
078-0299-01G

Create devices for IzoT™ and LONWORKS® networks that
can be installed without the use of an installation tool
or server.

ISI Programmer’s
Guide

Echelon, LONWORKS, Neuron, NodeBuilder, LonMaker,
3120, 3150, and the Echelon logo are trademarks of
Echelon Corporation that may be registered in the United
States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems which involve danger to
human health or safety or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2005, 2014 Echelon Corporation.

Echelon Corporation
www.echelon.com

Introduction

This guide describes how you can use Interoperable Self-
Installation (ISI) to create networks of control devices that
interoperate, without requiring the use of an installation
tool. This guide also describes how to use Echelon’s ISI
Library to develop devices that can be used in both self-
installed as well as managed networks.
This guide refers to version 3.30 of Echelon’s ISI Libraries
for Neuron C. While other implementations of ISI generally
supply different API, the fundamental procedures and
considerations discussed in this document generally applies
to other implementations also.

1 ISI Programmer’s Guide

Overview
Control networks consist of intelligent devices like switches, thermostats, pumps,
motors, valves, controllers, and a variety of other sensors and actuators that
communicate with each other to provide distributed monitoring and control. A
control network may be a small, simple network consisting of a few devices; may
be a large network in a building, factory, or ship consisting of tens of thousands
of devices; or may even be a very large regional network consisting of millions of
devices. In every case, the devices in the network must be configured to become
part of a common network, and to exchange data amongst themselves. The
process of configuring devices in a control network to establish communication
among the devices is called network installation.

Networks can be categorized by the method used to perform network installation.
The two categories of networks are managed networks and self-installed
networks. A managed network is a network where a shared network
management server is used to perform network installation. A user typically uses
a tool to interact with the server and define how the devices in the network
should be configured and how they should communicate. Such a tool is called a
network management tool. For example, Echelon’s LonMaker® Integration Tool is
a network management tool that uses a network management server called the
LNS® Server to install devices in a network. Although a network management
tool and a server are used to initially establish network communication, they
need not be present all the time for the network to function. The network
management tool and server are only required whenever changes are made to the
network’s configuration.

In a managed network, the network management tool and server allocate various
network resources, such as device and data point addresses. The network
management server is also aware of the network topology, and can configure
devices for optimum performance within the constraints of the topology.

The alternative to a managed network is a self-installed network. There is no
central tool or server that manages all of the network configuration in a self-
installed network. Instead, each device contains code that replaces parts of the
network management server’s functionality, resulting in a network that no
longer requires a special tool or server to establish network communication or to
change the configuration of the network.

Devices in a self-installed network cannot rely on a network management server
to coordinate their configuration. Since each device is responsible for its own
configuration, a common standard is required to ensure that devices configure
themselves in a compatible way. The standard protocol for performing self-
installation in LONWORKS networks is called the LONWORKS Interoperable Self-
Installation (ISI) Protocol. The ISI protocol can be used for networks of up to 200
devices that meet topology and connection constraints described in this guide.
Larger or more complex networks must either be installed as managed networks,
or must be partitioned into multiple smaller subsystems, where each subnetwork
has no more than 200 devices and meets the ISI topology and connection
constraints. Devices that conform to the LONWORKS ISI protocol are called ISI
devices.

ISI Programmer’s Guide 2

This guide presents a library for Neuron® C—called the Neuron C ISI library—to
create interoperable self-installed devices. This library implements the ISI
protocol. This guide details the application programming interface (API) that you
will use to interact with the ISI library. For a detailed description of the ISI
protocol, see the LONWORKS ISI Protocol Specification.

Networks can start out as self-installed networks using ISI and, as size or
complexity grows beyond the ISI limits, can be upgraded into a managed
network. A self-installed network may also be transitioned to a managed
network to take advantage of the additional flexibility and capability provided by
a network management tool and server. This guide also details recommended
procedures when transitioning from a self-installed network to a managed
network. By following these guidelines, self-installed networks can be easily
transitioned to managed networks while maintaining all of the configuration
information from the self-installed network.

The ISI protocol is a licensed protocol. The ISI Developer's Kit and Mini EVK
Evaluation Kit both include a license for development use of the ISI library with
Echelon's FT 3120®/FT 3150®/PL 3120/PL 3150/PL 3170™ Smart Transceivers or
Echelon's FTT-10A/LPT-11/PLT-22 Transceivers used in conjunction with
Neuron Chips. By signing a Revision J or newer OEM License Agreement (or an
amendment to a prior version that includes rights to the ISI protocol),
manufacturers can acquire a royalty-free license to produce devices incorporating
the ISI library and using an Echelon FT 3120/FT 3150/PL 3120/PL 3150/PL 3170
Smart Transceiver or an Echelon FTT-10A/LPT-11/PLT-22 Transceiver used in
conjunction with a Neuron Chip.

To use the ISI trademark or logo in your products, you must first certify your
products to the LONMARK 3.4 Application-Layer Guidelines (or newer), and sign
the 15 July 2005 or newer version of the LONMARK Certified Products Logo
License Agreement.

To use the ISI libraries in products designed for us in a home environment, you
must also have a Digital Home Alliance Agreement in effect with Echelon.

Changes since Revision 2
This document describes version 3.30 of the ISI Library. Revision 3 of this
document added details on how to use network variables heartbeats, turnaround
connections, controlled enrollment, and also describes several new ISI libraries.
Revision 3.01 of this document adds details about developing applications for the
PL 3170 Smart Transceiver, and also describes the new IsiPl3170.lib library.

Revision 3.30 of this document adds details about developing applications for the
Series 6000 chips and describes the new Isi6000.lib library.

3 ISI Programmer’s Guide

Table of Contents
Introduction .. 1

Overview ... 2
Changes since Revision 2 .. 3
Table of Contents ... 4
Installing ISI Devices .. 8
ISI Types ... 8
ISI Messages ... 8
ISI Limits .. 9

Device Count Limits .. 9
Channel Types and Limits .. 10
Supported Topology and Routers .. 10
Connection Complexity .. 11
Identification of Connections .. 11
Address Table Size ... 11
Alias Table Size .. 12
Domain Table Size ... 13
Earshot Problems ... 13

ISI and Energy Storage Devices ... 14

Quick Start .. 16
Example ISI Application ... 17

Self-Installation Basic Procedures .. 18
Starting and Stopping Self-Installation ... 19
Implementing Periodic Services .. 20
Handling an Incoming Message .. 21
Acquiring a Domain Address... 22

Acquiring a Domain Address from a Domain Address Server 24
Fetching a Device from a Domain Address Server 26
Fetching a Domain for a Domain Address Server 27

Enrolling in a Connection .. 29
ISI Connection Model .. 29
Opening Enrollment .. 32
Receiving an Invitation ... 37
Accepting a Connection Invitation .. 39
Implementing a Connection .. 42

Canceling a Connection ... 43
Deleting a Connection .. 44
Handling ISI Events .. 44
Deinstalling a Device ... 49
Recovering from a Programming Error .. 50
Declaring Network Variable Arrays ... 50
Using the run_unconfigured Compiler Directive ... 50
Implementing a SCPTnwrkCnfg CP ... 51

Quick Start, Revisited ... 52

Developing and Debugging an ISI Application .. 58
General Considerations ... 59

Developing and Debugging the Application ... 59
Developing and Debugging the ISI Implementation 59

ISI Programmer’s Guide 4

Self-Installation Advanced Procedures .. 62
Overriding a Callback Function .. 63
Forwarders ... 66
Assembly Number Allocation .. 68
Supporting Compound Assembly Connections .. 68
Creating a Polled Connection .. 71
Creating an Acknowledged Connection .. 72
Turnaround Connections ... 74
Customizing the ISI Connection Table ... 74
Getting ISI Version Information ... 76
Discovering Devices ... 76
Accelerating Device Discovery .. 78
Creating a Connection with Controlled Enrollment .. 81
Recovering Connections ... 83
Sending an NV Update or Polling an NV from a Controller 87
Monitoring Data from a Controller and Designing Devices for Monitoring . 90

Polling ... 91
Controlled Enrollment ... 91
Automatic Enrollment ... 93
Selecting a Monitoring Method ... 94

Sending Periodic Heartbeats ... 94
Sending Application-Specific Periodic Messages ... 95
Optimizing the Footprint of ISI Applications .. 96

IsiFull ... 97
IsiCompactAuto.. 97
IsiCompactManual ... 97
IsiCompactS ... 97
IsiCompactSHb .. 98
IsiCompactDa ... 98
IsiCompactDaHb .. 98
All Compact Libraries.. 98
IsiPl3170 ... 99
Isi6000 .. 100

Transitioning between Managed and Self-Installed Networks 101

API Data Types ... 103
ConnDesc Structure ... 104
IsiAbortReason Enumeration .. 104
IsiCid Structure.. 104
IsiConnection Structure... 105
IsiConnectionHeader Structure .. 106
IsiConnectionState Enumeration ... 106
IsiControl Enumeration ... 106
IsiCsma Structure .. 107
IsiCsmc Structure .. 107
IsiCsmd Structure .. 107
IsiCsme Structure .. 107
IsiCsmi Structure ... 108
IsiCsmo Structure .. 108
IsiCsmoData Structure .. 108
IsiCsmr Structure .. 112
IsiCsmx Structure .. 112
IsiCtrp Structure .. 112

5 ISI Programmer’s Guide

IsiCtrq Structure .. 112
IsiDiagnostic Enumeration ... 112
IsiDidcf Structure... 113
IsiDidrm Structure .. 113
IsiDidrq Structure .. 114
IsiDirection Enumeration .. 114
IsiDrum Structure ... 115
IsiEvent Enumeration ... 116
IsiFlags Enumeration .. 117
IsiMessage Structure ... 119
IsiMessageCode Enumeration ... 119
IsiMessageHeader Structure ... 120
IsiRdcs Structure ... 120
IsiRdct Structure .. 121
IsiScope Enumeration .. 121
IsiTimg Structure ... 122
IsiType Enumeration ... 122

