRING_REQ_EVT A pairing request occurred while connected to a host. The
FSM will check whether the pairing request can be
accepted. When it is accepted, the FSM will move to
CONNECTED_PAIRING_ST state.

CONNECTED_PAIRING_ST

Otherwise, when the pairing request is not accepted, the
FSM will send a disconnection request and stay in the
same state, waiting for a DISCONNECT_CMP_EVT event.

CONNECTED_ST

CONN_UPD_RESP_EVT The device has received a connection update response

from the host. The FSM will stay in the same state.

CONNECTED_ST

DISCONNECT_CMP_EVT The ongoing connection has been terminated. When
advertising after disconnection is supported, the FSM will
start default advertising for reconnection and move to
ADVERTISING_ST state.

ADVERTISING_ST

Otherwise, when advertising after disconnection is not
supported, the FSM will indicate to the application that it
is going idle and move to IDLE_ST state.

IDLE_ST

PARAM_UPD_TIMEOUT_

EVT

The host has not responded to a connection parameter
update request within the specified time. The FSM will

resend the update request and stay in the same state.

CONNECTED_ST

START_PAIRING_EVT The application wishes to pair with a new host. The FSM
will send a disconnection request and go to
DISCONNECTED_INIT_STATE, waiting for a

DISCONNECT_CMP_EVT event. Then it will start default

Undirected Advertising.

DISCONNECTED_INIT_ST

SWITCH_EVT The application has requested to switch to a known host.
The FSM will send a disconnection request, stop the
parameter update timer (when running) and move to
DISCONNECTED_INIT_ST state, waiting for a

DISCONNECT_CMP_EVT event. Then it will start advertising

DISCONNECTED_INIT_ST

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 63 of 100 © 2022 Renesas Electronics

Event Description Next State

to reconnect to a previously connected host (if any).

POWEROFF_EVT The device will be powered off. The FSM will stop the
parameter update timer and start the power-off timer. It
will not send a disconnection request, allowing the

application to perform any required cleanup actions.

The FSM will move to POWEROFF_ST state, waiting for the

application to send a SHUTDOWN_EVT, in order to proceed

with the disconnection.

POWEROFF_ST

Table 22: POWEROFF_ST State Transitions

Event Description Next State

CONN_REQ_EVT A connection request was received from a peer device.
The FSM will send a disconnection request and stay in

the same state.

POWEROFF_ST

POWEROFF_TIMEOUT_EVT The power-off timer has expired. The FSM will send a
disconnection request and go to
WAITING_DISCONNECTION_AFTER_POWEROFF state, waiting

for a DISCONNECT_CMP_EVT event.

WAITING_DISCONNECTION

_AFTER_POWEROFF

SHUTDOWN_EVT The application is ready to proceed with disconnection.
The FSM will stop the power-off timer (when running),
send a disconnection request and move to
WAITING_DISCONNECTION_AFTER_POWEROFF state, waiting

for a DISCONNECT_CMP_EVT event.

WAITING_DISCONNECTION

_AFTER_POWEROFF

DISCONNECT_CMP_EVT The ongoing connection has been terminated. The FSM
will indicate to the application that it is going idle and
move to IDLE_ST state.

IDLE_ST

Table 23: DISCONNECTED_INIT_ST State Transitions

Event Description Next State

DISCONNECT_CMP_EVT The ongoing connection has been terminated. The FSM
will start advertising as it was last queued before

disconnecting.

ADVERTISING_ST

POWEROFF_EVT The device will be powered off. The FSM will move to
POWEROFF_ST state.

POWEROFF_ST

Table 24: WAITING_DISCONNECTION_AFTER_POWEROFF State Transitions

Event Description Next State

DISCONNECT_CMP_EVT The ongoing connection has been terminated. The FSM
will indicate to the application that it is going idle and will
move to IDLE_ST state.

IDLE_ST

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 64 of 100 © 2022 Renesas Electronics

8.10.2 Configuration

The Connection FSM Module configuration is specified in file app_con_fsm_config.h as follows:

● USE_L2CAP_CONN_UPDATE_REQ: When this symbol is defined, L2CAP_CONN_PARAM_UPDATE_REQ will

be sent instead of LL_CONNECTION_PARAM_REQ.

● MBOND_LOAD_INFO_AT_INIT: When this symbol is defined the device will load all bonding

information into the retention RAM at power-up. This eliminates subsequent reads and reduces
power consumption.

● MAX_BOND_PEER: Defines the maximum number of hosts that can be handled by the multi-bonding

mechanism.

● FORCE_CONNECT_TO_HOST_ON: When this symbol is defined, force-connecting to a specific host is

enabled. The application can use an index to store the bonding data of a host to a specific
location in the memory. The same index can be used to force the reconnection only to the
specific host. FORCE_CONNECT_NUM_OF_HOSTS must be defined as well.

● FORCE_CONNECT_NUM_OF_HOSTS: Defines the number of hosts that can be handled when the

FORCE_CONNECT_TO_HOST_ON feature is used.

● notification_info: This structure contains the configuration for the storage of the attribute

values that must be stored for each host in the non-volatile memory, together with the bonding
data. One 32-bit word is used for all attributes. For each attribute the following parameters must
be defined:

○ position: The bit position in the 32-bit word.

○ num_of_bits: Number of bits used for the attribute in the 32-bit word.

○ uuid: The UUID of the attribute.

○ type: The type of the attribute, either CCC_TYPE or ATTR_TYPE.

○ num_of_atts: Number of attributes.

○ length: The length of the attribute in the database.

○ default_value: The default value of the attribute. It must fit in num_of_bits.

● con_fsm_params: This structure contains a variety of configuration parameters of the Connection

FSM Module:

○ disable_bonding_data_storage: When set to true, bonding data will not be saved in Non-

Volatile Memory (NVM).

○ has_multi_bond: When set to true, the multi-bonding feature of the Connection FSM Module

is enabled, where the device can bond with multiple hosts and switch between them.

○ use_pref_conn_params: When set to true, the Connection FSM Module will send a

CONNECTION_PARAM_UPDATE_REQUEST after completion of the connection.

○ disable_advertise_after_disconnection: When set to true, the Connection FSM Module

will not start advertising after disconnecting from an active connection.

○ has_mitm: When set to true, the Connection FSM Module will use MITM authentication

mode.

○ has_passcode_timeout: When set to true and when MITM authentication is supported

(has_mitm is set to true), timeout checking will be enabled during passcode entry.

○ has_nv_rom: When set to true, the Connection FSM Module will use Non-Volatile Memory

(NVM) to store bonding data.

○ has_white_list: When set to true, the Connection FSM Module will use white-listing.

Note: has_virtual_white_list should not be set to true when has_white_list is enabled.

○ has_virtual_white_list: When set to true, the usage of a Virtual White List is enabled,

which provides support for hosts with resolvable random addresses. In that case, all
addresses are filtered by software and not by hardware.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 65 of 100 © 2022 Renesas Electronics

○ has_security_request_send: When set to true, the Connection FSM Module will send a

SECURITY_REQUEST when connected to a host.

