Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp. Customer Support Dept. April 1, 2003

SH7410 Evaluation Chip Board (HS7410EBH82H) for the E8000 Emulator User's Manual

Notice

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales office when planning to use the products in MEDICAL APPLICATIONS.

IMPORTANT INFORMATION

READ FIRST

- READ this user's manual before using this evaluation chip board (hereafter referred to as the EV-chip board) for Hitachi microcomputer HD6437410.
- KEEP the user's manual handy for future reference.

Do not attempt to use the EV-chip board until you fully understand its mechanism.

EV-Chip Board:

Throughout this document, the term "EV-chip board" shall be defined as the following products produced only by Hitachi, Ltd. excluding all subsidiary products.

- EV-chip board
- Device control board

The user system or a host computer is not included in this definition.

Purpose of the EV-Chip Board:

This EV-chip board is a software and hardware development tool for systems employing the Hitachi microcomputer HD6437410 (hereafter referred to as SH7410). The E8000 emulator and the user system can be connected through the EV-chip board. This EV-chip board must only be used for the above purpose.

Improvement Policy:

Hitachi, Ltd. (including its subsidiaries, hereafter collectively referred to as Hitachi) pursues a policy of continuing improvement in design, performance, and safety of the EV-chip board. Hitachi reserves the right to change, wholly or partially, the specifications, design, user's manual, and other documentation at any time without notice.

Target User of the EV-Chip Board:

This EV-chip board should only be used by those who have carefully read and thoroughly understood the information and restrictions contained in the user's manual. Do not attempt to use the EV-chip board until you fully understand its mechanism.

It is highly recommended that first-time users be instructed by users that are well versed in the operation of the EV-chip board.

1

LIMITED WARRANTY

Hitachi warrants its EV-chip boards to be manufactured in accordance with published specifications and free from defects in material and/or workmanship. Hitachi, at its option, will repair or replace any EV-chip boards returned intact to the factory, transportation charges prepaid, which Hitachi, upon inspection, determine to be defective in material and/or workmanship. The foregoing shall constitute the sole remedy for any breach of Hitachi's warranty. See the Hitachi warranty booklet for details on the warranty period. This warranty extends only to you, the original Purchaser. It is not transferable to anyone who subsequently purchases the EV-chip board from you. Hitachi is not liable for any claim made by a third party or made by you for a third party.

DISCLAIMER

HITACHI MAKES NO WARRANTIES. EITHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, EXCEPT AS PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THEREOF, WARRANTIES AS TO MARKETABILITY, MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE OR USE. OR AGAINST INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL HITACHI BE LIABLE FOR ANY DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE EV-CHIP BOARD, THE USE OF ANY EV-CHIP BOARD, OR ITS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCEPT AS EXPRESSLY STATED OTHERWISE IN THIS WARRANTY, THIS EV-CHIP BOARD IS SOLD "AS IS ", AND YOU MUST ASSUME ALL RISK FOR THE USE AND RESULTS OBTAINED FROM THE EV-CHIP BOARD.

State Law:

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other rights which may vary from state to state.

The Warranty is Void in the Following Cases:

Hitachi shall have no liability or legal responsibility for any problems caused by misuse, abuse, misapplication, neglect, improper handling, installation, repair or modifications of the EV-chip board without Hitachi's prior written consent or any problems caused by the user system.

All Rights Reserved:

This user's manual and EV-chip board are copyrighted and all rights are reserved by Hitachi. No part of this user's manual, all or part, may be reproduced or duplicated in any form, in hard-copy or machine-readable form, by any means available without Hitachi's prior written consent.

Other Important Things to Keep in Mind:

- Circuitry and other examples described herein are meant merely to indicate the characteristics
 and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any
 intellectual property claims or other problems that may result from applications based on the
 examples described herein.
- 2. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi.

Figures:

Some figures in this user's manual may show items different from your actual system.

Limited Anticipation of Danger:

Hitachi cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this user's manual and on the EV-chip board are therefore not all inclusive. Therefore, you must use the EV-chip board safely at your own risk.

