

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.rss.renesas.com

Microcomputer Development Environment System

2003.4

32 LCEVB-SH2
For SH2 Series Low-Cost Evaluation Board

Microcomputer Development Environment System

LCEVB-SH2
SH2 Evaluation Board

User’s Manual

LCEVB-SH2 – Low-cost Evaluation Board for SH7040 Series Microcomputer

User’s Manual

Published by : Renesas System Solutions Asia Pte. Ltd.
Date : April 1st, 2003, Version 1.0
Copyright (C) Renesas System Solutions Pte. Ltd. All rights reserved.

Trademarks

(a) General

All brands or product names in this manual are trademarks or registered trademarks of their respective companies or
organizations.

(b) Specific

Microsoft MS-DOS is registered trademark.

MS-Windows is a trademark of Microsoft Corporation.

Pentium is a registered trademark of Intel.

IMPORTANT INFORMATION

• READ this user’s manual before using this product.

• KEEP the user’s manual handy for future reference.

Do not attempt to use this product until you fully understand its mechanism.

LCEVB-SH2 Evaluation Board:

Throughout this document, the term “LCEVB-SH2” shall be defined as the LCEVB-SH2 emulation system produced only by
Renesas System Solutions Asia Pte. Ltd. excluding all subsidiary products.

Purpose of LCEVB-SH2:

This emulation product is a software and hardware development tool for application systems employing the SH2 series
microcomputer. It should only be used for the above purpose.

Improvement Policy:

Renesas System Solutions Asia Pte Ltd (hereafter collectively referred to as Renesas) pursues a policy of continuing
improvement in design, performance, and safety of the emulation products. Renesas reserves the right to change, wholly or
partially, the specifications, design, user’s manual, and other documentation at any time without notice.

Target User of the Emulation Product:

User of this emulation product should have carefully read and thoroughly understood the information and restrictions
contained in the user’s manual before using it. Do not attempt to use the emulation product until you fully understand its
mechanism.

It is highly recommended that users who know how to operate this emulation product give proper training to users who are not
familiar with the operation of this product.

LIMITED WARRANTY

Renesas warrants its emulator products to be manufactured in accordance with
published specifications and free from defects in material and/or workmanship.
Renesas, at its option, will repair or replace any emulator products returned intact to
the factory, transportation charges prepaid, which Renesas, upon inspection, shall
determine to be defective in material and/or workmanship. The foregoing shall
constitute the sole remedy for any breach of Renesas warranty. This warranty
extends only to you, the original Purchaser. It is not transferable to anyone who
subsequently purchases the emulator product from you. Renesas is not liable for
any claim made by a third party or made by you for a third party.

DISCLAIMER

RENESAS MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLED,
ORAL OR WRITTEN, EXCEPT AS PROVIDED HEREIN, INCLUDING
WITHOUT LIMITATION THEREOF, WARRANTIES AS TO
MARKETABILITY, MECRCHANTABILITY, FITNESS FOR ANY
PARTICULAR PURPOSE OR USE, OR AGAINST INFRINGEMENT OF ANY
PATENT. IN NO EVENT SHALL RENESAS BE LIABLE FOR ANY DIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR
LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE EMULATOR
PRODUCT, THE USE OF ANY EMULATOR PRODUCT OR ITS
DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. EXCEPT AS EXPRESSLY STATED OTHERWISE IN THIS
WARRANTY. THIS EMULATOR PRODUCT IS SOLD “AS IS”. AND YOU
MUST ASSUME ALL RISK FOR THE USE AND RESULTS OBTAINED FROM
THE EMULATOR PRODUCT.

State Law:

Some states do not allow the exclusion or limitation of implied warranty or liability for incidental or consequential damages, so
the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other
rights which may varies from state to state.

The Warranty is Void in the Following Cases:
Renesas shall have no liability or legal responsibility for any problems caused by misuse, abuse, misapplication, neglect,
improper handling, installation, repair or modifications of the emulation product without Renesas’s prior written consent or
any problems caused by the user system.

Restrictions:
1. Earthing (applies only to manual for Renesas hardware products)

This hardware is designed for use with equipment that is fully earthed.

Ensure that all equipments used are appropriately earthed.

Failure to do so could lead to danger for the operator or damage to equipments.

2. Electrostatic Discharge Precautions (applies only to manuals for Renesas hardware products)

This hardware contains devices that are sensitive to electrostatic discharge.

Ensure appropriate precautions are observed during handling and accessing connections.

Failure to do so could result in damage to equipment.

All Right Reserved:
This user’s manual and emulator product are copyrighted and Renesas reserves all rights. No part of this user’s manual, all or
part, any be reproduced or duplicated in any form, in hardcopy or machine-readable form, by any means available without
Renesas ‘s prior written consent.

Other Important Things to Keep in Mind:
1. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Renesas

Technology‘s semiconductor products. Renesas assumes no responsibility for any intellectual property claims or other
problems that may result from applications based on the examples described herein.

2. No license is granted by implication or otherwise under any patents or other rights of any third party or Renesas .

3. MEDICAL APPLICATIONS: Renesas Technology’s products are not authorized for use in MEDICAL APPLICATIONS
without the written consent of the appropriate officer of Renesas Technology (Asia Sales company). Such use includes,
but is not limited to, use in life support systems. Buyers of Renesas Technology’s products are requested to notify the
relevant Renesas Technology (Asia sales offices) when planning to use the products in MEDICAL APPLICATIONS.

Figures:
Some figures in this user’s manual may show items different from your actual system.

Limited Anticipation of Danger:
Renesas cannot anticipate every possible circumstance that might involve a potential hazard. The warnings in this user’s
manual and on the emulator product are therefore not all inclusive. Therefore, you must use the emulator product safely at
your own risk.

PREFACE

This guide explains how to setup and use the LCEVB-SH2 for the SH7040 series of MCU.

Section 1 Introduction

 Gives an introduction to the system, package, specification and functions.

Section 2 Start Up Instructions

 Explains how to setup and install LCEVB-SH2.

 Explains how to setup and install Hitachi Debugging Interface program (HDI).

Section 3 Operation

 Explains operation of each component.

Section 4 Board Options

Describes various user-settable functions used in LCEVB-SH2.

Section 5 Hitachi Debugging Interface (HDI)

Introduces HDI and provides a step by step guide in using the LCEVB-SH2 to perform emulation.

Section 6 Tutorials
 Provides a step by step guide in using the LCEVB-SH2 to perform emulation.

Related Manuals:

• SuperH RISC engine C/C++ Compiler, Assembler, Optimizing, Linkage Editor User’s Manual

• SH-1/SH-2 Series Programming Manual

• SH7040 Series Hardware Manual

 i

Contents

Section 1 Introduction .. 1
1.1 Functional Blocks.. 2
1.2 Specifications .. 3

1.2.1 General ... 3
1.2.2 Communications... 3
1.2.3 Power.. 3
1.2.4 Memory Map.. 3

Section 2 Start-Up Instructions ... 4
2.1 Installing the LCEVB-SH2 Evaluation Board .. 4
2.2 Power Supply .. 4
2.3 Power Connection ... 4
2.4 HDI Installation... 5
2.5 Checking the System... 5

Section 3 Operation... 6
3.1 SH7043 RISC Microcomputer .. 6
3.2 Clock Circuitry.. 6
3.3 Reset Circuitry .. 6

3.3.1 Reset Generator .. 6
3.3.2 Reset and Non-Maskable Interrupt (NMI) ... 7

3.4 NMI Circuitry ... 7
3.5 ROM ... 7
3.6 RAM ... 7
3.7 Serial Interface .. 8
3.8 LED Driver ... 8
3.9 External User Interface ... 8

Section 4 Board Options ... 12
4.1 Jumpers ... 12

4.1.1 NMI (Jumper J6) .. 12
4.1.2 Setting SH7043 Operating Mode (Jumpers J7, J8, J9, J10).. 13
4.1.3 Analog Reference and Supply (Jumpers J3, J4, and J5) ... 13
4.1.4 Serial Port Disconnects (Jumpers J13, J14, J15, and J16) .. 13
4.1.5 Serial Port Hardwiring Options .. 14
4.1.6 Crystal Clock source... 14

Section 5 Hitachi Debugging Interface (HDI) .. 15
5.1 Introduction to HDI... 15
5.2 Installation... 15

5.2.1 Installation Details.. 18
5.3 System Overview .. 18
5.4 Preparing to Debug ... 19

5.4.1 Compiling for Debugging... 19
5.5 Selecting a Debugging Platform ... 19

 ii

5.6 Configuring the Debugging Platform.. 20
5.6.1 Setup... 20
5.6.2 Memory Mapping... 21
5.6.3 Status .. 22

5.7 Downloading User Program.. 22
5.7.1 Selecting a File Type .. 22

5.8 Reset LCEVB-SH2 ... 23
5.9 Display the Program Listing ... 24
5.9.1 Viewing Assembly Language Code .. 24

5.9.2 Modifying Assembly Language Code.. 25
5.10 Symbols... 25

5.10.1 Listing Symbols.. 26
5.11 Working with Memory.. 26

5.11.1 Displaying Memory.. 26
5.11.2 Modifying Memory Contents ... 27
5.11.3 Filling Memory... 28
5.11.4 Moving an Area of Memory... 28
5.11.5 Testing Memory ... 29
5.11.6 Saving Memory .. 30
5.11.7 Loading Memory.. 31
5.11.8 Verifying Memory.. 31

5.12 Working with Variables .. 32
5.12.1 Instant Watch.. 32

5.13 Executing User Program ... 34
5.13.1 Running from Reset.. 34
5.13.2 Continuing Run .. 34
5.13.3 Running to the Cursor .. 34
5.13.4 Single Step.. 35
5.13.5 Multiple Steps... 35

5.14 Stopping User Program ... 36
5.15 Setting Breakpoints ... 36

Section 6 Tutorials .. 39
6.1 Tutorial A: “ON, OFF, RUN”... 39

6.1.1 Source Files for ON and OFF... 39
6.1.2 Running ON and OFF .. 40
6.1.3 Source for RUN.. 40
6.1.4 Running RUN... 40

6.2 Tutorial B: “Hello World”... 41
6.2.1 Source File.. 41
6.2.2 Running HELLO .. 42

6.3 More Advanced Examples .. 42
6.3.1 Code for TRAPS.C... 43
6.3.2 Code for SERIAL.C ... 44
6.3.3 Code for INTER.C.. 47

 iii

APPENDIX A: Frequently Asked Questions ... 51

Appendix B Assembler Commands... 54
B.1 Legend... 54
B.2 Commands Sorted Alphabetically... 54
B.2 Commands Sorted Alphabetically (cont) .. 55
B.3 Commands Sorted by Type... 56

B.3.1 Data Transfer ... 56
B.3.2 Arithmetic Operations.. 56
B.3.3 Logical ... 56
B.3.4 Shift/Rotate .. 56
B.3.5 Branches .. 57
B.3.6 System Control .. 57

Appendix C LCEVB-SH2 Schematic Diagram... 58

Renesas Technology (Asia Sales Offices)

 iv

Figures & Tables
Figure 1.1 LCEVB-SH2 Layout (not drawn to size) ... 1
Figure 1.2 LCEVB-SH2 Functional Block Diagram ... 2
Figure 1.3 LCEVB-SH2 Memory Map ... 3
Figure 2.1 Power Supply Connection to LCEVB-SH2.. 4
Figure 2.2 HDI Start-Up Messages .. 5
Figure 2.3 HDI Desktop .. 5
Figure 3.1 Connector Configuration.. 9