○ has_usage_counters: When set to true, the usage counters mechanism is enabled. Usage

counters are used during the bonding of a new host in order to determine the oldest entry in
the NVM that will be used for storing the bonding data of the new host. If usage counters are
not used then the next new host will be stored in the next empty position in the NVM. If all
positions are used then the new host will be stored in the last position of the NVM.

○ has_smart_rssi_pairing: When set to true, the Smart RSSI Pairing feature of the

Connection FSM Module is enabled. In that case, the device will only pair with hosts that
have at least a predefined RSSI value (hosts that are in close range to the device).

○ smart_pairing_rssi_threshold: When has_smart_rssi_pairing is set to true, this

parameter defines the minimum RSSI threshold that is needed for a pairing host to be
accepted (how close the host needs to be to the device).

○ enc_safeguard_timeout: Defines the time (in ms) to wait for a PAIRING_REQ or ENC_REQ when

connecting to a host. When a PAIRING_REQ or ENC_REQ is not received the connection is

dropped.

○ passcode_timeout: Defines the timeout value (in ms) until the passcode is entered (when

has_passcode_timeout is set to true).

○ notification_timeout: Defines the time (in ms) to wait for the last notifications to be sent to

the host before disconnecting (set to 0 if the device can disconnect immediately).

○ time_to_request_param_upd: When use_pref_conn_params is set to true, this parameter

defines the time (in ms) needed to request an update of connection parameters.

○ alt_pair_disconn_time: During host-switching this parameter determines the time (in ms) to

block the previous host in order to allow a new host to connect.

○ param_update: Structure defining the parameter update timing, with the following members:

.preferred_conn_interval_min: Preferred minimum connection interval (in ms).

.preferred_conn_interval_max: Preferred maximum connection interval (in ms).

.preferred_conn_latency: Preferred connection latency (in number of skipped events).

.preferred_conn_timeout: Preferred connection timeout (in ms).

○ state_update_callback: Pointer to the callback function that is called when the connection

state has changed to connected, connection in progress, disconnected, off, passcode entry
started, or when connection information of a previous host is cleared (re-initialized).

○ attr_update_callback: Pointer to the callback function that is called when bonding data are

read from the non-volatile memory so that the service database is updated.

● app_con_fsm_funcs: A structure of platform-specific functions of the Connection FSM Module.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 66 of 100 © 2022 Renesas Electronics

8.11 LED Indicators Module

8.11.1 Description

The LED Indicators Module enables the generation of visual indications by generating patterns using
LEDs connected to GPIO pins or using custom LED drivers.

LED waveform

generation

File port_led.c

LED indicators configuration

File app_led_config.h

DA14585 SDK

GPIO pins

timer0 LLD

timer1 LLD

GPIO LLD

LED pattern

generation

File app_led.c

Figure 15: LED Indicators Module Block Diagram

The LED Indicators Module has the following features:

● Configurable blink patterns

● Multi-LED patterns

● Ramp-up and ramp-down using PWM output to generate a ‘breathing’ effect

● LEDs connected to custom drivers (other than GPIO pins)

A number of LEDs can be configured to be used by the LED Indicators Module. These LEDs can be
connected to GPIO pins. Each GPIO pin can source current to the LED (active high) or sink current
from the LED (active low) as depicted in Figure 16.

GPIO pin

Current

source

GPIO pin

Current

sink

Active high GPIO pin Active low GPIO pin

Figure 16: LED Connection to GPIO Pin

The GPIO LLD is used to turn the LED on or off.

The Ramp feature is implemented using Timer 2 to generate a PWM signal to dim the LED and
Timer 0 to progressively change the duty cycle of the PWM signal to ramp-up or ramp-down the
brightness of the LED. The PWM frequency and rate of change of the PWM duty cycle is
configurable. The Ramp feature can be used for only one LED at a time.

LEDs can also be connected to custom LED drivers instead of GPIO pins. In this case a custom
callback function is used to control the state of the LED.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 67 of 100 © 2022 Renesas Electronics

Various LED patterns can be defined to indicate the status of the device. One or more LEDs can be
used for each pattern. On, off, ramp-up, ramp-down times as well as mode, time offset from the
beginning and number of repetitions can be individually configured for each LED of each pattern.

LED patterns can have high or low priority. When two patterns share the same LEDs, the one with
high priority LED cannot be interrupted by the other. In this case, the second pattern will remain
pending and it will be started when the first one has finished.

Time offset is used when multiple LEDs are used in a pattern, to define the relative offset between
the waveforms of the various LEDs in the pattern.

A table containing the LED configuration is defined for each pattern. This table is passed as
parameter to all functions of the LED Indicators Module that control the LED states.

The LED mode can be one of the following:

● LED_BLINK: LED is turned on and then off for a specified number of times.

● LED_NO_BLINK: LED is turned on and then off once.

● LED_TURN_OFF: Turn LED off in case is left on by another pattern.

● LED_DOUBLE_BLINK: LED is turned on and then off twice for a specified number of times.

Up to two software timers can be used to generate LED patterns. A timer is assigned to each LED.
LEDs that are sharing the same software timer cannot be used at the same time.

The blink period for LED_BLINK and LED_DOUBLE_BLINK modes is equal to (on_time + off_time).

The ramp_on_time and ramp_off_time are part of on_time.

The LED Indicators Module is enabled by defining symbol HAS_LED_INDICATORS in the file

user_config.h.

Files app_led.c, port_leds.c and app_leds_config.h must be included in the project.

8.11.2 Configuration

The LED Indicators Module configuration is specified in file app_leds_config.h. The following

configuration options can be defined:

● Define symbol LED_USE_RAMP_FEATURE to enable the Ramp Up/Down feature. Timer 0 and Timer

2 are used for this feature. When the Ramp feature is enabled the following parameters must be
defined to configure the ramp waveforms that drive the LEDs:

○ LED_RAMP_PWM_FREQUENCY_IN_HZ: The frequency (in Hz) of the PWM that is used for dimming

the LED.

○ LED_RAMP_PWM_MIN_DC: The minimum duty cycle (in %) of the PWM.

○ LED_RAMP_STEP_PERIOD_IN_MS: The step period (in ms) used for increasing or decreasing the

PWM duty cycle.

● Define symbol LED_USE_DOUBLE_BLINK_FEATURE to enable the LED_DOUBLE_BLINK LED mode.

The LED names are defined in the led_id_t enumeration. These names can be used to reference

the LEDs when defining the GPIO pin configuration and indication patterns.

The LED GPIO pin configuration is defined in table app_led_pins. The following parameters ere

defined for each LED that is connected to a GPIO pin:

● port: The GPIO port of the LED pin.

● pin: The GPIO pin of the LED pin.

● high: Defines the polarity of the GPIO pin:

○ LED_ACTIVE_HIGH: if the GPIO pin is sourcing the LED current.

○ LED_ACTIVE_LOW: if the GPIO pin is sinking the LED current

● mode_function: Must always be OUTPUT | PID_GPIO.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 68 of 100 © 2022 Renesas Electronics

Table led_pads defines whether the LEDs are connected to a GPIO pin or to a custom LED driver.

● When the corresponding LED is connected to a GPIO pin, the parameter type must be assigned

to LED_GPIO.