SAFETY PAGE

READ FIRST

- READ this user's manual before using this EV-chip board.
- KEEP the user's manual handy for future reference.

Do not attempt to use the EV-chip board until you fully understand its mechanism.

DEFINITION OF SIGNAL WORDS

DANGER indicates an **imminently** hazardous situation which, **if not avoided**, will result in **DEATH** or **SERIOUS INJURY** to you or other people.

WARNING indicates a potentially hazardous situation which, if not avoided, could result in DEATH or SERIOUS INJURY to you or other people.

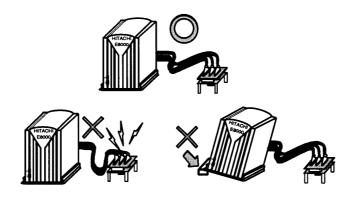
CAUTION indicates a hazardous situation which, if not avoided, may result in minor or moderate injury to you or other people, or may result in damage to the machine or loss of the user program. It may also be used to alert against unsafe usage.

NOTE emphasizes essential information.

Observe the precautions listed below. Failure to do so will result in a FIRE HAZARD and will damage the user system and the EV-chip board or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

- 1. Always switch OFF the emulator and user system before connecting or disconnecting any CABLES or PARTS.
- 2. Always before connecting, make sure that pin 1 on both sides is correctly aligned.

Warnings on EV-Chip Board Usage


Warnings described below apply as long as you use the EV-chip board. Be sure to read and understand the warnings below before using the EV-chip board. Note that these are the main warnings, not the complete list.

/ WARNING

Always switch OFF the emulator and user system before connecting or disconnecting any CABLES or PARTS. Failure to do so will result in a FIRE HAZARD and will damage the user system and the EV-chip board or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

! WARNING

Place the emulator station and EV-chip board so that the cable is not bent or twisted. A bent or twisted cable will impose stress on the user interface leading to connection or contact failure. Make sure that the emulator station is placed in a secure position so that it does not move during use nor impose stress on the user interface.

Preface

This manual describes how to connect and operate the EV-chip board. The EV-chip board incorporates an evaluation chip for connection to a user system that uses the SH7410 with the E8000 emulator.

Read and understand Sec. 3, "Preparation before Use" of the E8000 Emulator User's Manual before using this EV-chip board.

CAUTION

The EV-chip board is only for connection to a user system that uses the SH7410 with the E8000 emulator. It cannot be used for user systems that target other devices.

HITACHI

Contents

Secti	on 1	Components	1
1.1	EV-C	hip Board Components	1
1.2	Comp	onent Names	2
Secti	on 2	Preparation before Use	3
2.1	Prepa	ring the User System	3
	2.1.1	Connector Mounting Position of the User System	6
Secti	ion 3	Connecting the EV-Chip Board to the User System	9
3.1	Conne	ecting the HS7410PWB30H to the User System	
	3.1.1	Installing the QFP-176 Package IC Socket	9
	3.1.2	Connecting the HS7410PWB30H to the User System	10
3.2	Conne	ecting the Trace Cables	14
	3.2.1	Connecting the Trace Cables to the E8000 Station	14
	3.2.2	Connecting the Trace Cables to the EV-Chip Board	15
3.3	Conne	ecting the HS7410PWB20H and HS7410PWB30H	
Secti	ion 4	Mounting the SH7410	19
4.1	Moun	ting the SH7410 on the User System	19
Figu			
Figur	e 1.1	EV-Chip Board	
Figur	e 2.1	Recommended Mounting Pad Dimensions.	
Figur	e 2.2	Component Height Restriction	7
Figur	e 3.1	Positioning the IC Socket	
Figur	e 3.2	Top View of the HS7410PWB30H	
Figur	e 3.3	Screw-Tightening Sequence (Top View of the HS7410PWB30H)	12
Figur	e 3.4	Connecting the HS7410PWB30H to the User System	13
Figur	e 3.5	Connecting Trace Cables to the EV-Chip Board	10
Figur	e 3.6	Connecting the HS7410PWB20H and HS7410PWB30H	18
Figur	e 4.1	Mounting the SH7410	20
Tabl	es		
Table	1.1	EV-chip Board Components	1
Table	2.1	Pin Assignment of the 176-Pin OFP IC Socket	4

