

 078-0507-01C

Develop BACnet applications using the FT 6000
EVK and a Series 6000 processor.

IzoT® BACnet®
Developer’s Guide

ii Preface

Echelon, LON, LonWorks, Neuron, 3120, 3150, Digital
Home, i.LON, IzoT, LonScanner, LonSupport, LNS,
LonMaker, LonPoint, LonTalk, NodeBuilder, ShortStack,
and the Echelon logo are trademarks of Echelon
Corporation that may be registered in the United States
and other countries.

LONMARK is a trademark of LONMARK International that is
registered in the United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Echelon products are not designed or intended for use
in equipment or systems which involve danger to human
health or safety or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Echelon products in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright © 2015 by Echelon Corporation.
All Rights Reserved.
Echelon Corporation
www.echelon.com

Contents

Purpose ... 6

Related Documentation ... 6

Technical Support ... 7

Overview of BACnet for the FT 6050 ... 2

Data Formatting .. 3

Software Requirements ... 4

Hardware Requirements ... 5

Setting up the BACnet/IP to MS/TP Router ... 6

Setting up the EVB .. 8

The BACnet Example Projects ... 10

Using the BACevb Project ... 11
Setting up a LonTalk/IP Interface 11
Adding Routes for the IzoT Router 11
Restore and Open the CT Backup Drawing and Database 11
Commission the IzoT Router 11
Verify the EVB Flash Bootloader/Firmware Version Numbers 12
Build, Load and Commission the EVB 13

Determining the BACnet Stack Version Number 15

BACnet Terminology .. 18

Using the Neuron BACnet Server ... 19

BACnet Read Operations ... 20
Write Operation Resolution ... 20
BACnet Interface Overview ... 23
Data Flow during a LONWORKS Write to a Network Variable 24
Data Flow During a LONWORKS Read of a Network Variable 25
Data Flow During an Outgoing Network Variable Update 25
Data Flow During a BACnet Write to a BACnet Object 25
Data Types and BACnet to LON Mapping ... 25
BACnet Instance Numbering ... 25
Mapping BACnet Objects to LonTalk/IP NVs 26
Queue Management ... 27

Device Object Identifier and Name .. 26

Adding the Neuron BACnet Stack to an FT 6050 27

Additional Requirements for BACnet MS/TP 27
Setting the Baud Rate 28
Setting the MAC address 28

iv Preface

Mapping BACnet Objects to LONWORKS NVs ... 29

Complex Mapping ... 29
Mapping UNVTs 30

User Definable Scaling ... 30
User Definable Mapping Types .. 31

Change of Value (COV) Support.. 34

Read Property Multiple Support .. 34

Application Image Download ... 35

BACnet Test Tools .. 36

Other Resources .. 38

Preface

This document describes how to develop applications for the Echelon Series 6000 processors
that have LON®, LonTalk®/IP, BACnet®/IP, and BACnet MS/TP interfaces.

vi Preface

Purpose
This document is intended for device manufacturers (OEMs) who wish to create products
based on Echelon Series 6000 processors having LON, LonTalk/IP, BACnet/IP, and BACnet
MS/TP interfaces.

It details the required software and hardware setup and demonstrates the development
process using working examples targeted for the FT 6000 EVB.

Related Documentation
The following table lists related Echelon documentation that can be useful when developing
IzoT and LON devices using Series 6000 chips that also support BACnet/IP and BACnet
MS/TP. The PDF files are installed in the Echelon IzoT NodeBuilder Software program
folder when you install the IzoT NodeBuilder Tool. The latest versions of these manuals are
available from the Echelon website at: www.echelon.com/docs.

Title Part Number Description

FT 6000 EVK Quick Start
Guide

078-0506-01D This manual describes how to
install the FT 6000 EVK
software, use the IzoT Router,
and use the examples.

FT 6000 EVB Hardware Guide 078-0504-01A This manual describes the
hardware for the FT 6000 EVB
evaluation boards that are
included with the FT 6000 EVK.

FT 6000 EVB Evaluation
Board Schematics

012-1460-51A This document provides the
schematic diagrams for the FT
6000 EVB.

IzoT Manual See
www.echelon.com/docs/izot

This online manual at
www.echelon.com/docs/izot
describes the IzoT Platform and
how to use the IzoT Router, IzoT
SDK, and IzoT CPM 4200 Wi-Fi
EVK.

Introduction to the LONWORKS
Platform

078-0183-01B This manual provides an
introduction to the ISO/IEC
14908-1 (ANSI/EIA/CEA-709.1
and EN 14908-1) Control
Networking Protocol, and
provides a high-level introduction
to LONWORKS networks and the
tools and components that are
used for developing, installing,
operating, and maintaining them.

http://www.echelon.com/docs
http://www.echelon.com/docs/izot
http://www.echelon.com/docs/izot

Title Part Number Description

IzoT NodeBuilder User’s Guide 078-0516-01A This manual describes how to
develop LON devices and
applications using the IzoT
NodeBuilder Development Tool.

I/O Model Reference for Smart
Transceivers and Neuron
Chips

078-0392-01C This manual provides
information about the I/O models
used by Echelon’s Neuron Chips
and Smart Transceivers.

It includes hardware and
software considerations for each
of the I/O models.

Neuron C Programmer’s Guide 078-0002-01I This manual describes how to
write programs using the Neuron
C Version 2.2 programming
language.

Neuron C Reference Guide 078-0140-01G This manual provides reference
info for writing programs using
the Neuron C Version 2.2
programming language.

IzoT Resource Editor User’s
Guide

078-0508-01A This manual describes how to use
the IzoT Resource Editor to
create and edit resource file sets
and resources such as functional
profile templates (profiles),
network variable (datapoint)
types, and configuration property
(configuration datapoint) types.

NodeLoad User’s Guide 078-0286-01G This manual details the usage of
the NodeLoad application

NodeUtil User’s Guide 078-0438-01B This manual details the usage of
the NodeUtil application

Technical Support
If you have technical questions that are not answered by this document, or by the related documentation, you
can obtain technical support via e-mail to support@echelon.com.

See www.echelon.com/support for more information on Echelon’s support services. See
www.echelon.com/training for online training and for more information on Echelon’s training services.

mailto:support@echelon.com
http://www.echelon.com/support
http://www.echelon.com/training

IzoT BACnet Developer’s Guide 1

1

Getting Started with BACnet

This chapter provides the information to get started with developing BACnet/IP and
BACnet MS/TP applications for the IzoT Series 6000 processors.

2 Getting Started with BACnet

Overview of BACnet for the Series 6000 Processors
The BACnet stack for the IzoT Series 6000 processors is a fully BACnet compliant protocol
stack that runs with the LonTalk/IP protocol stack in the Series 6000 processors, and shares
and maps to the same network variables (datapoints) as the LonTalk/IP stack, all under the
developer’s control. The BACnet stack for the IzoT Series 6000 processors is called the Neuron
BACnet Stack.

Compared to the ISO/IEC 14908-1 protocol, BACnet has a very simple data model. BACnet
objects typically represent a single value. Each BACnet object is embellished with multiple
BACnet properties, and in particular the present value, which contains the current value of
the BACnet object.

Every BACnet device has to contain a Device object which has to have two unique properties,
the (device) object identifier and (device) object name, which must be unique across all devices
on a single BACnet internetwork. These are therefore the first two settable parameters of any
BACnet stack.

You can implement a BACnet server using the Neuron BACnet Stack. As a BACnet server,
BACnet objects implemented by your device can be read and written by a BACnet client such
as a BACnet workstation. Your BACnet server can expose scalar and structured network
variables, and fields of network variables, to a BACnet client as BACnet objects, where the
present value property of each object contains the actual data. Other required BACnet
properties are provisioned by the stack.

You must have a free-of-charge vendor ID allocated by ASHRAE to develop devices using the
Neuron BACnet Stack. Details on applying for this can be found under Other Resources
below.

The capability of a BACnet device is shared via the Protocol Implementation Conformity
Statement, or PIC statement (PICS). A PIC statement for the Neuron BACnet Stack is
available, but you will have generate one for each BACnet device type that you create.

You can create a BACnet device that conforms to an appropriate BACnet device profile,
specified by a list of BACnet Interoperability Building Blocks or BIBBs. BIBBs define sets and
groupings of functionality that can be easily compared from device to device, to determine
which BACnet features should be interoperable between devices. You can choose the device
profile for each device type you develop, and you can publish the conformance to this in a PIC
statement that you create for your device. Appropriate device profiles for a Series 6000 based
device are the following:

 B-SS - Smart Sensor
 B-SA - Smart Actuator
 B-ASC - Application Specific Controller
 B-AAC - Advanced Application Controller

BACnet conformance is tested by BTL, or the BACnet Testing Laboratories, under the
auspices of BACnet International. The Neuron BACnet Stack has been tested for
conformance, but is not BTL approved. You can submit the BACnet products that you develop
with the Neuron BACnet Stack to BTL for approval. BTL approval is not required, but is
useful for marketing purposes.

IzoT BACnet Developer’s Guide 3

The Neuron BACnet Stack supplies the following:

• All required BACnet objects, properties, and services for a simple BACnet device,
including the following:

o B-ASC
o Device Object
o Read Property Service

• The following BACnet object types:

o Analog Input
o Analog Output
o Binary Input
o Binary Output

BACnet supports multiple physical layers, the most popular being BACnet/IP (Ethernet and
other IP transports) and BACnet MS/TP (RS-485). In the case of the Neuron BACnet Stack
used with the IzoT FT 6050 Smart Transceiver, the physical communications medium is FT
(TP/FT-10), as defined by the ISO/IEC 14908-2 standard, with a LonTalk/IP transport layer,
or MS/TP (RS-485) with a BACnet MS/TP transport layer. In the case of FT, the Neuron
BACnet Stack complies with BACnet/IP and appears to other third party BACnet devices as a
BACnet/IP device. In the case of MS/TP, the Neuron BACnet Stack complies with BACnet
MS/TP and appears as a BACnet MS/TP device.

When using the FT 6050 Smart Transceiver with BACnet MS/TP, the firmware uses the
Series 6000 hardware SCI/SPI port and one additional IO pin as an RS-485 TX enable signal.
For cases where the hardware SPI port is used to communicate with a co-processor or other
peripheral device, a software library is installed with the IzoT NodeBuilder software that
provides a software substitute for the hardware SPI port. See SwSpi.h in your LONWORKS
NeuronC\Include folder.

What’s New
This documentation describe how to use Release 1.5 of the Neuron BACnet Stack. This is the
second release of the Neuron BACnet Stack, and adds the following key features:

• BACnet MS/TP support in addition to BACnet/IP-FT support.