● When the LED is connected to a custom driver, the parameter callback must be assigned to the

function controlling the LED state.

For each LED pattern a table of type led_params_t must be defined. This table has one entry for

each LED of the pattern. The following parameters can be set:

● id: The LED identifier as defined in the led_id_t enumeration.

● mode: The LED mode. Can be one of LED_BLINK, LED_NO_BLINK, LED_TURN_OFF or

LED_DOUBLE_BLINK

● high_priority: Must be set to true to define the LED as high priority.

● on_time: The time (in ms) that the LED will remain on.

● off_time: The time (in ms) that the LED will remain off.

● ramp_on_time: The duration (in ms) of the ramp-up waveform.

● ramp_off_time: The duration (in ms) of the ramp-down waveform.

● count: The number of repetitions in LED_BLINK and LED_DOUBLE_BLINK modes.

● delay: The time offset (in ms) of the LED in the pattern.

8.11.3 Design Considerations

When the duty cycle of the PWM signal driving an LED is very small, the LED may appear to be off.
When during ramp-up or ramp-down the LED appears to be off for a part of the ramp time, set the
LED_RAMP_PWM_MIN_DC to a larger value, so that the PWM duty cycle steps are properly recalculated.

The LED pattern priority can be used for non-critical indicators. An example of such an indicator is
the low battery LED. Its priority can be set to low. When an important event must be indicated (such
as a connection or disconnection from the host), its priority can be set to high in order to interrupt the
low battery indication.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 69 of 100 © 2022 Renesas Electronics

8.12 Sound Indicator Module

8.12.1 Description

The Sound Indicator (buzzer) Module gives the user application the ability to generate simple musical
melodies. The block diagram of the Sound Indicator Module Block diagram is depicted in Figure 17.

Sound indicator

File app_buzzer.c

Sound indicator configuration

File app_buzzer_config.h

Sound indicator

waveform generation

File port_buzzer.c

Timer0 LLD

DA14585 SDK

Figure 17: Sound Indicator Module Block Diagram

The user application needs to provide an array containing the notes of the melody. The module
reproduces each note until the melody ends.

The Sound Indicator Module is enabled by defining symbol HAS_SOUND_INDICATION in the file

user_config.h.

Files app_buzzer.c, port_buzzer.c and app_buzzer_config.h must be included in the project.

8.12.2 Configuration

The Sound Indicator Module configuration is specified in file app_buzzer_config.h.

● BUZZER_MAX_MELODY_NOTES: This symbol defines the max number of musical notes per melody

● BUZZER_MAX_MELODY_LENGTH: This symbol defines the maximum size of a melody array. Each

melody array contains the length of the melody plus the notes of the melody
(BUZZER_MAX_MELODY_NOTES + 1).

● BUZZER_NOTE_DURATION_TICKS: This symbol defines the duration of each note contained in a

melody

● buzzerMelodies[][]: This array contains a number of different melodies. The user may alter the

predefined melodies and/or add more melodies, depending on application requirements.

● app_buzzer_funcs: This structure registers the platform functions required by the Sound

Indicator Module in order to function properly.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 70 of 100 © 2022 Renesas Electronics

8.13 Power Manager Module

8.13.1 Description

The Power Manager Module enables the use of the inactivity timer from different application
modules. The block diagram of the Power Manager Module is depicted in Figure 18.

Manager initialization

and inactivity timer

starting/stopping

File user_pwr_mgr.c

Power manager

configuration

File user_pwr_mgr_config.h

Module platform adaptation

Timer controller module

Figure 18: Power Manager Module Block Diagram

The Power Manager Module has a configurable inactivity timeout.

The inactivity timer is managed by calling the Timer Controller Module, described in Section 8.15,
from the file user_pwr_mgr.c.

The application can register a callback function to receive a notification on expiration of the inactivity
timeout, to stop everything and go to sleep.

The Power Manager Module is enabled by defining symbol HAS_PWR_MGR in the file user_config.h.

Files user_pwr_mgr.c and user_pwr_mgr_config.h must be included in the project.

8.13.2 Configuration

The Power Manager Module configuration parameters are defined in structure pwr_mgr_params in the

file user_pwr_mgr_config.h:

● inactivity_timeout: Defines the idle time (in ms) until the inactivity timer expires.

● inactivity_callback: Defines the function that is called to notify the application that the

inactivity timer has expired. This function is called in interrupt context.

8.13.3 Design Considerations

When extended timer support is not enabled in the Timer Controller Module, the maximum inactivity
timeout is KE_TIMER_DELAY_MAX.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 71 of 100 © 2022 Renesas Electronics

8.14 Wakeup Controller Module

8.14.1 Description

The Wakeup Controller Module allows the use of the wakeup controller by several application
modules. The block diagram of the Wakeup Controller Module is depicted in Figure 19.

Wakeup configuration /

signal detection

File port_wkup.c

Wakeup controller

configuration

File port_wkup_config.h

DA14585 SDK

GPIO pins
wkup LLD

GPIO LLD

Figure 19: Wakeup Controller Module Block Diagram

Each application module can register one or more GPIO pins that can wake up the system, and a
callback function that is called when the Wakeup Controller Module detects a system wakeup by one
of these GPIOs. The Wakeup Controller Module disables the wakeup source before calling the
callback function of the application module. This is done in interrupt context. Re-enabling the wakeup
source is the responsibility of the application module.

Application modules that have registered a single pin as a wakeup source, are checked first and their
callback functions are called as needed. When no single-pin wakeup source is found, the callback
functions are called of all application modules that have registered multiple wakeup pins. The
application module is responsible for deciding whether it should handle the system wakeup event.

The Wakeup Controller Module can be configured to always call the callback functions of application
modules that have registered multiple pins as wakeup sources, even when single-pin wakeup
sources have been detected.

The Wakeup Controller Module is enabled by defining symbol HAS_WKUP in the file user_config.h.

Files port_wkup.c and port_wkup_config.h must be included in the project.

8.14.2 Configuration

The Wakeup Controller Module configuration is specified in file port_wkup_config.h.

Wakeup channels are defined in the port_wkup_channel enumeration. Each application module can

use one or more channels to define GPIOs as wakeup sources and the corresponding callback
functions.

The wakeup channel configuration is defined in table wkup_config. For each channel the following

parameters can be set:

● callback: The pointer to the callback function that will be called when the system wakes up.

● single_pin_input: Set to true when only one GPIO input is used by the application module to

wake up the system.

When single_pin_input is set to true:

○ config.pin_config.port: The port of the GPIO input.

○ config.pin_config.pin: The pin of the GPIO input.

○ config.pin_config.polarity: Set to WKUPCT_PIN_POLARITY_LOW if the system must be

woken up by a high-to-low transition. Otherwise set to WKUPCT_PIN_POLARITY_HIGH

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 72 of 100 © 2022 Renesas Electronics

When single_pin_input is set to false:

○ config.pin_mask: The Wakeup Controller mask for all the pins. Use macro WKUP_MASK or

WKUPCT_PIN_SELECT to generate the mask.