Figure 4.1 Crystal Source Selection .. 14
Figure 5.1 Run Dialogue box... 15
Figure 5.2 HDI Installer Welcome! Screen ... 16
Figure 5.3 Update Information Screen... 16
Figure 5.4 Select Destination Directory Screen.. 17
Figure 5.5 Select Program Group Screen .. 17
Figure 5.6 Insert New Disk Dialogue .. 18
Figure 5.7 HDI Icons ... 18
Figure 5.8 Select Platform Dialogue Box .. 19
Figure 5.9 Target Configuration Dialogue Box... 20
Figure 5.10 Driver Dialogue Box .. 20
Figure 5.11 Memory Mapping Window .. 21
Figure 5.12 System Status Window... 22
Figure 5.13 File Type Selection... 22
Figure 5.14 Reset Start Address Dialogue Box ... 23
Figure 5.16 Program Windows in Source Code Display ... 24
Figure 5.17 Program Window in Assembly Language Display .. 25
Figure 5.18 Assembler Dialogue Box.. 25
Figure 5.19 Symbols Window ... 26
Figure 5.20 Open Memory Window Dialog Box .. 27
Figure 5.21 Memory Window in Byte Format .. 27
Figure 5.22 Edit Dialogue Box .. 27
Figure 5.23 Fill Memory Dialogue Box .. 28
Figure 5.24 Move Memory Dialogue Box... 29
Figure 5.25 Test Memory Dialogue Box ... 30
Figure 5.26 Memory Test Result Confirmation Dialogue Box.. 30
Figure 5.27 Save S-Record File Dialogue Box.. 31
Figure 5.28 Verify S-Record File Information Dialogue Box ... 32
Figure 5.29 Procedure to open the Instant Watch Window ... 32
Figure 5.30 Instant Watch Window... 33
Figure 5.31 Watch Window... 33
Figure 5.32 Selecting Go To Cursor Pop-up Window... 35

 v

Figure 5.33 Executing User Program Dialogue Box ... 35
Figure 5.34 Step Program Dialogue Box... 36
Figure 5.35 Breakpoints Window.. 37
Figure 5.36 PC Breakpoint Properties Window... 37
Figure 5.37 User Breakpoint Properties Window.. 38

Table 3.1 Address and Data Connectors and Signals.. 8
Table 3.2 SH7043 Connector Pin-out ... 10
Table 4.1 Jumper Settings and Options... 12
Table 4.2 Mode Settings for the SH7043 144 pin package ... 13
Table 4.3 Clock Mode Settings ... 13

 1

Section 1 Introduction
The SH7043 Evaluation Board (LCEVB-SH2) is an inexpensive demonstration and evaluation tool for the SH7043 family of
RISC microcomputers. Figure 1.1 shows the physical layout of the LCEVB-SH2.

Figure 1.1 LCEVB-SH2 Layout (not drawn to size)

Schematic diagrams are provided at the back of this manual.

RESETNMI

USER

U9

U3

USER1 USER2 USER3 USER4

SH7043

OSC
1

Y1

RED
LEDS U10

EPROM

SRAM

SRAM

HOST

FUSE

GREEN
LED

SW1

JP1
(5v reg)

J12
(9V)U8

J11

J3 J4

J5

J6

J16,15,14,13

J1
J2

J7

J10 J9 J8

5v

9v

 2

1.1 Functional Blocks

At the top level, the LCEVB-SH2 is composed of the SH7043 microcomputer, ROM, RAM, and two serial ports, as shown in
figure 1.2.

Figure 1.2 LCEVB-SH2 Functional Block Diagram

The SH7043 microcomputer contains most of the decoding and other glue logic necessary to implement an expanded memory
SH7043 based system. Read-only memory (EPROM) contains the firmware monitor program, CMON. Two byte-wide RAM
blocks are used side-by-side to provide word-wide reads and writes. A serial transceiver supports two three-wire serial ports
using the two on-board the SH7043 UARTs. One port is dedicated to the on-board CMON monitor, and the second is available
to the user. A PC running a terminal emulation program is typically used to communicate with CMON.

Users reconfiguring LCEVB-SH2 I/O ports are cautioned that pull-up resistors may be required for proper operation in some
configurations. In particular, users adding external memory in area 3 should be aware that the chip selects provided by SH7043
are shared and may be floating until configured.

SH7043

SRAM EPROM

Monitor
Port

Host
Port

 3

1.2 Specifications

1.2.1 General

• 28.6363 MHz SH7043 microcomputer

• 128 Kbytes Static CMOS RAM, accessed either as (16 bit) words or bytes

• 128 Kbytes of 16 bit EPROM

• CMON firmware monitor communicates with Hitachi Debugging Interface program (HDI)

• An 8 bit Buffer-driven LED port in area 1

• Most SH7043 signals available for user connection

1.2.2 Communications

• 57600-baud RS-232 host interface communications

• RS-232 connection via two DB-9S connectors

1.2.3 Power

• Power input either regulated 5V DC or unregulated 9V DC

1.2.4 Memory Map

0x00000000

0x00020000

0x00800000

0x00820000

64K x 16 SRAM

64K x 16 EPROM

Figure 1.3 LCEVB-SH2 Memory Map

 4

Section 2 Start-Up Instructions
2.1 Installing the LCEVB-SH2 Evaluation Board

Installing the LCEVB-SH2 requires connecting power and serial communications to a host computer. Host computer
communication is facilitated with the HINT program resident on the host computer.

2.2 Power Supply

The LCEVB-SH2 hardware requires a regulated power supply of +5 V DC at approximately 100 mA supplied to JP1 or an
unregulated +9V DC supply supplied to J12. Since total power consumption can vary widely due to external connections, the
SH7043 port state, and memory configuration, use a power supply capable of providing at least 500 mA.

2.3 Power Connection

The LCEVB-SH2 requires an external Power supply or a DC adapter unit to operate. Figure 2.1 shows the necessary
connection to the board. When connected correctly the GREEN power indicator LED should light up. To select between DC
adapter or external power supply simply change the connection at Jumper J11. J11 (1-2) is the default connection and it
connects the LCEVB-SH2 to an external 5V regulated power supply. J11 (2-3) is jumpered when a 9V DC adapter is used. The
connection should not be left open.

Figure 2.1 Power Supply Connection to LCEVB-SH2

+5V 0V

DC Power Supply AC Adapter
+9v (centre)

J11

J12

Phono
Jack

JP1

LCEVB-SH2

1

3
2

1 2 3 4 5

JP1-1 +5v
JP1-2 GND
JP1-3 NC
JP1-4 NC
JP1-5 NC

J11 (1-2) Power Supply
J11 (2-3) AC Adapter

 5

2.4 HDI Installation

Please refer to Section 5.1.

2.5 Checking the System

The next step is to run the HDI software to check that the LCEVB-SH2 is working correctly.

• Switch on the LCEVB-SH2 and check that LED D15~D8 display 0x31.

• Execute the HDI program.

With everything set up correctly the HDI will be displayed, and the following sequence of messages will be shown in the status
bar at the bottom of the window:

Figure 2.2 HDI Start-Up Messages

Finally the status bar will display Link up to indicate that everything is set up correctly, and the HDI screen will be displayed
as shown below.

Figure 2.3 HDI Desktop

Perform the Diagnostic Test to verify the LCEVB-SH2 functionality. Please refer to Section 5.19 for detail.

 6

Section 3 Operation
The LCEVB-SH2 includes the following components:

• SH7043 RISC Microcomputer

• Clock circuitry

• Reset circuitry

• NMI circuitry

• EPROM memory

• SRAM memory

• Serial interface

• LED drivers

• External user interface

Complete LCEVB-SH2 schematics are provided as part of the LCEVB-SH2 kit and are referenced throughout this chapter.
Where loading options occur, the schematics always reference the alternative device with the most pins.

3.1 SH7043 RISC Microcomputer

Because the SH7043 provides on-board many of the functions required to implement an expanded-memory microcomputer
system (for example, address area decoding), the amount of glue logic required is minimized.

3.2 Clock Circuitry

The LCEVB-SH2 may use one of two clock sources. The LCEVB-SH2 is delivered configured with an AT-cut parallel
resonating crystal and this is the default clock source (Y1). Alternatively by changing the jumper connection, a standard TTL
“can” oscillator may be used. Refer to section 4 for loading options.

3.3 Reset Circuitry

3.3.1 Reset Generator
The reset generator for the LCEVB-SH2 is a Dallas Semiconductor DS1233 “Econo Reset” device. The DS1233 monitors its
supply voltage. When the supply voltage is out of tolerance, the DS1233 pulls its reset input/output line active-low. This
condition continues indefinitely. After the voltage reaches tolerance, the reset is held low for an additional 350 ms to allow for
final supply stabilization and microcomputer reset.

The DS1233 monitors its own reset output so that a push-button can be used as a reset source. The DS1233 debounces the
switch and provides a 350-ms reset signal when the reset push-button is released. SW1 is used to activate this function.

Quickly switching power to the board off and then on again may not allow VCC to fall low enough to generate a reset pulse. In
practice, the SH7043 usually continues to operate normally. Rapid switching of the power supply stresses the integrated circuit
components and is not recommended.

 7

3.3.2 Reset and Non-Maskable Interrupt (NMI)
The SH7043 distinguishes between a power-on reset and a manual reset by sampling the state of the NMI input when the
RESET line goes high. If NMI is high at this point, a power-on reset sequence is initiated internally, and the SH7043 is
initialized throughout. If NMI is low, the manual reset sequence initiates the SH7043 excepting the bus state controller, the pin
function controller, and I/O ports. The LCEVB-SH2 by default generates a power-on reset when power is applied and when the
reset push-button is used, as detailed in section 3.4.

3.4 NMI Circuitry

The NMI input of the SH7043 is an independent edge-triggered input. NMI may be generated on the positive or negative-going
transition, depending on the setting of the Interrupt Control register (ICR) NMIE bit.

The LCEVB-SH2 uses two NAND gates (U3A and U3B) as delay circuit to de-bounce the output of momentary push-button
S2. In the quiescent case, the output of U3B (and thus the NMI input) is high. Closing S2 pauses the NMI signal to go low
until S2 is released. The default value of ICR.NMIE is 0, and NMI is generated when NMI goes low. Multiple bounces of the
switch on the normally open closure will have no further effect (switches bounce on the active closure only), and the NMI
signal will stay low until S2 is released.

Since the quiescent state of NMI is high, closing the reset push-button (S3) always generates a power-on reset. In other words,
when the board is reset, all SH7043 internal circuitry is normally affected. It is possible to generate a manual reset (leaving the
bus state controller, pin function controller, and I/O port values untouched) with the following sequence:

1. Close the reset switch (S3), putting the SH7043 into reset state.

2. Close the NMI switch (S2), generating a negative-going edge on the NMI pin which is ignored.

3. Release the reset switch (S3), starting the SH7043 with the NMI pin low.

4. Release the NMI switch (S2), returning the NMIpin to its base state.

Alternatively, external connections can be used to affect the NMI signal if jumper J6 is changed from its default setting. Refer
to section 4 for details.

3.5 ROM

The LCEVB-SH2’s EPROM memory is provided by U4 which is a 64k × 16, 27C1024HG. Figure 1.3 shows the memory map.
The EPROM is located in address area 0 of the SH7043 memory space, starting at location 0. U4 is always accessed two bytes
at a time. The memory area select signal CS0 is generated by the SH7043 and is used to select the device. The value of the
SH7043 wait state control register 1 (WCR1) bits W00 .. W03 control the number of wait states automatically inserted for
accesses to area 0 and (WCR1) bits W20 .. W23 to area 2 by the SH7043 on-board bus state controller. Since RAM memory is
located in area 2, the access time requirements for both RAM and can be set independently allowing for the use of high speed
RAM.

3.6 RAM

The LCEVB-SH2’s SRAMs are U5 and U6, which are a pair of 64k × 8, 62864-family static CMOS RAMs organized for
word-wide access. Figure 1.3 shows the memory map. Reads from the RAM are always word-wide while the WRH and WRL
write signals allow individual bytes to be written. The RAM memory is located in area 2 of the SH7043 memory space,
starting at location H’800000. The value of the SH7043 wait state control register 1 (WCR1) bits W00 .. W03 control the
number of wait states automatically inserted for accesses to area 0 and (WCR1) bits W20 .. W23 to area 2 by the SH7043 on-
board bus state controller. Since RAM memory is located in area 2, the access time requirements for both RAM and can be set
independently allowing for the use of high speed RAM.

 8

3.7 Serial Interface

The LCEVB-SH2 supports two three-wire serial channels using the two identical SH7043 SCI UART-type devices, SCI-0 and
SCI-1. Of these, SCI-1 (labeled HOST on the board) is normally dedicated to use by CMON for communications with a
terminal host. SCI-0 (labeled USER on the board) is available to the user. CMON is capable of exchanging the assignments of
SCI-0 and SCI-1.