API Functions ... 123
IsiAcquireDomain() .. 124
IsiApproveMsg() ... 124
IsiApproveMsgDas() ... 125
IsiCancelAcquisition() .. 125
IsiCancelAcquisitionDas() ... 125
IsiCancelEnrollment().. 126
IsiCreateEnrollment() .. 126
IsiDeleteEnrollment() .. 127
IsiExtendEnrollment() ... 128
IsiFetchDevice().. 129
IsiFetchDomain() ... 129
IsiGetFreeAliasCount() .. 130
IsiImplementationVersion() .. 131
IsiInitiateAutoEnrollment() .. 132
IsiIsAutomaticallyEnrolled() ... 132
IsiIsBecomingHost() ... 132
IsiIsConnected() ... 133
IsiIsRunning() .. 134
IsiIssueHeartbeat() .. 134
IsiLeaveEnrollment() ... 134
IsiMsgDeliver() ... 135
IsiMsgSend() ... 135
IsiOpenEnrollment() .. 135
IsiPreStart() .. 136
IsiProcessMsg() .. 137
IsiProcessResponse() .. 138
IsiProtocolVersion() .. 138
IsiReturnToFactoryDefaults() ... 138
IsiStart() ... 139
IsiStartDeviceAcquisition() ... 140
IsiStop()... 141
IsiTick() ... 141

Callback Functions .. 142
IsiCreateCsmo().. 143

ISI Programmer’s Guide 6

IsiCreatePeriodicMsg() .. 143
IsiGetAssembly() .. 144
IsiGetConnection() ... 145
IsiGetConnectionTableSize() ... 145
IsiGetNextAssembly() .. 146
IsiGetNextNvIndex().. 147
IsiGetNvIndex() .. 147
IsiGetPrimaryDid() .. 148
IsiGetPrimaryGroup() .. 148
IsiGetRepeatCount() .. 148
IsiGetWidth() .. 149
IsiQueryHeartbeat() ... 149
IsiSetConnection() .. 149
IsiSetDomain() ... 150
IsiUpdateDiagnostics() .. 150
IsiUpdateUserInterface() ... 151

ISI Router Configuration ... 152
LONWORKS Routers and ISI Networks .. 153

Glossary .. 154

7 ISI Programmer’s Guide

Installing ISI Devices
ISI devices may support plug-and-play or plug-touch-and-play installation. For
plug-and-play installation, installation is performed by plugging in the device.
No user interaction is required in this case. This is suitable for devices where
connections can be determined automatically. For example, all appliances in a
home may automatically connect to a home gateway. If power line transceivers
are used, then the network connection is created by plugging in the device so no
other steps are required to install an appliance in the home network.

ISI devices may support plug-touch-and-play installation, in which case some
minimal user interaction is required to either join a network or create a
connection. The interaction may be with a user interface device such as a user
interface panel. Alternatively, the interaction may be with the devices
themselves. For example, the user may push a button on a device to create a
connection. This button is called the Connect button. Feedback may be provided
to the user using an LED, called the Connect light. A lighting system may have a
Connect button and light on each switch and each lamp actuator. In this
example, the user selects switches and lights to be connected by pressing the
Connect buttons on the devices to be connected.

On a simple device, the Connect button may be the same as the Service button,
and the Connect light may be the same as the Service light. In this case, the
same button may be used to join an ISI network, join a managed network, join a
connection, and to restore the device’s self-installation data to factory defaults.
More complex devices may require multiple Connect buttons and lights. For
example, a device that supports multiple manual connections to multiple devices,
may use multiple Connect buttons and lights that are not shared with the Service
button and light.

ISI Types
There are two types of ISI networks—ISI-S for simple and standalone ISI
networks, and ISI-DA for self-installed networks that support more devices than
ISI-S, more complex topologies, and unique domain IDs. An ISI-DA network
must include one or more domain address server (DAS) devices, and all the
devices in an ISI-DA network must be ISI-DA compatible. The DAS devices are
present to help manage the ISI-DA network. The protocol implemented by the
domain address servers is called the ISI-DAS protocol. The domain address
servers do not take on the full roll of network management servers. Instead, they
are only used to coordinate assignment of unique domain IDs and to maintain an
estimate of network size to optimize use of available channel bandwidth.

ISI Messages
The ISI protocol defines a standard set of messages that are used to coordinate
the installation of devices in an ISI network. The ISI engine that is part of the
ISI library automatically generates and processes most ISI messages. It is
sometimes useful to view ISI messages when debugging an ISI application. The
ISI Developer’s Kit includes an ISI Packet Monitor application that you can use

ISI Programmer’s Guide 8

during development for capturing and interpreting ISI messages. The ISI Packet
Monitor application is described in Developing and Debugging the ISI
ImplementationDeveloping and Debugging the ISI Implementation in Chapter 4.
A few of the key ISI messages are introduced in this section. All of the ISI
messages are described and documented in the ISI Protocol Specification.
Following are a few of the most important ISI messages:

• Device Resource Usage Message (DRUM)—this message is periodically
broadcast by all ISI devices. It includes the physical address (Neuron
ID), logical address (domain, subnet, node IDs), non unique ID, and
channel type for the device. The extended version of this message adds a
device class and usage field for use in device tracking. You can enable
the extended version by passing isiFlagExtended into IsiStart*() (see
Starting and Stopping Self-Installation in Chapter 2).

• Connection Status Messages (CSMs)—this group of messages is used to
create, maintain, and delete connections. There are multiple types of
connection status messages, including messages to manually create a
new connection (CSMO), automatically create a new connection (CSMA
and CSMR), and delete a connection (CSMD). The CSMO, CSMA, and
CSMR messages include the group ID, primary functional profile,
primary network variable type and direction, variant number, and
number of network variables for an offered connection. Devices that
receive these messages can use the information—plus optional user
interaction—to determine whether or not to join the connection. The
extended version adds fields to determine if the connection is
acknowledged or polled, the scope of the connection and parts of the
program id, and the primary network variable member. You can enable
the extended version by passing isiFlagExtended into IsiStart*() (see
Starting and Stopping Self-Installation in Chapter 2).

• Timing Guidance Message (TIMG)—this message is periodically
broadcast by all domain address servers. It includes information about
network size and latency. It is an optional message, but if available, ISI
devices use this information to schedule all periodic message based on
network size. This ensures efficient use of the channel bandwidth and
minimizes the overhead of the ISI protocol

ISI Limits
This section describes ISI limits. Some of the limits depend on options selected
by your device application, and some depend on which ISI library you choose to
link with your application. The ISI libraries and features of each are described in
Optimizing the Footprint of ISI Applications. Those who use your devices will
need to know the resulting limits for your devices. Guidelines for documenting
these limits will be available at www.echelon.com/isi.

Device Count Limits
ISI networks support up to 32 devices for ISI-S networks and up to 200 devices
for ISI-DA networks. ISI networks will not immediately stop functioning if these
limits are exceeded. Increasing the number of devices over the supported limits

Formatted: Font: Italic

9 ISI Programmer’s Guide

http://www.echelon.com/isi

increases the network bandwidth consumed for administrative ISI messages,
possibly preventing regular network operation due to an increased collision rate.

Networks should be designed with some headroom. A reasonable limit is 80%.
ISI-S networks that reach 26 devices should be considered for an upgrade to ISI-
DA (which might be as simple as adding a DAS), and ISI-DA networks exceeding
160 devices are prime candidates for an upgrade to a managed LNS network.

Channel Types and Limits
The supported channel types for the ISI protocol are PL-20 power line and
TP/FT-10 free topology twisted pair or the IzoT-IP channel. In this manual, the
LonTalk/IP channel is LonTalk/IP-FT.

The maximum channel limit for a device using the IsiCompactManual or
IsiCompactAuto library is one channel. For devices using any of the other
libraries, the limit is two channels. ISI-DAS devices always support two
channels.

The IsiCompactManual and IsiCompactAuto libraries are provided for
feature-limited implementations of ISI devices with minimum memory footprint.
The functionality of the ISI libraries is described in Optimizing the Footprint of
ISI Applications.

Supported Topology and Routers
ISI-S networks are limited to a single channel that is segmented with physical
layer repeaters according to the standard channel properties—none for PL-20
channels, or multiple for TP/FT-10 channels provided there is never more than
one physical layer repeater between any two points of communication. In other
words, you can have one N-way repeater, much in the way of an N-port Ethernet
hub. A physical layer repeater is similar to a hub (signal booster without
filtering logic).

ISI-DA networks can have one or two channels. ISI-DA networks with two
channels must include a router configured as a repeater. Each channel must
meet the same requirements as a channel for ISI-S without a DAS described
above. The router must be preconfigured to be compatible with ISI networks, or
otherwise capable of joining an ISI network.

If a domain address server is used in a two-channel network with a PL-20 and
TP/FT-10 channel, it should be located on the PL-20 channel. One of the
functions of the domain address server is to determine the slowest channel of the
network that it is located on. If a domain address server is located on the PL-20
channel, it will start-up with knowledge of the slowest channel. If it is located on
the TP/FT-10 channel, it will have to learn of the existence of the PL-20 channel
by discovering one of the PL-20 devices. This may take some time. Conversely, if
the domain address server is located on the TP/FT-10 channel and all PL-20
devices are removed from the network, the domain address server should be reset
to relearn the network topology.

ISI Programmer’s Guide 10

ISI does not support redundant routers, and the user is responsible for avoiding
looping topologies. The network topologies described in this section will not
cause looping topologies.

Connection Complexity
A single device can join multiple connections; limited by available address, alias,
and connection table space on the device. Devices can map one or more network
variables to a single selector, but it is the device's responsibility to ensure that at
most one input network variable is mapped to a single selector. The number of
network variables in any given connection and on any single device is only
limited by device resources (alias, address, and connection table space).
Connections can include an unlimited number of devices. Devices supporting
aliases (those not built with the IsiCompactManual or IsiCompactAuto
library) can extend connections; that is, a single network variable on a device can
join multiple connections at the same time. Devices using the
IsiCompactManual or IsiCompactAuto libraries cannot extend connections
(no support for aliases) and cannot replace or remove connections (no support for
removal) other than by returning the device to factory settings. A standard
mechanism is supported with each ISI device to return to factory defaults.

Identification of Connections
Connections are established using a process called enrollment. A device may
accept a connection invitation and join a connection on the basis of a single
network variable type alone. For example, a device can choose to join a
connection that uses a SNVT_switch network variable. A device may accept a
connection invitation and join a connection on the basis of a single functional
block. For example, a device can choose to join a connection that offers data from
a SFTPclosedLoopSensor functional block with the SNVT_xxx output
implemented as a SNVT_amp network variable. Standard connections are those
that can be understood (and accepted or refused) solely by knowledge derived
from the standard resource file set. Enrollment procedures that require
additional knowledge are collectively named manufacturer-specific connections,
although such a connection may not be limited to a single manufacturer. For
example, a group of manufacturers may share knowledge required in the
understanding (accepting) of those connections. The complexity of manufacturer-
specific connections is unlimited (but cannot exceed 63 selectors, and should not
exceed 4 selectors). For example, a single manufacturer-specific open enrollment
message can contain a number of different standard and non-standard functional
profiles. The simple case of a manufacturer-specific connection allows enrollment
of user network variables and profiles.