Section 1 Components

1.1 EV-Chip Board Components

Table 1.1 lists the product components of the EV-chip board (HS7410EBH82H: 176-pin QFP IC socket type). Check all the components after unpacking. If any components are missing, contact the Hitachi salesperson who sold this EV-chip board.

Table 1.1 EV-chip Board Components

Item	Quantity	Remarks			
EV-chip board (HS7410EBH82H)	1	Consists of two boards. • HS7410PWB20H (for connecting to the E8000 station) • HS7410PWB30H (IC socket QFP-176)			
IC socket	1	NQPACK176SD manufactured by TOKYO ELETECH CORPORATION			
IC socket cover	1	HQPACK176SD manufactured by TOKYO ELETECH CORPORATION. For mounting the SH7410.			
Screws (for the IC socket)	4	M2 x 6 mm for mounting the MCU			
Screws (for the IC socket)	4	M2 x 10 mm for attaching the EV-chip board			
Spacers	4	13 mm for attaching the EV-chip board.			
Screws (for the spacers)	4	M3 x 6 mm for attaching the EV-chip board. Four flat washers and four spring washers			
Guide pins	3	For positioning the IC socket			
Specific screwdriver	1	Screwdriver for fixing the IC socket			
Nuts	4				

1.2 Component Names

The component names of the EV-chip board are described below.

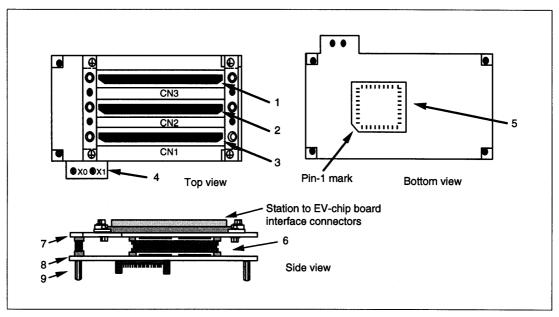


Figure 1.1 EV-Chip Board

- 1. Station to EV-chip board interface connector CN3:
- 2. Station to EV-chip board interface connector CN2:
- 3. Station to EV-chip board interface connector CN1:
- 4. Crystal oscillator terminals:
- 5. User-system connector:
- 6. Board connector:
- 7. HS7410PWB20H:
- 8. HS7410PWB30H:

- For trace cable 3 which connects the E8000 station to the EV-chip board.
- For trace cable 2 which connects the E8000 station to the EV-chip board.
- For trace cable 1 which connects the E8000 station to the EV-chip board.
- For installing a crystal oscillator to be used as a clock source for the SH7410.
- For connecting the user system.
- For connecting HS7410PWB20H and HS7410PWB30H.
- Includes connectors for interfacing with the E8000 station.
- Includes connectors for interfacing with the user system.

9 Spacer

Section 2 Preparation before Use

2.1 Preparing the User System

Table 2.1 lists the user interface pin assignment of the 176-pin QFP IC socket (NQPACK176SD manufactured by TOKYO ELETECH CORPORATION) when the target MCU is the SH7410.