● Symbol WKUP_ALWAYS_CONTINUE_WITH_MASKS can be defined to always call the callbacks of

channels with multiple GPIO pin wakeup sources, even when a channel with a single-pin wakeup
source has been found.

8.15 Timer Controller Module

8.15.1 Description

The Timer Controller Module simplifies usage of Kernel timers from different application modules.
The block diagram of the Timer Controller Module is depicted in Figure 20.

Timer starting/stopping

File port_timer.c
DA14585 SDK

Kernel

timers
Easy Timer API

Timer configuration

File port_timer_config.h

Figure 20: Timer Controller Module Block Diagram

The Timer Controller Module has the following features:

● Optional returning of the current value of a timer when it is cleared.

● Extended timers (longer than 5 minutes).

The Easy Timer API is used to create new timers, modify the delay of existing timers and cancel
active timers.

The extended timers and getting the current value of a timer are implemented in file port_timer.c.

Other application modules can register a callback function to be called when their timer expires.

The Timer Controller Module is enabled by defining symbol HAS_TIMERS in the file user_config.h.

Files port_timer.c and port_timer_config.h must be included in the project.

8.15.2 Configuration

Timer parameters are defined in the file port_timer_config.h.

● EXTENDED_TIMERS_ON: Enables the support for extended timers.

● port_timer_cbs[]: Contains pointers to the callback functions that are called when the timers

expire.

Timer names are defined in the port_timer_ids enumeration. These names should be used when

setting or clearing a timer.

8.15.3 Design Considerations

The maximum delay for non-extended timers is KE_TIMER_DELAY_MAX, which is defined in the file

app_easy_timer.h.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 73 of 100 © 2022 Renesas Electronics

8.16 SysTick Controller Module

8.16.1 Description

The SysTick Controller Module enables sharing of the SysTick timer among different application
modules. The block diagram of the SysTick Controller Module is depicted in Figure 21.

Controller initialization

and channel starting/

restarting/stopping

File port_systick.c
DA14585 SDK

SysTick

timer
SysTick LLD

SysTick configuration

File port_systick_config.h

Figure 21: SysTick Controller Module Block Diagram

The SysTick Controller Module has the following features:

● One channel per application module that uses the SysTick timer.

● Configurable base period and channel periods.

The SysTick LLD is used with the base period to create interrupts.

The channels are implemented in the file port_systick.c.

Other application modules can register a callback function to be called when their channel period
expires.

The SysTick Controller Module is enabled by defining symbol HAS_SYSTICK in file user_config.h.

Files port_systick.c and port_systick_config.h must be included in the project.

8.16.2 Configuration

SysTick Controller Module parameters are defined in the file port_systick_config.h:

● SYSTICK_PERIOD_IN_US: Defines the base period (in μs) for interrupts.

● systick_config[]: Contains pointers to the callback functions that are called when the channel

periods expire.

Channel names are defined in the port_systick_channel enumeration. These names should be

used when starting, restarting or stopping a channel.

8.16.3 Design Considerations

As long as at least one channel is active, the SysTick timer is started and active mode is forced.
When all channels are stopped, the SysTick timer is stopped and sleep mode is restored.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 74 of 100 © 2022 Renesas Electronics

9 BLE Services

9.1 Dialog Audio Service

The Voice RCU reference design uses a custom service named Dialog Audio Service for the audio
feature. The service includes the characteristics listed in Table 25.

Table 25: Dialog Audio Service Characteristics

Description UUID Properties

(Note 1)
Size (B)

Dialog Audio Service attribute D803-992D-913D-B0B6-

034C-9450-8B10-1DBC
RD 16

Control point characteristic 6ABC-6F0F-0BDC-C2B2-

7147-E8EF-AE41-050C
WR, NTF 20

Device configuration characteristic 4695-AC87-3D0E-C6BF-

D74D-219C-9F28-F9FD
RD 20

Audio data report characteristic D13D-0724-3261-878E-

E44C-200D-9109-2C8D
NTF MAX_MTU_SIZE - 3

Note 1 RD: read, WR: write, NTF: notify, IND: indicate.

9.1.1 Control Point Characteristic

9.1.1.1 Control Point Commands

The host sends control commands to the Voice RCU by writing the Control Point Characteristic. The
available commands are described in Table 26 to Table 30.

Table 26: Control Point Command Structure

Offset (B) Name Description

0 Audio stream enable 1: Enable audio stream, 0: Disable audio stream

1 Command See Table 27 for the list of commands.

2 Command parameters length The length in bytes of the command parameters. See Table

27 for the values corresponding to each command.

3 to 19 Command parameters See Table 28, Table 29 and Table 30.

Table 27: Control Point Commands

Value Name Parameter

Length (B)
Description

0x00 Audio stream

enable/disable
0 Enable or disable the audio stream according to the value of

the first byte of the control point structure.

0x0M Change audio mode 0 Change the audio mode:

● M = 2: 64 kbit/s

● M = 3: 48 kbit/s

● M = 4: 32 kbit/s

● M = 5: 24 kbit/s

● M = 6 automatic

See Table 9 for audio mode parameters.

0x1M Force audio mode 0 Same as 0x0M. All 0x0M commands following a 0x1M are

ignored.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 75 of 100 © 2022 Renesas Electronics

Value Name Parameter

Length (B)
Description

0x81 Set ATT packet size 4 Set the ATT packet size used for audio data. See Table 28

for command parameters.

0x82 Set connection

parameters
8 Trigger a connection parameter update request from the

device. See Table 29 for command parameters.

0x83 Read configuration 0 Read the device configuration. A device configuration

notification must be sent.

0x84 System reset 0 Issue a system reset

0x85 Emulate key press 4 or 12 Emulate key presses. See Table 30 for command

parameters.

Table 28: Set ATT Packet Size Command Parameters

Offset (B) Parameter Description

0 Max ATT packet size (LSB) The maximum ATT packet size. Must be less or equal than
MTU. This is used to limit the maximum audio packet size

since MTU cannot be changed more than once. 1 Max ATT packet size (MSB)

2 Fixed ATT packet size (LSB) The fixed ATT packet size. When set to 0, the audio packet
size is calculated automatically, as described in Section 7.5.
Otherwise the audio packet size is set to:
(Fixed ATT packet size – 3).

3 Fixed ATT packet size (MSB)

Table 29: Set Connection Parameters Command Parameters

Offset (B) Parameter Description

0 Min connection interval (LSB) The minimum connection interval in steps of 1.25 ms.

1 Min connection interval (MSB)

2 Max connection interval (LSB) The maximum connection interval in steps of 1.25 ms.

3 Max connection interval (MSB)

4 Slave latency (LSB) The slave latency (number of skipped events).

5 Slave latency (MSB)

6 Supervision timeout (LSB) The supervision timeout in steps of 10 ms.

7 Supervision timeout (MSB)

Table 30: Emulate Key Press Command Parameters

Offset (B) Parameter Description

0 Initial delay (LSB) The delay (in ms) before starting the key press emulation.

1 Initial delay (MSB)

2 Starting column Consecutive key presses can be emulated. The sequence
starts at the key in the starting row and column. The next key
is in the next column of the starting row. When the ending
column is reached, the row is incremented by one and the
column is reset to the starting column. This procedure is

repeated until the ending row and column are reached.