• Change of Value (COV) support

• Read Property Multiple support

• Dynamic BACnet object type support

• Priority array access

• High-resolution scaling

Data Formatting
LON and IzoT data types typically use SI units and rely on data formatting to present data in
other formats, such as imperial units, however, BACnet servers may need to publish data in
imperial units directly to the network.

An example of mapping and scaling for imperial units is provided in the BACevb example,
which is discussed later in this document.

4 Getting Started with BACnet

Software Requirements
The following software is required to use the Neuron BACnet Stack.

From the Echelon IzoT FT 6000 EVK:

• IzoT Net Server
• IzoT Commissioning Tool (OpenLNS CT with the IzoT Net Server installed)
• IzoT NodeBuilder Software – the minimum version to support BACnet MS/TP is 4.30.60,

the latest version is available here

The installation procedures for the above software are detailed in the FT 6000 EVK Quick
Start Guide

From ConnectEx:

• IzoT BACnet Browser which can be found here,

http://www.echelon.com/products/ft-6000-evk
http://www.connect-ex.com/products/bacnet-browser-for-echelons-izot/

IzoT BACnet Developer’s Guide 5

Hardware Requirements
The following hardware is required to develop BACnet/IP applications with the FT 6050
Smart Transceiver:

o IzoT Router (included with the FT 6000 EVK)
o FT 6000 EVB (included with the FT 6000 EVK)
o A computer with the FT 6000 EVK software installed
o Ethernet switch or hub

The following additional hardware is required to develop BACnet MS/TP applications with the
FT 6050 Smart Transceiver:

o BACnet/IP to BACnet MS/TP router
o RS-232 to RS-485 level shifter

You can install the hardware as shown in the following diagram to develop BACnet/IP and
BACnet MS/TP applications with the FT 6000 EVK.

FT 6000 EVB

BACnet/IP
to BACnet

MS/TP
Router

Ethernet

IzoT RouterEthernet Switch

RS485 Transceiver

Ethernet FT-10

RS485

Ethernet

PC

6 Getting Started with BACnet

The IzoT Router includes a BACnet router that is used to route BACnet/IP packets from the
Ethernet LAN channel to the FT LON channel. This device also acts as a LonTalk/IP router
between the LAN and LON channels. The LonTalk/IP router enables you to load and test
applications on the FT 6000 EVB or your custom hardware using the IzoT Commissioning
Tool included with the FT 6000 EVK. The IzoT Router is available in models with and
without a BACnet router. The model of the IzoT Router included with the FT 6000 EVK
includes the BACnet router option. The BACnet router enables you to interface workstations
on the BACnet/IP Ethernet channel with your BACnet/IP applications on the LON FT
channel.

You can use the FT 6000 EVB to run the examples included with the FT 6000 EVK, and you
can also use it for application development. One of the examples is an FT 6000 EVB
application that simultaneously provides a LonTalk/IP, BACnet/IP, and BACnet MS/TP
interface.

For the BACnet MS/TP connection, a BACnet/IP to MS/TP Router is required. You can use
any compliant BACnet/IP to MS/TP router. The Neuron BACnet Stack has been tested with
the BASrouterLX from Contemporary Controls.

You can use either the FT 6000 EVB DB-9 connector or the EVB I/O pins to attach the FT
6000 EVB to an MS/TP channel.

To use the FT 6000 EVB DB-9 connector for the MS/TP connection you will need:

• An RS-232 to RS-485 level shifter such as this one from Hexin The Hexin level shifter is

suitable for a connection to only a few devices, but it is self-powered.
• A straight through DB-9 cable such as this one.
• A male-to-male null-modem such as this one.

To use the FT 6000 EVB I/O pins and an external RS-232 to RS-485 convertor for the MS/TP
connection you will need:

• A single board convertor such as the TEL00070 which provides a simple 4-wire

connection to the FT 6000 EVB. The board takes care of enabling and disabling the
transmit output of the RS-485 transceiver and therefore does not need a connection to
IO9 of the EVB.

Your production solutions for a BACnet MS/TP interface for the FT 6050 Smart Transceiver
require a suitable external 3.3V RS-485 transceiver to the FT 6050, with D (or DI) connected
to IO10 and R (or RO) connected to IO8 and DE connected to IO9. The BACnet specification
states that the RS-485 transmitter must be de-asserted within 15 bit times of the last bit of
the last character (390uS at 38400 baud) which is taken care of by the Neuron BACnet
MS/TP stack.

See the FT 6000 EVK Quick Start Guide and FT 6000 EVB Hardware Guide for information
on using and troubleshooting your IzoT Router and EVB with BACnet.

Setting up the BACnet/IP to MS/TP Router
For BACnet MS/TP, the example project sets the EVB to MAC address 47 and the bit rate to
38400 bps by default. The BACnet router must be configured to the same bit rate, and any
other free MAC address, <= 127 per BACnet specifications. Instructions on how to configure

http://www.ccontrols.com/basautomation/basrouterlx.php
http://www.amazon.com/RS232-To-RS485-Converter-Adapter/dp/B003MN1KKQ
http://www.newegg.com/Product/Product.aspx?Item=N82E16812400157
http://www.newegg.com/Product/Product.aspx?Item=N82E16812200087
http://www.dfrobot.com/wiki/index.php/Multi_USB/RS232/RS485/TTL_Converter_%28SKU:TEL0070%29

IzoT BACnet Developer’s Guide 7

the router is supplied by the manufacturer. For example, to configure the BASrouter LX from
Contemporary Controls follow these steps:

1. Connect to the router using a Web browser. The factory default IPv4 address is

192.168.92.68. You may have to temporarily change your network adapter IPv4 address
accordingly. Once connected to the router, you can change the IPv4 address to something
that suits your requirements.

2. Login. The default username and password is admin / admin.
3. Confirm the BACnet/IP port is set to 47808.
4. Set the BACnet Network Number to a unique value between 1 and 65535 (unique on your

BACnet internetwork; if this is the only BACnet network, then you can use any value in
the range).

5. Confirm the Baud Rate is set to 38400.
6. Confirm the MAC address is not 47.
7. Confirm Max Masters >= 47.
8. Change the IP address, IP Subnet, and IP Gateway to match your target IP subnet.
9. Save and restart.
10. If necessary, change your network adaptor IPv4 address back to its original setting.
11. Ensure that you can connect to the router at its new address using a Web browser.
12. Using the IzoT BACnet Browser, confirm that you can discover the router on the IP

network as shown below:

8 Getting Started with BACnet

Setting up the EVB
 For BACnet/IP-FT only:

Confirm the jumper settings as follows (this should be the factory default):

 LCD
 JP33 (LCD power) installed
 JP31 (IO pins) (all installed) 1-2, 3-4 .. 15-16

 For BACnet MS/TP only:
The MS/TP serial connection to the RS485 transceiver uses IO8 for receive, IO9 for
transmit enable, and IO10 for transmit (normally used for USB RX, SW1, and USB RX on
the EVB).

 For BACnet/IP-FT and BACnet MS/TP using the EVB DB-9 Connector:

Confirm that the jumper settings are set as follows (note the additional wiring
requirements):

JP201 1-2 On IO8 Rx
 3-4 X IO4 N/A
 5-6 X IO1 N/A
 7-8 On IO10 Tx

JP203 1-2 X
 3-4 X

5-6 Off Wire JP203#5 to JP32#8
 7-8 X

JP31 1-2 Off
 3-4 Off
 5-6 On
 7-8 On
 9-10 On
 11-12 On
 13-14 Off
 15-16 On

JP32 1-2 X
 3-4 X
 5-6 X
 7-8 Off Wire JP32#8 to JP203#5
 9-10 X
 11-12 X
 13-14 X
 15-16 X

JP33 1-2 On

Connect the FT 6000 EVB to a BACnet MS/TP to BACnet/IP router using a straight-
through cable, null modem, and RS-232 to RS-485 converter as shown below.

IzoT BACnet Developer’s Guide 9

RS-485 channels are polarity sensitive when used with biased networks such as BACnet
MS/TP. All devices must share a common signal ground and the network cabling must be
terminated at both ends. The router typically has a terminator enabled by default.

+
-

SC

BACnet MS/TP to
BACnet/IP Router

Ethernet

FT 6000 EVB

Null Modem Straight Through CableRS232 to RS 485 Convertor

For BACnet/IP-FT and BACnet MS/TP Using the EVB I/O Pins:

Set the EVB jumpers to their factory default settings with the exception of the following:

JP32 pins 7-8 Off (IO_9, SW1)

Connect the EVB, TEL00070, and the BACnet MS/TP network as shown below.

RS-485 channels are polarity sensitive, all devices must share a common signal ground and
the network cabling must be terminated at both ends. The router typically has a terminator
enabled by default.

10 Getting Started with BACnet

FT 6000 EVB

TEL0070
RS485Driver

TXRXGN
D

5V

A-TTL

IO
_8

IO
_10

5V
GN

D

+
-

SC

+
-

SC

BACnet MS/TP to
BACnet/IP Router

Ethernet

The BACnet Example Projects
You can use the example projects to build and download a simple application to an FT
6000 EVB to test your setup. There are two example projects—the BACevb example and
the BACsimple example.

The BACevb example is a NodeBuilder project for the FT 6000 EVB. The application
measures and displays space temperature, flashes LEDs, and interacts with the user. The
example includes an IzoT CT drawing backup named BACdemo.zip which can be found
in the LONWORKS NeuronC\Examples\BAClon\BACevb folder.

The BACsimple example is a minimal NodeBuilder project to show the smallest viable
project using the Neuron BACnet Stack, allowing easier integration into your application.

You can build the example projects with or without BACnet/IP or BACnet MS/TP by
commenting or un-commenting #define BACNET_IP and #define BACNET_MSTP in
the BACopt.h file for each project. Set up the FT 6000 EVB as described in Setting up the
EVB above. You must compile and download the software configuration to match the EVB
jumper setup in use.

You cannot use the LCD display and light-level sensor on the FT 6000 EVB
simultaneously with BACnet MS/TP. An error is generated if these two options are
selected simultaneously.

IzoT BACnet Developer’s Guide 11

Using the BACevb Project

Setting up a LonTalk/IP Interface
If you have not already created a LonTalk/IP interface for your development computer, follow
these steps to create one:
1. Start the IzoT Network Services LonTalk/IP Interfaces application from the Start

menu under All Programs Echelon IzoT Network Services Utilities.
2. Type LonTalk/IP as the name in LonTalk/IP Interfaces.
3. Select the appropriate IP network interface for this LonTalk/IP interface to use from the

IP Interface box: either Local Area Connection or Wireless Network Connection.
4. Click Create.
5. Close the IzoT Network Services LonTalk/IP Interfaces application.

Adding Routes for the IzoT Router
6. To allow your development computer to reach the LON FT channel IPv4 subnet, and to

allow IzoT CT to complete actions such as Manage Test on the IzoT Router, add two
routes to your computer configuration; you can do this from a Windows command prompt
launched with administrator permissions (right click and select Run as Administrator).