Table 2.1 Pin Assignment of the 176-Pin QFP IC Socket

Pin No.	Pin Name	Pin No.	Pin Name	Pin	Pin Name
1	SCK0	32	ASEMD0	63	GND15
2	TXD0/PB9	33	GND17	64	GND14
3	RXD0/PB10	34	GND	65	CAS 2N
4	SCK1/PB11	35	MD4	66	VCC15
5	TXD1/PB12	36	MD3	67	VCC14
6	GND20	37	MD2	68	CAS 3N
7	RXD1/PB13	38	MD1	69	Α0
8	VCC20	39	MD0	70	A1
9	STS0/PB14	40	DREQ0N	71	A2
10	STCK0/PB15	41	DREQ1N	72	А3
11	STxD0/PA0	42	DACK0	73	A4
12	SRS0/PA1	43	DACK1	74	GND13
13	SRCK0/PA2	44	IVECFN	75	A5
14	SRxD0/PA3	45	BREQN	76	VCC13
15	STS1/PA4	46	BACKN	77	A6
16	STCK1/PA5	47	WE0N	78	A7
17	VCC19	48	WE1N	79	A8
18	STXD1/PA6	49	WE2N	80	A9
19	GND19	50	GND16	81	A10
20	SRS1/PA7	51	WE3N	82	A11
21	SRCK1/PA8	52	VCC16	83	VCC12
22	VCC18	53	RDN	84	A12
23	SRXD1/PA9	54	WAITN	85	GND12
24	STS2/PA10	55	CS0N	86	A13
25	GND18	56	CS1N	87	A14
26	STCK2/PA11	57	CS2N/RAS2N	88	A15
27	STXD2/PA12	58	CS3N/RAS3N/CEN	89	A16
28	SRS2/PA13	59	RDWR	90	A17
29	SRCK2/PA14	60	BSN	91	A18
30	SRXD2/PA15	61	CAS0N/RFSHN	92	VCC11
31	VCC17	62	CAS1N	93	A19

Table 2.1 Pin Assignment of the 176-Pin QFP IC Socket (cont)

Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
94	GND11	122	D31	150	D9
95	A20	123	D30	151	D8
96	A21	124	D29	152	D7
97	A22	125	D28	153	VCC4
98	A23	126	D27	154	VCC3
99	TDO	127	VCC7	155	D6
_100	VCC10	128	D26	156	GND4
101	TDI	129	GND7	157	GND3
_102	GND10	130	D25	158	D5
103	TMS	131	D24	159	D4
104	PLLGND	132	D23	160	D3
105	PLLCAP	133	D22	161	D2
106	PLLVCC	134	D21	162	D1
107	EXTAL	135	D20	163	VCC2
108	XTAL	136	VCC6	164	D0
109	TRSTN	137	D19	165	GND2
110	VCC9	138	GND6	166	FTI0/FTOB0/PB0
_111	VCC8	139	D18	167	FTOA0/PB1
112	TCK	140	D17	168	FTC0/PB2
113	GND9	141	D16	169	FTI1/PB3/FTOB1
114	GND8	142	D15	170	VCC1
115	CLK	143	D14	171	FTOA1/PB4
116	NMI	144	D13	172	GND1
117	RSTN	145	VCC5	173	FTC1/PB5
118	IRQ0	146	D12	174	FTI2/PB6/FTOB2
119	IRQ1	147	GND5	175	FTOA2/PB7
120	IRQ2	148	D11	176	FTC2/PB8
_121	IRQ3	149	D10		

2.1.1 Connector Mounting Position of the User System

Figure 2.1 shows the recommended mounting pad (footprint) dimensions and the hole position for installing the EV-chip board for the supplied 176-pin QFP IC socket (NQPACK176SD) manufactured by TOKYO ELETECH CORPORATION.

The screw holes in the EV-chip board for attaching the board are connected to the GND of the board. The ground lines can be enhanced by forming a GND pattern at the screw hole locations of the user system, enabling stable operation during high-speed emulation.