U9 is a serial transceiver device that translates RS-232 signals to logic levels and vice-versa. This device provides two
channels in each direction, enough to support TxD and RxD for each of two channels. As described below in section 4, U9 is
loaded with a standard 16-pin MAX-232 device.

3.8 LED Driver

U10 is an octal latch (74HCT534) used to drive the bank of eight red LEDs and can be written by a write to any address in
memory area 1 through the use of CS1. The bank of eight LEDs are written from data lines D8 .. D15 so for word writes the
desired information should be in the upper byte.

3.9 External User Interface

The external user interface makes most SH7043 microcomputer signals available to users consistent with keeping:

• Signal lines short

• Board design simple

• Signals are assigned compatible with Japan User Cable

• Lines potentially used for analog signals isolated

The external user interface consists of 4 two-row connectors of 50 pins each. Table 3.1 lists LCEVB-SH2 connectors and
signals.

Table 3.1 Address and Data Connectors and Signals

Connector* Signals

UCN1 SH7043 data lines, (D0–D29)

UCN2 (PE0 .. PE6), the analog port (PF0 .. PF7), analog ground (AVSS), port
A lines (PA16, PA17), user NMI (UNMI), and the clock (CK)

UCN3 Address lines (A0 .. A7), port A lines (PA0 .. PA5, PA21 .. PA23), port
E lines (PE7 .. PE15), analog reference (AVREF), and a analog power
(AVCC)

UCN4 Address lines (A8 .. A17), data lines (D30, D31), port A lines (PA8,
PA9, PA18 .. PA20), port B lines (PB2 .. PB9), chip selects (CS0 ..
CS3), RD-, WRH-, WRL-, and WDT0VF-

Note: Each of these external user interface connectors includes VCC, normally at +5 V. Trivial external circuitry may use
VCC from the LCEVB-SH2. External circuits drawing >50 mA at +5 V should be powered by an independent power supply.

 9

Note the positioning of pin 1 on each connector. The pins are numbered odd-even as shown in figure 3.1.

Figure 3.1 Connector Configuration

Table 3.2 on the next page describes each user connector for to LCEVB-SH2 in numerical order.

1 2
3 4

48
50

47
49

 10

Table 3.2 SH7043 Connector Pin-out

UCN1
Pin No. Signal Name CPU Pin No. Signal Name CPU
1 GND NC 2 GND NC
3 PD29 56 4 PD28 57
5 GND NC 6 PD27 58
7 PD26 59 8 PD25 60
9 GND NC 10 PD24 62
11 PD23 64 12 GND NC
13 PD22 65 14 PD21 66
15 GND NC 16 PD20 67
17 PD19 68 18 GND NC
19 PD18 69 20 PD17 70
21 GND NC 22 PD16 72
23 PD15 73 24 GND NC
25 PD14 74 26 PD13 75
27 GND NC 28 PD12 76
29 PD11 78 30 GND NC
31 PD10 80 32 PD9 81
33 GND NC 34 PD8 82
35 PD7 83 36 GND NC
37 PD6 84 38 PD5 86
39 GND NC 40 PD4 88
41 PD3 89 42 GND NC
43 PD2 90 44 PD1 91
45 PD0 92 46 GND NC
47 GND NC 48 GND NC
49 GND NC 50 GND NC

UCN2
Pin No. Signal Name CPU Pin No. Signal Name CPU

1 GND NC 2 VCC NC
3 NMI 98 4 PA16 100
5 PA17 101 6 GND NC
7 GND NC 8 GND NC
9 GND NC 10 VCC NC
11 GND 105 12 GND NC
13 PA15 107 14 VCC NC
15 GND NC 16 PE0 109
17 PE1 110 18 GND NC
19 PE2 111 20 PE3 113
21 GND NC 22 PE4 114
23 PE5 115 24 PE6 116
25 GND NC 26 PF0 118
27 PF1 119 28 GND NC
29 PF2 120 30 PF3 121
31 GND NC 32 PF4 122
33 PF5 123 34 AVSS 124
35 PF6 125 36 PF7 126
37 GND NC 38 VCC NC
39 VCC NC 40 VCC NC
41 GND NC 42 NC NC
43 GND NC 44 NC NC
45 GND NC 46 NC NC
47 GND NC 48 NC NC
49 GND NC 50 NC NC

 11

UCN3
Pin No. Signal Name CPU Pin No. Signal Name CPU
1 GND NC 2 PC7 16
3 PC6 15 4 GND NC
5 PC5 13 6 PC4 11
7 GND NC 8 PC3 10
9 PC2 9 10 GND NC
11 PC1 8 12 PC0 7
13 GND NC 14 PE15 5
15 PA21 4 16 GND NC
17 PA22 3 18 PE14 2
19 GND NC 20 PA23 1
21 PE13 144 22 GND NC
23 PE12 143 24 PE11 142
25 GND NC 26 PE10 140
27 PE9 139 28 GND NC
29 PE8 138 30 PE7 137
31 GND NC 32 PA5 136
33 PA4 134 34 GND NC
35 PA3 133 36 PA2 132
37 GND NC 38 PA1 131
39 PA0 130 40 GND NC
41 AVcc 128 42 AVref 127
43 GND NC 44 VCC NC
45 VCC NC 46 VCC NC
47 GND NC 48 NC NC
49 GND NC 50 NC NC

UCN4
Pin No. Signal Name CPU Pin No. Signal Name CPU
1 GND NC 2 GND NC
3 PA6 54 4 PA7 53
5 GND NC 6 PA8 52
7 PA9 51 8 GND NC
9 PA10 50 10 PA11 49
11 GND NC 12 PA12 48
13 PA13 47 14 GND NC
15 PD30 46 16 PD31 45
17 GND NC 18 WDTOVF 44
19 PA14 NC 20 GND NC
21 PB9 41 22 PB8 39
23 PB7 38 24 GND NC
25 PB6 37 26 PB5 36
27 GND NC 28 PB4 34
29 PA18 33 30 GND NC
31 PB3 32 32 PB2 31
33 GND NC 34 PA19 30
35 PA20 29 36 GND NC
37 PB1 27 38 PB0 25
39 GND NC 40 PC15 24
41 PC14 23 42 GND NC
43 PC13 22 44 PC12 21
45 GND NC 46 PC11 20
47 PC10 19 48 GND NC
49 PC9 18 50 PC8 17

 12

Section 4 Board Options
The LCEVB-SH2 provides a number of user-settable optional configurations. All of these are chosen by jumper settings.

4.1 Jumpers

LCEVB-SH2 jumpers allow users to configure the board as required for testing and evaluation. For simplicity, all jumpers are
three-pin header or two-pin header. In every case, the default jumper setting is pin 1 to pin 2 (figure 4.1). For most LCEVB-
SH2 uses, these settings need not be changed.

Table 4.1 summarizes jumper settings.

Table 4.1 Jumper Settings and Options

Jn Use Default (1-2) Alternate (2-3)

J1

TTL XTAL

J2

No connection

J3 AVCC = digital VCC Set externally

J4 AVREF = digital VCC Set externally

J5 AVSS = digital VSS Set external

J6 NMI internal external

J7 MD0

J8 MD1

J9 MD2

J10 MD3

J11 Power DC Adapter Power Supply

J13 TxD1 PA0 connected PA0 not connected

J14 RxD1 PA1 connected PA1 not connected

J15 TxD0 PA3 connected PA3 not connected

J16 RxD0 PA4 connected PA4 not connected

The following sections describe each jumper and its alternative settings.

4.1.1 NMI (Jumper J6)
Default (1-2) Setting: The SH7043 NMI input is controlled by the set-reset flip-flop de-bounce circuit implemented with
NAND gates U3A and U3B.

Alternate (2-3) Setting: The SH7043 NMI input is controlled by an external signal. An on-board pull-up is provided.

Open Setting: Not recommended. The SH7043 NMI signal should be driven in all conditions. Failure to do so may cause the
board to operate erratically.

 (Mode 0) As set

 (see table 4.2)

Resonating

XTAL

Do not connect the jumper wire if
PB11, PB10, PB9 and PB8 are to
be left open.

 13

4.1.2 Setting SH7043 Operating Mode (Jumpers J7, J8, J9, J10)
As described in section 3 of the SH7043 RISC Hardware Manual, the operating mode of the SH7043 microcomputer is set at
device initialization time by the settings of the three mode inputs, MD0, MD1, and MD2. These settings should not be changed
while the SH7043 is running. Table 4.2 lists jumper settings for these modes. Leaving any of these jumpers open is not
recommended. Settings not shown in table 4.2 are currently undefined. J9 and J10 are primarily used for setting the phased
locked loop frequency multiplier for the input clock. Note that table 4.2 is for the 144 pin version of the SH7043, the 112 pin
package has different values for the CS0 area bus width values.

Table 4.2 Mode Settings for the SH7043 144 pin package
Mode J7(1) J8(1) J9 J10 Mode name On Chip ROM CS0 Area Implementation

0 1-2 1-2 x x MCU mode 0 Not active 16 bit space Default

1 2-3 1-2 x x MCU mode 1 Not active 32 bit space Not supported

2 1-2 2-3 x x MCU mode 2 Active 8/16/32 bits(2) Not supported

3 2-3 2-3 x x Single chip mode Active NA NA

4 2-3 2-3 2-3 2-3 Prom Mode ACtive NA NA

Notes: 1) MD2 and MD3 select the clock mode in modes 0-3 (table 4.3), 2) Set by BCR2 of BSC register

Table 4.3 Clock Mode Settings
Mode J7 J8 Clock Mode
0 1-2 1-2 PLL ON x 1

1 1-2 1-2 PLL ON x 2

2 1-2 2-3 PLL ON x 4

7 2-3 2-3 Not supported

4.1.3 Analog Reference and Supply (Jumpers J3, J4, and J5)
As described in section 15 of the SH7043 RISC Hardware Manual, the eight port F bits of the SH7043 microcomputer may be
configured as analog inputs. In this case, reference voltages for analog signals become important. The default settings of these
three jumpers route on-board digital references and the digital VCC to the SH7043 analog subsystem. For demonstration
purposes, this configuration may be sufficient. However, to demonstrate the full capabilities of the the SH7043 analog
subsystem, as well as to reduce noise in the analog subsystem, it may be desirable to use external sources for some or all of
these signals.

If an external analog VCC (AVCC) is provided to the SH7043 on User Connector 3, Pin 41, set J3 (2-3).

If an external analog reference voltage (VREF) is provided to the SH7043 on User Connector 3, Pin 42, set J4 (2-3).

If an external analog ground (AVSS) is provided to the SH7043 on User Connector 2, Pin 34, set J5 (2-3).

Leaving any of these jumpers open is not recommended.

4.1.4 Serial Port Disconnects (Jumpers J13, J14, J15, and J16)
UART1 is dedicated by default to the monitor CMON. UART0 is unassigned. The port pins (TxD0, RxD0 and TxD1, and
RxD1) associated with transmitting and receiving data for both UARTs are connected to a serial transceiver device.

In some applications it may be necessary to use some or all of these pins for another purpose, in which case the connections of
these port pins to the transceiver device should normally be disconnected.

These jumpers may be left open because the logic inputs of the MAX232 transceivers are internally pulled up weakly to VCC.
Alternate devices may not include these pull-ups.

 14

To free PA0, remove Jumper at J16 (1-2). To free PA1, remove Jumper at J15 (1-2).

To free PA3, remove Jumper at J14 (1-2). To free PA4, remove Jumper at J13 (1-2).

This will disable serial communications between the LCEVB-SH2 and its host.

4.1.5 Serial Port Hardwiring Options
As supplied, the LCEVB-SH2 supports three-wire serial communication. No direct provision is made for additional
handshaking signals that may be required by host computers or terminals in some configurations.