Address Table Size
Neuron C applications should maximize the address table size using the
#pragma addresses compiler directive (also known as num_addr_table_entries).
The maximum size for ISI is 15 even though Series 6000 chips support up to 254
addresses. Most ISI devices require fewer address table entries when self-

11 ISI Programmer’s Guide

installed, but implementing a 15-entry address table if space is available allows
for versatile and complex connections when used in a managed network.

When used in a self-installed network, an ISI device will typically only require
one address table entry for each group it can join. Since the ISI application has
complete control over the groups it might belong to (by means of the
IsiGetAssembly(), IsiGetNextAssembly(), and IsiCreateCsmo() overrides),
the maximum size address table can be determined by the application developer.
This is not the case in a managed network, where a 15-entry address table is
normally required for flexible use of a device.

When used with a Series 6000 chip, ISI uses only up to 15 addresses, but
tolerates configurations with larger address counts (leaving the remaining
addresses unused).

Alias Table Size
When designing an application that is to be used in a managed network, a rule of
thumb is to declare a minimum number of alias table entries of at least A + NVs /
Z, with A and Z being 3 or 5 and NVs equal to the number of NVs declared by the
application. You can declare a maximum of 62 aliases. This rule-of-thumb often
provides a good size estimate, although you may have a better understanding of
the expected alias table requirements based on analysis of typical use-cases and
expected connection scenarios for the device.

The IsiCompactManual and IsiCompactAuto libraries do not support aliases,
and therefore do not use the alias table at all. In these cases, declaring an alias
table following the above guidelines is recommended to allow for use of the device
in a managed network.

Other ISI libraries support aliases, and allocate alias table entries each time an
ISI connection is extended (using the IsiExtendEnrollment() function call).
One alias table entry is typically required for each network variable that is
associated with the assembly that is used with the IsiExtendEnrollment()
function, unless the assembly is not yet bound at that time. An API is provided
to determine the connection status of a given assembly (IsiIsConnected()
function), and a function is provided to determine the number of remaining,
unused, alias table entries (IsiGetFreeAliasCount()). The number of
IsiExtendEnrollment() calls made for the same assembly over time cannot be
predetermined (unless the application never calls this function, and never accepts
automatic enrollment). For those applications, the above rule-of-thumb is
recommended for a reasonable minimum alias table size.

Automatic enrollment always calls IsiExtendEnrollment(), unless the ISI
library does not support connection extensions. In this case,
IsiCreateEnrollment() is used instead.

The Neuron C Compiler supports the pragma aliases directive (also known as
num_alias_table_entries) for explicit alias table allocation control.

ISI Programmer’s Guide 12

Domain Table Size
The domain table holds two entries by default. This is the required minimum
number of domains for an ISI device. If you use the #pragma domains compiler
directive (also known as num_domain_entries) to construct an ISI application
that implements just one domain table entry, the device will not function
correctly. The error log contained in the device will report an invalid_domain
(138) error, resulting from an attempt to start the ISI engine with less than two
domain table entries.

Earshot Problems
Open media such as power line may experience occasional communication
outages due to interference from other power line devices or neighboring
networks. In addition, an open media device may receive packets from devices
using the same media in neighboring networks. The ISI protocol handles
transient communication outages gracefully: when devices fail to recognize
network problems or changes to network address or connection information due
to transient outages, devices will recover once the outage has come to an end.
Occasional and unexpected receipt of network data from distant sites will cause
no harm, but if this possibility exists, a domain address server and ISI-DA can be
used to logically isolate the networks and prevent inadvertent connections
between devices in neighboring networks. Critical processes such as device and
domain ID acquisition are protected with a user-confirmed protocol, preventing
devices from being hijacked by other sites in earshot.

The following table shows a summary of key limits:

Limit Value Notes

Maximum device count ISI-S 32

See text on previous page.

Recommended maximum device
count ISI-S

26

Maximum device count ISI-DA 200

Recommended maximum device
count ISI-DA

160

Maximum number of network
variables per device

254 Devices may contain
larger numbers of NVs or
aliases, but those with an
index > 254 cannot be
used with an ISI network.
If an ISI device is moved
to a managed network, it
can reveal extra
functionality with
additional NVs and
aliases.

Maximum number of aliases per
device

254, optional

13 ISI Programmer’s Guide

Limit Value Notes

Maximum number of
connections per device

Limited by
device
resources, but
cannot exceed
254

The ISI libraries provide a
default implementation of
an ISI connection table
with 8 entries, but the
application may override
this with a larger or
smaller table.

Maximum number of connection
assemblies per device

254 This is determined by the
NV maximum, but cannot
exceed 254.

Maximum number of selectors
per assembly

63

Recommended maximum
number of selectors per
assembly

4

ISI and Energy Storage Devices
In simple devices, such as a light or a switch, a common implementation uses an
energy storage power supply, as described in the PL 3120, PL 3150 and PL 3170
Power Line Smart Transceiver Data Book. A device using this type of power
supply can be referred to as an energy storage device. In these devices, under
certain worst-case circumstances, the maximum packet size that can be sent is
limited. ISI implements two versions of DRUM, CSMO, CSMA, and CSMR
messages (See ISI Messages in this chapter and the ISI Protocol Specification).
The normal version is short enough to be sent by an energy storage device, and is
restricted to usage with standard network variable types and standard functional
profiles only. Since energy storage devices can receive any length message, they
can only host connections that use SNVTs and SFPTs, but can join a connection
that uses UNVTs and UFPTs. Compound assemblies that are based on a single
functional profile and hosted on an energy storage device also need to start with
member 1.

The extended versions of these messages contain additional functionality, but
result with the message potentially being too long to be transmitted by an energy
storage device. The extended message types do not have the limitations
summarized above.

By default, the ISI engine recognizes all supported message types, but will only
issue the shorter versions of the DRUM, CSMO, CSMA, and CSMR messages. To
enable the use of the extended DRUMEX, CSMOEX, CSMAEX, and CSMREX
messages, specify isiFlagExtended when starting the ISI engine.

All ISI devices may use the standard message formats if the functionality
provided by the extended formats is not required, but energy storage devices may
not use the extended formats. Energy storage devices may be capable of

ISI Programmer’s Guide 14

successful transmission of the extended messages under certain conditions.
However, this should not be relied upon, since these conditions include the
momentary line condition and part tolerance details that cannot be relied upon
for mass production.

ISI domain address servers for power line channels cannot be built with energy-
storage power supplies. These devices would fail to transmit DIDRM and DIDCF
messages under worst-case conditions (line voltage, line impedance, and part
tolerances).

15 ISI Programmer’s Guide

 2

Quick Start

This chapter provides a quick start for ISI developers. The
source code for a simple ISI application is described.

The code examples used in this document do not describe a
complete application and are provided as example code only.
Example code is not optimized for code size or performance.
Any code used from this document should be tested with
your application and you may be able to reduce code size by
optimizing the code for your application. See the ISI Web
page at www.echelon.com/isi for complete working ISI
examples.

ISI Programmer’s Guide 16

http://www.echelon.com/isi

Example ISI Application
Most of the ISI protocol is implemented by the ISI engine that is part of the ISI
library, and much of the related application development is to make calls to the
ISI engine’s API and override some of the ISI engine’s default implementations
with application-specific versions.

The ISI engine sends and receives ISI messages and manages the network
configuration of your device. You can create a simple ISI application by starting
the ISI engine, periodically calling the ISI engine, and processing any messages
that arrive. The following program is an example of a simple ISI application that
performs these tasks:

#pragma num_alias_table_entries 6
#include <isi.h>

when (reset) {
 // Clear all tables and start the ISI engine
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagNone);
}

mtimer repeating isiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(isiTimer)) {
 // Call the ISI engine to perform periodic tasks
 IsiTickS();
}

when (msg_arrives) {
 if (IsiApproveMsg()) {
 // Process an incoming ISI message
 (void) IsiProcessMsgS();
 }
}

The first line includes a required compiler directive, followed by the standard
isi.h header file. This file specifies the available ISI library functions. These
functions are described in the rest of this guide.

The first when task is the reset task. In this task, a call to the IsiStartS()
library function initializes and starts the ISI engine. For ongoing maintenance,
the second when task periodically calls the IsiTickS() function 4 times each
second. Finally, the last when task identifies incoming application messages as
ISI messages with the IsiApproveMsg() library function, and processes them
with the IsiProcessMsgS() function.

To build an ISI application, you must link the application with one of the ISI
libraries as described in Optimizing the Footprint of ISI Applications in Chapter
5.

17 ISI Programmer’s Guide

3

Self-Installation Basic
Procedures

This chapter describes the basic ISI procedures that will be
implemented by most ISI applications. Chapter 5 describes
more advanced procedures. The functions described in this
chapter are further described in Appendices B and C and the
data structures used by these functions are documented in
Appendix A.

ISI Programmer’s Guide 18

Starting and Stopping Self-Installation
void IsiPreStart(void);
void IsiStart(IsiType Type, IsiFlags Flags);
void IsiStartS(IsiFlags Flags);
void IsiStartDA(IsiFlags Flags);
void IsiStartDAS(IsiFlags Flags);
void IsiStop(void);
void IsiIsRunning(void);

You can start and stop the ISI engine. The ISI engine sends and receives ISI
messages and manages the network configuration of your device. You will
typically start the ISI engine in your reset task when self-installation is enabled,
and you will typically stop the ISI engine when self-installation is disabled.

You can use the IsiStart() function to start the ISI engine using any ISI type.
You can use specialized versions of the IsiStart() function to minimize the
memory footprint of your application. Devices that only support a single ISI type
may use one of the following functions:

• IsiStartS()—starts the ISI engine for a device that does not support
domain acquisition.

• IsiStartDA()—starts the ISI engine for a device that supports domain
acquisition, but is not a domain address server.

• IsiStartDAS()—starts the ISI engine for an ISI-DAS application that
supports domain acquisition and is a domain address server.

For PL 3170 devices, you must call the IsiPreStart() function from the
when(reset) task before calling any other ISI functions. This function
establishes the runtime links between the ISI engine in the read-only memory
(ROM) of a PL 3170 Smart Transceiver and the callbacks in the application. You
must call this function even if you do not plan to start the ISI engine.