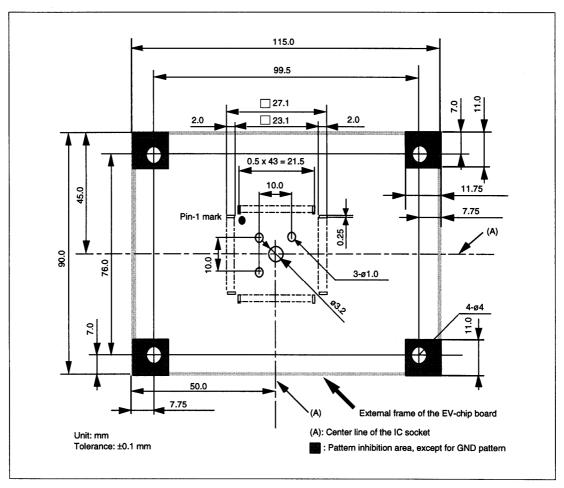


Figure 2.1 Recommended Mounting Pad Dimensions

Comply with the user system component height restriction shown in Figure 2.2 within the external frame of the EV-chip board shown in Figure 2.1.

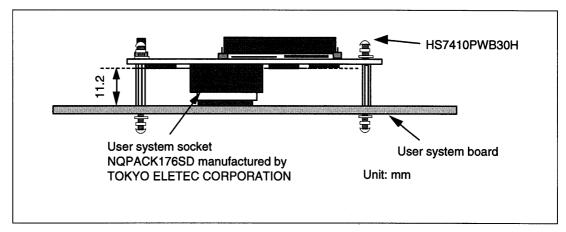
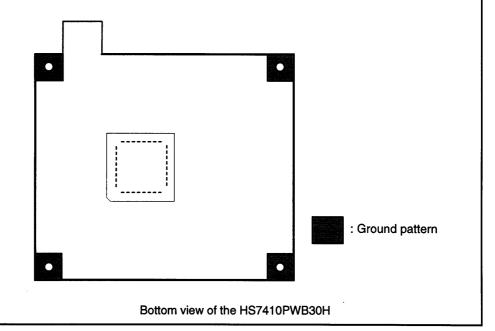



Figure 2.2 Component Height Restriction

The screw holes of the EV-chip board for attaching the board are connected to the GND of the board. Confirm that the spacers, nuts, or washers of the EV-chip board do not make contact with the patterns or components other than the GND on the user system.

Failure to do so will result in a FIRE HAZARD and will damage the user system and emulator or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.

Section 3 Connecting the EV-Chip Board to the User System

3.1 Connecting the HS7410PWB30H to the User System

3.1.1 Installing the QFP-176 Package IC Socket

This EV-chip board is designed exclusively for the supplied IC socket (type number: NQPACK176SD) manufactured by TOKYO ELETECH CORPORATION. Therefore, it cannot be used with other IC sockets.

• Positioning the IC socket

Position the IC socket with the supplied guide pins, as shown in figure 3.1. Apply an epoxy adhesive to the tips of the four protrusions on the bottom surface of the IC socket to bond the IC socket to the user system board.

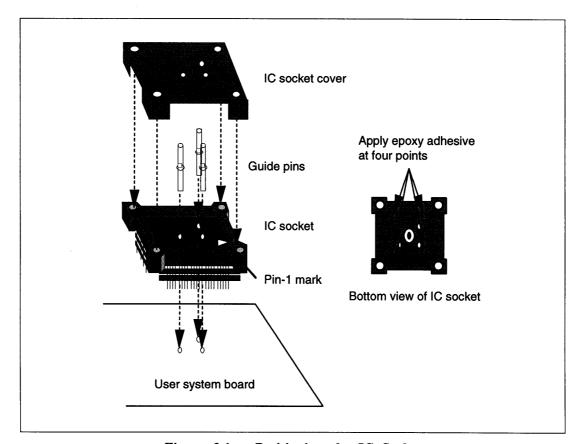


Figure 3.1 Positioning the IC Socket

• Soldering the IC socket

After the epoxy adhesive has hardened, solder the IC socket. At this time, install the cover on the IC socket to prevent flux or solder from adhering to the guide pins. Use more solder than usual so that a fillet is formed on the lead edge being soldered.

3.1.2 Connecting the HS7410PWB30H to the User System

1. At shipment, the HS7410PWB20H and HS7410PWB30H are connected to each other. Before connecting the EV-chip board to the user system, separate the HS7410PWB20H from the HS7410PWB30H. The HS7410PWB20H is connected to the HS7410PWB30H through three connectors as shown in figure 3.2.