7. Enter the following commands at the Windows command prompt:

route –p add 192.168.11.19.1 mask 255.255.255.255 <IzoT Router LAN host IP address>
route –p add 192.168.8.0 mask 255.255.255.0 <IzoT Router LAN host IP address>

You can find the LAN host IP address of your IzoT Router from the relevant DHCP server
or using the technique described in the IzoT FT 6000 EVK Quick Start. You can also use a
smart phone to find your IzoT Router LAN host IP address as described in the Getting
StartedIzoT Router book at www.echelon.com/docs/izot.

Restore and Open the CT Backup Drawing and Database
8. Start the IzoT Commissioning Tool from the Start menu under All ProgramsEchelon

OpenLNS CT, click Restore in the Design Manager and restore the drawing from the
BACdemo.zip backup file, following the instructions when prompted. When the restore
has completed successfully, you are prompted to open the drawing, click Yes,

9. At the Sever Location dialog, ensure the Server Location is set to Local, then click Next.
10. At the Network Interface dialog, check Network Attached and select LonTalk/IP as the

Network Interface Name, then click Next.
11. At the Logon dialog, click Next.
12. At the Onnet/Offnet dialog, ensure Onnet is selected, and then click Next.
13. At the Plug-in Registration dialog, click Finish.
14. Click No when prompted to recommission devices. Click OK to the subsequent dialog.

Commission the IzoT Router
15. Commission the IzoT Router by right clicking the router shape, selecting Commission

Commission, click Next at the Router Application State dialogue, click Finish at the
New Device Wizard dialogue and when promoted to press the service pin at the next
dialog, press the Service/Connect button on the IzoT Router. After the commissioning
process completes, confirm that the router shape is now green. The router type is set to
repeater to allow NodeUtil to function correctly.

http://www.echelon.com/docs/izot

12 Getting Started with BACnet

Verify the EVB Flash Bootloader and Firmware Version Numbers
The EVB flash bootloader must be version 8 or greater and the EVB Firmware revision
number must be 21.04.05 or greater to support MS/TP. Updated versions of the flash
bootloader and firmware are installed with the required version of NodeBuilder as stated in
Software Requirements above. You can determine the installed versions in the FT 6000 EVB
as follows:

16. Open a Windows command prompt.
17. Start NodeUtil by typing: nodeutil – dlontalk/ip.
18. With the EVB powered and connected as shown in the Hardware Requirements above,

press the Service button on the EVB. This will register the EVB as device 1.
19. Go to the device by typing: g 1 and then pressing Enter.
20. Type s to get the EVB Status and then n when prompted to clear the device status. The

following is displayed (although the flash bootloader version and firmware version number
may vary):

21. If the flash bootloader version is less than 8 or the firmware version number is less than

21.04.04 go to step 22 to update them. Otherwise go to step 27.
22. To update the flash bootloader type y.
23. Type LonWorks\Images\Ver21\bla6000.ndl, inserting your LONWORKS path for LonWorks,

and then press Enter. For new installations on 64-bit Windows, the LONWORKS path is
C:\Program Files (x86)\LonWorks.

24. To update the Firmware, once the device state is confirmed as Applicationless, On-line,
type y.

25. Type LonWorks\Images\Ver21\b6050v4.ndl, and then press Enter.
26. Once the device state is confirmed as Applicationless, On-line, type s, followed by n when

prompted to clear the device status. The following is displayed, confirming the new flash
bootloader version and firmware version number (although the versions may be later than
illustrated).

IzoT BACnet Developer’s Guide 13

27. Close NodeUtil by typing ee.

Build, Load and Commission the EVB
27. From within IzoT CT, right click the FT 6000 EVB device, select NodeBuilderEdit

Source.
28. At the NodeBuilder Project dialogue, check Open an existing NodeBuilder project.
29. Click Next.
30. At the Select NodeBuilder Project file dialog, click the ellipsis button (…) and traverse to

LonWorks\NeuronC\Examples\BAClon\BACevb and select BACdemo.NbPrj, and then click Open.
31. Ensure that Set as Default Project for this Network is checked. Click Finish.
32. From within NodeBuilder, expand Device Templates in the Workspace pane.
33. Expand the BACdemo device template.
34. Expand Source Files, right click Source Files, click Insert, double click the BACdemo

folder, type BACopt.h in File Name ,and then click Open.
35. Double click the BACopt.h file under Source Files and adjust #define BACNET_IP

and #define BACNET_MSTP as required. Comment out #define USE_EVB_LCD if
you are using using BACNET_MSTP.

36. Right click the BACdemo template and then click Clean.
37. Right click the BACdemo template again and click Build.
38. Ensure that the build succeeded.
39. From within IzoT CT, right click the FT 6000 EVB device and select

CommissionCommission, ensure Load Application Image is checked at the
Application Image dialogue, click Next, click Next at the Application State dialog,
click Finish at the New Device Wizard dialog and when promoted at the next dialogue,
press the Service button on the FT 6000 EVB. Confirm that the FT 6000 EVB shape is
green.

40. Confirm all is working as expected. If startup is successful, LED1 changes as follows:
LED1 will illuminate. (If BACnet MS/TP not selected)
LED1 will go out if SW1 is held down for 1 second. This LED will come on again

each time the system restarts. It can be used to check for system crashes.
(If BACnet MS/TP not selected)

41. On a development computer attached to the network, run the IzoT BACnet Browser. The
browser discovers the BACnet Device on the network, and lists the BACnet Objects
contained in it.

14 Getting Started with BACnet

42. If BACnet/IP and BACnet MS/TP have both been enabled in BACopt.h, then you should
be able to simultaneously see the same device via the BACnet/IP and BACnet MS/TP
networks as shown below. This is not necessarily a typical operational situation, but is a
valid indication of correct functionality during development. If MS/TP is not enabled, then
you will only see the BACnet/IP device.

43. The FT 6050’s device object identifier and object name will be automatically set based on
the IP address of the FT 6050. You can change the device object identifier and object
name using a standard BACnet workstation, including the IzoT BACnet Browser.

44. From either the BACnet/IP or BACnet MS/TP device, add Space Temp C, Illuminance,
and Local Setpoint to the grid view by right-clicking each in turn and selecting Add to
Grid View as shown below. Verify that the values are realistic and that you can write
the Local Setpoint by right clicking the entry in the grid view, selecting Change Value,
writing the new value to Priority 1, and then clicking Set. The Illuminance value will
not show valid data if BACnet MS/TP selected.

IzoT BACnet Developer’s Guide 15

Determining the BACnet Stack Version Number
To determine the version number of the Neuron BACnet Stack, enter the following command
in a Windows command prompt after changing to the LONWORKS Images\Ver21 folder:
nlib -r <libraryname> | more

For example nlib –r baclon.lib | more may show the following, where the first module is the
version number.

16 Getting Started with BACnet

To see the version during runtime, using a BACnet browser, go to the device, then the device
object, and the version number is listed as a property of the device object as shown below. The
application version is under the device application developer’s control.

IzoT BACnet Developer’s Guide 17

2

Using BACnet

This chapter explains BACnet terminology and describes the Neuron BACnet Server
(NBS).

18 Using BACnet

BACnet Terminology
The following terms are a brief summary of BACnet terminology.

BACnet Network – A group of BACnet devices on a single network, which may be
any of BACnet’s physical layer options, namely IP media such as
Ethernet or LON FT, and other media such as RS-485 and LonTalk,
identified by a network number.

BACnet Internetwork – A collection of connected BACnet networks connected via
BACnet routers. The resulting devices are all able to communicate with
one another. Every BACnet device is required to have a unique BACnet
device instance and device object name to unambiguously distinguish it,
and every BACnet network must have a unique network number.

BACnet Device – A controller, operator workstation, or other device, that supports
BACnet communications

BACnet Object – A data point, measurement or some other value in a BACnet
device

BACnet Object Identifier – An identifying parameter for each object in a BACnet
device which is unique on a device basis, and which consists of the object
type and the object’s instance number.

BACnet Property – A BACnet object contains multiple properties, some optional
and some mandatory. For example, properties such as the present value
can reflect the value of a physical input such as temperature. The object
identifier property of an object uniquely identifies the object.

BACnet Device Instance – The instance number of the object identifier of the
Device object that every BACnet device is required to contain. It has to
be unique across the whole of the BACnet internetwork.

BACnet Router – A standard BACnet component that allows the interconnection of
different BACnet networks. They may effect a physical and logical
change between networks of different physical types and different
network numbers, or sometimes only a logical change between different
BACnet network numbers.

Priority Array – An array of 16 values for some BACnet output objects, (e.g. Analog
Output), which allows multiple systems of different priorities to control a
single output, by writing to the priority array, with predetermined
results. The value of the resulting highest priority array item is
transferred to the present value.

Present Value – One of a BACnet object’s properties, usually containing a physical
input or output value.

Relinquish Default – A value that is transferred to the present value when the
priority array does not contain any values at all.

BACnet Priority – Specified when writing a value to the BACnet priority array.

IzoT BACnet Developer’s Guide 19

Using the Neuron BACnet Server
You can use the Neuron BACnet Stack to implement a BACnet server on the Series 6000
Neuron core. The Neuron BACnet Server is a BACnet compliant server, and other
BACnet devices interact with the Neuron BACnet Server as they would with any other
BACnet device.

The Neuron BACnet Server provides a network interface to the BACnet input and output
objects implemented by the device application. The description of an input vs. an output
is typically different for BACnet and LON devices. For BACnet devices, an input object
provides BACnet client access to a datapoint in the device, and an output object provides
BACnet client control of a datapoint in the device. For LON devices, the description of a
network variable is typically relative to the device itself, so an input network variable
can be updated by another device, whereas an output network variable is sent to other
devices. For example, for a temperature sensor using BACnet, the temperature sensor is
viewed as an Analog Input and displayed and processed accordingly. In a LON example,
the common approach is to process the measurement internally and expose the resulting
temperature as an analog output network variable of a functional block. The functional
block typically has a profile name that identifies the type of value, for example the
functional block may be Open Loop Sensor functional block. Similarly, in the case of a
setpoint for example, in BACnet systems, setpoints are normally considered Analog
Outputs to be written to a device, whereas when using LON devices, setpoints are
processed as analog input network variables or configuration properties of functional
blocks where the profile identifies the function of the functional block such as a Space
Comfort Controller VAV. Another example of LON functional block naming is the set of
profiles defined by the LONWORKS IoT resource file set which use BACnet naming
conventions.

