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▪ Before we start, we recommend you to …

▪ Install the latest Smartsnippets studio from Dialog customer support website

▪ Download the SDK as well

▪ Link:

▪ https://support.dialog-semiconductor.com/connectivity

▪ Require to look at Dialog Tutorial 1 and Tutorial 2

▪ Consideration …

▪ All the changes are applicable in both the SDK 5.0.x (DA14580/1/2/3) and SDK 6.0.x

(DA14585/6) if it is not mentioned specifically for a particular application
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▪ What are you going to learn from this tutorial …

▪ Basic understanding of Generic ATT profile

▪ GATT custom profile application message flow

▪ Basic understanding of custom database creation process

▪ Small assignment to add a characteristic in the custom service database that will be used

to change the LED state from on to off or vice versa
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Custom profile service wrt GATT Source code discussion
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▪ Bluetooth Low Power (BLE) profile is a formal definition of the behaviour of a Bluetooth

application which is based on Generic Attribute Profile (GATT).

▪ BLE profile follows a structured approach to help a device (server/peripheral) to expose

information to other devices (client/central) about its capabilities and how to access its

information.

▪ The server is the owner of the data and in most cases is the peripheral device.

▪ The client is the consumer of the data and is typically the central device (Smart phone/tab).

▪ https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
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Overview

▪ Client Server Architecture

▪ Servers have data, this is known as the peripheral in GAP Protocol

▪ Clients request data to/from servers, this is known as central in GAP

▪ Servers expose data using Attributes

Server Client

Data

Requests

Responses

Data

Data
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▪ A BLE Profile can have one or more services.

▪ Services are used to break data into logic entities and contain specific chunks of data

called characteristics.

▪ A service can have one or more characteristics, and each service distinguishes itself from

other services by means of a unique numeric ID called a UUID, which can be either 16-bit

(for officially adopted BLE Services) or 128-bit (for custom services).

▪ A characteristic is the lowest level concept in GATT transactions, which contains a single

data point.

▪ Similarly to services, each characteristic distinguishes itself via a pre-defined 16-bit or

128-bit UUID, and you're free to use the SIG standard characteristics (which ensures

interoperability across and BLE-enabled HW/SW) or define your own custom characteristics

which only your peripheral and SW understands.

Overview
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▪ This example demonstrates:

▪ 128 bit UUID custom service implementation

▪ How to access custom profile database

▪ This training covers a step by step procedure of creating a characteristic, advertise the

new characteristic, send and receive GATT CMD between Central and Peripheral devices.

▪ Software you need:

▪ Dialog Smartsnippets studio

▪ Dialog SDK

▪ Project location:

▪ ..\projects\target_apps\ble_examples\ble_app_peripheral
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target_apps\ble_examples\ble_app_peripheral project 

covers
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▪ Check custom profile database access.

▪ Check the advertising device name.

▪ Use the device information service (DISS). 

▪ Inspect the Custom service user defined characteristic.

▪ Examples of creating user defined characteristics.
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Custom service profile basic message flow
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ble_app_peripheral.uvprojx project layout
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▪ Group user_config, user_platform and user_app. 

▪ These groups contain the user configuration files.
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/* Holds DA1458x basic configuration settings.    */

da1458x_config_basic.h

/* Holds DA1458x advanced configuration settings. */

da1458x_config_advanced.h

/* Holds user specific information about software version. */

user_config_sw_ver.h

/* Defines which application modules are included or excluded from the user’s application. */

user_modules_config.h

/* The Device information application profile is excluded. */

#define EXCLUDE_DLG_PROXR         (1)

/* The Device information application profile is included. */

#define EXCLUDE_DLG_CUSTS1        (0)

/* Note: */

/*      This setting has no effect if the respective module is a BLE Profile        */

/*      that is not used in the user's application.                           */

/* Callback functions that handle various events or operations. */

user_callback_config.h

/* Holds advertising parameters, connection parameters, etc. */

user_config.h
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/* Defines which BLE profiles (Bluetooth SIG adopted or custom ones) will be included in user’s application.

each header file denotes the respective BLE profile*/

user_profiles_config.h

#inlucde "diss.h" // Includes Device Information Service.