3 Starting row

4 Ending column

5 Ending row

6 Press duration (LSB) The time interval (in ms) between key press and key release.

7 Press duration (MSB)

8 Repeat counter (LSB) The total number of emulated key presses.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 76 of 100 © 2022 Renesas Electronics

Offset (B) Parameter Description

9 Repeat counter (MSB)

10 Repeat interval (LSB) The time interval (in ms) between a key release and the next

key press.
11 Repeat interval (MSB)

9.1.1.2 Control Point Notifications

The Voice RCU sends control commands and status reports to the host as notifications, as described
in Table 31 to Table 36.

Table 31: Control Point Notification Structure

Offset (B) Name Description

0 Audio stream enable 1: Enable audio stream, 0: Disable audio stream

1 Notification type See Table 32 for the list of notifications.

2 Notification parameters length The length in bytes of the command parameters. See Table

32 for the values corresponding to each notification.

3 to 19 Notification parameters See Table 38, Table 33, Table 34, Table 35 and Table 36.

Table 32: Control Point Notifications

Value Name Parameter

length (B)
Description

0 Audio stream
enable/disable

command

0 Audio stream enable/disable command according to the
value of the first byte of the control point structure. The
command may optionally contain configuration parameters

as listed in Table 38.

1 Audio stream

configuration report
14 This report contains the configuration of the audio stream.

See Table 38 for report field descriptions.

2 Keyboard key report 10 This report contains the data of the normal and consumer
HID keyboard reports. These reports are used for displaying
the key events in the Remote Controls Android application.

See Table 33 for report field descriptions.

3 Debug info report 7 This report contains debug information for the audio stream.
This information is displayed in the logbook page of the
Remote Controls Android application. See Table 34 for

report field descriptions.

4 - Reserved for backwards compatibility.

5 Connection parameter

report
6 This report contains the active BLE connection parameter. It

is sent to the host upon connection and whenever new
connection parameters are applied. See Table 35 for report

field descriptions.

6 ATT packet size report 4 This report contains the ATT MTU and the active audio ATT
packet size. It is sent to the host whenever the MTU is
changed or the audio ATT packet size is recalculated. See

Table 36 for report field descriptions.

Table 33: Keyboard Key Report Fields

Offset (B) Parameter Description

0 to 7 Keyboard report data The data of the HID keyboard report 8 bytes for normal

keyboard reports or 3 bytes for consumer keyboard reports.

9 Keyboard layout 1: Number pad page

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 77 of 100 © 2022 Renesas Electronics

Offset (B) Parameter Description

2: Navigation page

Table 34: Debug Info Report Fields

Offset (B) Parameter Description

0 - Reserved for backwards compatibility. Must be 0.

1 - Reserved for backwards compatibility. Must be 3.

2 Stream buffer underrun Number of dropped frames due to stream buffer underrun.

3 Audio buffer underrun Number of dropped frames due to audio samples buffer

underrun.

4 Stream buffer size The size of the stream buffer.

5 Stream buffer write pointer The write pointer to the stream buffer.

6 Stream buffer read pointer The read pointer to the stream buffer.

Table 35: Connection Parameter Report Fields

Offset (B) Parameter Description

0 Connection interval (LSB) Current BLE connection interval in steps of 1.25 ms.

1 Connection interval (MSB)

2 Slave latency (LSB) Current BLE connection slave latency (number of skipped

events).
3 Slave latency (MSB)

4 Supervision timeout (LSB) Current BLE connection supervision timeout in steps of

10 ms.
5 Supervision timeout (MSB)

Table 36: ATT packet size report fields

Offset (B) Parameter Description

0 ATT packet size (LSB) Current ATT packet size in bytes.

1 ATT packet size (MSB)

2 ATT MTU size (LSB) Current ATT MTU size in bytes.

3 ATT MTU size (MSB)

9.1.2 Device Configuration Characteristic

The host can read the value of the Device Configuration Characteristic to get the RCU configuration.
The structure of the characteristic value is depicted in Table 37.

Table 37: Device Configuration Structure

Offset (B) Name Description

0 - Reserved. Must be 0.

1 - Reserved. Must be 1.

2 Configuration parameters length 14

3 to 19 Configuration parameters See Table 38

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 78 of 100 © 2022 Renesas Electronics

Table 38: Audio Stream Configuration Report Fields

Offset (B) Parameter Description

0 Audio stream format Reserved for HID reports when the Dialog Audio Service is

not used. Must be 0.

1 RCU audio stream features Bit 0 1: In-band control information is used

Bit 1 1: Adaptive rate control is used

Bit 2 1: Non-packet based audio data

 0: Packet based audio data

Bit 3 1: Enhanced command set in control point
 command characteristic as described in Table 27 is
 supported. Current ATT packet size, ATT MTU size
 and BLE connection parameters must also be

 reported as described below.

 0: Only the Audio stream enable/disable command

 is supported.

2 ADPCM mode Bit 4:5 2: Automatic, 1: Fixed

Bit 0:3 Current (or fixed) ADPCM mode:

 0: 64 kbit/s

 1: 48 kbit/s

 2: 32 kbit/s

 3: 24 kbit/s

Value 0 is reserved for backwards compatibility (no ADPCM

mode information available).

3 Keyboard layout 1: Number pad page.

2: Navigation page

0: Reserved for backwards compatibility with the DA14582

RCU reference design.

4 ATT packet size (LSB) Current ATT packet size in bytes.

5 ATT packet size (MSB)

6 ATT MTU size (LSB) Current ATT MTU size in bytes.

7 ATT MTU size (MSB)

8 Connection interval (LSB) Current BLE connection interval in steps of 1.25 ms.

9 Connection interval (MSB)

10 Slave latency (LSB) Current BLE connection slave latency (number of skipped

events).
11 Slave latency (MSB)

12 Supervision timeout (LSB) Current BLE connection supervision timeout in steps of

10 ms.
13 Supervision timeout (MSB)e

9.1.3 Audio Data Report Characteristic

The RCU transfers the audio data to the host by sending notifications using the Audio Data Report
Characteristic. The length of the data in the notification may be fixed or variable, depending on the
configuration of the BLE Stream Module. A variable length can be set using the Set ATT packet size
command as defined in Table 27. The maximum length of the audio data is (ATT MTU size – 3).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 79 of 100 © 2022 Renesas Electronics

9.2 HID Over GATT Profile

9.2.1 Description

The HID Over GATT Profile (HOGP) is used to send keyboard, audio and pointing device data to the
host. Five types of HID reports are used:

● Normal keyboard input reports as defined in Ref. [14]: Key modifiers and keys with code up to
0x65 as defined in Ref. [15] can be reported.

● Keyboard LED output reports as defined in Ref. [14]: This report is always included for
compatibility reasons, even when keyboard LED functionality is not implemented.

● Consumer key input reports: Keys not included in normal keyboard reports can be reported.

● Mouse input reports: These reports are used for sending trackpad events to the host.

● Vendor-defined HID input reports: These reports are used for sending gyro/accelerometer
sensor data to the host. Audio data can also be sent to the host using one or more vendor-
defined reports.