4.1.6 Crystal Clock source
The LCEVB-SH2 comes with two types of clock sources, an AT-cut parallel resonant crystal and a TTL Can crystal oscillator.
Either Clock source may be used but not both. To make a selection, simply make the necessary connection on jumper J1 & J2.
The default crystal clock source is the AT-cut parallel resonant crystal with J1 (1-2) and J2 (1-2) connected. To use the TTL
can crystal simply change connection to J1 (2-3) and remove Jumper at J2 (1-2).

The LCVEB-SH2 evaluation board is delivered with a 14.31816 MHz. crystal and with no TTL can crystal oscillator. J9 and
J10 have been set for 2x PLL operation resulting in an internal CPU clock of 28.63636 MHz. When choosing a different
frequency care must be taken in setting J9 and J10 correctly as well as the baud rate divisor settings in the serial bit rate (SBR)
register.

Figure 4.1 Crystal Source Selection

TTL Can Crystal AT Cut Resonant Crystal

1

2

3
1
2

1

23

2

1

J1 J2 J1 J2

 15

Section 5 Hitachi Debugging Interface (HDI)
On the LCEVB-SH2, you can only do your program debugging with the HDI. This section answers the following questions:

• What is HDI?

• How to install HDI?

• How do I download, run and debug my program with HDI on LCEVB-SH2?

5.1 Introduction to HDI

The Hitachi Debugging Interface (HDI) is a Graphical User Interface intended to ease the development and debugging of
applications written in C/C++ and assembly language for Hitachi microcomputers. Its aim is to provide a powerful yet intuitive
way of accessing, observing and modifying the debugging platform in which the application is running.

5.2 Installation

There are two installation disks. First install the HDI software from the installation disk proceed as follows:

• Insert the HDI installation disk #1.

• Run Windows 95/98/NT/2000 if it is not already running.

• Close all other applications that are running.

• Choose Run from the Program Manager File menu.

• Type a:\Lsh2_xxx.exe (eg. Lsh2_101.exe) and click [OK] button.

Figure 5.1 Run Dialogue box

 16

This runs the HDI installer, and the following Welcome! Screen will be displayed:

Figure 5.2 HDI Installer Welcome! Screen

• Click [OK] button to proceed with the installation.

• Check the ReadMe file for any important information regarding the installation and then click [Next>] button to proceed.

Figure 5.3 Update Information Screen

 17

The following dialogue box then allows you to select a directory in which to install HDI.

Figure 5.4 Select Destination Directory Screen

• Click Next to install into the default directory C:\Program Files\Hitachi Debugging Interface 32, or
specify an alternative directory and click [Next>] button.

The following dialogue box allows you to specify which Program Group into insert icons for HDI. The default Program Group
is Hitachi Debugging Interface 32.

Figure 5.5 Select Program Group Screen

 18

• Enter the directory you want to use and click [Next>] button.

The installer then copies the HDI files to the specified directory after prompting a confirmation dialog. Insert installation disk
#2 and click [OK] button when the following dialogue is prompted.

Figure 5.6 Insert New Disk Dialogue

Finally icons for HDI will be created into the Program Group specified earlier. The system restart request dialog will be
prompted in the end of the installation, press [OK] button to restart your windows.

5.2.1 Installation Details

The installer creates the following icons in the program group you specified, by default HDI

Figure 5.7 HDI Icons

These icons have the following functions:

“Hitachi Debugging Interface” the main HDI program.

“Uninstall Hitachi Debugging Interface” will remove HDI, and its associated files, if you need to uninstall it at any stage.

5.3 System Overview

HDI is a modular software system, utilizing self-contained modules for specific tasks. These modules are linked to a general
purpose Graphical User Interface, which provides a common look & feel independent of the particular modules with which the
system is configured.

1. User Interface

The HDI Graphical User Interface is a Windows application that presents the debugging platform to you and allows you to set
up and modify the system.

2. Toolbar

The toolbar provides convenient buttons as shortcuts for the most frequently used menu commands.

 19

3. Status Bar

The status bar displays the status of the LCEVB-SH2 evaluation board. For example cause of last break and so on.

4. Help

HDI has a standard Windows context sensitive help system. This provides on-line information about using the debugging
system.

Help can be invoked by pressing the F1 key of via the Help menu. Additionally, some windows and dialog boxes have a
dedicated help button to launch the help file at the appropriate location.

To get help on a specific item in the HDI, a help cursor can be used. To enable the help cursor, press SHIFT+F1.

Your cursor the changes to include a question mark. You can then click on the item for which you require help and the help
system will be opened at the appropriate location.

5.4 Preparing to Debug

This subsection describes all the functions that are available in HDI for LCEVB-SH2.

5.4.1 Compiling for Debugging
In order to be able to debug your program at C/C++ source level, the compiler must provide information about your C/C++
program to the debugging platform via the object file. When this option is enabled, the compiler puts all the information
necessary for debugging your C/C++ code into the object file, which is then usually called a debug object file.

Make sure you have the debug option enabled on your compiler and linker, when you generate an object file for debugging.

If your debug object file does not contain any debugging information, you can still load it into the debugging platform but will
only be able to debug at assembly-language level.

5.5 Selecting a Debugging Platform

If you have only installed HDI for LCEVB-SH2, then it will automatically link to he LCEVB-SH2 when launched. Otherwise,
you should select LCEVB-SH2.

Figure 5.8 Select Platform Dialogue Box

HDI will load the target module and establish communications with the LCEVB-SH2. As the module loads, it will reset the
LCEVB-SH2. When the LCEVB-SH2 has been successfully initialized HDI will report “Link Up” on the status bar.

 20

5.6 Configuring the Debugging Platform

All the configurations of the LCEVB-SH2 are done by the firmware, jumper setting on the board or the HDI software.
Therefore it is not necessary for the user to configure the LCEVB-SH2 through HDI.

5.6.1 Setup
To view the LCEVB-SH2 configuration, invoke the [Setup->Configure Platform…] menu option. The following dialog box
will be displayed.

Figure 5.9 Target Configuration Dialogue Box

This configuration dialogue box shows:

• Devices supported by the HDI. User can select device from SH7040 series microcomputer.

• CPU operating mode of the CPU. This is not settable via HDI.

• Clock mode of the CPU. This is not settable via HDI.

To show the configuration of the driver, click the [Change…] button.

User cannot configure the serial driver because the parameters are decided by the firmware. HDI can auto detect serial port
which is connected to the LCEVB-SH2.

Figure 5.10 Driver Dialogue Box

 21

5.6.2 Memory Mapping
To display the memory mapping of LCEVB-SH2, either:

• Click the [View->Memory Mapping Window] menu option.

• Click the open memory mapping icon in the toolbar.

Note that this Memory Mapping Window is only displayed for reference. You are forbidden to modify the memory map of
LCEVB-SH2.

Figure 5.11 Memory Mapping Window

 22

5.6.3 Status
You can check he configuration and status of the LCEVB-SH2 by looking in the System Status Window. To open the window,
either:

• Click the [View->Status Window] menu option.

• Click the open status window icon in the toolbar.

Figure 5.12 System Status Window

5.7 Downloading User Program

Once the LCEVB-SH2 is set up you can download the object program you want to debug. To invoke the Load Object File
dialogue box, either:

• Click on the [File->Load Program…] menu option.

• Click load code and symbols icon in the toolbar.

5.7.1 Selecting a File Type
You have to download Sysof type file (*.abs) if you want to do C/C++ source level debugging. Otherwise just select Motorola
S-type Record file (*.mot).

Figure 5.13 File Type Selection

 23

When the file has been loaded, the Reset Start Address dialogue box will prompt. You must define the default reset start
address for you program. The address will be stored in the Reset Vector location.

Figure 5.14 Reset Start Address Dialogue Box

After setting default reset start address, the dialogue box shown in the following figure displays information about the memory
areas that have been filled with the program code.

Figure 5.15 Program Downloading Information Dialogue Box

5.8 Reset LCEVB-SH2

To reset the LCEVB-SH2, select [Run->Reset CPU] menu option.

The internal state of the firmware will be returned to default (power-up) values. Any existing breakpoint(s) will be cleared. A
Code Window will be displayed and PC register will be set to address stored in the Reset Vector location. Common register
R15 will be set to 820000h, which is the end address of the external SRAM.

 24

5.9 Display the Program Listing

HDI allows you to display and debug a program as source level or assembly language mnemonics. In source level display, you
can see a listing of the program alongside the disassembled code as you debug. To do this you need to read in a copy of the
source program from which the object file was compiled.

To display downloaded program, open the Program Window by either:

• Selecting the [View->Program Window…] menu option.

• Clicking on the program window icon in the toolbar.

• Press Ctrl+K.

• Selecting the [Run->Reset CPU] menu option.

Select your source file and HDI will open a Program Window.

Figure 5.16 Program Windows in Source Code Display

5.9.1 Viewing Assembly Language Code

If you wish to view code at assembly language level or do not have a C/C++ source file, select the Address radio button in
Figure 5.15. HDI will display the Program Window as below.

Header Bar

Address Field

Breakpoint

Source Code

Pop-up Menu

Current PC
position

 25

Figure 5.17 Program Window in Assembly Language Display

5.9.2 Modifying Assembly Language Code
You can modify the assembly language code by double clicking on the instruction that you wish to change. The Assembler
dialogue box will appear.

Figure 5.18 Assembler Dialogue Box

Note that the assembly language display is disassembled from the actual machine code in the LCEVB-SH2 memory. If the
memory contents are changed, the display will show the corresponding new assembly language code, but will not match the
text shown in the source display.

5.10 Symbols

Symbols or labels are text names that represent an address in the program. You will only see symbols in the Label field in the
Program Window displayed in assembly language format.

 26

5.10.1 Listing Symbols
To see a list of all the symbols defined in the current session, open the Symbols Window by either:

• Selecting the [Tools->Symbols…] menu option.

• Press Ctrl+L.

Figure 5.19 Symbols Window

5.11 Working with Memory

You can monitor the behavior of a program by examining the contents of an area of memory, or by displaying the values of
variables used in the program.

5.11.1 Displaying Memory
To display an area of memory, open a Memory Window by either:

• Selecting the [View->Memory Window] menu option.

• Clicking the open memory window icon in the toolbar.

• Press Ctrl+M.

 27

You will be presented with an Open Memory Window dialogue box.

Figure 5.20 Open Memory Window Dialog Box

Type in the start address or equivalent symbol for the window display in the Address field and select the required display
format from the Format list.

Figure 5.21 Memory Window in Byte Format

5.11.2 Modifying Memory Contents
To modify the contents of memory on the Memory Window, either:

• Enter value by typing directly

• Press ↵ to invoke the Edit dialogue box.

Figure 5.22 Edit Dialogue Box

 28

5.11.3 Filling Memory
To fill an area of memory with a value, either:

• Invoke the [Edit->Filling Memory…] menu option.

• Click the fill memory area icon in the toolbar.

You will be presented with a Fill Memory dialogue box.

Figure 5.23 Fill Memory Dialogue Box

Fill in all the blank fields with necessary values and click the [OK] button.

There is another way to fill memory if the memory address range is in the Memory Window. You can select the range by
dragging the mouse, invoke the pop-up menu by clicking the right mouse button and click on [Fill].

5.11.4 Moving an Area of Memory
To move memory, either:

• Invoke the [Edit->Move Memory…] menu option.

• Click the move a block of memory icon in toolbar.

• Invoke the pop-up menu and click on [Move] after selecting a memory range in the Memory Window.

 29

Figure 5.24 Move Memory Dialogue Box

Fill in all the blank fields with necessary values and click the [OK] button.

5.11.5 Testing Memory
To test an area of memory, either:

• Invoke the [Edit->Test Memory…] menu option.

• Click on the test memory area icon in the toolbar.

• Invoke the pop-up menu and click on [Test] after selecting a memory range in the Memory Window.

You will be presented with a Test Memory dialogue box after a warning message box.

Fill all the blank fields with necessary values and click the [OK] button

 30

Figure 5.25 Test Memory Dialogue Box

An information message box will appear to report the test result.

Figure 5.26 Memory Test Result Confirmation Dialogue Box

5.11.6 Saving Memory
To save an area of memory, either:

• Invoke the [File->Save Memory…] menu option.

• Click on the save memory area to file icon in the toolbar.

• Invoke the pop-up menu and click on [Save] after selecting a memory range in the Memory Window.