#include "custs1.h" // Includes Custom service.

Note: SDK6 has provided a robust interface so the above implementation is done by MACRO flags

#define CFG_PRF_DISS

#define CFG_PRF_CUST1

/* Defines the structure of the Custom profile database structure and

cust_prf_funcs[] array, which contains the Custom profile API functions calls.*/

user_custs_config.h

Note: SDK6 uses the following file for the same purpose

user_custs_config.c

/* Holds hardware related settings relative to the used Development Kit. */

user_periph_setup.h

/* Source code file that handles peripheral (GPIO, UART, SPI, etc.)

configuration and initialization relative to the Development Kit.*/

user_periph_setup.c
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TODO 1 – Change the default BD_ADDRESS, this address has to be unique in a BLE network.

/* @file da1458x_config_advanced.h */

/* copy and paste in code step 1 change the BLE device address */

#define CFG_NVDS_TAG_BD_ADDRESS             {0x01, 0x01, 0x01, 0x01, 0x01, 0x01}

TODO 2 – Check and define DLG_CUST1 module in your application code

/* @file user_modules_config.h */

#define EXCLUDE_DLG_SPOTAR          (1) /* excluded */

/* copy and paste in code step 2 define DLG_CUST1 module in your application code */

#define EXCLUDE_DLG_CUSTS1          (0) /* included */

TODO 3 – Check and include cust1.h in your application code to activate custom profile

/* @file user_profiles_config.h */

#include "diss.h"

/* copy and paste in code step 3 add custs1.h NOTE: For SDK6 check the MACRO flags mentioned in slide 14 */

#include "custs1.h"
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TODO 4 – Information and change your advertising device name

/* @file user_config.h */

/* default sleep mode. Possible values ARCH_SLEEP_OFF, ARCH_EXT_SLEEP_ON, ARCH_DEEP_SLEEP_ON

ARCH_EXT_SLEEP_ON, ARCH_DEEP_SLEEP_ON – You cannot debug in these modes

*/

const static sleep_state_t app_default_sleep_mode = ARCH_SLEEP_OFF;

//-------------NON-CONNECTABLE & UNDIRECTED ADVERTISE RELATED COMMON -- //

/// Advertising service data

/// dev step 5 explanation of the following 3 items

#define USER_ADVERTISE_DATA ("\x03"\

ADV_TYPE_COMPLETE_LIST_16BIT_SERVICE_IDS\

ADV_UUID_DEVICE_INFORMATION_SERVICE\

"\x11"\ /// The next section takes hex x11 = decimal 17 bytes

ADV_TYPE_COMPLETE_LIST_128BIT_SERVICE_IDS\ /// Shows complete list of 128 bit Service IDs

"\x2F\x2A\x93\xA6\xBD\xD8\x41\x52\xAC\x0B\x10\x99\x2E\xC6\xFE\xED") /// Your Custom Service UUID

/// Note– Custom service UUID is shown from right to left <-- EDFEC6...2F in the client LightBlue iOS app GUI

/* copy and paste in code step 4 change your advertising device name */

#define USER_DEVICE_NAME    ("B-CUST1")
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TODO 5 – Overview of existing BLE Profile custom service characteristic values and properties

NAME PROPERTIES LENGTH DESCRIPTION

Control Point WRITE 1 Accept commands from peer

LED State WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC Value 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC Value 2 READ 2 Reads sample from an ADC channel

Button State READ, NOTIFY 1
Reads the current state of a push 
button connected a GPIO

Indicate able READ, INDICATE 20 Demonstrate indications

Long Value READ, WRITE. NOTIFY 50
Demonstrate writes to long 
characteristic value
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Adding a characteristic step by step

▪ Characteristics have names
▪ Name that will be displayed on the client scanner application.

▪ Characteristics have values
▪ Array of up to 512 octets, fixed or variable length data mostly in hexadecimal format.

▪ Characteristics have handlers
▪ Used to address an individual attribute by a client, this will be discussed more in Training 3.