Standard keyboard and mouse reports are supported by practically all host operating systems.
Therefore, no additional development is needed on the host side for key and trackpad events. On the
other hand, there is no default implementation for vendor-defined reports. Special software must be
developed to handle audio and gyro/accelerometer data.

The report map (report descriptor) must be defined as described in Ref. [14]. A report descriptor
describes each piece of data that the device generates and what the data is actually measuring.
Report IDs are used in the report map to identify reports. A zero-based index is used in HOGP to
handle HID reports. Report map IDs are associated with HOGP indexes in the HOGP configuration
file user_hogpd_config.h.

9.2.1.1 Vendor-Defined Reports for Audio Stream

Up to five vendor-defined HID reports are used for the audio stream feature as described in Table 39.

Table 39: Vendor-Defined HID Reports for Audio Stream Functionality

Name Report ID Report

Type
Size (B) Description

STREAM_CTRL_OUT 4 Output 20 The host uses this report to send
command to the RCU as specified in

Table 26.

STREAM_CTRL_IN 5 input 20 The RCU uses this report to send
commands and configuration
notifications to the host as specified
in Table 31. The host can read this
report to get the RCU configuration

as specified in Table 37.

AUDIO_DATA_1 6 (Note 1) input ATT MTU size - 3 The RCU uses these reports to send
audio data to the host as specified in
Section 9.1.3. Either only the first or
all three reports can be used
depending on the configuration of the

application.

AUDIO_DATA_2 7 input ATT MTU size - 3

AUDIO_DATA_3 8 input ATT MTU size - 3

Note 1 When only one HID report is used for audio data then the report ID is specified in device configuration.

When using HID reports for audio data the Audio stream format field of the device configuration

notification (specified in Table 37) must be set to the proper value:

● Set to 0: Use all three audio reports (AUDIO_DATA_1, AUDIO_DATA_2 and AUDIO_DATA_3)
for sending audio data notifications. The report IDs must have values 6, 7 and 8, respectively.
This configuration enables backwards compatibility with previous RCU reference designs.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 80 of 100 © 2022 Renesas Electronics

● Set to report ID: Use one specific report type for sending audio data notifications. The report ID
can have any value.

9.2.1.2 Vendor-Defined Report for Gyro/Accelerometer Sensor

A vendor-defined HID report is used for sending data from the gyro/accelerometer sensor to the host.
The report ID is fixed and set to 8. The structure of the notification is depicted in Table 40.

Table 40: Vendor Defined HID Reports for Gyro/Accelerometer Sensor

Offset (B) Name Description

0 to 3 Timestamp A 32-bit counter is used for data timestamping. The counter is incremented

by one before the transmission of each notification.

4 to 5 Temperature The sensor temperature as provided by the gyro/accelerometer sensor.

6 to 7 Accelerometer X Accelerometer X,Y and Z data.

8 to 9 Accelerometer Y

10 to 11 Accelerometer Z

12 to 13 Gyro X Gyroscope X,Y and Z data.

14 to 15 Gyro Y

16 to 17 Gyro Z

18 to 19 Button state The state of the buttons used for mouse clicks. Currently only the left mouse

button is supported.

1: Button is pressed.

0: Button is released.

9.2.2 Configuration

The HOGP configuration is defined in file user_hogpd_config.h.

Structure hogpd_params defines the configuration parameters of HOGP:

● boot_protocol_mode: Set to true to use boot protocol mode is used as defined in [14]

● batt_external_report: Set to true to use external report reference to battery service

● remote_wakeup: Set to true to use remote wakeup mode. Remote Host may not handle properly
remote wakeup when the inactivity timeout is on. Some Hosts do not expect to receive
LL_TERMINATE_IND from wakeup capable devices while they are sleeping.

● normally_connectable: Set to true to set normally connectable mode. Inactivity timeout cannot

be used in this mode. The device is always in advertising mode when not connected to the host.

● store_attribute_callback: This callback function is call when a HOGP attribute or CCC is

changed to store the new value in the non-volatile memory. This value will be restored every time
the device is connected to the host.

● hogpd_indexes: This enumeration defines the zero-based index of all HID reports. The last entry

named HID_NUM_OF_REPORTS defines the total number of reports.

● hogpd_reports: This table defines the configuration for every HID report. Each entry contains the

following parameters:

○ id: The report ID as defined in the HID report map

○ size: The report size in bytes

○ cfg: Set the report configuration by setting the following bit masks:

○ HOGPD_CFG_REPORT_IN: HID input report. Set HOGPD_CFG_REPORT_WR to enable report write

capabilities

○ HOGPD_CFG_REPORT_OUT: HID output report

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 81 of 100 © 2022 Renesas Electronics

○ HOGPD_CFG_REPORT_FEAT: HID feature report

○ read_callback: This callback function is called when the report is read by the host. This

function must provide the report data.

○ write_callback: This callback function is called when the report is written by the host

● report_map: The report map (report descriptor) as defined in Ref. [14]. The following reports are

included in the reference design application:

○ Normal keyboard report (report ID 1): This is the first report and should not be modified.

○ Keyboard LED report (report ID 2): This is the second report and should not be modified
even if keyboard LEDs are not used for compatibility reasons.

○ Consumer key report (report ID 3): A report consisting of three bytes has been included as
an example to demonstrate how to include various consumer keys, although many of them
are not used in the application and could be removed. A set of symbols has been defined to
facilitate the use of consumer keys in the application: [key_name]_BYTE, [key_name]_BIT,

[key_name]_MASK and [key_name]_CODE.

○ Five vendor-defined reports for audio data (report IDs 4, 5, 6, 7 and 8): These reports are
only used when the Dialog Audio Service is not used.

○ One vendor-defined report for motion data (report ID 9): This report is used for sending
gyro/accelerometer data to the host.

○ A mouse report (report ID 0x1A): This report is used for sending trackpad events to the
host. A consumer usage page is included, although it is not used, for compatibility reasons.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 82 of 100 © 2022 Renesas Electronics

Appendix A Reconnect the RCU from Scratch

Table 41: Reconnect the RCU from Scratch

1

If the RCU was already paired with
your Android device, it will show up
with a chain icon next to its BD
address.

2

Press keys 7 and 9 on the RCU
simultaneously to clear its bonding
data and open the Bluetooth
settings of your device.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 83 of 100 © 2022 Renesas Electronics

3
Tap the cogwheel icon next to the
RCU name and select FORGET in
the screen that pops up.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 84 of 100 © 2022 Renesas Electronics

Appendix B Build and Download the Firmware to Other Hardware

Table 42: Build and Download the Firmware to Other Hardware

1

The default configuration files can
be found in folder
projects\target_apps\rcu\rcu_5

85\src\config.

2

To override some configuration
files for a different target, first copy
them to a new subfolder in folder
\variants.

The contents of folder
variants\ProDK are shown here

and explained in Section 7.6.

3
Click icon File Extensions, Books
and Environment… on the Build
toolbar.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 85 of 100 © 2022 Renesas Electronics

4

The Manage Project Items
window appears. Click button New
(Insert) in the Project Targets
column and enter the name of your
target device.