External
LonWorks

Device

External
LonWorks

DeviceFT 6050

Standard LonWorks Functional Block

AO: Temp Setpoint

BACnet Write BACnet Read BACnet Read

Neuron BACnet Server

nviSpaceTemp

AO: Space Temp

nviSetPoint

nvoSpaceTemp

AI:SpaceTemp

AI

Figure 1. Conceptual Model of a Virtual BACnet Server

20 Using BACnet

Figure 1 shows three LON devices. The central device contains the BACnet interface,
embodied as the Neuron BACnet Server (NBS) which exists within the Neuron core. A
BACnet client (such as a building management system operator workstation, or another
BACnet controller) communicates with the Neuron BACnet Server. The BACnet client
can read from and write to BACnet points in a completely BACnet compliant fashion.
The Neuron BACnet Server connects and maps these BACnet points internally to the
LON network variables.

Typical LON connections can still be bound, simultaneously, to the LON network
variables in the LON functional blocks as before, and the LON systems will continue
normal LON operation.

You can map a single LON network variable with multiple fields to multiple BACnet
objects. For example, in Figure 1 there is a network variable named nviSpaceTemp
that is normally connected to a suitably typed output network variable from another
device. If a BACnet client is required to supply this parameter, then the BACnet client
will execute a write to the AO:TempSetpoint Analog Output in the Neuron BACnet
Server. Internally the Neuron BACnet Stack will map this write to nviSpaceTemp.

Similarly, a BACnet client can get the value of a LON output by reading the BACnet
point mapped to that network variable output.

BACnet Read Operations
When a BACnet client polls for data, it can request any BACnet property contained
within the BACnet object. Most of these properties are rather static (e.g. object
identifier, object name) and are seldom polled, sometimes only once, and these types of
reads are handled completely within the Neuron BACnet Server.

Reads for live data normally are a BACnet read for the present value property of the
BACnet object, e.g. an Analog Input, instance 1. This results in the Neuron BACnet
Server interface accessing the appropriate live data in the LON network variable
associated with the BACnet object.

Write Operation Resolution
BACnet write operations are more complex within the BACnet protocol than the LonTalk
protocol. The BACnet protocol specifies how multiple clients can write to the present
value of a BACnet object at different priorities, and specifies a default value called the
relinquish default to be used when there is no active value. The Neuron BACnet Server
leverages this capability to support multiple BACnet and LON clients. This is illustrated
in the following diagram.

IzoT BACnet Developer’s Guide 21

FT 6050

External LonWorks Device

Physical Sensor

LonWorks Write
Internally Diverted to

BACnet
Relinquish Default

Temp from External
Device

Neuron BACnet Server

Standard LonWorks Functional Block

BACnet Writes

nviSpaceTemp

AO: Space Temp

Relinquish Default

High Low

Figure 2. Write Operation Resolution

For example, in the LONMARK VAV functional profile, the nviSpaceTemp input can
receive data either from a physical sensor, or from another LON device. The rules for
choosing which value to take are laid out by the profile and they say that if there is a
valid value from another LON device, this will override the physical input. If the validity
of the value expires for any reason, usually due to the failure to refresh the value in a
timely basis, the functional block reverts to using the physical input.

The BACnet interface extends this model. If there is valid BACnet data available, then
this overrides both the physical input as well as the input from the other LON device.

BACnet has a mechanism for commandable objects, such as Analog Outputs, that makes
this process seamless. The mechanism is based on a priority array property and a
relinquish default property.

The Neuron BACnet Server intercepts all LonTalk/IP writes and diverts these to the
relinquish default property. If no other value in the BACnet priority array has been
written, this value flows through to the NV in the functional block.

If a BACnet write occurs at a given priority, then this value is forwarded to the NV.
However a write to a lower priority is blocked. A write of a BACnet null value clears the
position in the priority array allowing lower priorities to flow through.

If all the BACnet writes are relinquished (A null value is written at all the appropriate
BACnet priority array value), then the relinquish default value, and hence the network
variable update from the external LON device, is used again. This means, after a
predetermined time with no further writes by another BACnet device, the priority array
will clear and the system will revert to using the previous source.

BACnet statuses such as Out Of Service, Override, and Fault are treated as follows:

22 Using BACnet

Out of Service This is a BACnet-only concept. It allows a BACnet point to be
disconnected from the live data, in this case the LON network
variable, for testing and diagnostic purposes. It is fully
functional within the Neuron BACnet Server but does not
impact the functioning of the LON interface.

Override Override is a flag that indicates that the BACnet value being
reported is no longer a true reflection of the physical value. It is
an optional BACnet property and is not supported by the
Neuron BACnet Server.

Fault A fault indicates some sort of problem with that value or
measurement. This condition can be detected by the Neuron
BACnet Server and is passed on to the BACnet client to indicate
the condition in a logical manner.

BACnet allows the present value property to be read back from a BACnet output. A
matching BACnet input is not required for reading back the true value of any BACnet
output. BACnet outputs in the Neuron BACnet Server allow the BACnet client to
observe the network variable values set by the physical sensors or other LON devices at
all times, without having to write anything, and without having to create a shadow
BACnet input specifically for this purpose.

IzoT BACnet Developer’s Guide 23

BACnet Interface Overview
The following figure depicts the BACnet interface.

FT 6050

Lon Application
(User Code)

LON Network
Variables

BACnet Stack

LonTalk/IP
Stack Layers 6-7

Dynamic
(RAM)

BACnet to
Lon

Mapping
Function

BACnet to LON
Mapping

Configuration and
Support

Mapping Table

LonTalk/IP Stack Layers 1-5

LonTalk
Reads and

Writes

BACnet/IP
Reads and

Writes

BACnet MS/TP
Reads and Writes

Figure 3. Functional Overview

In this figure, the items shown in blue are the Neuron LonTalk/IP firmware functions
and data structures, and the ones in green are the BACnet related functions and data
structures.

At the bottom of the diagram, arrows represent both LonTalk/IP and BACnet/IP read
and write messages. These can be transferred over FT and are not exclusive, so normal
LON operation can occur at the same time as BACnet activity.

BACnet messages are identified by LonTalk/IP message codes, and are routed through
the Neuron BACnet Stack where they are interpreted, and BACnet-only operations may

24 Using BACnet

access the mapping table and respond to the BACnet client without any further impact to
the LonTalk/IP side of the system.

BACnet messages that do affect the network variables are routed via the mapping
functions, and then back to the LonTalk/IP Stack, where they are presented to the
Application layer completely transparently to the application code.

There is a configuration requirement to map the desired BACnet objects to the LON
functional blocks. Initially this is coded by the application developer, or via IzoT Net
plug-ins.

Data Flow during a LON Write to a Network Variable
The following figure shows data flow when a LON device writes to a network variable.

FT 6050

LON Application
(User Code)

LON Network
Variables

BACnet Stack

 LonTalk/IP
 Stack Layers 6-7

Static (Flash/
EEPROM)

Dynamic (RAM)

BACnet
Mapping
Function

BACnet to LON
Mapping Configuration

Process

Mapping Table

“Sicbhook” write
intercept

(2)
(3)

LonTalk/IP Stack Layers 1-5

(1)

LonWorks Write, via
Lonworks

Figure 4. Data Flow during LON Write

IzoT BACnet Developer’s Guide 25

A LON network variable write arrives at the LonTalk/IP Stack Layer 6 in the figure; this
is noted as (1). During the processing of the write, the Neuron BACnet Stack is given an
opportunity to examine the message, and if necessary, (2) modify the data content with
higher priority data values (see Write Operation Resolution above).

The modified or unmodified message is passed back to the LonTalk/IP stack for further
processing as normal at this point (3).

Data Flow During a LON Read of a Network Variable
A LON network variable read is handled by the LonTalk/IP Stack. The Neuron BACnet
Stack does not participate in this task.

Data Flow During an Outgoing Network Variable Update
When the application program updates a network variable, the LonTalk/IP Stack
generates an outgoing LonTalk/IP NV update message and also forwards the message to
the Neuron BACnet Stack for processing. If a BACnet COV (change of value)
subscription has been configured, a BACnet COV message is generated and sent, in
addition to the LonTalk/IP NV update. If no COV subscription has been configured, then
no further BACnet action occurs.

Data Flow During a BACnet Write to a BACnet Object
A BACnet Write operation is received as a LonTalk/IP foreign frame message with a
message code specifying the payload is a BACnet/IP message. As shown in Figure 4,
when the message is received by the LonTalk/IP Stack (1) it is routed through the
Neuron BACnet Stack which extracts the BACnet properties and values, packages them
as a LonTalk/IP network variable update, and passes the network variable update back
to the LonTalk/IP Stack for further processing.

Data Types and BACnet to LON Mapping
The following BACnet objects are implemented in the Neuron BACnet Stack.

AI Analog Input
AO Analog Output
BI Binary (Boolean) Input

BO Binary (Boolean) Output

BACnet Instance Numbering
BACnet objects are identified by an object identifier with an object type and an object
instance value. The object instance value can be any number between 0 and 2^22-2
(4194302) inclusive. Object identifiers have to be unique per BACnet device, but the

26 Using BACnet

object instance value only has to be unique per Object_Type value. The Neuron BACnet
Stack automatically assigns BACnet instance numbers starting from 0 as the BACnet
objects are created.

Device Object Identifier and Name
The Device Object’s Identifier (Object_Identifier) and Name (Object_Name) properties for
a BACnet device must be unique across a BACnet internetwork.

The Neuron BACnet Stack automatically generates unique Device Object Identifier and
Object Name property values based on the IP address of the Neuron BACnet device.
These property values can be adjusted as required by using the IzoT BACnet Browser or
any other standard BACnet workstation that supports this functionality. If modified,
these values are stored in persistent memory.

Mapping BACnet Objects to LON NVs
The Neuron BACnet Stack maps LON network variables (NVs) to BACnet objects. Many
NVs are structures containing multiple fields, whereas BACnet objects are effectively
single point values with properties. As a result, there is often a one-to-many mapping
required between BACnet and LonTalk/IP.

For example, in the LONMARK VAV profile, the nvoUnitStatus output is member
number 4 with a SNVT_hvac_status type which has seven fields. To map this NV to
BACnet, the seven fields are mapped to seven BACnet Analog Input objects as shown in
the following table.

SNVT Mapping (for example)

SNVT_hvac_status.mode maps to Analog Input

SNVT_hvac_status.heat_output_primary maps to Analog Input

SNVT_hvac_status.heat_output_secondary maps to Analog Input

SNVT_hvac_status.cool_output maps to Analog Input

SNVT_hvac_status.econ_output maps to Analog Input

SNVT_hvac_status.fan_output maps to Analog Input

SNVT_hvac_status.in_alarm maps to Analog Input

The Neuron BACnet Stack automatically assigns BACnet object instance numbers to the
configured BACnet Objects. The mapping can be identified by the object name you define
in your application.