The IsiPreStart() function is supported only for PL 3170 devices, and is not
supported for other device types.

You can stop the ISI engine by calling the IsiStop() function. When you stop the
ISI engine, callbacks into the application will no longer occur. Most ISI functions
that the application might invoke, such as the IsiTickS() function introduced
earlier, have a benign behavior when the engine is stopped. The application need
not track the engine’s state therefore, and may make the same set of ISI API
calls in any state. The behavior of each ISI function in the idle state is described
later in this document. The IsiIsRunning() function may be called at any time
and returns a non-zero value if the engine is running.

All ISI devices must have a standard way to enable and disable self-installation.
This enables self-installed devices to be installed into managed networks as
described in Chapter 6. To provide this interface, include a SCPTnwrkCnfg
configuration property implemented as a configuration network variable that

19 ISI Programmer’s Guide

applies to your application’s Node Object functional block, if available, or applies
to the entire device if there is no Node Object functional block. The configuration
property has two values—CFG_LOCAL and CFG_EXTERNAL. When set to
CFG_LOCAL, your application can enable self installation. When set to
CFG_EXTERNAL, your application must disable self installation. Network
management tools automatically set this value to CFG_EXTERNAL to prevent
conflicts between self-installation functions and the network management tool.
See Implementing a SCPTnwrkCnfg CPImplementing a SCPTnwrkCnfg CP
for more details.

To maximize compatibility with network management tools used for managed
networks, insert an 800 millisecond to one-and-a-half second delay before calling
any of the IsiStart() functions. This delay can be implemented with a call to the
delay() or scaled_delay() function, other application processing, or a
combination of application processing plus a call to the delay() or
scaled_delay() function. Without this delay, a network tool may fail to confirm
a state change when commissioning the device for the first time, or for the first
time after a change to the device’s application.

EXAMPLE 1

The following example declares a SCPTnwrkCnfg configuration property
that applies to the device, tests its value on startup, waits for 800ms, and
starts the ISI engine without support for domain acquisition.

network input SCPTnwrkCnfg cp cp_info(reset_required,
device_specific) cpNetConfig;

device_properties {
 cpNetConfig = CFG_EXTERNAL
};

when (reset) {
 if (cpNetConfig == CFG_LOCAL) {
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagNone);
 }
}

See Implementing a SCPTnwrkCnfg CP for more important
considerations.

Implementing Periodic Services
void IsiTick(IsiType Type);
void IsiTickS(void);
void IsiTickDa(void);
void IsiTickDas(void);

You must periodically call the IsiTick() function after you have started the ISI
engine as described in the previous section. You should call this function
approximately every 250ms. You can use a timer task to implement the periodic
service.

Formatted: Font: Italic

Formatted: Font: Bold, Italic

Formatted: Font: Italic

ISI Programmer’s Guide 20

If your device supports a single ISI type, you can use one of the three specialized
versions of the IsiTick() function to minimize the memory footprint of your
application.

The IsiTick() and IsiTickDas() functions are not supported for PL 3170 devices.

EXAMPLE

The following example calls the IsiTickS() function every 250ms:

#include <isi.h>

mtimer repeating isiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(isiTimer)) {
 IsiTickS();
}

Handling an Incoming Message
boolean IsiApproveMsg(void);
boolean IsiProcessMsg(IsiType Type);
boolean IsiProcessMsgS(void);
boolean IsiProcessMsgDa(void);
boolean IsiProcessMsgDas(void);
boolean IsiApproveMsgDas(void);
boolean IsiProcessResponse(void);

You can determine if an incoming message is an ISI message, and you can pass
all ISI messages to the ISI engine for processing. To determine if a message is an
ISI message, call the IsiApproveMsg() function. This function returns a non-
zero value if the incoming message is an ISI message and the ISI engine is
running. To process an ISI message, call one of the IsiProcessMsg() functions.
If the IsiProcessMsg() function returns FALSE, then the message has been
recognized.

You can use the IsiProcessMsg() function to process an ISI message on a device
that supports multiple ISI types. If your device supports a single ISI type, you
can use one of the three specialized versions of the IsiProcessMsg() function to
minimize the memory footprint of your application.

The IsiProcessMsg() functions pass the received message to the ISI engine,
which handles all of the processing. You can perform any application-specific
processing for the received message before calling the IsiProcessMsg() function.

Domain address servers need to use the IsiApproveMsgDas() function to
approve an incoming message. This is necessary for the device acquisition
process watching for service pin messages. Domain address servers also need to
implement the IsiProcessResponse() function. Not using either of these
functions will cause the domain or device acquisition processes to fail. Both
IsiApproveMsgDas() and IsiProcessResponse() share the same return values
as IsiApproveMsg() and IsiProcessMsg(), respectively.

21 ISI Programmer’s Guide

EXAMPLE 1

The following example for a device without domain acquisition tests for
incoming ISI messages, and calls IsiProcessMsgS() to process them:
when (msg_arrives) {
 if (IsiApproveMsg() && IsiProcessMsgS()) {
 // TODO: process unprocessed ISI messages here (if any)
 } else {
 // TODO: process other application messages here (if any)
 }
}

EXAMPLE 2

The following partial DAS example tests for incoming ISI messages and
responses on a domain address server. For a complete implementation of a
DAS device, the IsiStartDas() and IsiTickDas() functions must also be
called at a minimum.
when (msg_arrives) {
 if (IsiApproveMsgDas() && IsiProcessMsgDas()) {
 // TODO: process unprocessed ISI messages here (if any)
 } else {
 // TODO: process other application messages here (if any)
 }
}

when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

Acquiring a Domain Address
void IsiAcquireDomain(boolean SharedServicePin);
void IsiStartDeviceAcquisition(void);
void IsiCancelAcquisition(void);
void IsiCancelAcquisitionDas(void);
void IsiFetchDomain(void);
void IsiFetchDevice(void);

There are three methods to assign a domain to an ISI device:

1. The domain may be fixed and assigned by the device application. All ISI
devices must initially support this method since an initial application
domain is assigned prior to acquiring a domain using one of the other
methods. This enables all devices to be used in an ISI-S network.

2. A device that supports domain acquisition can acquire a unique domain
address from a domain address server. If a domain address server is not
available, domain acquisition will fail and the ISI engine will continue to
use the most recently assigned domain (initially, the default domain).
Devices that support domain acquisition also support multiple,
redundant, domain address servers. Domain address acquisition is
initiated by the user and controlled by the device acquiring the domain,

ISI Programmer’s Guide 22

not the domain address server. This method allows the device to make
intelligent decisions about retries, preventing enrollment during the
domain acquisition. It also allows the device to increase automatic
enrollment performance following the completion of domain acquisition.

3. A domain address server can assign a domain to a device without a
request from the device. This minimizes the code required in the device,
and can be used with all devices. This process is called fetching a device.

4. A domain address server can fetch the domain from any of the devices in
a network and assign it to itself. This keeps multiple domain address
servers in a network synchronized with each other, or allows a
replacement domain address server to join an existing ISI network. This
process is called fetching a domain.

A domain address server must support both methods 2, 3 and 4. It can allow a
device that supports domain acquisition to acquire a domain, it can fetch any ISI
device, and it can fetch a domain from another device.

A domain address server can fetch a domain from any device in the network to be
joined. To install a replacement domain address server, or to install redundant
domain address servers into an existing, previously configured, network, each
domain address server can query the current domain configuration from any
previously configured device in the network. This is called fetching a domain,
and this process is typically initiated by the user via the newly installed domain
address server.

The following table summarizes the first three procedures:

 Acquire
Domain

Fetch Device Fetch Domain

Description Devices that
support domain
acquisition use
this procedure to
obtain a unique
domain address
from a domain
address server

A domain address
server assigns a
unique domain
address to an ISI
device

A domain address
server acquires the
domain from
another previously
installed device in
the network

Initiated on Device after
enabling device
acquisition on
the domain
address server

Domain address
server

Domain address
server

Code
required

On device and on
domain address
server

On domain address
server

On domain address
server

23 ISI Programmer’s Guide

Key
advantage

Active process—
device is in
control of
proceedings and
aware of success
or failure

Passive process,
supporting resource-
restricted device
implementations

Supports
installation of
replacement or
redundant domain
address servers

Acquiring a Domain Address from a Domain Address
Server

To acquire a domain address from a domain address server, start the ISI engine
using the IsiStartDA() function, or using the IsiStart() function with the
isiTypeDa type.

A domain address server must be in device acquisition mode to respond to
domain ID requests. To start device acquisition mode on a domain address
server, call the IsiStartDeviceAcquisition() function.

To start domain acquisition on a device that supports domain acquisition, call the
IsiAcquireDomain() function.

A typical implementation starts the domain acquisition process when the
Connect button is activated and a domain is not already assigned. If
SharedServicePin is set to FALSE, the IsiAcquireDomain() function also
issues a standard service pin message—this allows using the same installation
paradigm in both a managed and an unmanaged environment. If the application
uses the physical service pin to trigger calls to the IsiAcquireDomain()
function, the system image will have issued a service pin message automatically,
and the SharedServicePin flag should be set to TRUE in this case.

When calling IsiAcquireDomain() with SharedServicePin set to FALSE
while the ISI engine is not running, a standard service pin message is issued
nevertheless, allowing the same installation paradigm and same application code
to be used in both self-installed and the managed networks.

After domain acquisition has been enabled by calling
IsiStartDeviceAcquisition() on the domain address server and it has been
started on the device by calling IsiAcquireDomain(), the device responds to the
isiWink ISI event with a visible or audible response. For example, a device may
flash its LEDs. The user confirms that the correct device executed its wink
routine and the DAS application then confirms the device by calling
IsiStartDeviceAcquisition() once again. Once confirmed, the domain address
server grants the unique domain ID to the device. The device notifies its
application with ISI events accordingly.

ISI Programmer’s Guide 24

Device DAS

IsiStartDeviceAcquisition()
enters device acquisition mode

IsiAcquireDomain()
starts domain acquisition
and sends the DIDRQ
domain request message

Respond to the DIDRQ
domain request message
with a DIDRM domain
response message

Collect all domain response
messages for 1.5s

Application receives isiWink
event and provides visual or
audible feedback to the user

IsiStartDeviceAcquisition() signals that
the user confirmed acquisition of the
correct device via a Connect button or
other user interface

Respond to user confirmation by
sending a DIDCF domain
confirmation message to device

Device joins
domain as
advised by DAS

The device automatically cancels domain acquisition if it receives multiple, but
mismatching, domain response messages in step 4. This may happen if multiple
domain address servers with different domain addresses are in device acquisition
mode, and all respond to the device’s query.