5

Use button New (Insert) in the
Groups column to create two
groups for the user configuration
files (e.g. user_config_xxx) and

the modules configuration files
(e.g. app_modules_config_xxx).

6

Click button Add Files… to open
the Add Files to Group window.
Browse to the folder containing
your configuration files, select
them as Text files and click
button Add to the add:

● Files da1458x_config_*.h

and user_*.h to group

user_config_xxx.

● Files app_*.h and

port_*_config.h to group

app_modules_config_xxx.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 86 of 100 © 2022 Renesas Electronics

7 Select your target.

8
Open the target’s options from the
Build toolbar.

9
Navigate to the C/C++ tab and
click the ellipsis (…) button next
to the Include Paths.

10

Click button New (Insert) to add
the relative path of your
configuration files above the
default path (..\src\config).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 87 of 100 © 2022 Renesas Electronics

11

Select the files you copied from
the default user_config and

modules_config groups and open

their options by right clicking or
pressing Alt+F7.

12

Make sure that option Include in
Target Build is not checked.

Do the same for the groups that
were created previously for other
targets.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 88 of 100 © 2022 Renesas Electronics

13

Change to the other targets,
select your groups and open
their options by right clicking or
pressing Alt+F7.

14
Again make sure that option
Include in Target Build is not
checked.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 89 of 100 © 2022 Renesas Electronics

B.1 ProDK Kit Configuration

The ProDK development kit can be used with DA14585 in a QFN40 package.

Figure 22: ProDK with a QFN40 DA14585

Its specific configuration is included in seven header files described in the next sub-sections.

B.1.1 app_audio_config.h

A PDM microphone can be connected to J5 and J7 of the ProDK.

Figure 23: Microphone Pins and Cables

The audio pin configuration is:

Table 43: Microphone Connection

Microphone ProDK

Cable Color Function Pin Function

White CLK J7_2 P2_1

Yellow L/R SELECT J5_2 GND

Black GND J5_2 GND

Red VDD J5_1 VBAT_580

Blue DATA J7_1 P2_0

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 90 of 100 © 2022 Renesas Electronics

B.1.2 app_bmi160_config.h

A BMI160 Shuttle Board can be connected to the I2C or SPI interface depending on the definition of
MOTION_IF in the file.

Figure 24: BMI160 Shuttle Board

Figure 25: Shuttle Board Connector

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 91 of 100 © 2022 Renesas Electronics

B.1.3 app_kbd_matrix.h

A 4 x 4 keyboard can be connected to the ProDK.

Figure 26: 4 x 4 Keyboard

The key map is:

Table 44: Special Keys

Key Function

* Audio

Motion

A Combination

B Power

C Volume +

D Volume -

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 92 of 100 © 2022 Renesas Electronics

The IR key map is defined in Table 47.

B.1.4 app_kbd_scan_matrix.h

The keyboard can be connected to J7 of the ProDK.

Table 45: Keyboard Definitions

Name Value

KBD_NR_COLUMN_INPUTS 4

KBD_NR_ROW_OUTPUTS 4

COLUMN_INPUT_0_PORT 2

COLUMN_INPUT_0_PIN 8

COLUMN_INPUT_1_PORT 2

COLUMN_INPUT_1_PIN 6

COLUMN_INPUT_2_PORT 2

COLUMN_INPUT_2_PIN 4

COLUMN_INPUT_3_PORT 2

COLUMN_INPUT_3_PIN 3

ROW_OUTPUT_0_PORT 2

ROW_OUTPUT_0_PIN 7

ROW_OUTPUT_1_PORT 2

ROW_OUTPUT_1_PIN 5

ROW_OUTPUT_2_PORT 2

ROW_OUTPUT_2_PIN 2

ROW_OUTPUT_3_PORT 2

ROW_OUTPUT_3_PIN 9

POWER_BUTTON_COLUMN 3

POWER_BUTTON_ROW 1

DELAYED_WAKEUP_COLUMN 0

DELAYED_WAKEUP_ROW 0

Table 46: Keyboard Connection

Keyboard Line

(Note 1)
Keyboard Function J7 Pin P2 pin

1 Row 0 8 7

2 Row 1 6 5

3 Row 2 3 2

4 Row 3 10 9

5 Column 0 9 8

6 Column 1 7 6

7 Column 2 5 4

8 Column 3 4 3

Note 1 The keyboard lines are numbered 1 to 8 from left to right.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 93 of 100 © 2022 Renesas Electronics

B.1.5 app_motion_config.h

When MOTION_IF = SPI, the chip select pin configuration is:

B.1.6 user_config.h

The user can define/undefine specific identifiers to include/exclude specific modules.

Table 47: Module Configuration

Definition Functionality Notes

HAS_KBD Keyboard matrix scanner Enables the HID report FIFO, wakeup controller

sharing and timer handling.

Can emulate BLE packet loss by turning the RF

radio off.

HAS_GPIO_KEYS Keys connected to GPIO

pins

Enables wakeup controller sharing and SysTick

sharing.

HAS_AUDIO Audio Enables the BLE stream and logs audio and stream

buffer statistics.

Uses the Dialog Audio service or vendor-defined
HID reports to control audio and stream audio data

to the host.

Acquisition starts when the corresponding command

is received from the host.

Can use vendor-defined HID reports and start
acquisition as soon as the corresponding button is

pressed.

HAS_MOTION Motion sensor Enables timer handling.

HAS_IR IR transmitter The key map is:

HAS_TOUCHPAD_TRACKPAD Trackpad Enables wakeup controller sharing.

HAS_TOUCHPAD_SLIDER Slider Enables the HID report FIFO and wakeup controller

sharing.

HAS_LED_INDICATORS LED indicators Enables timer handling.

HAS_SOUND_INDICATION Buzzer as sound indicator

HAS_MOUSE Mouse sensor Is not implemented.

HAS_CONNECTION_FSM Pairing/bonding to one or

multiple hosts
Enables timer handling.

HAS_ACTION_INACTIVITY

_TIMEOUT

SysTick hit some time
after the last user action or

wakeup interrupt

Enables SysTick sharing.

The timeout is 100 ms.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 94 of 100 © 2022 Renesas Electronics

Definition Functionality Notes

HAS_PWR_MGR Power management Enables timer handling.

HAS_POWERUP_BUTTON Keyboard button turns the

system on or off

Can detect the power button being pressed for more

than some time.

HAS_SPI_FLASH_STORAGE SPI flash used for storing

parameters

The bonding info base address is 0x39000.

The debug info base address is 0x3A000.

HAS_I2C_EEPROM_STORAGE I2C EEPROM used for

storing parameters

The slave device address is 0x50, the addressing

mode is 7-bits and the address size is 2 bytes.

The EEPROM size is 8192 bytes and its page size is

32 bytes.

The speed is fast (400 kbit/s).

The bonding info base address is 0.

HAS_DEEPSLEEP Device goes into deep

sleep when idle

B.1.7 user_periph_setup.h

B.1.7.1 Shuttle Board Connection over I2C

The Shuttle Board can be connected to J5 and J7 of the ProDK.