Examples of mapping methods are found in the BAClon\mapping.nc file in both the
BACevb and BACsimple sample projects. See Mapping BACnet Objects to Network
Variables below for more information.

IzoT BACnet Developer’s Guide 27

Queue Management
If there are more incoming BACnet/IP messages than the Neuron BACnet Stack can
process, these messages will back up in the LonTalk/IP Stack incoming queue, and
eventually messages will be discarded just like any other LonTalk/IP message overrun.
You can monitor incoming buffer usage using either the Manage Test command in the
IzoT Commissioning Tool or the Report Device Status and Statistics command in
NodeUtil.

BACnet MS/TP messages are queued internally before processing, and you can set the
size of this queue during development.

Adding the Neuron BACnet Stack to an FT 6050
To add the Neuron BACnet Stack to an application for the FT 6050, create a new Neuron
C project as described in the IzoT NodeBuider User’s Guide. After you have set up the
project, copy the BAClon subdirectory from one of the sample projects to the new project
directory.

Modify the project main source file, similar to what is shown in the source code of the
sample projects. Add the following #include statements and source code modifications
to the project.

1. #include statements

#include "baclon\blonsys.nc" // Required for BACnet
#include "BAClon\mapping.nc" // Must be included
// after all network
// variables have been declared

2. Source file changes

if (handle_BACnet()) // Must be included in the
 // when (msg_arrives) task

3. BAClon\mapping.nc

This file is used to create the BACnet objects and their mappings to network
variables.

4. BAClon\mapping.h

This file contains the function prototypes used by mapping.nc.

Additional Requirements for BACnet MS/TP

There are a number of parameters that need to be configurable by the network integrator
in order to support BACnet MS/TP. There is programmatic support for your application
to provide this capability. For example, your device can implement DIP switches or other
user input methods. Your application can read these inputs and use them to configure
the BACnet MS/TP interface.

28 Using BACnet

The Neuron BACnet Stack uses the Device object’s description to provide a default
method allowing a user to dynamically configure parameter settings. The methodology
requires the BACnet client to write a special string to the Description property. If this
string is formatted appropriately, the corresponding parameter gets updated, and this
change gets stored in persistent memory and persists across power cycles.

Setting the Baud Rate
BACnet requires that a device can support baud rates of 9600 bps and 38400 bps at a
minimum. The Neuron BACnet MS/TP stack provides support for automatically
determining the network baud rate using auto-baud rate detection, and also supports
setting the baud rate programmatically.

For auto-baud rate detection, the Neuron BACnet MS/TP stack monitors the channel for
valid MS/TP token frames at the configured baud rate. If, after a short interval, no valid
MS/TP token frames have been received, but traffic is detected on the MS/TP network,
the Neuron’s MS/TP channel baud rate is automatically changed to another supported
value. This cycle is repeated until a lock on the correct baud rate is established.

If there is silence on the network, the Neuron BACnet MS/TP stack goes into a Token
Recovery mode. In this mode, a BACnet device waits for a multiple of its MAC address
before attempting to recover a token by ‘creating’ and sending a new one. This means
that if all devices are powered up at exactly the same time, it is likely that the device
with the lowest MAC address will establish a new token, and the baud rate of that device
will be adopted for the network.

If there is not silence on the network, then a device with the correct baud rate will
eventually receive the token, and be allowed to transmit. If the baud rate is not correct,
there will never be silence on the network, and the device will never receive a valid
token, and this device will never (it is not allowed to) transmit.

To ensure that the network baud rate is set to the best value, follow these steps:

1. If there are other stations on the network that do not support auto-baud rate, set the

MAC address for at least one of them to be lower than any auto-baud devices on the
channel, including any Neuron BACnet devices.

2. Set the BACnet Router (a BACnet/IP to BACnet MS/TP or BACnet FT to BACnet
MS/TP micro-router) to the lowest MAC address on the channel after any non auto-
baud devices to establish the network’s baud rate.

If a Neuron BACnet device has the lowest MAC address on the channel, the initial baud
rate set in software will become the network baud rate.

Setting the MAC address
The example source code defaults the BACnet MS/TP MAC address to 47. To
programmatically modify this, declare the following:

 extern unsigned int This_Station;
 This_Station = 23; // New address, 0 to 127 are valid.

To alter the MAC address dynamically, write “M:hh” to the Device Object Description
Property, where hh is the new hexadecimal MAC address 00 to 7F are valid values

IzoT BACnet Developer’s Guide 29

Mapping BACnet Objects to LON NVs
You can map BACnet objects to LON network variables (NVs) and application internal
variables using function calls, as demonstrated in the Initialize_BACnet_Objects()
function, found in the mappings.nc file. Analog Objects and Binary Objects use
different mapping functions, as follows:

Create_Analog_Input(
 // Create an Analog Input
 // object and map

"Space Temp",
 // The object name of the BACnet Object created

&localTemperature,
 // The address of the LonWorks network variable
 // or application internal variable

Get_Analog_Lon_Datatype_Handle(LDT_SNVT_temp_p));
 // The mapping type. There are a number of predefined
 // mapping types, such as this one, but users
 // can create their own as shown later. The predefined
 // types are listed in the mapping.h file.

Create_Analog_Output(..) ;
 // Exactly the same as above, but for a
 // BACnet Analog Output object.

Create_Binary_Input(
 "nvoSwitch1Out",
 // The object name of the BACnet object created

&nvoSwitch1.state,
 // The address of the LonWorks variable of interest.
 // A field of a structure is used here.
 Get_Binary_Lon_Datatype_Handle(LDT_SNVT_switch__state));
 // The mapping type for a binary value.
 // This standard mapping type has an extension
 // that describes the field.

Create_Binary_Output (..) ;

 // Exactly the same as a Binary Input.

Complex Mapping
If a network variable has a structure or union with multiple fields, to make the full NV
available through the BACnet interface, you can map each field to a separate BACnet
object. For example, the LDT_SNVT_hvac_overid_percent mapping type provides a
mapping of the SNVT_hvac_overid.percent field to a BACnet Analog Output or Input.

It is possible for a BACnet client to both read from and write to an output (e.g. Analog
Output), subject to the rules of BACnet objects, such as out-of-service and priority arrays.

30 Using BACnet

Mapping UNVTs
NVs based on UNVTs are mapped in a similar fashion to NVs based on SNVTs, but you
must define the mapping macro for your user types. Refer to the BAClon\mapping.h
and mapping.nc files, and use one of the pre-defined mappings as an example to
generate an appropriate mapping for the your UNVT, and then you can apply this new
mapping to your NVs based on UNVTS in the BAClon\mapping.nc file. See below for
instructions how to create user defined mappings.

User Definable Scaling
You can add a user scaling factor to the internal list of scaling factors using either
integer scaling or floating point scaling. Integer scaling requires less memory, and
floating point scaling provides more precision.

For integer scaling, define a scale factor as shown in the following example:
UserScaleFactor userScaleFactor = DefineScaleFactor(

1, // The multiplier term (signed integer)

-3, // The power term (signed integer)

0, // The offset term (signed integer)

);

For higher precision floating-point scaling, define a scale factor as shown in the following
example:
UserScaleFactor userScaleFactor = DefineHiResScaleFactor(

&fl_OnePointEight, // The multiplier term (float)

0, // The power term (note: signed integer)

&fl_ThirtyTwo, // The offset term (float)

);

See BAClon\mapping.nc for examples. Once you have created a new scaling factor, create a
new mapping type for it as defined in the next section.

IzoT BACnet Developer’s Guide 31

User Definable Mapping Types
You can define new mapping types to support NVs based on SNVTs that are not already
mapped, or that are based on UNVTs that you have defined. To create a new mapping
function, follow these steps:

1. Add a new mapping tag to the end of the mapping tag #define list:

#define LDT_SNVT_elec_kwh_l 105

#define LDT_SNVT_new_user_tag 106

2. Define the new mapping type:

DefineAnalogSystemMappingType(// Binary also available

LDT_SNVT_new_user_tag, // new tag as defined

DF_ULong, // the LonWorks data format

userScaleFactor, // as defined

UNITS_DEGREES_CELSIUS // one of the units available

);

Once you have defined the new mapping type has been defined, you can use it just like
the built-in mapping types, for example:

Create_Analog_Input(

"Space Temp", // Object name

&localTemperature, // LonWorks datapoint

Get_Analog_Lon_Datatype_Handle(LDT_SNVT_new_user_tag)

 // new mapping type, as defined

);

Reading and Updating the BACnet Priority Array
You can read and update entries in the BACnet priority array. As described in Using the
Neuron BACnet Server, the Neuron BACnet Stack uses the BACnet priority array to select
the highest priority value for the present value property. This is handled by the Neuron
BACnet Stack, and you typically do not have to read or write the priority array from your
application. You can update entries in the priority array to interact between modes of
network operation. An example use case is as follows:

A functional block receives an input from an input network variable and uses this to
update the value of an output network variable. If the input network variable is set
to the invalid value, the application controls the output network variable value.
However, in the presence of a BACnet client, the BACnet client may also update the
output network variable value.

The example use case can be implemented by mapping a BACnet output variable onto
the LON output network variable as described in the sections above. The application

32 Using BACnet

typically writes its desired output to the relinquish default value of the BACnet output
variable. In the absence of any BACnet writes, the relinquish default value flows
through to the present value, and thereafter to the mapped output network variable.

Instead of writing the relinquish default value, you can update any of the priority array
values by writing to the present value with a specified priority. The highest priority
value (lowest numeric value) in the priority array will flow through to the present value,
and thereafter to the mapped output network variable. You can override the output by
updating the present value at a higher priority than any other active values.

You can cancel a value at a specified priority by writing a BACnet NULL to the present
value with the specified priority.

You can process network variables with multiple fields in the same way, with a BACnet
object mapped onto each field. The relinquish default and priority array processing will
handle the aggregate operation correctly.

You can read and write values using floats and booleans similar to BACnet, or using
LON NV types.

Neuron BACnet API Reference
You can read and update entries in the BACnet priority array using the Neuron BACnet
API. This section provides a reference for the Neuron BACnet API functions. To use
these functions, include the AppAPI.h header file in your Neuron C application. For an
example, see the APIdemo.c application.

BAPI_ERR BACapiInitOrdinaryVariable(

 const void *ordinaryVariable,
 const uint8_t sizeofOrdinaryVariable);

This function initializes a local structured variable. A local structured variable is a
structured variable that is not a network variable. A true network variable does not
need initialization. There is no side effect if a network variable or a local variable that is
not a structure is initialized. However, if a local structured variable is not initialized, the
Neuron BACnet Server will not aggregate processing of the relinquish default and
priority array across all fields of the variable. The server will instead only process the
relinquish default and priority array for the one field that the BACnet object is mapped
to.

void BACapiRegisterCallback(

 void (*callbackFunc) (const int8_t objectHandle));

This function registers a callback function that the Neuron BACnet Server calls every
time an external BACnet client writes to the present value of a mapped variable.