Devices should support the domain acquisition process whenever possible (device
resources permitting) over the Fetch Device process described below—the domain
acquisition process provides a more robust process with features such as
automatic retries and other desirable side effects, like automatic connection
reminders.

The IsiCancelAcquisition() function causes a device to leave domain
acquisition mode. The cancellation applies to both device and domain
acquisition. After this function call is completed, the ISI engine calls
IsiUpdateUserInterface()with the IsiNormal event. On a domain address
server, use the IsiCancelAcquisitionDas() function instead.

25 ISI Programmer’s Guide

EXAMPLE 1

The following example starts domain acquisition mode on a domain address
server when the user presses a Connect button on the server:
when (connect_button_pressed) {
 IsiStartDeviceAcquisition();
}

Once started, the domain address server remains in this state for 5 minutes
unless cancelled with an IsiCancelAcquisitionDas() call. Each successful
device acquisition retriggers this timeout.

EXAMPLE 2

The following example starts domain acquisition on a device when the user
pushes a Connect button on the device:
when (connect_button_pressed) {
 IsiAcquireDomain(FALSE);
}

Fetching a Device from a Domain Address Server
A domain address server can use the IsiFetchDevice() function to assign the
DAS’ unique domain ID to any device. Unlike the IsiAcquireDomain()
function, the IsiFetchDevice() function does not require any action, or special
library code, on the device. To fetch a device, call the IsiFetchDevice() function
on the domain address server.

DAS devices must make this feature available to the user. With this feature, it is
not required that devices support domain acquisition in order to participate in an
ISI network that uses unique domain IDs.

Similar to the domain acquisition process detailed above, fetching a device also
requires a manual confirmation step to ensure that the correct device is paired
with the correct domain address server:

ISI Programmer’s Guide 26

Device DAS

IsiFetchDevice()
starts device
fetching

Send Service
Pin message

Respond to Service
Pin message by
sending Wink
message

Respond to Wink
message with suitable
audible or visual
feedback

User confirms correct
device selection by
sending a second
Service Pin message

Respond to matching
Service Pin message by
assigning local domain
to remote device

EXAMPLE 3

The following example fetches a device on a domain address server when the
user presses the Connect button on the server:
when (connect_button_pressed) {
 IsiFetchDevice();
}

//Handle responses to requests in IsiFetchDevice()
when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

Fetching a Domain for a Domain Address Server
A domain address server can use the IsiFetchDomain() function to obtain a
domain ID. Unlike the IsiAcquireDomain() function, the IsiFetchDomain()
process does not require a domain address server to provide the domain ID
information, and does not use the DIDRM, DIDRQ, and DIDCF standard ISI
messages. Instead, the domain address server uses the IsiFetchDomain()

27 ISI Programmer’s Guide

function to obtain the current domain ID from any device in the network, even
from those that only implement ISI-S, or that do not implement or execute ISI at
all. This is typically used when installing replacement or redundant domain
address servers in a network: a domain address server will normally use the
IsiGetPrimaryDid() override to specify a unique, non-standard, primary
domain ID. A replacement domain address server, or a redundant domain
address server, needs to override this preference by using the domain ID that is
actually used in the network. This is provided with the IsiFetchDomain()
function.

Device DAS

IsiFetchDomain()
starts domain
fetching

Send Service
Pin message

Respond to Service
Pin message by
sending Wink
message

Respond to Wink
message with suitable
audible or visual
feedback

User confirms correct
device selection by
sending a second
Service Pin message

Respond to matching
Service Pin message by
assigning remote
domain to local device

ISI Programmer’s Guide 28

EXAMPLE 3

The following example fetches a domain on a domain address server when
the user presses the Connect button on the server:
when (connect_button_pressed) {
 IsiFetchDomain();
}

//Handle responses to requests in IsiFetchDomain()
when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

If no unambiguous domain ID is already present on the network, the domain
address server will use its default domain ID, as advised with the
IsiGetPrimaryDid() callback, as a unique domain ID.

Enrolling in a Connection
You can exchange data between devices by creating connections between network
variables on the devices. Connections are like virtual wires, replacing the
physical wires of traditional hard-wired systems. A connection defines the data
flow between one or more output network variables to one or more input network
variables. The process of creating a self-installed connection is called enrollment.
Inputs and outputs join a connection during open enrollment, much like students
join a class during open enrollment. This section describes the ISI connection
model and describes the procedures required to create a connection.

ISI Connection Model
Connections are created during an open enrollment period that is initiated by a
user, a connection controller, or a device application. Once initiated, a device is
selected to open enrollment—this device is called the connection host. Any device
in a connection may be the connection host—the connection host is responsible
for defining the open enrollment period and for selecting the connection address
to be used by all network variables within the connection. Connection address
assignment and maintenance is handled by the ISI engine, and is transparent to
your application.

Even though any device in a connection may be the connection host, if you have a
choice of connection hosts, network resource utilization will be optimized if you
pick the natural hub as the connection host. For example, in a connection with
one switch and multiple lights, the switch is the natural hub. In a connection
with one light and multiple switches, the light is the natural hub. If there is no
natural hub—multiple switches connected to multiple lights for example—using
one of the devices with an output network variable will optimize network
resource utilization.

29 ISI Programmer’s Guide

A connection host opens enrollment by sending a connection invitation. Once a
connection host opens enrollment then any number of devices may join the
connection.

Connections are created among connection assemblies. A connection assembly is
a block of functionality, much like a functional block. A simple assembly refers to
a single network variable:

A connection assembly that consists of a single network variable is called a
simple assembly. A single assembly can include multiple network variables in a
functional block, can include multiple network variables that span multiple
functional blocks, or can exist on a device that does not have any functional
blocks; an assembly is simply a collection of one or more network variables that
can be connected as a unit for some common purpose. A connection assembly
consisting of more than one network variable is called a compound assembly:

For example, a combination light-switch and lamp ballast controller may have
both a switch and a lamp functional block, which are paired to act as a single
assembly in an ISI network, but may be handled as independent functional
blocks in a managed network:

To communicate and identify an assembly to the ISI engine, the application
assigns a unique number to each assembly. This assembly number must be in
the 0 – 254 range sequentially assigned starting at 0. Required assemblies for
standard profiles must be first, assigned in the order the profiles are declared in

ISI Programmer’s Guide 30

the application. Standard ISI profiles that define multiple assemblies must
specify the order the assemblies are to be assigned.

Each assembly has a width which is typically equal to the number of network
variables in the assembly. In the previous figures, for example, assembly 0 has a
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a
width of 4. All assemblies must have a width of at least 1. Simple assemblies
have a width of 1; compound assemblies typically have a width of greater than 1.
One of the network variables in a compound assembly is designated as the
primary network variable. If the primary network variable is part of a functional
block, that functional block is designated as the primary functional block.
Information about the primary network variable may be included in the
connection invitation.

To open enrollment, the connection host broadcasts a connection invitation that
may include the following information about the assembly on offer: the network
variable type of the primary network variable in the assembly, the functional
profile number of the primary functional profile in the assembly, and the
connection width. Other devices on the network receive the invitation and
interpret the offered assembly to decide whether they could join the new
connection.

In the case of assembly 0, the connection invitation may just specify a width of
one and the network variable type. This is a case similar to the one employed by
a generic switch device where the switch offers a SNVT_switch network variable
that is not tied to a specific functional profile.

Assembly 1 demonstrates a more specialized example. A switch may offer this
assembly and describe it as an implementation of the SFPTclosedLoopSensor
profile, with a width of two, and a SNVT_switch input and output. The ISI
protocol defines how multiple network variable selectors are mapped to the
individual network variables offered.

Since the invitation includes no more than one functional profile number, a
compound assembly is typically limited to a single functional block on each
device. To include multiple functional blocks in an assembly, a variant may be
specified. A variant is an identifier that customizes the information specified in
the connection invitation. Variants may be defined for any device category and/or
any functional profile/member number pair. For example, a variant can be
specified with the SFPTclosedLoopSensor functional block offered in assembly
2 above to specify that the SFPTclosedLoopActuator functional block is
included in the assembly. Standard variant values are defined in standard
functional profiles that are published by LONMARK International, and
manufacturers may specify manufacturer-specific variant values for
manufacturer-specific assemblies.

Each assembly on a device has a unique number that is assigned by the
application. Each network variable on a device may be assigned to an assembly.
The ISI engine calls the IsiGetNvIndex() and IsiGetNextNvIndex() callback
functions to map a member of an assembly to a network variable on the device.

31 ISI Programmer’s Guide

Opening Enrollment
void IsiOpenEnrollment(unsigned Assembly);
void IsiCreateCsmo(unsigned Assembly, IsiCsmoData* pCsmoData);
unsigned IsiGetPrimaryGroup(unsigned Assembly);
unsigned IsiGetWidth(unsigned Assembly);
void IsiInitiateAutoEnrollment(const IsiCsmoData* pCsma, unsigned
Assembly);
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter);

You can create a connection using automatic, controlled, or manual enrollment.
When you use controlled or manual enrollment, user intervention is required to
identify devices or assemblies to be connected. Controlled enrollment is initiated
by a centralized tool such as a controller or user interface panel. This centralized
tool is called the connection controller. Manual enrollment is initiated from the
devices to be connected, typically with a push button called the Connect button.
When you use automatic enrollment, connections are automatically created and
no user intervention is required.

To join a connection, a device must support at least one type of enrollment. A
device may support multiple types of enrollment—a device may even support all
three types of enrollment. For example, a lamp actuator may support automatic
enrollment to a gateway, controlled enrollment configured by a user interface
panel, and manual enrollment with switch devices. Devices that support
controlled enrollment must also support connection recovery as described in
Recovering ConnectionsRecovering Connections in Chapter 5. Standard
functional profiles may require support for specific types of enrollment.

An event triggers your application to open enrollment. The type of event depends
on the type of enrollment:

• Manual enrollment—a user input on the device itself typically triggers
manual enrollment. The input may be a simple button push, or a device
may have a more complex user interface that allows the user to request a
connection.

• Controlled enrollment—a request from a connection controller typically
triggers controlled enrollment. This request is typically initiated by some
user input to the connection controller and arrives in a control request
(CTRQ) message. The CTRQ message identifies an ISI function and an
optional parameter.