Table 48: I2C Pin Configuration

Definition Value

I2C_SDA_PORT GPIO_PORT_2

I2C_SDA_PIN GPIO_PIN_0

I2C_SCL_PORT GPIO_PORT_2

I2C_SCL_PIN GPIO_PIN_1

Table 49: Shuttle Board Connection over I2C

Shuttle Board ProDK

Pin Function Pin Function

1 VDD J5_1 VBAT_580

2 VDDIO J5_1 VBAT_580

3 GND J5_2 GND

15 Address Select J5_2 GND

17 SDA J7_1 P2_0

18 SCL J7_1 P2_1

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 95 of 100 © 2022 Renesas Electronics

B.1.7.2 Shuttle Board Connection over SPI

The Shuttle Board can be connected to J5 and J6 of the ProDK.

Table 50: SPI Pin Definitions

Definition Value

SPI_CLK_PORT GPIO_PORT_0

SPI_CLK_PIN GPIO_PIN_0

SPI_DO_PORT GPIO_PORT_0

SPI_DO_PIN GPIO_PIN_6

SPI_DI_PORT GPIO_PORT_0

SPI_DI_PIN GPIO_PIN_5

Table 51: Shuttle Board Connection over SPI

Shuttle Board ProDK (Note 1) SPI

Pin Function Pin Function Pin Function

1 VDD J5_1 VBAT_580

2 VDDIO J5_1 VBAT_580

3 GND J5_2 GND

4 SDO J5_13 P0_5 J6_2 MISO

5 SDI J5_15 P0_6 J6_1 MOSI

6 SCK J5_21 P0_0 J5_22 CLK

7 CS J5_9 P0_2

Note 1 Jumpers for J5 and J6 must be configured for SPI as described in the ProDK user manual (Ref. [4]).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 96 of 100 © 2022 Renesas Electronics

Appendix C Create SUOTA Image

Folder projects\target_apps\rcu\rcu_585 contains a Windows batch file (mk_suota_img.bat) that

creates a SUOTA image from rcu_585.hex, which is the output of building the firmware in Keil.

Figure 27: Create SUOTA Image

The SUOTA image (rcu_585.img) is stored in projects\target_apps\rcu\rcu_585\Keil_5\

out_585 and can be used to update the RCU software over the air from an iOS or Android device, as

described in Application Note AN-B-10 (Ref. [7]).

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 97 of 100 © 2022 Renesas Electronics

Appendix D Slider Gestures

Table 52: Slider Gestures

Slide your finger counterclockwise to decrease the volume.

Slide your finger clockwise to increase the volume.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 98 of 100 © 2022 Renesas Electronics

Slide your finger right to left to mute/unmute.

Slide your finger left to right to make a selection.

Tap on the points shown to move up, down, left or right.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 99 of 100 © 2022 Renesas Electronics

Revision History

Revision Date Description

1.1 24-Dec-2021 Updated logo, disclaimer, copyright.

1.0 21-Jul-2017 Initial version.

UM-B-086

DA14585 Voice RCU Software Manual

User Manual Revision 1.1 24-Dec-2021

CFR0012 100 of 100 © 2022 Renesas Electronics

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	4 Features
	5 System Architecture
	6 Using the Reference Design Board
	6.1 Connecting the Debugger
	6.2 Building and Downloading the Firmware
	6.3 Using the Hardware
	6.3.1 Connecting and Testing the Keypad and Sound
	6.3.2 Testing the Motion, Trackpad, Slider, IR and LED functionality
	6.3.3 Firmware Updating Using SUOTA

	7 Software Architecture
	7.1 General Description
	7.2 Low Level Drivers (LLDs)
	7.3 Modules
	7.4 Including Modules in the Project
	7.5 User RCU Application
	7.6 Configuration Files
	7.6.1 User Configuration Files
	7.6.2 Module Configuration Files

	7.7 Project Folder Structure

	8 Modules
	8.1 Keyboard Module
	8.1.1 Description
	Features
	Keyboard Scanning
	Custom Key Handling
	Passcode Mode
	Callback Function

	8.1.2 Configuration
	8.1.3 Design Considerations

	8.2 Audio Module
	8.2.1 Description
	Sample Processing
	Buffer Handling
	In-Band Commands
	Encoding

	8.2.2 Configuration

	8.3 BLE Stream Module
	8.3.1 Description
	8.3.2 Configuration
	8.3.3 Design Considerations

	8.4 Motion Module
	8.4.1 Description
	8.4.2 Configuration

	8.5 Touchpad Module
	8.5.1 Description
	Overview
	Operation
	Touchpad Operation
	Trackpad Operation

	8.5.2 Configuration

	8.6 IR Module
	8.6.1 Description
	8.6.2 Configuration
	8.6.3 Design Considerations

	8.7 GPIO Keys Module
	8.7.1 Description
	8.7.2 Configuration
	8.7.3 Design Considerations

	8.8 HID Report Module
	8.8.1 Description
	8.8.2 Configuration

	8.9 Advertising FSM Module
	8.9.1 Description
	Overview
	Advertising FSM States
	Advertising FSM Events
	Advertising FSM State Transitions

	8.9.2 Configuration

	8.10 Connection FSM Module
	8.10.1 Description
	Overview
	Connection FSM States
	Connection FSM Events
	Connection FSM State Transitions

	8.10.2 Configuration

	8.11 LED Indicators Module
	8.11.1 Description
	8.11.2 Configuration
	8.11.3 Design Considerations

	8.12 Sound Indicator Module
	8.12.1 Description
	8.12.2 Configuration

	8.13 Power Manager Module
	8.13.1 Description
	8.13.2 Configuration
	8.13.3 Design Considerations

	8.14 Wakeup Controller Module
	8.14.1 Description
	8.14.2 Configuration

	8.15 Timer Controller Module
	8.15.1 Description
	8.15.2 Configuration
	8.15.3 Design Considerations

	8.16 SysTick Controller Module
	8.16.1 Description
	8.16.2 Configuration
	8.16.3 Design Considerations

	9 BLE Services
	9.1 Dialog Audio Service
	9.1.1 Control Point Characteristic
	9.1.1.1 Control Point Commands
	9.1.1.2 Control Point Notifications

	9.1.2 Device Configuration Characteristic
	9.1.3 Audio Data Report Characteristic

	9.2 HID Over GATT Profile
	9.2.1 Description
	9.2.1.1 Vendor-Defined Reports for Audio Stream
	9.2.1.2 Vendor-Defined Report for Gyro/Accelerometer Sensor

	9.2.2 Configuration

	Appendix A Reconnect the RCU from Scratch
	Appendix B Build and Download the Firmware to Other Hardware
	B.1 ProDK Kit Configuration
	B.1.1 app_audio_config.h
	B.1.2 app_bmi160_config.h
	B.1.3 app_kbd_matrix.h
	B.1.4 app_kbd_scan_matrix.h
	B.1.5 app_motion_config.h
	B.1.6 user_config.h
	B.1.7 user_periph_setup.h
	B.1.7.1 Shuttle Board Connection over I2C
	B.1.7.2 Shuttle Board Connection over SPI

	Appendix C Create SUOTA Image
	Appendix D Slider Gestures
	Revision History