IzoT BACnet Developer’s Guide 33

BAPI_ERR BACapiWritePVsnvt(
 const int8_t handle,
 const uint8_t bac_priority,
 const void *value);

BAPI_ERR BACapiWritePVfloat(
 const int8_t handle,
 const uint8_t bac_priority,
 float_type *value);

BAPI_ERR BACapiWritePVbool(
 const int8_t handle,
 const uint8_t bac_priority,
 const Boolean value);

These functions write to a mapped variable. The Neuron BACnet Server returns the
handle parameter when the original BACnet object to LON variable mapping is done in
mappings.nc.

The bac_priority value sets the priority of the write operation, resulting in the value
being stored in the priority array at that priority (1 to 16). One cannot write to priority
6, per the BACnet specification. Priority 1 is the highest priority.

BAPI_ERR BACapiWriteRDsnvt(const int8_t handle, const void *snvtPtr);
BAPI_ERR BACapiWriteRDfloat(const int8_t handle, float_type *tfloat);
BAPI_ERR BACapiWriteRDbool(const int8_t handle, const boolean val);

These functions update the relinquish default value.

34 Using BACnet

BAPI_ERR BACapiReadPVfloat(const int8_t handle, float_type *tfloat);
BAPI_ERR BACapiReadPVbool(const int8_t handle, boolean *tbool);
BAPI_ERR BACapiReadPVsnvt(const int8_t handle, void *tsnvt);

BAPI_ERR BACapiReadPAfloat(
 const int8_t handle,
 const int bac_priority,
 float_type *tfloat);
BAPI_ERR BACapiReadPAbool(
 const int8_t handle,
 const int bac_priority,
 boolean *tbool);
BAPI_ERR BACapiReadPAsnvt(
 const int8_t handle,
 const int bac_priority,
 void *tsnvt);

BAPI_ERR BACapiReadRDfloat(const int8_t handle, float_type *tfloat);
BAPI_ERR BACapiReadRDbool(const int8_t handle, boolean *tbool);

These functions return the present value, the value in the priority array at a given
priority, and the relinquish default values of a commandable BACnet object. The
ReadPV functions return the same value as the local or network variable value that the
BACnet object is mapped onto, and is included mainly for presenting the data in BACnet
format.

Change of Value (COV) Support
The Neuron BACnet Stack supports Change of Value (COV) services for Binary Input
and Analog Input object types. COV support for Analog Output and Binary Output
object types is optional for BACnet and is not supported for the Neuron BACnet Stack.

The Subscribe COV service is fully supported. The BACnet optional Subscribe COV
Property service is optional for BACnet and is not supported for the Neuron BACnet
Stack.

Both Confirmed and Unconfirmed COV support is provided.

The optional lifetime parameter of COV subscriptions is supported.

COV subscription does not require any configuration, and standard BACnet clients will
do the subscription automatically according to the BACnet specification. See the BACnet
specification for further information.

Read Property Multiple Support
The Neuron BACnet Stack supports BACnet Read Property Multiple (RPM). This allows
block transfers of multiple BACnet properties, which can speed up communications
significantly.

The ultimate transfer size APDU is limited to somewhat less than a single packet on the
network, currently set to about 206 bytes. Standard BACnet clients will attempt to do a
RPM, and if the Neuron BACnet Stack responds with a reject packet due to size
constraints, BACnet clients will then break their request down to smaller and smaller
lists until a response can be built and sent successfully by the Neuron BACnet Stack.

Read Property Multiple does not require any configuration, and standard BACnet Clients
will do the RPM automatically according to the BACnet specification. See the BACnet
specification for further information.

IzoT BACnet Developer’s Guide 35

Application Image Download
You can download a new application image to a Neuron BACnet device over the MS/TP
interface using the standard BACnet file transfer service (Atomic Write File or AWF
service). The AWF service only allows atomic writes of individual blocks of any given
file, so additional checks are made to ensure the integrity of the file transfer. The ability
to read a file (ARF) is not supported.

To transfer a new application image file to a Neuron BACnet device over MS/TP, follow
these steps:

1. Verify the Neuron BACnet MS/TP stack is running on the device to be loaded. The
application cannot be offline and the device cannot be unconfigured or applicationless
for this to work. This is in contrast to an application load over LonTalk/IP which can
work regardless of the device state.

2. Use the standard BACnet AWF service to transfer the <filename>.ndb, file to your
Neuron BACnet device. This file is automatically created by the NodeBuilder
software as part of the build process and is located in the NodeBuilder project’s
Release or Development folder. The Neuron BACnet Stack tracks the start-of-file
block, the sequence of block transfers, including any retries, the CRC of the total
transfer, and detects when the end of file (according to the prepended length) has
been reached.

3. At the end of the file transfer, if the CRC is valid the new image is automatically
written to flash memory and the Neuron core is restarted.

4. You can validate a successful download and switchover by reading the version
number of the new application if the application implements an application defined
configuration property with the version number.

36 Using BACnet

BACnet Test Tools
You can use any of the following tools to test your Neuron BACnet devices:

• IzoT BACnet Browser – This is a standard BACnet Client distributed by
ConnectEx. It can automatically discover BACnet devices, and displays the
discovered devices and BACnet objects in the left BACnet Object List pane. To view
the present value and other properties for a BACnet object, right-click the object in
the BACnet Object List pane. The present value and a few other properties are
displayed and monitored in the right Object Details pane. You can download the
IzoT BACnet Browser for free from the following location:

http://www.connect-ex.com/demos_and_downloads/bacnet-browser-for-echelons-izot

• Third-party BACnet Clients – you can use any BACnet client to read all BACnet
points served by the Neuron BACnet Stack. Contact ConnectEx, Inc. if you
encounter any compatibility issues. You can report problems on the following page:

https://connectex.zendesk.com

• For much more rigorous testing of your application before submitting to BTL, use the
BACnet Test Client that is available on the following page:

http://www.bac-test.com/downloads/

http://www.connect-ex.com/demos_and_downloads/bacnet-browser-for-echelons-izot
https://connectex.zendesk.com/
http://www.bac-test.com/downloads/

IzoT BACnet Developer’s Guide 37

• The Wireshark protocol analyzer is invaluable for analyzing BACnet traffic. A
dissector for BACnet packets is built in. For more information on using Wireshark to
analyze BACnet traffic, see the following white paper:

http://www.bacnet.org/Bibliography/BACnet-Today-08/Karg_2008.pdf

You can download Wireshark for free from the following location:

 http://www.wireshark.org/download.html

 To use Wireshark, follow these steps:

1. Download Wireshark from www.wireshark.org/download.html.
2. Install the Wireshark software.
3. Start Wireshark.
4. Set up a capture filter for UDP Port 47808 to reduce capture traffic.
5. Start packet capture with Wireshark. BACnet messages will be

dissected and displayed.
6. If you did not set up a capture filter, you can set up a display filter so

only BACnet messages are shown. For more information on how to
use Wireshark, see www.wireshark.org/docs.

http://www.bacnet.org/Bibliography/BACnet-Today-08/Karg_2008.pdf
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html
http://www.wireshark.org/docs

38 Using BACnet

Other Resources

The Official BACnet Website
www.bacnet.org

The BACnet Standard
Standard 135-2012-- BACnet--A Data Communication Protocol for Building Automation
and Control Networks (ANSI Approved). 2012

The BACnet Standard is available in paper and PDF form for approximately $170 from
ASHRAE.

Browse to the address below and enter for “135” in the search box www.techstreet.com/.

Wiki
You can find additional BACnet information at www.bacnetwiki.com.

Vendor IDs
You can obtain a BACnet Vendor ID from:

www.bacnet.org/DL-Docs/Procedures-Vendor-ID-rev3-15-2012.pdf

PIC (Protocol Implementation Conformance Statement) Statement Information
You can find information on BACnet PIC statements at:

 www.bacnet.org/DL-Docs/

Device Profiles
You can find information on BACnet device profiles at:

 www.bacnetwiki.com/wiki/index.php?title=Device_Profiles

http://www.bacnet.org/
http://www.techstreet.com/
http://www.bacnetwiki.com/
http://www.bacnet.org/DL-Docs/Procedures-Vendor-ID-rev3-15-2012.pdf
http://www.bacnet.org/DL-Docs/
http://www.bacnetwiki.com/wiki/index.php?title=Device_Profiles

IzoT BACnet Developer’s Guide 39

Appendix A

Glossary

This glossary provides definitions for terms discussed in this manual

40 Glossary

Application Device

An IzoT or LON device that runs an ISO/IEC 14908-1 application (OSI Layer 7). The
application may run on a Neuron Chip or Smart Transceiver, in which case the device is
called a Neuron hosted device. If the application runs on another processor besides a
Neuron Chip or Smart Transceiver, it is called a host-based device.

Application Image

For a Neuron hosted device, the application image is the device firmware that consists of
the object code generated by the Neuron C compiler from the user’s application program
and other application-specific parameters, including the following:

• Network variable fixed and self-identification data
• Network variable device interface data
• Program ID string
• Optional self-identification and self-documentation data
• Number of address table entries
• Number of domain table entries
• Number and size of network buffers
• Number and size of application buffers
• Number of receive transaction records
• Input clock speed of target Neuron Chip or Smart Transceiver
• Transceiver type and bit rate

Application Program

The software code in an IzoT or LON device that defines how it functions. The
application program, also referred to as the application, may be in the device when you
purchase it, or you may load it into the device from application image files (.APB, .NDL,
and .NXE extensions for Neuron hosted devices) using the IzoT Commissioning Tool or
other network management tool. The application program interfaces with the
LonTalk/IP Stack to communicate over the network. It may reside completely in the
Neuron Chip or Smart Transceiver, or it may reside on an attached host processor (in a
host-based device).

Binding

Process of connecting network variables. Binding creates logical connections (virtual
wires) between IzoT and LON devices. Connections define the data that devices share
with one another. Tables containing connection information are stored in the device’s
non-volatile memory, and may be updated by a network management tool or the ISI
protocol.

Changeable-Type Network Variable

A network variable that has a type and length that can be changed to that of another
network variable type. You can use changeable-type network variables to implement
generic functional blocks that work with different types of inputs and outputs.

Channel

The physical media between devices upon which the devices communicate. The
LonTalk/IP protocol is media independent; therefore, numerous types of media can be
used for channels: Level 4 twisted pair, Cat 5 twisted pair, power line, fiber optics, RF,
and other types.

IzoT BACnet Developer’s Guide 41

Commissioning

The process in which the network management tool downloads network and application
configuration data into a physical device. For devices with application programs not
contained in ROM, the network management tool can also download the application
program into non-volatile RAM in the device. Devices are usually either commissioned
and tested one at a time, or commissioned and then brought online and tested
incrementally.