▪ Characteristics have description
▪ <<UUID>>, determines what does the value mean
▪ Defined by GAP, GATT, or “User defined Custom Characteristic Specifications”
▪ Example “Accept commands from peer” is a description for Control point characteristic 

▪ Characteristics have properties
▪ Read, Write, Notify etc.



Custom service

Adding a characteristic step by step

Dialog Semiconductor © 2019 19

TODO 6 – Information

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.h */

/* step 5 and step 6 info:: 128 bit Service UUID this is displayed from Right to Left in the client scanner device */

#define DEF_CUST1_SVC_UUID_128 {0x2F, 0x2A, 0x93, 0xA6, 0xBD, 0xD8, 0x41, 0x52, 0xAC, 0x0B, 0x10, 0x99, 0x2E, 0xC6, 

0xFE, 0xED} /* Displayed as EDFEC62E99100BAC5241D8BDA6932A2F */

TODO 7 – Add your control point

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.h */

#define DEF_CUST1_LONG_VALUE_UUID_128      {0x8C, 0x09, 0xE0, 0xD1, 0x81, 0x54, 0x42, 0x40, 0x8E, 0x4F, 0xD2, 0xB3, 

0x77, 0xE3, 0x2A, 0x77}

/* copy and paste in code step 7 define your control point */

#define DEF_USER_LED_STATE_UUID_128 {0x33, 0x32, 0x31, 0x30, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20, 

0x19, 0x18}

• NOTE 1: A service can have one or more characteristics, and each service distinguishes itself from other services by 

means of a unique numeric ID called a UUID, which can be either 16-bit (for officially adopted BLE Services) or 128-

bit (for custom services).

• NOTE 2: This tutorial provides an example of a 128bit UUID number. Before releasing a product to the market the user 

will need to define a different 128bit number than used in the example to avoid conflicts. The user can select any 

number and this does not need to be registered at the Bluetooth SIG .
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TODO 8 – Add your control point data length

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.h */

#define DEF_CUST1_LONG_VALUE_CHAR_LEN       50

/* copy and paste in code step 8 define your control point data length */

#define DEF_USER_LED_STATE_CHAR_LEN  1

TODO 9 – Add your characteristic description name as string

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.h */

#define CUST1_LONG_VALUE_CHAR_USER_DESC     "Long Value"

/* copy and paste in code step 9 define your characteristic description name */

#define USER_LED_STATE_USER_DESC            "Your LED Characteristic"
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TODO 10 – Add your custom1 service database control point characteristic enumeration

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.h */

enum

{

…

CUST1_IDX_LONG_VALUE_CHAR,

CUST1_IDX_LONG_VALUE_VAL,

CUST1_IDX_LONG_VALUE_NTF_CFG,

CUST1_IDX_LONG_VALUE_USER_DESC,

/* copy and paste in code step 10 add your characteristic */

USER_IDX_LED_STATE_CHAR,

USER_IDX_LED_STATE_VAL,

USER_IDX_LED_STATE_USER_DESC,

CUST1_IDX_NB

};
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TODO 11 – Declare and assign custom server attribute value

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.c */

static uint8_t CUST1_LONG_VALUE_UUID_128[ATT_UUID_128_LEN] = DEF_CUST1_LONG_VALUE_UUID_128;

/* copy and paste in code step 11 declare and assign custom server attribute value */

static uint8_t USER_LED_STATE_UUID_128[ATT_UUID_128_LEN]         = DEF_USER_LED_STATE_UUID_128;

TODO 12 – Add your characteristic description with permission properties, handler and UUID

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.c */

static const struct att_char128_desc custs1_long_value_char       = {ATT_CHAR_PROP_RD | ATT_CHAR_PROP_WR |

ATT_CHAR_PROP_NTF,

{0, 0},

DEF_CUST1_LONG_VALUE_UUID_128};

/* copy and paste in code step 12 */

/* Add your characteristic description with permission properties, handler and UUID */

static const struct att_char128_desc user_led_state_char = {ATT_CHAR_PROP_WR_NO_RESP,