 31

Figure 5.27 Save S-Record File Dialogue Box

5.11.7 Loading Memory
Please refer to Section 5.7.

5.11.8 Verifying Memory
To verify an area of memory in the address space against a S-Record disk file, either:

• Select [File->Verify Memory…] menu option.

• Click the verify memory area with file icon in the toolbar.

 32

An information message box will appear as a result.

Figure 5.28 Verify S-Record File Information Dialogue Box

5.12 Working with Variables

As you step through a program it is useful to be able to watch the values of variables used in your program, to verigy that they
change in the way that you expected.

5.12.1 Instant Watch
To open an Instant Watch Window,

1. Click to position the cursor on the variable which you want to watch in the Program Window.

2. Click in the program window with the right mouse button to display a pop-up menu and choose [Instant Watch…].

Figure 5.29 Procedure to open the Instant Watch Window

 33

The Instant Watch Window will be presented to you.

Figure 5.30 Instant Watch Window

Click [Add Watch] button to add the variable to the Watch Window.

Figure 5.31 Watch Window

In the Watch Window, you can double-click the + symbol to the left of any symbol to expand it and display the individual
elements in the array. You can also add/delete a watch to it b right click on the mouse button. If you choose [Add Watch…]
from the pop-up menu, an Add Watch dialogue box will be presented to you.

 34

5.13 Executing User Program

LCEVB-SH2 supports several Run and Step functions

5.13.1 Running from Reset
To reset the LCEVB-SH2 and run the user program from the Reset Vector Address, either:

• Select the [Run->Go Reset] menu option.

• Click on the run program from reset icon in the toolbar.

Note that the program will start running from whatever address is stored in the Reset Vector location. Therefore it is important
to make sure that this location contains the address of your startup code. The initial value of the address is zero.

5.13.2 Continuing Run
To execute your program from the current Program Counter (PC), either:

• Select the [Run->Go] menu option.

• Press the F5 key.

• Click on the run from current PC icon in the toolbar.

5.13.3 Running to the Cursor
To use this function,

1. Position the cursor on the address at which you want to stop in the Program Window.

2. Invoke the pop-up menu by clicking the right mouse button (or pressing SHIFT+F10) and selecting the [Go To Cursor]
menu option

The program will be executed from the current PC register value.

 35

Figure 5.32 Selecting Go To Cursor Pop-up Window

The following dialog box is displayed when user program is under execution. You have to press RESET of NMI button on the
LCEVB-SH2 to halt the program.

Figure 5.33 Executing User Program Dialogue Box

5.13.4 Single Step
LCEVB-SH2 only supports Step Into function. To step into a routine, either:

• Select the [Run->Step In] menu option.

• Click the step into functions icon in the toolbar.

• Press F8 key.

A highlighted yellow line corresponding to current PC value is displayed on the Program Window.

Step Out and Step Over functions are not presently supported.

5.13.5 Multiple Steps
To step several instructions at a time, select the [Run->Step…] menu option. You will be presented with a Step Program
dialogue box. Specify the number of steps and step rate.

The Step Over Calls and Source Level Step functions are not supported by LCEVB-SH2.

 36

Figure 5.34 Step Program Dialogue Box

5.14 Stopping User Program

To halt user program from executing, either:

• Select the [Run->Halt Program] menu option.

• Click the stop running program icon in the toolbar if it is enabled (a red stop sign).

• Press the ESC key.

• Set a breakpoint at a specified address. This is described in the next section.

However, if the dialogue box in Figure 5.33 is being displayed, you have to press RESET or NMI button on the LCEVB-SH2
to halt your program.

5.15 Setting Breakpoints

The simplest debugging aid is the program breakpoint, which lets you halt execution when a particular point in the program is
reached. You can then examine the state of the MCU and memory at that point in the program.

LCEVB-SH2 supports 20 PC Breakpoints and 1 User Breakpoint respectively. To set a breakpoint, either:

• Select the [View->Breakpoint Window] menu option.

• Click the open breakpoint window icon in the toolbar.

• Press Ctrl+K.

 37

Figure 5.35 Breakpoints Window

Selecting a PC Breakpoint allows the Address and Count and Pass parameters to be set

Figure 5.36 PC Breakpoint Properties Window

Selecting an USER breakpoint allows the Address, Condition Flag and Address Mask parameters to be set.

Address of the breakpoint.

Number of times the PC will pass
through address before a break is
triggered. Default value is 1.

Number of times the PC has passed
through the specified address.

 38

Figure 5.37 User Breakpoint Properties Window

Masks the corresponding bit in the
address rendering it as ‘don’t care’.

 39

Section 6 Tutorials
This section answers, in tutorial form, the most common questions asked about using this evaluation board:

• How do I download, and run a simple program?

• How do I write my own serial interface software?

• How do I use the analog input function?

• How can I gain access to some of the interrupt vectors?

Files referenced in this chapter are included in the distribution on the diskette labeled Supplementary Tools and Tutorials. The
tutorial examples in this chapter assume that installation procedures described in section 2 have been completed.

Note: Source code listings in this manual are for explanation purposes only. Due to software revisions, the listings may not be
identical to the listings on the disk.

6.1 Tutorial A: “ON, OFF, RUN”

The LCEVB-SH2 is equipped with bank of 8 red LEDs that may be program controlled. These LEDs are driven buy an octal
latch on the high byte of the systems data bus (D8 .. D15). Any write to memory area 1 (CS1) will write to the latch. The first
tutorial example shows how to turn these LEDs on and off. In the process, you’ll also see:

• How to access memory space 1 (CS1)

• How to write the LEDs

• How to download and run a simple program

Files associated with Tutorial A are located in a sub-directory called “A”.

6.1.1 Source Files for ON and OFF
Here is a listing of the source file ON.C:

#include <machine.h>

#define LED_PORT (unsigned short *)0x400000

main()

{

volatile short *p;

p=LED_PORT;

p=0x5500; / value is 0x0000 for off.c */

exit();

}

exit()

{

trapa(11); /* exception 11, software NMI to exit */

}

int __main() {} /* now required by compiler; see release notes */

 40

The contents of OFF.C differ only by a single value. Here’s a detailed look at the components of this file: The Header file
machine.h contains the intrinsic functions trapa(). For more details on the intrinsic functions available refer to SH Series C
Compiler (Document no. ADE-702-095).The #define statement at the beginning declare the location of the memory-mapped
external octal latch. Accessing memory-mapped I/O requires special consideration, because compilers can detect storage that is
written but is never read, and often eliminate the writes entirely. The specification “volatile” tells the compiler that code
writing each of these locations should never be optimized away. The specifications “unsigned short” declare each as 16-bit
locations.

Usually C programs can return to a monitor or operating system environment by “running off the end” of the main function.
For this example, need to provide an explicit return to CMON. In the next tutorial section, you’ll see how to make this return
processing implicit. If return processing of any kind is omitted, “running off the end” means executing random instructions or
data in memory following main. Control may or may not eventually return to CMON, and you can’t be sure what damage has
been done in the meantime.

As can be seen, the function exit contains simply the trapa (11) which generates an hardware exception 11, (NMI), which will
cause CMON to do a warm start. A more harsh method of returning is to execute a trapa(0) exception 0, (RESET), which will
reset the monitor to its default state including the LEDS. In the following tutorial, you’ll see a gentler way of re-entering the
monitor.

6.1.2 Running ON and OFF
Refer to section 5.13 for detail

6.1.3 Source for RUN
RUN.C goes one step further and continually displays a count value on the LEDs. Since the body of the program is an infinite
loop, the RESET or NMI button must be pressed to return to the monitor program. Here is a listing of the source file RUN.C:

#include <machine.h>

#define LED_PORT (unsigned short *)0x400000

main()

{

long count;

int volatile *p;

long val;

p=LED_PORT;

val=1;

while(1){

*p=val++;

count=20;

while(count)count--; /* wait loop */

 }

}

exit()

{

trapa(11);

}

int __main() {} /* now required by compiler; see release notes */

6.1.4 Running RUN
Refer to section 5.13 for detail.

 41

6.2 Tutorial B: “Hello World”

This tutorial shows how to output the familiar “Hello World” string from the the SH7043 serial port used by CMON. In the
process, you’ll see how to:

• Setup an on-board the SH7043 serial port

• Use a monitor trap to do character I/O to either serial port

• Re-enter the monitor via a warm start re-entry

• Implement implicit return processing

Files associated with tutorial B are located in a sub-directory TUTOR_B.

6.2.1 Source File
This is the listing of the source file HELLO.C:

#include “montraps.h”

#include <machine.h>

main()

{

int port = CMON_PORTB ;

CMONtrap(CMON_PUTSTR, port, “\nHello World\n\n”);

exit();

}

CMONtrap(a1,a2,a3)

{

trapa(33); /* arguments are passed implicitly */

}

int exit()

{

CMONtrap (CMON_EXIT, 0); /* trap exit to monitor, w/error status */

return(0);

}

int __main() {} /* now required by compiler; see release notes */

Let’s discuss the function main() first. There are two serial ports on the SH7043, and the declaration of “port” chooses one,
PORTB, which is the same one used to communicate with the host computer. Then the program references the CMONtrap()
function to output a simple string to that port. The specific trap function is chosen by the first function argument in all
CMONtrap calls, and the other arguments vary according to the trap function. The predefined constants shown in all caps are
defined in the include file montraps.h.

Let’s look at the function CMONtrap() next. This function is defined with three generalized input arguments and no
specification of a return value. We’re being unusually informal here because the number of input arguments to CMONtrap
varies with the trap function selected. In C language the formal declarations describing this would be so complicated as to
wholly obscure the simple interface implemented here. As a result, argument typing is omitted, and the compiler doesn’t do
any type-checking of arguments.

The body of CMONtrap is simply an invocation of the SH assembly language to generate trap 33, the CMON function entry.
The trap 33 handler inside CMON takes advantage of the fact that the first argument in the list is always passed in R4, the
second in R5, and so forth. There’s no reason to mention the arguments again inside the definition of CMONtrap.

 42

Note that exit() simply invokes the monitor exit function. The second argument is a return code that may be used for any
purpose; upon return, CMON displays its value on the console. The return value zero usually denotes success.

6.2.2 Running HELLO
Refer to section 5.13 for detail.

6.3 More Advanced Examples

The tutorial directory also contains three more advanced examples in the sub-directories C\, D\, and E\. These three examples
include:

• C\TRAPS.C, a demonstration of user program IO to the host computer using additional CMON trapa() function calls

• D\SERIAL.C, a demonstration of how to communicate directly with the serial ports without using CMON’s trapa()
function calls

• E\DEMO.C, a user application shell that communicates directly with the host, and which demonstrates the use of an
additional trapa() function call to re-direct a hardware interrupt (from timer 0 in this case) to a user interrupt service routine

Code for these examples begins on the following page.

 43

6.3.1 Code for TRAPS.C
/**

TRAPS.C

This program demonstrates the use of the software interrupt trapa(33)

vector to access some simple service routines in CMON for doing IO

to the serial ports. These traps are defined in “montraps.h”

**/

#include “montraps.h”

#include <machine.h>

/*--*/

main()

{

char c;int x;

CMONtrap(CMON_PUTCHAR,CMON_PORTB,’?’);

c=CMONtrap(CMON_GETCHAR,CMON_PORTB);

CMONtrap(CMON_PUTCHAR,CMON_PORTB,c);

CMONtrap(CMON_PUTDEC,CMON_PORTB,0x0ff);

CMONtrap(CMON_PUTHEX,CMON_PORTB,0x0ff);

CMONtrap(CMON_PUTSTR,CMON_PORTB,” good by!\n\r”);

CMONtrap(CMON_EXIT, 0);

}

/*--*/

CMONtrap(a1,a2,a3)

{

trapa(33);

}

/*--*/

int __main() { /* now required by compiler; see release notes */

/*--*/

 44

6.3.2 Code for SERIAL.C

/***

SERIAL.C

This program demonstrates the use of raw hardware serial ports as

compared with using the CMON trapa(33) routines.