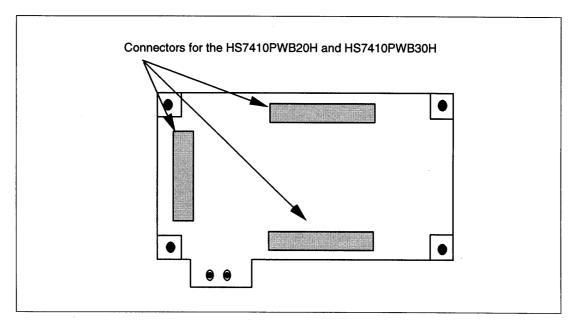
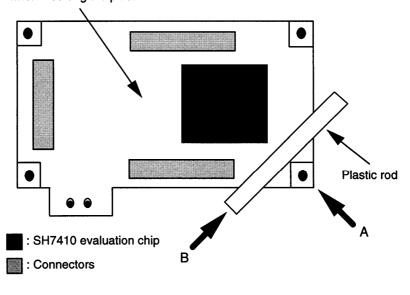


Figure 3.2 Top View of the HS7410PWB30H


Insert the plastic rod between the HS7410PWB20H and HS7410PWB30H, and lever them apart. Alternately between the four corners of the EV-chip board, gradually force the HS7410PWB20H and HS7410PWB30H apart.

CAUTION

The following figure shows the position of the SH7410 evaluation chip and connectors between the HS7410PWB20H and HS7410PWB30H. Insert the plastic rod in the A direction as shown in the figure. If the plastic rod is inserted in the B direction, wiring patterns and IC leads on the board will be damaged.

Forcefully loosening only one connector applies unusual force to other connectors, thus damaging the connectors and causing contact failures.

Pay attention to the IC and wiring patterns on the EV-chip board when inserting the plastic rod.

- 2. Attach the spacers on the HS7410PWB30H, and install the HS7410PWB30H onto the user system after checking the pin-1 location of the IC socket.
- 3. Affix the IC socket with screws by using the supplied screwdriver. Stop tightening each screw when the tightening force greatly increases (an approximate target is 0.098 N•m when the torque can be set). If the screw is tightened more forcibly than necessary, the screw threads in the IC socket may be damaged or a contact failure may occur due to a solder crack on the IC socket.

CAUTION

When tightening the screws for the IC socket, use the supplied screwdriver.

4. Attach the HS7410PWB30H to the IC socket on the user system with four screws (M2 x 10 mm). Gradually tighten the screws alternately in a figure-8 pattern (see figure 3.3). Never forcibly tighten only one screw. Otherwise, a contact failure will occur or performance will be degraded. When tightening the screws, hold the IC socket so that it does not twist.

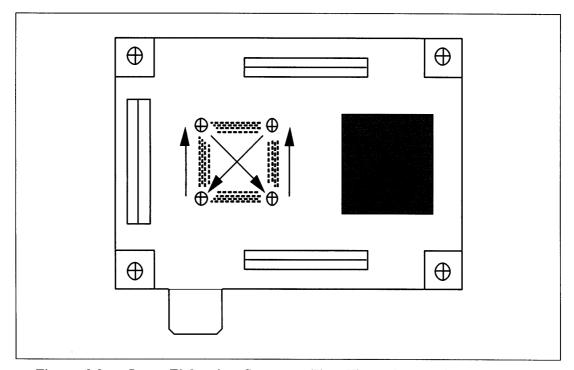


Figure 3.3 Screw-Tightening Sequence (Top View of the HS7410PWB30H)

5. Affix the HS7410PWB30H to the user system with the appropriate screws and nuts.

CAUTION

- 1. Before connecting the EV-chip board to the user system, check the location of pin 1 on both sides.
- 2. If a malfunction occurs during operation, a crack may have occurred in the soldered section of the IC socket. Check the electric conduction with a tester and resolder the cracked section.