{0, 0},

DEF_USER_LED_STATE_UUID_128};
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Profile

Service UUID

Characteristic

Properties

UUID

Handler

static const struct att_char128_desc custs1_led_state_char = {

ATT_CHAR_PROP_WR_NO_RESP,

{0, 0},

DEF_USER_LED_STATE_UUID_128

};

Code can be found in: user_custs_config.h

Note: For SDK6 user_custs1_def.h
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TODO 13 – Add your characteristic declaration, value and description in custom server database

attributes, please go to next slide to copy the code, to large code to fit in one slide

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.c */

/// Full CUSTOM1 Database Description - Used to add attributes into the database

static const struct attm_desc_128 custs1_att_db[CUST1_IDX_NB] =

{

...

// Long Value Characteristic Declaration

[CUST1_IDX_LONG_VALUE_CHAR] = {(uint8_t*)&att_decl_char, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(custs1_long_value_char), sizeof(custs1_long_value_char),

(uint8_t*)&custs1_long_value_char},

// Long Value Characteristic Value

[CUST1_IDX_LONG_VALUE_VAL] = {CUST1_LONG_VALUE_UUID_128, ATT_UUID_128_LEN, PERM(RD, ENABLE) | PERM(WR,

ENABLE) | PERM(NTF, ENABLE),

DEF_CUST1_LONG_VALUE_CHAR_LEN, 0, NULL},

// Long Value Client Characteristic Configuration Descriptor

[CUST1_IDX_LONG_VALUE_NTF_CFG] = {(uint8_t*)&att_decl_cfg, ATT_UUID_16_LEN, PERM(RD, ENABLE) | PERM(WR,

ENABLE),

sizeof(uint16_t), 0, NULL},

// Long Value Characteristic User Description

[CUST1_IDX_LONG_VALUE_USER_DESC] = { (uint8_t*)&att_decl_user_desc, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(CUST1_LONG_VALUE_CHAR_USER_DESC) - 1,

sizeof(CUST1_LONG_VALUE_CHAR_USER_DESC) - 1, CUST1_LONG_VALUE_CHAR_USER_DESC},
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TODO 13 – Add your characteristic declaration, value and description in custom server database

attributes

/* @file user_custs_config.h Note: SDK6 uses user_custs1_def.c */

/* copy and paste in code step 13 add your characteristic declaration, value and description in database attributes 

*/

// user LED State Characteristic Declaration

[USER_IDX_LED_STATE_CHAR] = {(uint8_t*)&att_decl_char, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(user_led_state_char), sizeof(user_led_state_char), (uint8_t*)&user_led_state_char},

// user LED State Characteristic Value

[USER_IDX_LED_STATE_VAL] = {USER_LED_STATE_UUID_128, ATT_UUID_128_LEN, PERM(WR, ENABLE),

DEF_USER_LED_STATE_CHAR_LEN, 0, NULL},

// user LED State Characteristic User Description

[USER_IDX_LED_STATE_USER_DESC] = {(uint8_t*)&att_decl_user_desc, ATT_UUID_16_LEN, PERM(RD, ENABLE),

sizeof(USER_LED_STATE_USER_DESC) - 1, sizeof(USER_LED_STATE_USER_DESC) - 1,

USER_LED_STATE_USER_DESC},
};
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TODO 14 – Add the following ENUM and GATT command handler declaration in user_custs1_impl.h file

/* @file user_custs1_impl.h */

/* user defined LED state */

enum

{

LED_OFF = 0,

LED_ON,

};

/**

****************************************************************************************

* @brief User defined Led state value write indication handler.

* @param[in] msgid Id of the message received.

* @param[in] param Pointer to the parameters of the message.

* @param[in] dest_id ID of the receiving task instance.

* @param[in] src_id ID of the sending task instance.

* @return void

***************************************************************************************

*/

void user_led_wr_ind_handler(ke_msg_id_t const msgid,

struct custs1_val_write_ind const *param,

ke_task_id_t const dest_id,
ke_task_id_t const src_id);
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TODO 15 – Add the following GATT command handler definition in user_custs1_impl.c file

/* @file user_custs1_impl.c */

/**

****************************************************************************************

* @brief User defined led state value write indication handler.