***/

#include “montraps.h”

#include <machine.h>

#define SMR0 (*(volatile char *)(0xFFFF81A0)) /* Channel 0 serial mode register */

#define BRR0 (*(volatile char *)(0xFFFF81A1)) /* Channel 0 bit rate register */

#define SCR0 (*(volatile char *)(0xFFFF81A2)) /* Channel 0 serial control register */

#define TDR0 (*(volatile char *)(0xFFFF81A3)) /* Channel 0 transmit data register */

#define SSR0 (*(volatile char *)(0xFFFF81A4)) /* Channel 0 serial status register */

#define RDR0 (*(volatile char *)(0xFFFF81A5)) /* Channel 0 receive data register */

#define SMR1 (*(volatile char *)(0xFFFF81B0)) /* Channel 1 serial mode register */

#define BRR1 (*(volatile char *)(0xFFFF81B1)) /* Channel 1 bit rate register */

#define SCR1 (*(volatile char *)(0xFFFF81B2)) /* Channel 1 serial control register */

#define TDR1 (*(volatile char *)(0xFFFF81B3)) /* Channel 1 transmit data register */

#define SSR1 (*(volatile char *)(0xFFFF81B4)) /* Channel 1 serial status register */

#define RDR1 (*(volatile char *)(0xFFFF81B5)) /* Channel 1 receive data register */

/*Serial control register bits*/

#define SCI_TIE 0x80 /* Transmit interrupt enable */

#define SCI_RIE 0x40 /* Receive interrupt enable */

#define SCI_TE 0x20 /* Transmit enable */

#define SCI_RE 0x10 /* Receive enable */

#define SCI_MPIE 0x08 /* Multiprocessor interrupt enable */

#define SCI_TEIE 0x04 /* Transmit end interrupt enable */

#define SCI_CKE1 0x02 /* Clock enable 1 */

#define SCI_CKE0 0x01 /* Clock enable 0 */

/* Serial status register bits*/

#define SCI_TDRE 0x80 /* Transmit data register empty */

#define SCI_RDRF 0x40 /* Receive data register full */

#define SCI_ORER 0x20 /* Overrun error */

#define SCI_FER 0x10 /* Framing error */

#define SCI_PER 0x08 /* Parity error */

#define SCI_TEND 0x04 /* Transmit end */

#define SCI_MPB 0x02 /* Multiprocessor bit */

#define SCI_MPBT 0x01 /* Multiprocessor bit transfer */

#define USE_PORT1

#ifdef USEPORT1

 #define SCR_PORT SCR1

 #define SMR_PORT SMR1

 45

 #define BRR_PORT BRR1

 #define PB_TXD_PORT PB_TXD1

 #define PB_RXD_PORT PB_RXD1

 #define RDR_PORT RDR1

 #define SSR_PORT SSR1

 #define TDR_PORT TDR1

#else

 #define SCR_PORT SCR0

 #define SMR_PORT SMR0

 #define BRR_PORT BRR0

 #define PB_TXD_PORT PB_TXD0

 #define PB_RXD_PORT PB_RXD0

 #define RDR_PORT RDR0

 #define SSR_PORT SSR0

 #define TDR_PORT TDR0

#endif

/*--*/

main()

{

int c=0;

while(c!=’q’){

c=hw_rx_char();

hw_tx_char();

 }

exit();

}

/*--*/

CMONtrap(a1,a2,a3)

{

trapa(33);

}

/*--*/

int exit()

{

CMONtrap(CMON_EXIT, 0);

return(0);

}

/*--*/

int __main() { } /* now required by compiler; see release notes */

/*--*/

int hw_rx_ready()

{

char mySSR;

mySSR = SSR_PORT & (SCI_PER | SCI_FER | SCI_ORER);

return SSR_PORT & SCI_RDRF ;

}

/*--*/

 46

int hw_rx_char()

{

char ch,mySSR;

while (! hw_rx_ready());

ch = RDR_PORT;

SSR_PORT &= ~SCI_RDRF;

mySSR = SSR_PORT & (SCI_PER | SCI_FER | SCI_ORER);

return ch;

}

/*--*/

int hw_tx_ready()

{

return (SSR_PORT & SCI_TDRE);

}

/*--*/

int hw_tx_char (char ch)

{

while(!hw_tx_ready());

TDR_PORT = ch;

SSR_PORT &= ~SCI_TDRE;

return 0;

}

/*--*/

 47

6.3.3 Code for INTER.C
/**

MM.C

This program demonstrates two new techniques, 1) A small user program

shell that can communicate with the host computer and process simple

commands, and 2) the use of user interrupt vectors to call interrupt

service routines. CMON allows the user to specify a vector to a user

interrupt service routine. Vectors can be assigned to IRQ0 .. IRQ7 and

to the MTU’s counter 0 trigger interrupt conditions TGR0A, TGR0B, TGR0C,

and TGR0D.

The serial interface from the previous example has been incorporated

into this program.

demo()

This function sets up timer 0, enables the interrupt for TGR0A and sets

the interrupt priority to 15 (required because the SR is usually set at

14). It then sets the TGR0A vector to point at myvector() which counts

the upper 4 LEDS down. It then starts the counter which will generate

interrupts to be serviced by myvector(). Finally demo() enters a loop

which will count the lower 4 LEDS up. The effect is the both the upper

and lower 4 LEDS will be counting simultaneously, but in opposite

directions.

demo2()

demo2() is similar to demo() except that it returns to the main program

after setting up the interrupt for myvector.

**/

#include “montraps.h”

#include “iosh7043.h”

#include “userints.h”

#include “serial.h”

#include <machine.h>

#include <string.h>

/*#define m_getch() CMONtrap(CMON_GETCHAR,CMON_PORTB)

#define m_putch© CMONtrap(CMON_PUTCHAR,CMON_PORTB,c) */

#define m_getch() hw_rx_char()

#define m_putch© hw_tx_char©

#define message(a) (*(short *)0x400000=(a)<<8)

#define LEDS *(short *)0x400000

#define CRLF {m_putch(0x0a);m_putch(0x0d);}

/*--*/

char cmd[100];

int leds;

int myvector();

/*--*/

 48

main()

{

while(1){

getcommand(cmd);

if (strncmp(cmd,”quit”,4)==0)break;

else if (strcmp(cmd,”demo”)==0)run_demo();

else if (strcmp(cmd,”demo2”)==0)run_demo2();

else if (cmd[0]==0);

else m_puts(“unknown command\n”);

 }

exit();

}

/*--*/

run_demo()

{

int i,count2;

m_puts(“demo running...\n”);

count2=0;

set_user_vec(UV_TGI0A,myvector);

settimer();

while(1){

leds=(leds&0xf0)|(0x0f&count2);

for(i=0;i<0xffff;i++);

count2++;

 }

}

/*--*/

run_demo2()

{

m_puts(“demo2 running...\n”);

set_user_vec(UV_TGI0A,myvector);

settimer();

}

/*--*/

myvector()

{

static int count1=3;

int i;

 i=MTU_TSR0; /*clear status */

 MTU_TSR0 =0; /*clear status */

 MTU_TCNT0=0x00; /*set counter to 0 */

count1--;

leds=(leds&0x0f)|(0xf0&count1); /*count the leds down*/

message(leds);

}

/*--*/

 49

settimer()

{

 MTU_TCR0 =0x23; /*control reg to p/64 */

 MTU_TCNT0=0x00; /*set counter to 0 */

 MTU_TGR0A=0xfff; /*set compare register*/

 MTU_TSR0 =0; /*clear status */

 MTU_TSTR =1; /*start counter 0 */

 INTC_IPRD=0xf000; /*set intrerupt level */

 MTU_TIER0=0x41; /*set interrupt */

}

/*--*/

getcommand(char *s)

{

char c;

m_putch(‘$’);

while(1){

c=m_getch();

m_putch©;

if(c==0x0A)continue;

if(c==0x0D){*s=0;CRLF;return;}

*s++=c;

 }

}

/*--*/

CMONtrap(a1,a2,a3)

{

trapa(33);

}

/*--*/

int exit()

{

CMONtrap(CMON_EXIT,0);

return(0);

}

/*--*/

int __main(){} /* now required by compiler; see release notes */

/*--*/

/*--*/

/* SERIAL COMMUNICATION */

/*--*/

m_puts(char *s){

int c;

while(*s){

c=*s++;

m_putch©;

if(c==10)m_putch(13);

 }

 50

}

/*--*/

int hw_rx_ready()

{

char mySSR;

mySSR = SSR_PORT & (SCI_PER | SCI_FER | SCI_ORER);

return SSR_PORT & SCI_RDRF ;

}

/*--*/

int hw_rx_char()

{

char ch,mySSR;

while (! hw_rx_ready());

ch = RDR_PORT;

SSR_PORT &= ~SCI_RDRF;

mySSR = SSR_PORT & (SCI_PER | SCI_FER | SCI_ORER);

return ch;

}

/*--*/

int hw_tx_ready()

{

return (SSR_PORT & SCI_TDRE);

}

/*--*/

int hw_tx_char (char ch)

{

while(!hw_tx_ready());

TDR_PORT = ch;

SSR_PORT &= ~SCI_TDRE;

return 0;

}

/*--*/

 51

APPENDIX A: Frequently Asked Questions
This section contains a list of frequently asked questions about developing and evaluating programs using the LCEVB-SH2.

1. When I turn the LCEVB-SH2 board the LEDs blink, what does that mean

2. How do I write to the SH7043 serial ports?

3. Why is RAM on the LCEVB-SH2 at such a high address?

4. Why doesn’t the firmware use the SH7043 on-board RAM?

5. Why does the LCEVB-SH2 have word-wide instead of byte-wide RAM?

6. My program (or the monitor) is crashing randomly. What might be wrong?

7. How can I time my benchmarks?

8. Does an application program need to establish its own stack for proper operation on the
LCEVB-SH2?

9. I just entered a very simple program loop using the CMON assembler and it crashed for no
reason I can see. What’s going on?

10. My benchmark shows that the SH7043 doesn’t run as fast as I think it should. Why?

 52

1. When I turn the LCEVB-SH2 board the LEDs blink, what does that mean

See the tutorial example SERIAL.C. Refer to the also Appendix C.

2. How do I write to the SH7043 serial ports?

The LCEVB-SH2 RAM starts at H’0800000. Since the monitor must reside at 0 (area 0) to provide for system boot-up,
system RAM must be located somewhere else. Areas 2 is a logical place for RAM. Area is always read as word wide but
can be written as words or bytes. In the case of byte reads the CPU automatically discards unused information.

3. Why is RAM on the LCEVB-SH2 at such a high address?

When the LCEVB-SH2 board is powered on or reset the system outputs diagnostic information during boot up. If the board
is working correctly the last value put to the LEDs should be 0x31.

4. Why doesn’t the firmware use the SH7043 on-board RAM?

On-board the SH7043 RAM is the fastest possible, being accessible in 16-bit chunks without wait states (when the bus
controller register is set correctly). Committing this RAM to the monitor might interfere with using this area for full-speed
benchmarks.

5. Why does the LCEVB-SH2 have word-wide instead of byte-wide RAM?

Word-wide accesses are faster. This choice was an inexpensive way of providing faster program execution.

6. My program (or the monitor) is crashing randomly. What might be wrong?

Check these possibilities:

 Check that your program isn’t affecting the monitor RAM area. Use the CMON status command to find the current
limit of monitor RAM use. Locate the code, data, and stack above that area.

 Check that there is actually RAM in the areas you are using.

 Make sure your power supply is more than sufficient for the needs of the LCEVB-SH2. Power supplies operating at or
near their limits can sometimes cause programs to operate strangely.

 Make sure that the stack pointer (R15) is pointing to RAM. A simple way of doing this is to reset the monitor.

7. How can I time my benchmarks?

Every benchmark is different. One approach is to use an I/O bit, for example, by setting it low upon entering the code-of-
interest and high again when leaving.

8. Does an application program need to establish its own stack for proper operation on the LCEVB-SH2?

Trivial programs don’t. There’s room on the monitor stack for user programs, and we’ve used simple programs without
declaring a distinct user stack, but we’d prefer that you establish your own stack. See the tutorials for examples.

9. I just entered a very simple program loop using the CMON assembler and it crashed for no reason I can see.
What’s going on?