Configuration Properties (CPs)

Configuration properties are data values that define the behavior of an application device
by determining the manner in which device application data is manipulated and when
device application data is transmitted. A configuration property can be applied to the
device, a functional block on the device, or a network variable on the device.
Configuration properties can determine the functions to be performed on the values
stored in network variables. For example, a configuration property may specify a
minimum change that must occur on a physical input to a device before the
corresponding output network variable is updated.

Configured

A device state where the device has both an application image and a configured network
image. This indicates that the device is ready for network operation.

Connection

The implicit addressing established during binding. A connection links one or more
logical outputs (network variables or message tags) to one or more logical inputs.

Connect Button

A button on an ISI device that the user can press to create a connection. The Connect
button on an FT 6000 EVB running the NcSimpleIsiExample or NcMultiSensorExample
application is the SW2 button on the right side of the board.

Connect Light

An LED on an ISI device that provides feedback related to the status of an ISI
connection. The Connect light on an FT 6000 EVB running the NcSimpleIsiExample or
NcMultiSensorExample application is LED2, which is located directly above the SW2
button.

Connection Host

A device using ISI installation that initiates the enrollment process by sending a
connection invitation specifying a connection assembly.

Connection Member

A device using ISI installation that has joined an ISI connection, but is not the
connection host.

Device

A device that communicates on an IzoT or LONWORKS network using ISO/IEC 14908-1,
LonTalk/IP, or BACnet/IP. A device may be an application device, network service
device, or a router. Devices are sometimes referred to as nodes in LONWORKS
documentation.

42 Glossary

Device Interface (XIF)

The logical interface to a device, abbreviated as XIF. A device’s interface specifies the
number and types of functional blocks; number, types, directions, and connection
attributes of network variables; and the number of message tags. The program ID for a
device is used as the key to identify each device interface. Each program ID uniquely
defines the static portion of the interface. However, two devices with identical static
portions may differ if dynamic network variables are added or removed, or if the types of
changeable network variables are changed. Thus it is possible to have devices with the
same program ID but different device interfaces.

Device Interface (XIF) File

A file that documents a device’s interface with a network. The file can be a text file (.XIF
extension), or it can be a binary file (.XFB extension).

Device-Specific Configuration Property

A configuration property that has values that can be modified independent of the
network database. Changes made to a device-specific configuration property are not
updated in the network database.

Device Template

A device template contains all the attributes of a given device type, such as its functional
blocks, network variables, and configuration properties. You can create a device
template by importing a device interface (XIF) file supplied by the device manufacturer,
or by uploading the device interface definition from the physical device. A device
template is identified by its name and its program ID. Both must be unique within a
network—you cannot have two device templates with the same name or the same
program ID in a single network.

Download

An installation process in which data, such as the application program, network
configuration, and/or application configuration, is transferred over the network into a
device.

Free Topology

A connection scheme for the communication bus that eases traditional transmission line
restrictions of trunks and drops of specified lengths and at specified distances, and
terminations at both ends. Free topology allows wire to be strung from any point to any
other, in bus, daisy chained, star, ring, or loop topologies, or combinations thereof. It
only requires one termination anywhere in the network. This can reduce the cost of
wiring significantly. Free topology can be implemented with either Level 4 or Cat 5
twisted pair cable.

FT 6000 EVB

An evaluation board that uses Echelon’s IzoT FT 6050 Smart Transceiver. It features a
compact design that includes the following I/O devices that you can use to develop
prototype devices and run the FT 6000 EVB examples: 4 x 20 character LCD display,
4-way joystick with center push button, 2 push-button inputs, 2 LED outputs, light-level
sensor, and temperature sensor.

Functional Block (FB)

A collection of network variables, configuration properties, and associated behavior that
defines a specific system functionality. Functional blocks define standard formats and

IzoT BACnet Developer’s Guide 43

semantics for how information is exchanged between devices on a network. Each
functional block implements a functional profile.

Functional Block Array

A set of identical functional blocks. A functional block array is useful if your device
contains two or more similar I/O devices such as temperature or pressure sensors,
switches, lights, or dials that will each have an identical external interface. In addition,
a functional block array saves code space and reduces the number of when-tasks in your
code.

Functional Profile

A template for a functional block that enables equipment specifiers to select the
functionality they need for a system. Each functional profile defines mandatory and
optional network variable and configuration property members along with their intended
usage. A number of generic standard functional profiles are available for generic devices
such as simple sensor and actuators. Many industry-specific standard functional profiles
are available for industry-specific applications. Industry-specific standard profiles are
developed through a review and approval process, including a cross-functional review to
ensure the profile will interoperate within an individual subsystem and also provide
interoperability with other subsystems in the network.

User-defined functional profiles can be created if no appropriate standard profiles are
available.

I/O Object

An instantiation of an I/O model. An I/O objects consists of a specific I/O model, and its
pin assignment, modifiers, and name.

Interoperable Self-Installation (ISI) Protocol

The standard protocol for performing self-installation in IzoT and LONWORKS networks.
ISI is an application-layer protocol that lets you install and connect devices without
using a separate network management tool. It is typically used in small networks, and
may be used in any network with less than 200 devices with simple connection and
configuration requirements.

ISI Mode

An installation scenario in which the ISI protocol is used (instead of a network
management tool) to install devices and create network variables connections.

IzoT Net Server

A network operating system that provides services for interoperable IzoT and LONWORKS
installation, maintenance, monitoring, and control tools such as the IzoT Commissioning
Tool. Using the services provided by the IzoT Net Server, tools and plug-ins from
multiple vendors can work together to install, maintain, monitor, and control IzoT and
LONWORKS networks.

IzoT Network Database

A database managed and maintained by the IzoT Net Server that includes the network
and device configuration data for an IzoT or LONWORKS network.

44 Glossary

Izot Net Server Computer

A computer running the IzoT Net Server software. The IzoT Net Server manages and
maintains a network database for each network managed by the server.

Out-Of-Service

A state of a BACnet object that allows writes to the Present_Value property to take place
without propagating the new value to the hardware output itself. This is typically used
for testing.

Local Client

An IzoT Net application running on the same computer as the IzoT Net Server.

NcMultiSensor Local Device

An FT 6000 EVB running the NcMultiSensorExample application that receives
SNVT_lux and/or SNVT_temp_p output network variable updates from another device
(an NcMultiSensor remote device). The local device displays the temperature and light
level values received from the remote device in the Remote Info Mode panel on its LCD.
A remote device may be another FT 6000 EVB board running the NcMultiSensorExample
application.

IzoT Commissioning Tool (CT) Browser

An IzoT Net plug-in that provides a table view of the network variables and
configuration properties of selected devices and functional blocks. You can use the IzoT
CT Brower to monitor and control the network variables and configuration properties in
a network.

IzoT CT Drawing

An IzoT CT drawing contains the graphical representation of an IzoT or LONWORKS
network.

IzoT Commissioning Tool (CT)

A network management tool that uses Visio as its graphical user interface. You can use
IzoT CT to design, commission, maintain, and document distributed control networks.

IzoT Network

A network of intelligent devices (such as sensors, actuators, and controllers) that
communicate with each other using ISO/IEC 14908-1 control services with IP transport
services over one or more communications channels.

LONMARK Logo

A distinctive logo applied to IzoT and LONWORKS devices that have been certified to the
interoperability standards of LONMARK International.

LonTalk/IP Protocol

The LonTalk/IP Protocol is a communications protocol for control applications that
provides comprehensive control services over standard IP. The upper layers of the
LonTalk/IP Protocol are called the LonTalk/IP control services, and the lower layers are
called the LonTalk/IP transport services. The LonTalk/IP control services are defined by
Layers 4 through 7 of the ISO/IEC 14908-1 Control Network Protocol (CNP). The
transport services are channel-type dependent. For native IP channels such as Ethernet
or Wi-Fi, the transport services are defined by the RFC 768 User Datagram Protocol
(UDP) transport layer and the RFC 791 Internet Protocol (IP) internet layer. For
ISO/IEC 14908-1 native LON channels such as FT, the Layer 2 through 3 transport

IzoT BACnet Developer’s Guide 45

services are defined by the ISO/IEC 14908-1 protocol standard. For FT, the Layer 1
Physical layer communications media is defined by the ISO/IEC 14908-2 protocol
standard.

LONWORKS Network

A network of intelligent devices (such as sensors, actuators, and controllers) that
communicate with each other using the ISO/IEC 14908-1 Control Network Protocol or
LonTalk/IP protocol over one or more communications channels.

LONWORKS Technology

The technology that allows for the creation of open, interoperable control networks that
communicate with the ISO/IEC 14908-1 Control Network Protocol or the LonTalk/IP
protocol. LONWORKS technology consists of the tools and components required to build
intelligent devices and to install them in control networks.

Managed Network

A network where a shared network management server, such as the Izot Net Server, is
used to perform network installation.

Mandatory Network Variable/Configuration Property

A network variable/configuration property that must be implemented by the functional
block, as specified by the functional profile that the functional block is instantiating.

Monitored Connection

A network variable connection in which the current values are being monitored, typically
by a network management tool or HMI application. .

Network Interface

An IzoT or LONWORKS device that provides a Layer 2 or Layer 5 LonTalk/IP interface to
an external host computer such as a computer or a handheld maintenance tool.

Network Variable (NV)

A data value or structured set of values on a device that can be shared with other
devices. Network variables are data items (such as temperature, the state of a switch, or
actuator position setting) that a particular device application program expects to receive
from other devices on the network (an input network variable) or expects to make
available to other devices on the network (an output network variable).

Network Variable/Configuration Property Types

A network variable or configuration property type defines the structure and contents of
the data object. A network variable type can be either a standard network variable type
(SNVT) or a user-defined network variable type (UNVT). A configuration property type
can be a standard configuration property type (SCPT) or a user-defined configuration
property type (UCPT)

Neuron C

A programming language based on ANSI C that you can use to develop applications for
Neuron Chips and Smart Transceivers. It includes network communication, I/O,
interrupt-handling, and event-handling extensions to ANSI C, which make it a powerful
tool for the development of IzoT and LONWORKS device applications.

46 Glossary

Neuron Chip

A semiconductor component specifically designed for providing intelligence and
networking capabilities to low-cost control devices. The Neuron Chip includes a
communication port for connections to various network types.

Neuron Core

A processor core that includes up to four processors that provide both communication and
application processing capabilities. Two processors execute the Layer 2 through 6
implementation of the ISO/IEC 14908-1 Control Network Protocol and the third executes
Layer 7 and the application code. The Series 5000 and Series 6000 Neuron cores include
a fourth processor for interrupt service routine (ISR) processing. The Neuron core is
implemented in Neuron Chips and Smart Transceivers.