* @param[in] msgid Id of the message received.

* @param[in] param Pointer to the parameters of the message.

* @param[in] dest_id ID of the receiving task instance.

* @param[in] src_id ID of the sending task instance.

* @return void

****************************************************************************************

*/

void user_led_wr_ind_handler(ke_msg_id_t const msgid,

struct custs1_val_write_ind const *param,

ke_task_id_t const dest_id,

ke_task_id_t const src_id)

{

uint8_t led_state = 0;

memcpy(&led_state, &param->value[0], param->length);

if (led_state == LED_ON)

GPIO_SetActive(GPIO_LED_PORT, GPIO_LED_PIN);

else if (led_state == LED_OFF)

GPIO_SetInactive(GPIO_LED_PORT, GPIO_LED_PIN);
}



Custom service

Adding a GATT command step by step

Dialog Semiconductor © 2019 28

TODO 16 – Add the following switch case in user_catch_rest_hndl() in user_peripheral.c file

/* @file user_peripheral.c */

void user_catch_rest_hndl(ke_msg_id_t const msgid,

void const *param,

ke_task_id_t const dest_id,

ke_task_id_t const src_id)

{

switch(msgid)

{

case CUSTS1_VAL_WRITE_IND:

{

struct custs1_val_write_ind const *msg_param = (struct custs1_val_write_ind const *)(param);

switch (msg_param->handle)

{

case USER_IDX_LED_STATE_VAL:

user_led_wr_ind_handler(msgid, msg_param, dest_id, src_id);

break;

default:

break;

}

} break;
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▪ Several events can occur during the lifetime of the BLE application and these 

events need to be handled in a specific manner. 

▪ The SDK is flexible enough to either call a default handler or call the user’s defined 
event or operation handler to handle specific events (user_catch_rest_hndl), 

you really need to understand this API. 

▪ The SDK mechanism, which is provided to the user in order to take care of the 

above, is the registration of callback functions for every event or operation. 

▪ The C header file user_callback_config.h, which resides in user space, contains 

the registration of the callback functions.

How is it working?
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User 
Application

User 
Configuration

SDK

app_on_init()
user_app_init()

default_app_on_init()

app_on_set_dev_config_complete()

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

default_app_on_db_init_complete()

default_operation_adv()

user_app_adv_start()

app_easy_gap_undirected_advertise_start()
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user_app_connection()
app_on_connection()

default_app_on_connection()

app_on_adv_undirect_complete()

user_app_adv_undirect_complete()

Abstract code flow
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void user_app_init(void)

{

// Initialize Manufacturer Specific Data

mnf_data_init();

// Initialize default services and set sleep mode

default_app_on_init();

}

static const struct arch_main_loop_callbacks user_app_main_loop_callbacks = {

.app_on_init = user_app_init,

.app_on_ble_powered = NULL,

.app_on_sytem_powered = NULL,

.app_before_sleep = NULL,

.app_validate_sleep = NULL,

.app_going_to_sleep = NULL,

.app_resume_from_sleep = NULL,

};

// Default Handler Operations

static const struct default_app_operations user_default_app_operations = {

.default_operation_adv = user_app_adv_start,

};

user_callback_config.h important function discussion
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static const struct app_callbacks user_app_callbacks = {

// Handle connection request indication, if no connection has been established restart advertising

.app_on_connection = user_app_connection,

.app_on_disconnect = user_app_disconnect, // Restart Advertising

/* Add the first required service in the database

if database initialized then

No service to add in the DB -> Start Advertising */

.app_on_set_dev_config_complete = default_app_on_set_dev_config_complete,

/* If advertising was canceled for any reason other then connection establishment

then update advertising data and start advertising again */

.app_on_adv_undirect_complete = user_app_adv_undirect_complete,

// database initialization is completed, then set the initial values of service characteristics programmatically