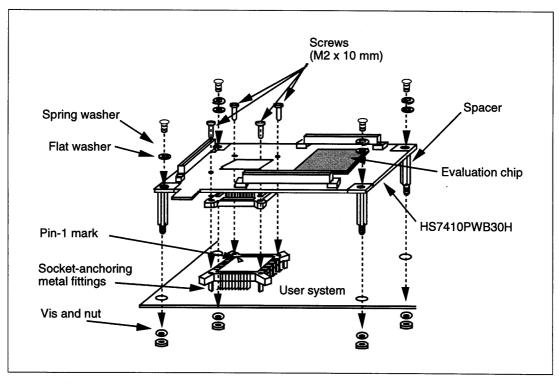
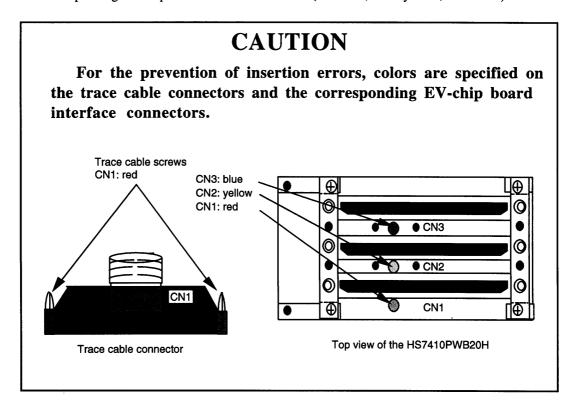


Figure 3.4 Connecting the HS7410PWB30H to the User System

3.2 Connecting the Trace Cables

Always switch OFF the emulator and user system before connecting or disconnecting any CABLES or sockets. Failure to do so will result in a FIRE HAZARD and will damage the user system and the emulator or will result in PERSONAL INJURY. The USER PROGRAM will be LOST.


3.2.1 Connecting the Trace Cables to the E8000 Station

Before connecting the trace cables to the HS7410PWB20H, connect the trace cables to the E8000 station.

Note: At shipment, trace cables CN2 and CN3 to be connected to the E8000 station are bound into a bundle, and trace cables CN1, CN2, and CN3 to be connected to the EV-chip board are bound into a bundle to prevent an insertion error. For more information on connecting the EV-Chip board to the E8000 station, refer to section 3.2.2, Connecting the EV-Chip Board, in the SH7410 E8000 Emulator User's Manual.

3.2.2 Connecting the Trace Cables to the EV-Chip Board

Align the trace cables with the station to EV-chip board interface connectors CN1, CN2, and CN3 on the EV-chip board. Confirm that each trace cable connected to a connector on the E8000 station is also connected to its corresponding station to EV-chip board interface connector on the EV-chip board. For the prevention of insertion errors, colors are specified on the trace cable connectors and the corresponding EV-chip board interface connectors (CN1: red, CN2: yellow, CN3: blue).

Tighten the screws to connect the trace cable connectors to the station to EV-chip board interface connectors while holding the HS7410PWB20H securely.

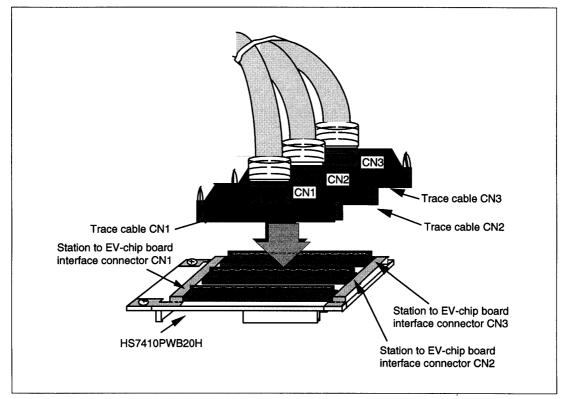


Figure 3.5 Connecting Trace Cables to the EV-Chip Board

Make sure the connector shapes and numbers are correctly matched when connecting the trace cables to the station to EV-chip board interface connectors. Failure to do so will result in a FIRE HAZARD.