Neuron Firmware

A complete operating system including an implementation of the ISO/IEC 14908-1
protocol used by a Neuron Chip or Smart Transceiver. The Neuron firmware for the
Series 6000 core includes implementations of the LonTalk/IP and BACnet/IP protocol
stacks.

Neuron ID

A 48-bit number assigned to each Neuron core at manufacture time. The Series 6000
Neuron core uses an IP-standard MAC ID for the Neuron ID. Each Neuron Chip and
Smart Transceiver has a unique Neuron ID, making it like a serial number.

Node Object

A functional block that monitors the status of all functional blocks in a device and makes
the status information available for monitoring by a network management tool.

NodeBuilder Tool

A hardware and software platform that is used to develop applications for Neuron Chips
and Smart Transceivers. The NodeBuilder tool provides complete support for creating,
debugging, testing, and maintaining IzoT and LONWORKS devices. You can use the
NodeBuilder tool all to create many types of devices, including VAV controllers,
thermostats, washing machines, card-access readers, refrigerators, lighting ballasts,
blinds, and pumps. You can use these devices in a variety of systems including building
controls, lighting controls, factory automation, and transportation.

Non-const Device-specific Configuration Property

A configuration property that can be changed by the device application or a network
management tool. An example of a non-const device-specific configuration property is
the SCPTnwrkCnfg configuration property in the Node Object functional block of the
NcMultiSensorExample and NcSimpleIsiExample applications. This configuration
property stores the current network configuration mode (ISI or managed) of the example
application.

OffNet

A management mode of a network management tool in which network configuration
changes are stored in the network database, but not propagated to the devices on the
network. To send the changes to the devices, you place the tool OnNet. If the tool is
OffNet and attached to the network, you can still perform read operations on the
network.

IzoT BACnet Developer’s Guide 47

OnNet

A management mode of a network management tool in which network configuration
changes are propagated immediately by the tool to the devices on the network.

Optional Network Variable/Configuration Property

A network variable or configuration property listed as an optional component in a
functional profile. Functional blocks can elect not to implement optional network
variables or configuration properties specified by the functional profile that the
functional block is instantiating.

Out-Of-Service

A state of a BACnet object that allows writes to the present value to take place without
updating local hardware. This is typically used for testing.

Peer-To-Peer

A control strategy in which independent intelligent devices share information directly
with each other and make their own control decisions without the need or delay of using
an intermediate, central, or master controller. Peer-to-peer control enhances system
reliability by eliminating the master (a single point of failure) and reduces installation
and configuration cost inherent in peer-to-peer designs.

Priority Array

An array of 16 output values for a BACnet output. Each value may be a valid or invalid
value. The highest priority valid value is copied to the present value of the BACnet
output, with the first entry having a priority of 1, the last entry having a priority of 16,
and 1 being the highest priority.

Program ID

A unique, 64-bit identifier that identifies the device interface (XIF) for a device.
Typically represented as a 16-hex digit ID.

Relinquish Default

A request that cancels’ a write operation at a given priority. The request is made by
writing a NUL value to the present value at the appropriate priority to be relinquished,
making the value at the specified priority invalid. The highest valid value remaining in
the priority array becomes the new present value. If no suitable values remain in the
priority array, then the relinquish default value is transferred. In the Neuron BACnet
Stack implementation, the relinquish default value is updated by any external LON
input to the network variable.

Remote Client

An IzoT Net application that communicates with the IzoT Net Server running on a
separate computer over a LonTalk/IP channel

NcMultiSensor Remote Device

An FT 6000 EVB running the NcMultiSensorExample application that sends SNVT_lux
and/or SNVT_temp_p output network variables updates to an FT 6000 EVB running the
NcMultiSensorExample application (the NcMultiSensor local device). The temperature
and light level values are displayed in the Remote Info Mode panel on the LCD of the
local device.

48 Glossary

Remote Network Interface (RNI)

A network interface that enables you to connect an IzoT Net Server, LNS Server, or
OpenLDV-based application to an IzoT or LONWORKS network via a TCP/IP connection.
RNIs are available on the IzoT Router, SmartServer, and i.LON 600 Router.

Resource File

A file included with an IzoT or LONWORKS device that defines profiles and data types
implemented by the device. Resource files hold definitions of standard and user-defined
resources, including network variable and configuration property types, functional
profiles, enumerations, and formatting rules to display network variable and
configuration properties in a readable form. Resource files are used during device
development, installation, maintenance, and management. Standard resource files are
distributed by LONMARK International. User-defined resource files are created and
managed by the device developer during device development.

Self-Installed Network

A network that has network addresses and connections created without the use of a
network management tool. In a self-installed network, each device contains code which
implements the ISI protocol and that replaces parts of the network management server’s
functionality, resulting in a network that no longer requires a special tool or server to
establish network communication or to change the configuration of the network.

Service Button

A push button or other actuator on an IzoT or LONWORKS device that is used during
installation to acquire the device’s Neuron ID. For a Neuron hosted device, the button is
connected to the service pin of the Neuron Chip or Smart Transceiver. When this pin is
activated, the Neuron core sends a broadcast message containing its Neuron ID and
program ID. The method used to implement the Service button varies from device to
device. Examples of mechanical methods include grounding via a push button or using a
magnetic reed switch. By attaching one of the device’s I/O pins to the service pin, the
service pin can also be put under software control as long as the application code is being
executed. For example, the device can ground the pin when the device is moved or when
a predefined series of I/O occurs. The service pin can also be used to drive an LED that
indicates the device’s state. The Service LED is solid on when the device is
applicationless, blinks slowly when the device has an application and is unconfigured, is
off when the device has an application and is configured. Some applications also
implement additional service pin blink patterns.

Standard Configuration Property Type (SCPT)

A standardized definition of the structure, encoding, scaling, units, and usage for a
configuration property type that is used to define the structure and semantics for a
datapoint that is used to configure the operation of a device. SCPTs are defined and
published by LONMARK International to simplify and speed application development and
to facilitate interoperability. SCPTs are defined for a wide range of configuration
properties used in many kinds of functional profiles, such as hysteresis bands, default
values, minimum and maximum limits, gain settings, and delay times.

In addition to standard or user-defined network variable types, which define the data
type, formatting rules, limits and units, a SCPT also define semantics. For example, the
SNVT_time_sec standard network variable type defines a data type for exchanging
durations of time, in seconds. The SCPTmaxSentTime standard configuration property
type references SNVT_time_sec, but adds semantics by clarifying that this
configuration property defines the maximum period of time between consecutive

IzoT BACnet Developer’s Guide 49

transmissions of the current value. See types.lonmark.org for a current list and
documentation.

Standard Functional Profile

A standardized definition of a network visible component of the device interface. A
profile encapsulates and defines a set of network variables and configuration properties
for the network visible component, and specifies how they are used. Standard functional
profiles are defined and published by LONMARK International. See types.lonmark.org for
a current list and documentation. See Functional Profile for more information about
functional profiles.

Standard Network Variable Type (SNVT)

A standardized definition of the structure, encoding, scaling, and units for a network
variable type. SNVTs are defined and published by LONMARK International to simplify
and speed application development and to facilitate interoperability by providing a
well-defined interface for communication between devices. See types.lonmark.org for a
current list and documentation.

Stencil

A collection of master shapes that can be reused in the IzoT Commissioning Tool.

TP/FT-10

The standard free topology twisted pair LONWORKS channel type. The channel bit rate is
78 kbps bit rate. Defined by the ISO/IEC 14908-2 standard. Also referred to as FT.

User-defined Configuration Property Type (UCPT)

A manufacturer-specific of the structure, encoding, scaling, units, and usage for a
configuration property type that is used to define the structure and semantics for a
datapoint that is used to configure the operation of a device. LONMARK-certified devices
must have UCPTs documented in resource files according to a standard format, in order
to allow the devices to be configured without the need for proprietary configuration tools.
See Standard Configuration Property Type (SCPT) for more information on configuration
property types.

User-defined Functional Profile

A manufacturer-specific definition of a network visible component of the device interface.
A profile encapsulates and defines a set of network variables and configuration
properties for the network visible component, and specifies how they are used. See
Functional Profile for more information about functional profile templates.

User-defined Network Variable Type (UNVT)

A manufacturer-specific definition of the structure, encoding, scaling, and units for a
network variable type. LONMARK-certified devices must have UNVTs documented in
resource files according to a standard format, in order to allow the devices to be
interoperable.

Virtual Functional Block

A functional block created by a network management tool that that contains the network
inputs and outputs for a device that are not part of other functional blocks on the device.

	Contents
	Preface
	Purpose
	Related Documentation
	Technical Support
	Getting Started with BACnet
	Overview of BACnet for the Series 6000 Processors
	What’s New
	Data Formatting

	Software Requirements
	Hardware Requirements
	Setting up the BACnet/IP to MS/TP Router
	Setting up the EVB
	For BACnet/IP-FT only:
	For BACnet MS/TP only:
	For BACnet/IP-FT and BACnet MS/TP using the EVB DB-9 Connector:
	For BACnet/IP-FT and BACnet MS/TP Using the EVB I/O Pins:

	The BACnet Example Projects
	Using the BACevb Project
	Setting up a LonTalk/IP Interface
	Adding Routes for the IzoT Router
	Restore and Open the CT Backup Drawing and Database
	Commission the IzoT Router
	Verify the EVB Flash Bootloader and Firmware Version Numbers
	Build, Load and Commission the EVB

	Determining the BACnet Stack Version Number
	BACnet Terminology

	Using BACnet
	Using the Neuron BACnet Server
	BACnet Read Operations
	Write Operation Resolution
	BACnet Interface Overview
	Data Flow during a LON Write to a Network Variable
	Data Flow During a LON Read of a Network Variable
	Data Flow During an Outgoing Network Variable Update
	Data Flow During a BACnet Write to a BACnet Object
	Data Types and BACnet to LON Mapping
	BACnet Instance Numbering
	Device Object Identifier and Name
	Mapping BACnet Objects to LON NVs
	Queue Management

	Adding the Neuron BACnet Stack to an FT 6050
	Additional Requirements for BACnet MS/TP
	Setting the Baud Rate
	Setting the MAC address

	Mapping BACnet Objects to LON NVs
	Complex Mapping
	Mapping UNVTs

	User Definable Scaling
	User Definable Mapping Types

	Reading and Updating the BACnet Priority Array
	Neuron BACnet API Reference

	Change of Value (COV) Support
	Read Property Multiple Support
	Application Image Download
	BACnet Test Tools
	Other Resources
	The Official BACnet Website
	The BACnet Standard
	Wiki
	Vendor IDs
	PIC (Protocol Implementation Conformance Statement) Statement Information
	Device Profiles

	Glossary