 53

If your program ends with a branch, and there’s garbage in memory following the branch, you’ve likely found an often
misunderstood the SH7043 feature: “delayed branches”. In order to be as efficient as possible, in the case of some program
branches, the instruction following the branch is also executed even if the branch is taken. The BRA instruction is one of
these. If you write a simple loop, it is likely to end with a BRA back to beginning, and it’s likely that the garbage following
the BRA caused the problem. You’ll crash somehow, possibly generating an exception and a message like “INVALID
INSTRUCTION” or “INVALID SLOT” or “CPU BUS ERROR”. A full discussion of this subject is beyond the scope of
this manual. An excellent rule of thumb is: when in doubt, follow all branches with innocuous instructions (such as NOPs).

10. My benchmark shows that the SH7043 doesn’t run as fast as I think it should. Why?

For maximum flexibility, CMON accepts the default setting of WCR3, that is, the LCEVB-SH2 automatically inserts the
maximum numbers of wait states into area 0 and area 2 accesses. This will certainly make the the SH7043 run slower. You
can adjust the value of the W23, W22, W21, and W20 bits in WCR1 wait state register, consistent with the operating speed
of the SH7043 microcomputer and the memory currently installed.

 54

Appendix B Assembler Commands
This appendix lists assembler command syntax, sorted according to different categories and types.

B.1 Legend

Table below lists command syntax abbreviations and their meanings.

Abbreviation Meaning
Rn A numbered register

Rm Another numbered register

#imm Immediate data

disp Displacement

disp8 8-bit displacement

disp12 12-bit displacement

B.2 Commands Sorted Alphabetically
add #imm,Rn cmp/eq Rm,Rn jmp @Rn

add Rm,Rn cmp/ge Rm,Rn jsr @Rn

addc Rm,Rn cmp/gt Rm,Rn ldc Rn,GBR

addv Rm,Rn cmp/hi Rm,Rn ldc Rn,SR

and #imm,R0 cmp/hs Rm,Rn ldc Rn,VBR

and Rm,Rn cmp/pl Rn ldc.l @Rn+,GBR

and.b #imm,@(R0,GBR) cmp/pz Rn ldc.l @Rn+,SR

bf disp8 cmp/str Rm,Rn ldc.l @Rn+,VBR

bf.s disp8 div0s Rm,Rn lds Rn,MACH

bra disp12 div0u lds Rn,MACL

braf Rm div1 Rm,Rn lds Rn,PR

brsf Rm dt Rm lds.l @Rn+,MACH

bsr disp12 dmuls.l Rm,Rn lds.l @Rn+,MACL

bt disp8 dmulu.l Rm,Rn lds.l @Rn+,PR

bt.s disp8 exts.b Rm,Rn mac.w @Rm+,@Rn+

clrmac exts.w Rm,Rn mov #imm,Rn

clrt extu.b Rm,Rn mov Rm,Rn

cmp/eq #imm,R0 extu.w Rm,Rn mov.b Rm,@(R0,Rn)

 55

B.2 Commands Sorted Alphabetically (cont)
mov.b Rm,@-Rn mov.w R0,@(disp,Rm) shlr2 Rn

mov.b Rm,@Rn mov.w R0,@(disp,GBR) shlr8 Rn

mov.b @(disp,Rm),R0 mova @(disp,PC),R0 sleep

mov.b @(disp,GBR),R0 movt Rn stc GBR,Rn

mov.b @(R0,Rm),Rn mul.l Rm,Rn stc SR,Rn

mov.b @Rm+,Rn

muls Rm,Rn stc VBR,Rn

mov.b @Rm,Rn mulu Rm,Rn stc.l GBR,@-Rn

mov.b R0,@(disp,Rm) neg Rm,Rn stc.l SR,@-Rn

mov.b R0,@(disp,GBR) negc Rm,Rn stc.l VBR,@-Rn

mov.l Rm,@(disp,Rn) nop sts MACH,Rn

mov.l Rm,@(R0,Rn) not Rm,Rn sts MACL,Rn

mov.l Rm,@-Rn or #imm,R0 sts PR,Rn

mov.l Rm,@Rn or Rm,Rn sts.l MACH,@-Rn

mov.l @(disp,Rn),Rm or.b #imm,@(R0,GBR) sts.l MACL,@-Rn

mov.l @(disp,GBR),R0 rotcl Rn sts.l PR,@-Rn

mov.l @(disp,PC),Rn rotcr Rn sub Rm,Rn

mov.l @(R0,Rm),Rn rotl Rn subc Rm,Rn

mov.l @Rm+,Rn rotr Rn subv Rm,Rn

mov.l @Rm,Rn rte swap.b Rm,Rn

mov.l R0,@(disp,GBR) rts swap.w Rm,Rn

mov.w Rm,@(R0,Rn) sett tas.b @Rn

mov.w Rm,@-Rn shal Rn trapa #imm

mov.w Rm,@Rn shar Rn tst #imm,R0

mov.w @(disp,Rm),R0 shll Rn tst Rm,Rn

mov.w @(disp,GBR),R0 shll16 Rn tst.b #imm,@(R0,GBR)

mov.w @(disp,PC),Rn shll2 Rn xor #imm,R0

mov.w @(R0,Rm),Rn shll8 Rn xor Rm,Rn

mov.w @Rm+,Rn shlr Rn xor.b #imm,@(R0,GBR)

mov.w @Rm,Rn shlr16 Rn xtrct Rm,Rn

 56

B.3 Commands Sorted by Type

B.3.1 Data Transfer
mov #imm,Rn mov.l Rm,@(R0,Rn) mov.w @(disp,Rm),R0

mov Rm,Rn mov.l Rm,@-Rn mov.w @(disp,GBR),R0

mov.b Rm,@(R0,Rn) mov.l Rm,@Rn mov.w @(disp,PC),Rn

mov.b Rm,@-Rn mov.l @(disp,Rn),Rm mov.w @(R0,Rm),Rn

mov.b Rm,@Rn mov.l @(disp,GBR),R0 mov.w @Rm+,Rn

mov.b @(disp,Rm),R0 mov.l @(disp,PC),Rn mov.w @Rm,Rn

mov.b @(disp,GBR),R0 mov.l @(R0,Rm),Rn mov.w R0,@(disp,Rm)

mov.b @(R0,Rm),Rn mov.l @Rm+,Rn mov.w R0,@(disp,GBR)

mov.b @Rm+,Rn mov.l @Rm,Rn mova @(disp,PC),R0

mov.b @Rm,Rn mov.l R0,@(disp,GBR) movt Rn

mov.b R0,@(disp,Rm) mov.w Rm,@(R0,Rn) swap.b Rm,Rn

mov.b R0,@(disp,GBR) mov.w Rm,@-Rn swap.w Rm,Rn

mov.l Rm,@(disp,Rn) mov.w Rm,@Rn xtrct Rm,Rn

B.3.2 Arithmetic Operations
add #imm,Rn cmp/pz Rn extu.w Rm,Rn

add Rm,Rn cmp/str Rm,Rn mac.w @Rm+,@Rn+

addc Rm,Rn div0s Rm,Rn mul.l Rm,Rn

addv Rm,Rn div0u muls Rm,Rn

cmp/eq #imm,R0 div1 Rm,Rn mulu Rm,Rn

cmp/eq Rm,Rn dmuls.l Rm,Rn neg Rm,Rn

cmp/ge Rm,Rn dmulu.l Rm,Rn negc Rm,Rn

cmp/gt Rm,Rn dt Rn sub Rm,Rn

cmp/hi Rm,Rn exts.b Rm,Rn subc Rm,Rn

cmp/hs Rm,Rn exts.w Rm,Rn subv Rm,Rn

cmp/pl Rn extu.b Rm,Rn

B.3.3 Logical
and #imm,R0 or #imm,R0 xor #imm,R0

and Rm,Rn or Rm,Rn xor Rm,Rn

and.b #imm,@(R0,GBR) or.b #imm,@(R0,GBR) xor.b #imm,@(R0,GBR)

not Rm,Rn tas.b @Rn

B.3.4 Shift/Rotate
rotl Rn shar Rn shlr Rn

rotr Rn shll Rn shlr2 Rn

rotcl Rn shll2 Rn shlr8 Rn

rotcr Rn shll8 Rn shlr16 Rn

shal Rn shll16 Rn

 57

B.3.5 Branches
bf disp8 bra disp12 jmp @Rn

bf.s disp8 braf Rm jsr @Rn

bt disp8 brsf Rm rts

bt.s disp8 bsr disp12

B.3.6 System Control
clrt lds.l @Rn+,MACL sts MACH,Rn

clrmac lds.l @Rn+,PR sts MACL,Rn

ldc Rn,GBR nop sts PR,Rn

ldc Rn,SR rte sts.l MACH,@-Rn

ldc Rn,VBR sett sts.l MACL,@-Rn

ldc.l @Rn+,GBR sleep sts.l PR,@-Rn

ldc.l @Rn+,SR stc GBR,Rn trapa #imm

ldc.l @Rn+,VBR stc SR,Rn tst #imm,R0

lds Rn,MACH stc VBR,Rn tst Rm,Rn

lds Rn,MACL stc.l GBR,@-Rn tst.b #imm,@(R0,GBR)

lds Rn,PR stc.l SR,@-Rn

lds.l @Rn+,MACH stc.l VBR,@-Rn

 58

Appendix C LCEVB-SH2 Schematic Diagram

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 28-Apr-2003 Sheet of
File: \\..\HIT1.SCH Drawn By:

PA23_WRHH1

RES108

MD4_VCC99

MD395

MD297

MD1102

MD0103

EXTAL96

V
C

C
12

V
C

C
26

V
C

C
40

V
C

C
63

V
C

C
77

V
C

C
85

V
C

C
11

2

V
C

C
13

5

XTAL94

PLLVCC104

PLLCAP105

PLLVSS106

AVCC128

AVSS124

AVREF127

NMI98

PF_AF7126

PF_AF6125

PF_AF0118 PF_AF1119 PF_AF2120 PF_AF3121 PF_AF4122 PF_AF5123

PA22_WRHL3

PA21_CASHH4

PA20_CASHL29

PA19_DRAK1_BACK30

PA18_DRAK0_BREQ33

PA17_WAIT101

PA16_AH100

PA9_TCLKD_IRQ351

PA8_TCLKC_IRQ252

PA5_SCK1_DREQ1_IRQ1136

PA4_TXD1134

PA3_RXD1133

PA1_TXD0131

PA0_RXD0130

PA2_SCK0_DREQ0_IRQ0132

PE15_TIOC4D_DACK1_IRQOUT5

PE14_TIOC4C_DACK0_AH2

PE13_TIOC4B_MRES144

XPE12_TIOC4A143

PE11_TIOC3D142

PE10_TIOC3C140

PE9_TIOC3B139

PE8_TIOC3A138

PE7_TIOC2B137

PE6_TIOC2A116

PE5_TIOC1B115

PE4_TIOC1A114

PE3_TIOC0D_DRAK1113

PE2_TIOC0C_DREQ1111

PE1_TIOC0B_DRAK0110

PE0_TIOC0A_DREQ0109

V
SS

6

V
SS

14

V
SS

28

V
SS

35

V
SS

42

V
SS

55

V
SS

61

V
SS

71

V
SS

79

V
SS

87

V
SS

93

V
SS

11
7

V
SS

12
9

V
SS

14
1

WDTOVF 44

A0 7A1 8A2 9A3 10A4 11A5 13A6 15A7 16A8 17A9 18A10 19A11 20A12 21A13 22A14 23A15 24A16 25A17 27

D0 92D1 91D2 90D3 89D4 88D5 86D6 84D7 83D8 82D9 81D10 80D11 78D12 76D13 75D14 74D15 73

PD_D16_IRQ0 72PD_D17_IRQ1 70PD_D18_IRQ2 69PD_D19_IRQ3 68PD_D20_IRQ4 67PD_D21_IRQ5 66PD_D22_IRQ6 65PD_D23_IRQ7 64PD_D24_DREQ0 62PD_D25_DREQ1 60PD_D26_DACK0 59PD_D27_DACK1 58PD_D28_CS2 57PD_D29_CS3 56PD_D3_IRQOUT 46PD_D31_ADTRG 45