3.3 Connecting the HS7410PWB20H and HS7410PWB30H

Figure 3.6 shows the connection of the HS7410PWB20H and HS7410PWB30H.

Check the location of the connectors that are to be connected on the HS7410PWB20H and HS7410PWB30H. Align the connectors on the HS7410PWB20H with those on the HS7410PWB30H according to their numbers, and connect them while holding the HS7410PWB30H securely. Gradually tighten the screws alternately and repeatedly in a diagonal line on the HS7410PWB20H.

CAUTION

Forcefully tightening only one screw will damage the connectors. Also, this will apply stress to the soldered QFP sockets on the user system and cause cracks in the solder.

CAUTION

The connector and socket structures prevent the connectors from being inserted in the wrong direction. If the connectors cannot be fully inserted or force is required, pin 1 on the connector and pin 1 on the socket may not be aligned correctly. Forcible insertion will apply stress to the soldered sockets on the user system and cause cracks in the solder. Recheck the location of pin 1 on both sides and re-insert the connector.

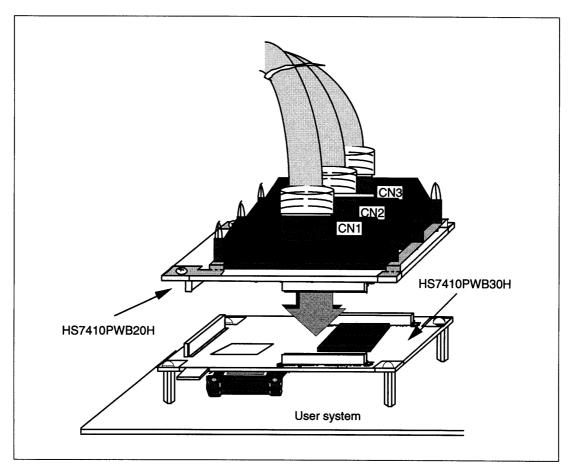


Figure 3.6 Connecting the HS7410PWB20H and HS7410PWB30H

Section 4 Mounting the SH7410

4.1 Mounting the SH7410 on the User System

When mounting the SH7410 on the user system, position the SH7410 on the IC socket after checking the direction of pin 1, and tighten the four screws (M2 x 6 mm) on the IC socket cover, as shown in figure 4.1. When tightening the screws, hold the IC socket so that it does not twist.

CAUTION

1. Before mounting the SH7410 on the user system, check the

location of pin 1 on both sides.

- 2. Use the supplied screwdriver to tighten the screw.
- 3. Set the tightening torque to 0.98 kgf*cm (0.098 N*m) or lower. If the torque cannot be set, stop tightening the screw as soon as the tightening force greatly increases. If the screw is tightened more forcibly than necessary, the screw threads in the IC socket may be damaged or a contact failure may occur due to a solder crack on the IC socket.
- 4. If an electric conduction error occurs during operation, a crack may have occurred in the soldered section of the IC socket. Check the electric conduction with a tester and resolder the cracked section.

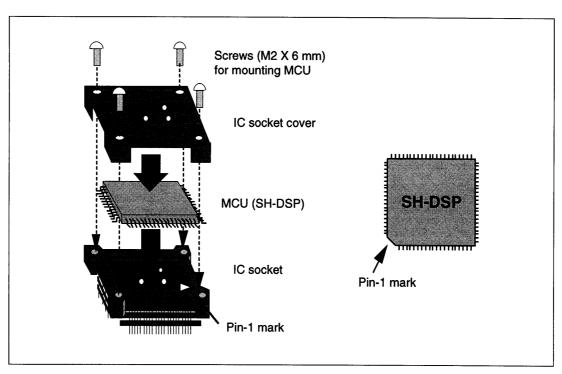


Figure 4.1 Mounting the SH7410