.app_on_db_init_complete = default_app_on_db_init_complete,

.app_on_scanning_completed = NULL, // NULL indicated this indication will not be handled by Dialog SDK;

.app_on_adv_report_ind = NULL, // either implement it or use the existing code based on your requirement

};

Overview user_callback_config.h

// Handles the messages that are not handled by the SDK internal mechanisms.

static const catch_rest_event_func_t app_process_catch_rest_cb = (catch_rest_event_func_t)user_catch_rest_hndl;
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Add custom1 server function callback table.

user_custs_config.h

/// Custom1/2 server function callback table this is linking point of your database and DA1458x SDK5.x.x or SDK6.x.x

static const struct cust_prf_func_callbacks cust_prf_funcs[] =

{

#if (BLE_CUSTOM1_SERVER)

{ TASK_CUSTS1,

custs1_att_db,

CUST1_IDX_NB,

#if (BLE_APP_PRESENT)

app_custs1_create_db, app_custs1_enable,

#else

NULL, NULL,

#endif

custs1_init, NULL

},

#endif

#if (BLE_CUSTOM2_SERVER)

{ TASK_CUSTS2,

NULL,

0,

#if (BLE_APP_PRESENT)

app_custs2_create_db, app_custs2_enable,

#else

NULL, NULL,

#endif

custs2_init, NULL

},

#endif

{TASK_NONE, NULL, 0, NULL, NULL, NULL, NULL}, // DO NOT MOVE. Must always be last

};

/// Structure of custom profile call back function table.

struct cust_prf_func_callbacks

{

/// Profile Task ID.

enum KE_TASK_TYPE       task_id;

/// pointer to the custom database table defined by user

const struct attm_desc_128 *att_db;

/// max number of attributes in custom database

const uint8_t max_nb_att;

/// Pointer to the custom database create function defined by 

user

prf_func_void_t db_create_func;

/// Pointer to the custom profile enable function defined by user

prf_func_uint16_t       enable_func;

/// Pointer to the custom profile initialization function

prf_func_void_t init_func;

/// Pointer to the validation function defined by user

prf_func_validate_t value_wr_validation_func;

};
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▪ The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device

to the application. In such a case the iPad/iPod/iPhone acts as a BLE Central and

the application as a BLE Peripheral. It should be listed by the name given in the

USER_DEVICE_NAME definition.

▪ One service should be listed – the Device Information Service. On some scanners,

this will be listed either as a named service, or as a set of hex numbers (0A 18) as

part of a list of 16-bit Service class UUIDs.

▪ On connecting to the device, the Characteristics should be retrieved.



What would you see as output

DA1458x DK-Pro Configuration

Dialog Semiconductor © 2019 36



What would you see as output

What would you see as output

Dialog Semiconductor © 2019 37

1. Your device is advertising

2. Your device is connected
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3. Your LED state characteristic

4. Follow the ORANGE instruction 

that is written beside Write new 

value
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6. Check LED state on dev kit

5. Verify 0x01 is written in iOS app
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8. Check LED state off dev kit

7. Verify 0x00 is written in iOS app
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▪ Note: The devices will be connectable in this and future examples. Connecting to a

device will mean that other scanners won’t be able to locate the device – it is

recommended that you only connect to your own device.

▪ Note: Some scanners (notably Apple devices) may not update the name of device

if it is changed – to correct this, it is necessary to disable then re-enable Bluetooth.



Reference

Reference
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▪ http://support.dialog-semiconductor.com/connectivity

▪ https://developer.bluetooth.org/gatt/Pages/default.aspx

▪ https://www.bluetooth.com/specifications/adopted-specifications

▪ https://www.wikiwand.com/en/Universally_unique_identifier



What’s next

For more …
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▪ What’s next …

▪ Please follow the other tutorials based on –

▪ SDK 5.0.x for DA14580/1/2/3 development OR

▪ SDK 6.0.x for DA14585/6 development

▪ See Reference section of this training slide

▪ Learn about Dialog BLE chip differences at a glance from –

https://support.dialog-semiconductor.com/connectivity/products



…personal

…portable

…connected
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The Power To Be...