PB9_IRQ7_A21_ADTRG 41

PB8_IRQ6_A20_WAIT 39

PB7_IRQ5_A19_BREQ 38

PB6_IRQ4_A18_BACK 37

PB5_IRQ3_POE3_RDWR 36

PB4_IRQ2_POE2_CASH 34

PB3_IRQ1_POE1_CASL 32

PB2_IRQ0_POE0_RAS 31

CK 107

RD 43

WRH 47

WRL 48

C
S0

50
C

S1
49

C
S2

54
C

S3
53

U1

SH7043

GND

WDTOVF-
A[0..17]

PD[16..31]

D[0..15]

PB[2..9]

CK
RD-
WRH-
WRL-

CS[0..3]

VCC

Gnd3 nR 2Vcc1

U2
DS1233VCC C1

0.01uFS3

GND

3
2

1

J7

3
2

1

J8

3
2

1

J9

3
2

1

J10

VCC

GND

3
2

1

J6S2

GND

R4

10K

R3

10K

VCC

UNMI

n/c 1Vcc14 o/p 8

gnd7

OSC1
3

2
1

J1

Y1
7.175MHz

VCC

C2
22pF C3

22pF

GND

2
1

J2

VCC

C4
0.1uF

C5
470pF

R2
3K

GND

PE[0..15]

PA[0..23]

PF[0..7]

3
2

1
J3

3
2

1

J5

SIP3

C8
10uF

C9
0.01uF

AVREF

GND

AVSS

AVCC

VCC

GND

C6
10uF

C7
0.01uF

GND

VCC

RESETMODE SELECTOR

C10
0.01uF

C11
0.01uF

C12
0.01uF

C13
0.01uF

VCC

GND

OSCILLATOR

GND

1

2
3U3A

7400

4

5
6U3B

7400

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17

PD16

PD18
PD19
PD20
PD21
PD22
PD23
PD24
PD25
PD26
PD27
PD28
PD29
PD30
PD31

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

PB2
PB3
PB4
PB5
PB6
PB7
PB8
PB9

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15

PA0
PA1
PA2
PA3
PA4
PA5

PA8
PA9

PA16
PA17
PA18
PA19
PA20
PA21
PA22
PA23

PF0
PF1
PF2
PF3
PF4
PF5
PF6
PF7

PD17

C
S3

C
S0

C
S1

C
S2

R1
200

8
9

10
U3C

7400

11
12

13
U3D

7400

GND

NMI

3
2

1
J4VCC

 59

1 2 3 4

A

B

C

D

4321

D

C

B

A Title

Number RevisionSize

A4

Date: 28-Apr-2003 Sheet of
File: \\..\HIT2.SCH Drawn By:

D8
LED

D9
LED

D10
LED

D11
LED

D12
LED

D13
LED

D14
LED

D15
LED

VCC

D03 Q0 2D14 Q1 5D27 Q2 6D38 Q3 9

D413 Q4 12

D514 Q5 15

D617 Q6 16

D718 Q7 19

OE1

CLK11

U10
74HC374

GND

CS[0..3]

D[0..15]

D8
D9
D10
D11
D12
D13
D14
D15

CS1
C

O
M

1

R
1

2

R
2

3

R
3

4

R
4

5

R
5

6

R
6

7

R
7

8

R
8

9

RN8
RES_NET

 60

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 28-Apr-2003 Sheet of
File: \\..\HIT3.SCH Drawn By:

A012

A111

A210

A39

A48

A57

A66

A75

A827

A926

A1023

A1125

A124

A1328

A143

A1531

CS230

CS122

D0 13

D1 14

D2 15

D3 17

D4 18

D5 19

D6 20

D7 21

VCC 32

GND 16

WE29

OE24

NC1

NC2

U6

HM62864LFP

A012

A111

A210

A39

A48

A57

A66

A75

A827

A926

A1023

A1125

A124

A1328

A143

A1531

CS230

CS122

D0 13

D1 14

D2 15

D3 17

D4 18

D5 19

D6 20

D7 21

VCC 32

GND 16

WE29

OE24

NC1

NC2

U7

HM62864LFP

VCC

GND

VCC VCC

GNDGND

D[0..15]

A[0..17]

WRL-
WRH-
RD-

CS[0..3]

EPROM

SRAM SRAM

C23
0.01uF

C24
0.01uF

C25
0.01uF

VCC

GND

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
D10
D11
D12
D13
D14
D15

CS2 CS2
CS0

A021

A122

A223

A324

A425

A526

A627

A728

A829

A931

A1032

A1133

A1234

A1335

A1436

A1537

CE2

OE20

D0 19

D1 18

D2 17

D3 16

D4 15

D5 14

D6 13

D7 12

VCC 40

V
SS

11

D8 10

D9 9

D10 8

D11 7

D12 6

D13 5

D14 4

D15 3

V
SS

30

PGM 39

U4
27C1024

D8
D9
D10
D11
D12
D13
D14
D15

R5
10K

R6
10K

VCC
VCC

 61

1 2 3 4

A

B

C

D

4321

D

C

B

A Title

Number RevisionSize

A4

Date: 28-Apr-2003 Sheet of
File: \\..\HIT4.SCH Drawn By:

V+ 1

V- 2

N/C3

N/C4

N/C5

JP1
PWR

J12
RCA

GND

GND

C14
100uF

3
2

1

J11

VIN1 VOUT 3

G
N

D
2

U8
LM7805

C15
0.1uF

D1
1N4001

GND

C16
0.1uF

C17
100uF

VCC

R13
1K

F1

FUSE

D2
LED

1
2

3

S1
SW-SPDT

 62

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 28-Apr-2003 Sheet of
File: \\..\HIT5.SCH Drawn By:

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950

USER1

IDC50

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950

USER2

IDC50

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950

USER3

IDC50

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728
2930
3132
3334
3536
3738
3940
4142
4344
4546
4748
4950

USER4

IDC50

GNDGND

D[0..15]

PD[16..31]

GND

VCC

GND

VCC

AVSS

PF[0..7]

PE[0..16]

PA[0..23]

CK
UNMI

VCC

GND GND

VCC

AVREF

AVCC

PA[0..23]

GNDGND

A[0..17]

PB[2..9]

PD[16..31]

PA[0..23]

CS[0..3]

WRL-

WRH-
RD-

WDTOVF-

PD28
PD27
PD25
PD24

PD21
PD20

PD17
PD16

D0
D1 D2

D3
D4
D5 D6

D7
D8
D9 D10

D11
D12
D13 D14

D15

PD18
PD19

PD22
PD23

PD26

PD29

PE0
PE1
PE2PE3

PE4
PE5PE6

PF0
PF1
PF2PF3

PF4
PF5
PF6PF7

AVSS

PA17
PA16

CK

CS2

A0 A1
A2

A3
A4 A5

A6
A7

A8

A9
A10A11

A12 A13
A14

A15
A16 A17

CS0CS1

CS3

PA0
PA1
PA2 PA3

PA4
PA5
PE7 PE8

PE9
PE10
PE11 PE12

PE13

PE14

PE15
PA21
PA22

PA23

A8

AVCC

PB2 PB3

PB4
PB5 PB6

PB7
PB8 PB9

PA19

PA18

RD-

PA20

PD30

WRH-

PA8

PD31

AVREF

PA9

PE[0..15]

WDTOVF-

A[0..17]

WRL-

 63

1 2 3 4

A

B

C

D

4321

D

C

B

A Title

Number RevisionSize

A4

Date: 28-Apr-2003 Sheet of
File: \\..\HIT6.SCH Drawn By:

C1+1

C1-3

C2+4

C2-5

T2IN10

R2OUT9

T1IN11

R1OUT12

V
C

C
16

G
N

D
15

V+ 2

V- 6

T2OUT 7

R2IN 8

T1OUT 14

R1IN 13

U9
MAX232A

1
6
2
7
3
8
4
9
5

P2
HOST

21
J13

CON2

21
J14

CON2

21
J15

CON2

21
J16

CON2

C19
1uF

C21
1uF

C18

1uF

VCC

C20

1uF
GND

GND

GND

GND

1
6
2
7
3
8
4
9
5

P1
USER

PA[0..23]

C22

1uF

GND

VCC

PA0

PA1

PA3

PA4

Renesas Technology (Asia Sales Offices)
URL: http://www.renesas.com

LCEVB-SH2

	Cover
	Contents
	Figures & Tables
	Section 1 Introduction
	1.1 Functional Blocks
	1.2 Specifications
	1.2.1 General
	1.2.2 Communications
	1.2.3 Power
	1.2.4 Memory Mapping

	Section 2 Start-Up Instructions
	2.1 Installing the LCEVB-SH2 Evaluation Board
	2.2 Power Supply
	2.3 Power Connection
	2.4 HDI Installation
	2.5 Checking the System

	Section 3 Operation
	3.1 SH7043 RISC Microcomputer
	3.2 Clock Circuitry
	3.3 Reset Circuitry
	3.3.1 Reset Generator
	3.3.2 Reset and Non-Maskable Interrupt (NMI)

	3.4 NMI Circuitry
	3.5 ROM
	3.6 RAM
	3.7 Serial Interface
	3.8 LED Driver
	3.9 External User Interface

	Section 4 Board Options
	4.1 Jumpers
	4.1.1 NMI (Jumper J6)
	4.1.2 Setting SH7043 Operating Mode (Jumper J7. J8, J9, J10)
	4.1.3 Analog Reference and Supply (Jumpers J3, J4, and J5)
	4.1.4 Serial Port Disconnects (Jumpers J13,
	4.1.5 Serial Port Hardwiring Options
	4.1.6 Crystal Clock source

	Section 5 Hitachi Debugging Interface (HDI)
	5.1 Introduction to HDI
	5.2 Installation
	5.2.1 Installation Details

	5.3 System Overview
	5.4 Preparing to Debug
	5.4.1 Compiling for Debugging

	5.5 Selecting a Debugging Platform
	5.6 Configuring the Debugging Platform
	5.6.1 Setup
	5.6.2 Memory Mapping
	5.6.3 Status

	5.7 Downloading User Program
	5.7.1 Selecting a File Type

	5.8 Reset LCEVB-SH2
	5.9 Display the Program Listing
	5.9.1 Viewing Assembly Language Code
	5.9.2 Modifying Assembly Language Code

	5.10 Symbols
	5.10.1 Listing Symbols

	5.11 Working with Memory
	5.11.1 Displaying Memory
	5.11.2 Modifying Memory Contents
	5.11.3 Filling Memory
	5.11.4 Moving an Area of Memory
	5.11.5 Testing Memory
	5.11.6 Saving Memory
	5.11.7 Loading Memory
	5.11.8 Verifying Memory

	5.12 Working with Variables
	5.12.1 Instant Watch

	5.13 Executing User Program
	5.13.1 Running from Reset
	5.13.2 Continuing Run
	5.13.3 Running to the Cursor
	5.13.4 Single Step
	5.13.5 Multiple Steps

	5.14 Stopping User Program
	5.15 Setting Breakpoints

	Section 6 Tutorials
	6.1 Tutorial A: "ON, OFF, RUN"
	6.1.1 Source Files ON and OFF
	6.1.2 Running ON and OFF
	6.1.3 Source for RUN
	6.1.4 Running RUN

	6.2 Tutorial B: "Hello World"
	6.2.1 Source File
	6.2.2 Running HELLO

	6.3 More Advanced Examples
	6.3.1 Code for TRAPS.C
	6.3.2 Code for SERIAL.C
	6.3.3 Code for INTER.C

	APPENDIX A Frequently Asked Questions
	APPENDIX B Assembler Commands
	B.1 Legend
	B.2 Commands Sorted Alphabetically
	B.2 Commands Sorted Alphabetically (cont)

	B.3 Commands Sorted by Type
	B.3.1 Data Transfer
	B.3.2 Arithmetic Operations
	B.3.3 Logical
	B.3.4 Shift/Rotate
	B.3.5 Branches
	B.3.6 System Control

	Appendix C LCEVB-SH2 Schematic Diagram