• Automatic enrollment—the isiWarm event in the
IsiUpdateUserInterface() callback function typically triggers
automatic enrollment.

To open manual enrollment, call the IsiOpenEnrollment() function on the
connection host, passing in the assembly number to be offered for this connection.
The ISI engine then sends a connection invitation by broadcasting an open
enrollment message (CSMO). The CSMO message is the invitation for other
devices to join this connection. The ISI engine creates the CSMO message by
calling the IsiCreateCsmo() function, which fills the relevant fields of an
IsiCsmoData data structure with the values needed to describe the connection

Formatted: Font: Italic

ISI Programmer’s Guide 32

type and data that is offered to the network. The default implementation of this
function uses the IsiGetPrimaryGroup() function to obtain the associated
group ID, and sets all fields to zero except the Application field (which is filled
with data from the device’s program ID), the Width field (which is set by the
value returned by IsiGetWidth()), the Direction field (which is set to
isiDirectionAny), and the NvType field (which is set to the assembly’s primary
network variable’s SNVT ID). The default implementation of IsiCreateCsmo()
is sufficient for simple devices, but you will typically override it with an
application-specific, implementation. After calling IsiCreateCsmo(), the ISI
engine constructs the remainder of the CSMO message and broadcasts the
connection invitation to the network. In order to create a compound connection
(one with an assembly width larger then 1), you must override the
IsiGetWidth() callback.

Controlled enrollment is initiated and controlled by the connection controller as
described in Creating a Connection with Controlled EnrollmentCreating a
Connection with Controlled Enrollment in Chapter 5. In summary, the
connection controller opens the controlled enrollment by sending a CTRQ
message specifying the IsiOpenEnrollment() function, and also specifying the
assembly number to be offered. The application must respond to the CTRQ
message with a control response (CTRP) message indicating that it implements
the requested operation.

To open automatic enrollment, wait for the isiWarm event from the
IsiUpdateUserInterface() callback function, and then call the
IsiInitiateAutoEnrollment() function, passing a pointer to an IsiCsmoData
structure containing the invitation, and an the assembly number to be offered for
this connection. The ISI engine then sends a connection invitation by
broadcasting an automatic enrollment (CSMA) message. The ISI engine will also
send periodic reminders about the automatic connection by sending CSMR
messages. The reminder ensures that new devices have an opportunity to join
the automatic connections. Whenever a CSMR is due, the ISI engine calls
IsiCreateCsmo() to create the message. The CSMA and CSMR messages are
the invitations for other devices to enroll in this connection. Opening automatic
enrollment through IsiInitiateAutoEnrollment() is an immediate action, and
once the call is made the connection is implemented for the assembly that the call
was made with, regardless of whether there are any members for the connection
or not.

The ISI engine automatically transmits the extended CSMOEX, CSMAEX, or
CSMREX message (as appropriate) if isiFlagExtended was specified during the
start of the engine. Otherwise, the ISI engine automatically clips the Extended
sub-structure of the IsiCsmoData structure and issues the regular CSMO,
CSMA, or CSMR message.

You can provide feedback to the user while enrollment is open, for example by
starting a Connect light to flash. This is typically only done with manual
enrollment. The ISI engine informs your application of significant ISI events by
calling an IsiUpdateUserInterface() callback function.

Formatted: Font: Italic

33 ISI Programmer’s Guide

EXAMPLE 1

The following example opens automatic enrollment:
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 if (Event == isiWarm && !IsiIsConnected(MyAssembly)) {
 IsiInitiateAutoEnrollment(&MyCsmoData, MyAssembly);
 }
}

EXAMPLE 2

The following example opens manual enrollment for a simple assembly with
one network variable, using the network variable’s global index as the
application-specific assembly number:
void startEnrollment(void) {
 unsigned myAssembly;
 myAssembly = nvoValue::global_index;
 IsiOpenEnrollment(myAssembly);
}

EXAMPLE 3

The following example opens controlled enrollment for a simple assembly
with one network variable, using the network variable’s global index as the
application-specific assembly number:
void sendControlResponse(boolean success) {
 IsiMessage ctrlResp;

 ctrlResp.Header.Code = isiCtrp;
 ctrlResp.Ctrp.Success = success;
 memcpy(ctrlResp.Ctrp.NeuronID,
 read_only_data.neuron_id, NEURON_ID_LEN);

 resp_out.code = isiApplicationMessageCode;
 memcpy(resp_out.data, &ctrlResp,
 sizeof(IsiMessageHeader)+sizeof(IsiCtrp));
 resp_send();
}

when (msg_arrives) {
 IsiMessage inMsg;
 unsigned myAssembly;

 if (IsiApproveMsg()) {

 memcpy(&inMsg, msg_in.data, sizeof(IsiMessage));
 myAssembly = nvoValue::global_index;
 if (inMsg.Header.Code == isiCtrq) {
 if (inMsg.Ctrq.Control == isiOpen &&
 inMsg.Ctrq.Parameter == myAssembly) {

sendControlResponse(TRUE);
 IsiOpenEnrollment(myAssembly);
 // Other requests deleted for this example
 …
 } else {
 sendControlResponse(FALSE);
 }
 } else {
 (void) IsiProcessMsgS();
 }

ISI Programmer’s Guide 34

 }
}

EXAMPLE 4

The following example opens manual enrollment for a compound assembly
with four selectors. The isiGetWidth() returns the library’s default value.
In this example, enrollment is being opened in response to the user pressing
a Connect button. Enrollment can only be opened when the ISI engine is in
the normal state. The ProcessIsiButton() function is called in response to
the Connect button being pressed:
IsiEvent isiState;

void IsiCreateCsmo(....) {
 // set pCsmoData as desired
}

unsigned IsiGetWidth(unsigned Assembly) {
 return Assembly == myAssemblyNumber ?
 4 : isiGetWidth(Assembly);
}

void ProcessIsiButton(unsigned Assembly) {
 switch(isiState) {
 ...
 case isiNormal:
 IsiOpenEnrollment(Assembly);
 break;
 ... //Processing for other states
 } // end of switch(state)
}

EXAMPLE 5

The following example opens controlled enrollment for a compound assembly
with four selectors. The isiGetWidth() returns the library’s default value:
IsiEvent isiState;

void IsiCreateCsmo(....) {
 // set pCsmoData as desired
}

unsigned IsiGetWidth(unsigned Assembly) {
 return Assembly == myAssemblyNumber ?
 4 : isiGetWidth(Assembly);
}

void sendControlResponse(boolean success) {
 IsiMessage ctrlResp;

 ctrlResp.Header.Code = isiCtrp;
 ctrlResp.Ctrp.Success = success;
 memcpy(ctrlResp.Ctrp.NeuronID,
 read_only_data.neuron_id, NEURON_ID_LEN);

 resp_out.code = isiApplicationMessageCode;
 memcpy(resp_out.data, &ctrlResp,
 sizeof(IsiMessageHeader)+sizeof(IsiCtrp));
 resp_send();
}

35 ISI Programmer’s Guide

when (msg_arrives) {
 IsiMessage inMsg;
 unsigned myAssembly;

 if (IsiApproveMsg()) {
 memcpy(&inMsg, msg_in.data, sizeof(IsiMessage));
 myAssembly = nvoValue::global_index;
 if (inMsg.Header.Code == isiCtrq) {
 if (inMsg.Ctrq.Control == isiOpen &&
 inMsg.Ctrq.Parameter == myAssembly) {

sendControlResponse(TRUE);
 IsiOpenEnrollment(myAssemblyNumber);
 // Other requests deleted for this example
 …
 } else {
 sendControlResponse(FALSE);
 }
 } else {
 (void) IsiProcessMsgS();
 }
 }
}

EXAMPLE 6

The following refines example 1 and provides a more comprehensive example
of opening automatic enrollment for a simple assembly with one network
variable:
// MyCsmoData defines the enrollment details for the automatic ISI
// network variable connection offered by this device.
static const IsiCsmoData MyCsmoData = {
 ISI_DEFAULT_GROUP, // Group
 isiDirectionOutput, // NV direction
 1, // Width
 2, // Profile number (2 =
 // SFPTopenLoopSensor)
 76u, // Network variable type index
 // (76 = SNVT_freq_hz)
 0 // Variant (0 = standard)
};

// Call InitiateAutoEnrollment in response to isiWarm
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 if (Event == isiWarm && !IsiIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected already,
 // so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData, myAssemblyNumber);
 }
}

EXAMPLE 7

The following example opens automatic enrollment for a compound assembly
with four selectors, offering enrollment for member network variables 1 to 4
of an implementation of the SFPTsceneController profile (the nviScene,
nvoSwitch, nviSetting, and nviSwitch members):
// MyCsmoData defines the enrollment details for the automatic ISI
// network variable connection offered by this device
static const IsiCsmoData MyCsmoData = {

ISI Programmer’s Guide 36

 ISI_DEFAULT_GROUP, // Group
 isiDirectionVarious, // NV direction
 4, // Width
 3251, // Profile number (3251 =
 // SFPTsceneController)
 0, // Network variable type index
 // (0 = determined by SFPT)
 0 // Variant (0 = standard)
};

// Call InitiateAutoEnrollment in response to isiWarm
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 if (Event == isiWarm && !IsiIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected already,
 // so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData, myAssemblyNumber);
 }
}

EXAMPLE 8

For a complete example that implements connection management for
multiple assemblies, see the MgDemo example application that is available
for free download from www.echelon.com/isi.

Receiving an Invitation
unsigned IsiGetAssembly(const IsiCsmoData* pCsmoData, boolean Auto);
unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmoData,
boolean Auto, unsigned Assembly);

You can receive a connection invitation and specify which assemblies are eligible
to join the ISI connection. When an ISI device receives a CSMO, CSMA, or
CSMR connection invitation message, the ISI engine first checks on the
availability of device resources that are required in order to implement the
connection. If any of these resources is forseeably missing or insufficient, such as
address or connection table space, the invitation is dropped. If the ISI engine
believes there are sufficient resources, it calls the IsiGetAssembly() and
IsiGetNextAssembly() functions with the received CSMO, CSMA, or CSMR
message. These functions return all assembly numbers that are provisionally
approved to join the connection. The Auto argument of IsiGetAssembly() and
IsiGetNextAssembly() indicates whether the enrollment is manual or
controlled (CSMO) or automatically (CSMA or CSMR) initiated, with FALSE
meaning the enrollment was initiated manually or by a connection controller. On
devices that do not support connection removal, the assembly is ignored if it is
already engaged in another connection.

When a device receives an extended CSMOEX, CSMAEX, or CSMREX message,
all fields of the IsiCsmoData structure are passed to the application, and the
fields in the Extended sub-structure are all valid.

When a device receives a regular CSMO, CSMA, or CSMR message, the extended
fields will automatically be set to all zeros with exception of the
Extended.Member field, which will be set to one.

37 ISI Programmer’s Guide

http://www.echelon.com/isi

Applications need not distinguish between regular and extended incoming
messages.

You can provide feedback to the user when an invitation is received and
provisionally approved, for example by causing a Connect light to flash while
enrollment is open. This is typically only done with a manual connection. The
ISI engine informs your application that an eligible invitation has been received
and provisionally approved by calling the IsiUpdateUserInterface() callback
function for each assembly that is provisionally approved to join the connection,
sending the isiPending event code. This allows the application to indicate the
provisionally approved, but not yet accepted, connection invitations.

EXAMPLE 1

The following example receives and provisionally approves a connection
invitation, and blinks a Connect light until the invitation is accepted, or the
connection is confirmed or canceled:
//IsiUpdateUserInterface is called with isiPending as the IsiEvent
//parameter in response to receiving a CSMO
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 ... //Optional event processing
 isiState = (Event == isiPending || Event == isiApproved
 || Event > isiWarm) ? Event : isiNormal;
}

unsigned IsiGetAssembly(const IsiCsmoData* pCsmoData, boolean
Auto) {
 if (pCsmoData->Group == ISI_LIGHTING_CATEGORY
 && pCsmoData->Extended.Scope == isiScopeStandard
 && pCsmoData->NvType == SNVT_SWITCH_2_INDEX
 && !(pCsmoData->Variant & 0x60)
 && !pCsmoData->Extended.Acknowledged
 && !pCsmoData->Extended.Poll) {
 // Recognized CSMO, return appropriate assembly number
 return myAssemblyNumber;
 }
 ...
}

mtimer repeating IsiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(IsiTimer)) {
 unsigned Assembly;

 IsiTickS();
 // drive the ISI-related LED:
 switch(isiState) {
 ...
 case isiPending:
 SetConnectLed(LED_BLINKING);
 break;
 ...
 }
}

ISI Programmer’s Guide 38

Accepting a Connection Invitation
void IsiCreateEnrollment(unsigned Assembly);
void IsiExtendEnrollment(unsigned Assembly);

For manual and controlled enrollment, you can accept a connection invitation to
join the offered connection. When you accept a connection invitation, the ISI
engine sends an enrollment acceptance message (CSME) to the connection host.
Accepting an invitation only sends an acceptance to the connection host—the
connection is not implemented until the connection host confirms the new
connection.

You can only accept enrollment for an assembly that has been provisionally
approved. To provisionally approve an assembly, the IsiGetAssembly() or
IsiGetNextAssembly() function must have returned the assembly number for
the CsmoData structure currently under inspection, and the
IsiUpdateUserInterface() callback function must have identified the assembly
in question to be in the isiPending state.

For manual enrollment, a connection invitation will typically be accepted based
on user input. For example, LEDs may blink on a device when invitations are
received and provisionally approved as described in the previous section, and the
user may then push the related Connect button to accept a specific invitation.

For a controlled enrollment, a connection invitation will typically be accepted
based on a request from a connection controller. This request is typically
initiated by some user input to the connection controller.

For automatic enrollment, a connection invitation will typically be accepted
based on some application-specific criteria. For example, a home gateway may
open automatic enrollment for its inputs and outputs, and newly installed home
devices may automatically accept all eligible connection invitations from the
home gateway. The actual establishment of an automatic connection is handled
by the ISI engine, and requires no call to IsiCreateEnrollment() or
IsiExtendEnrollment(). The ISI engine extends the connection if the library
supports connection extension, or creates the extension if the library does not
support connection extension and the assembly is not already connected, or if the
library supports connection removal.

For devices that support connection removal, you can create a connection that
replaces all existing connections for an assembly. For devices that support
connections extension, you can add a new connection to an assembly that may
already be enrolled in other connections. To create a connection that replaces all
existing connections for an assembly, call IsiCreateEnrollment(). To add a
connection to an assembly without overriding any existing connections associated
with the same assembly, call IsiExtendEnrollment(). You can extend a non-
existent connection; IsiExtendEnrollment() has the same functionality as
IsiCreateEnrollment() if no connection exists for the assembly in question.

Extending a connection consumes network resources. Each extension to a
connection requires one or more new aliases and connection table entries, and
results in additional network transactions for every update to the connection.

39 ISI Programmer’s Guide

You can eliminate this additional resource usage by deleting and re-creating a
connection instead of extending it.

You can provide feedback to the user when an invitation is accepted, for example
by changing the state of the Connect light from flashing to solid on when the
connection invitation is accepted. This is typically only done with manual
enrollment. The ISI engine informs your application that a connection invitation
has been accepted by calling the IsiUpdateUserInterface() callback function,
assigning the isiApproved or isiApprovedHost state to the respective
assembly. This allows the application to indicate the accepted connection
invitation.

EXAMPLE 1

The following manual enrollment example accepts a connection invitation
when the user presses a Connect button. The user can press the Connect
button for a long or short period, causing a destructive or constructive
operation. In the context of accepting a connection invitation, the
constructive operation is to accept. No destructive operation exists at this
stage, but once the connection invitation has been accepted but not
implemented yet, the destructive operation would be to cancel out from the
previous acceptance. Using a second button or some other suitable means,
the Connect button’s meaning also can be altered much in the way a Control
or Alt key on a computer keyboard does. In the context of accepting a
connection invitation, the regular operation could be to create a connection by
replacing any previous connection related with the same assembly, if any.
The alternative behavior could be to always extend the connection, thus
preserving any previous connections, if any.
IsiEvent isiState;

void ProcessIsiButton(unsigned Assembly, boolean Constructive,
 boolean Alternative) {
 switch(isiState) {
 ...
 case isiPending:
 if (Constructive) {
 if (Alternative) {
 IsiExtendEnrollment(Assembly);
 } else {
 IsiCreateEnrollment(Assembly);
 }
 }
 break;
 ... //Processing for other states
 } // end of switch(state)
}

// IsiUpdateUserInterface is called with isiApproved as the
// IsiEvent parameter in response to accepting the enrollment
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 ... //Optional event processing
 isiState = (Event == isiPending || Event == isiApproved
 || Event > isiWarm) ? Event : isiNormal;
}

mtimer repeating IsiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(IsiTimer)) {

ISI Programmer’s Guide 40

 unsigned Assembly;

 // drive the ISI-related LED:
 switch(isiState) {
 ...
 case isiApproved:
 case isiApprovedHost:
 SetConnectLed(LED_ON);
 break;
 ...
 }
}

EXAMPLE 2

The following example opens controlled enrollment for a simple assembly
with one network variable and accepts the invitation when requested by the
connection controller:
void sendControlResponse(boolean success) {
 IsiMessage ctrlResp;

 ctrlResp.Header.Code = isiCtrp;
 ctrlResp.Ctrp.Success = success;
 memcpy(ctrlResp.Ctrp.NeuronID,
 read_only_data.neuron_id, NEURON_ID_LEN);

 resp_out.code = isiApplicationMessageCode;
 memcpy(resp_out.data, &ctrlResp,
 sizeof(IsiMessageHeader)+sizeof(IsiCtrp));
 resp_send();
}

when (msg_arrives) {
 IsiMessage inMsg;
 unsigned myAssembly;

 if (IsiApproveMsg()) {
 memcpy(&inMsg, msg_in.data, sizeof(IsiMessage));
 myAssembly = nvoValue::global_index;
 if (inMsg.Header.Code == isiCtrq) {
 if (inMsg.Ctrq.Control == isiOpen &&
 inMsg.Ctrq.Parameter == myAssembly) {

sendControlResponse(TRUE);
 IsiOpenEnrollment(myAssembly);
 } else if (inMsg.Ctrq.Control == isiCreate &&
 inMsg.Ctrq.Parameter == myAssembly) {

sendControlResponse(TRUE);
 IsiCreateEnrollment(myAssembly);
 } else if (inMsg.Ctrq.Control == isiFactory) {
 sendControlResponse(TRUE);
 IsiReturnToFactoryDefaults();
 } else {
 sendControlResponse(FALSE);
 }
 } else {
 (void) IsiProcessMsgS();
 }
 }
}

41 ISI Programmer’s Guide

Implementing a Connection
In a manual or controlled enrollment, when a connection host sends a connection
invitation by broadcasting an open enrollment message, one or more devices may
accept the connection invitation and respond with an enrollment acceptance
message (CSME). When the host receives at least one CSME message, the host
indicates this to the host’s application by calling the IsiUpdateUserInterface()
callback function. Typically, the host’s application will change the state of the
related Connect light from flashing to solid on.

Once the host assembly is in that state (isiApprovedHost), the connection can
be cancelled or implemented. See Canceling a Connection for details about
cancellation.

To implement a connection on a connection host, call either
IsiCreateEnrollment() or IsiExtendEnrollment(). The connection host joins
the connection and issues a connection enrollment confirmation message
(CSMC). When calling IsiCreateEnrollment(), any connection that exists for
the same assembly will be removed (See Deleting a Connection, later in this
chapter). When calling IsiExtendEnrollment(), the new connection is added to
any existing connections for the same assembly, consuming an alias table entry
for each NV in the assembly.

Once the connection host confirms the connection, devices that have previously
accepted the connection invitation join the connection by replacing or extending
an existing connection, depending on the function that was used to accept the
invitation.

When a device joins a connection, the ISI engine on that device updates the
network configuration for the device, and the accepted connection becomes active.

The ISI engine automatically implements the connections for the accepted
assembly. To determine the NVs to be connected, the ISI engine calls the
IsiGetNvIndex() and IsiGetNextNvIndex() functions for each selector used
with the connection.

You can provide feedback to the user when a connection has been joined, for
example by turning off the Connect light. This is typically only done with
manual connections. The ISI engine informs your application that a connection
has been implemented by calling the IsiUpdateUserInterface() callback
function. This allows the application to indicate the new connection.

EXAMPLE 1

The following manual enrollment example implements a connection on a
connection host when the user presses the Connect button a second time. It
turns off the Connect light to indicate the acceptance on the host.
void ProcessIsiButton(unsigned Assembly, boolean Constructive,
 boolean Alternative) {
 switch(isiState) {
 ...
 case isiApprovedHost:
 // An approved host is a connection host that has
 // received at least one enrollment acceptance

ISI Programmer’s Guide 42

 // (CSME) message.
 IsiCreateEnrollment(Assembly);
 break;
 ... // Processing for other states
 } // End of switch(state)
}

// IsiUpdateUserInterface is called with isiApprovedHost as the
// IsiEvent parameter in response to receiving a CSME;
// IsiUpdateUserInterface is called with isiImplemented as the
// IsiEvent parameter in response to invoking
// IsiExtendEnrollement() or IsiCreateEnrollment()
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 if (Event == isiApprovedHost){
 SetConnectLed(LED_ON);
 }
 else if (Event == isiImplemented || Event == isiCancelled) {
 isiState = isiNormal;
 SetConnectLED(LED_OFF);

}
 ... //Processing for other events
}

Canceling a Connection
You can cancel a pending enrollment on the connection host at any stage, and on
any device that has accepted the connection invitation. Cancellation is no longer
possible once the connection is implemented; see Deleting a Connection for these
cases.

Pending enrollment sessions are automatically cancelled if:

• On the connection host, if no connection enrollment acceptance message
(CSME) is received within Tenroll after the IsiOpenEnrollment() function
call.

• On the connection host, if the connection is not implemented by a
IsiCreateEnrollment() or IsiExtendEnrollment() function call within
Tenroll after the receipt of a connection enrollment confirmation message
(CMSE).

• On an accepting device, if the connection has been accepted and no
connection enrollment confirmation message (CMSC) has been received
within Tenroll after the acceptance.

To explicitly cancel a pending enrollment, call the IsiCancelEnrollment()
function.

When a connection host cancels a pending enrollment session, it issues a
connection enrollment cancellation message (CSMX). Devices that have accepted
the related connection invitation automatically cancel in result of receiving a
related CSMX message.

When a connection member cancels a pending enrollment session, the
cancellation only has local effect—the approved assembly changes to the
isiCancelled state. Since the connection host may continue re-sending
invitation messages (CSMOs), the same device may, once again, conditionally

43 ISI Programmer’s Guide

approve the assembly and move it to the isiPending state. The user may now
accept the connection invitation once again (by causing the application to call
IsiCreateEnrollment() or IsiExtendEnrollment()), or simply do nothing. The
pending assembly remains pending until the enrollment is closed, and
automatically returns to the isiNormal state.

Deleting a Connection
You can delete an implemented connection using one of three methods:

• The device can restore factory defaults. To do so, call the
IsiReturnToFactoryDefaults() function. This function clears all system
tables, stops the ISI engine, and resets the device. See Deinstalling a Device
and Appendix B for more details about this function.

• The device can delete a connection. To do so, call the
IsiDeleteEnrollment() function. This function causes the connection
information to be removed from the local device as well as on all other devices
that are members of the same connection. The IsiDeleteEnrollment()
function may be called on the connection host, and on any other device that
has joined the connection.

• The device can opt out of an existing connection, leaving other devices that
have joined the same connection unchanged. To leave a connection locally,
call the IsiLeaveEnrollment() function. Calling this function on the
connection host has the effect of IsiDeleteEnrollment()—a connection host
cannot leave a connection, but must always delete the connection.

The ISI engine calls the IsiUpdateUserInterface() function with the
isiDeleted event to notify the application on the completion of a deleting
operation.

Handling ISI Events
You can signal the progress of the enrollment process to the device user. This
will typically be done for devices that use manual connections, since automatic
connections do not require user interaction. User feedback may be as simple as a
single Connect light and button, possibly shared with the Service light and
button. A more complex gateway or controller may have a richer user interface.
To receive status feedback from the ISI engine, override the
IsiUpdateUserInterface() callback function. The ISI engine calls this function
with the IsiEvent parameter set to one of the values in the following table when
the associated event occurs. Some of these events carry a meaningful value in
the numeric parameter, as detailed in the table.

ISI Programmer’s Guide 44

IsiEvent Value Note

isiNormal 0 The ISI engine has returned to the normal, or
idle, state for an assembly. The related
assembly is encoded in the parameter; a
parameter value of ISI_NO_ASSEMBLY
indicates that the event applies to all
assemblies.

isiRun 1 The ISI engine has been successfully started
(parameter = 1) or stopped (parameter = 0).

isiPending 2 The connection related to the assembly given
with the numerical parameter has entered the
pending state. The event means the device has
received and provisionally approved a
connection invitation, but has not yet accepted
the connection invitation. This event only
applies to a connection member. For a
connection host see isiPendingHost.

isiApproved 3 The connection related to the assembly given
with the numerical parameter changed from the
pending state to the approved state. This event
occurs when a connection invitation has been
provisionally approved and accepted. This
event only applies to a connection member. For
a connection host see isiApprovedHost.

isiImplemented 4 The connection related to the assembly given
with the numerical parameter has been
implemented. This event occurs on a
connection host after calling
IsiCreateEnrollment() or
IsiExtendEnrollment() to implement a
connection and close enrollment, and on a
connection member after receiving an
enrollment confirmation message (CSMC).

isiCancelled 5 The connection related to the assembly given
with the numerical parameter has been
cancelled by a timeout, user intervention, or
network action. An assembly number of
ISI_NO_ASSEMBLY indicates that all
pending enrollments are cancelled.

isiDeleted 6 The connection related to the assembly given
with the numerical parameter has been deleted.

45 ISI Programmer’s Guide

IsiEvent Value Note

isiWarm 7 The ISI engine has warmed up (i.e. a
predetermined time with a random component
has passed since the last reset). From this
moment on, the application may call the
IsiInitiateAutoEnrollment() function.

This event occurs no sooner than the expiry of
the Tauto ISI protocol timer, but may occur later.

isiPendingHost 8 The connection related to the assembly given
with the numerical parameter has entered the
pending state. This event occurs on a
connection host after it has issued a connection
invitation (CSMO) but not yet received any
enrollment acceptance messages (CSMEs).
This event only applies to a connection host.
For a connection member see isiPending.

isiApprovedHost 9 The connection indicated with the numerical
parameter changed from the pending state to
the approved state. This event occurs on a
connection host at the receipt of the first
connection enrollment acceptance message
(CSME). This event only applies to a
connection host. For a connection member see
isiApproved.

isiAborted 10 The device stopped domain or device
acquisition. The parameter is a member of the
IsiAbortReason enumeration and indicates
the reason for the abort.

isiRetry 11 The device is retrying the device acquisition
procedure. The parameter is the remaining
number of retries.

isiWink 12 The device should perform its wink function.
The specific function is application-dependent,
but should provide some visible feedback to the
user. For example, the application may blink
an LED on the device.

isiRegistered 13 This event indicates either acquisition start or
successful acquisition completion on either an
ISI-DA or ISI-DAS device. The parameter
indicates either a successful start (parameter
= 0) or completion (parameter = 0xFF).

You can override the IsiUpdateUserInterface() callback function with an
application-specific function to provide application-specific user feedback. The
default implementation of this function does nothing, and is only useful for
devices that exclusively use automatic enrollment.

ISI Programmer’s Guide 46

The following figure summarizes the typical sequence of events for a connection
host using manual or controlled enrollment. The sequence of events is similar for
a connection host using automatic enrollment, except that the connection host
will skip the isiApprovedHost event and go straight to the isiImplemented
event. The sequence of events shown in this figure is typical—the actual
sequence of events passed to the IsiUpdateUserInterface() callback may vary
from this diagram.

The following figure summarizes the typical sequence of events for a connection
member. As with the previous diagram, the sequence of events shown in this
figure is typical—the actual sequence of events passed to the
IsiUpdateUserInterface() callback may vary from this diagram.

47 ISI Programmer’s Guide

You can get more detailed ISI diagnostic events. These events are useful for
debugging ISI applications and are not typically used for production products. To
receive notification of diagnostic events, enable diagnostics in the IsiStart()
function by raising the isiFlagSupplyDiagnostics flag, and override the
IsiUpdateDiagnostics() callback function. This callback is normally disabled
and the default implementation of IsiUpdateDiagnostics() does nothing. The
ISI engine calls this function with the IsiDiagnostic parameter set to one of the
values in the following table when the associated event occurs—some of these
events carry a meaningful value in the numeric parameter, as detailed in the
following table:

ISI Programmer’s Guide 48

IsiDiagnostic Value Note

isiSubnetNodeAllocation 1 A local subnet/node ID has been
allocated.

isiSubnetNodeDuplicate 2 A duplicate subnet/node ID has been
detected.

isiReceiveDrum 4 DRUM message received.

isiReceiveTimg 5 TIMG message received.

isiSendPeriodic 6 Periodic message other than an NV
heartbeat message (see the
isiSendHeartbeat event for these)
sent. The parameter contains the ISI
message code for the message sent.

isiSelectorDuplicate 7 NV selector duplicate has been
detected. The parameter indicates
the associated assembly.

isiSelectorUpdate 8 NV selector update has been detected.
The parameter indicates the
associated assembly.

isiReallocateSlot 9 Period broadcasting slot has been
reallocated as a result of message
spreading.

Deinstalling a Device
You can deinstall a device to remove all network configuration data, including
the domain addresses, network addresses, and connection configurations. For
devices that do not provide direct connection removal, this is the only way to
remove a device from a connection. You can use this procedure to re-enable self-
installation for an ISI device that was installed in a managed network. You can
also use this procedure to return a device to a known state. You can deinstall a
device to move it from a managed network to a self-installed network, or to move
a self-installed device to a new self-installed network. All ISI devices must
support deinstallation.

To deinstall a device, set the SCPTnwrkCnfg configuration property to
CFG_LOCAL to enable self-installation and then call the
IsiReturnToFactoryDefaults() function. You will typically deinstall a device
in response to an explicit user action. For example, the user might be required to
press and hold the service pin for five seconds to trigger deinstallation.

The IsiReturnToFactoryDefaults() function clears and reinitializes all system
tables, stops the engine, and resets the device. Due to the device reset, the call to
the IsiReturnToFactoryDefaults() function never returns.

49 ISI Programmer’s Guide

EXAMPLE

The following example deinstalls a device after the service pin is held for a
long period:

when (timer_expires(ServicePinHoldTimer)) {
 nciNetConfig = CFG_LOCAL;
 IsiReturnToFactoryDefaults();
}

Recovering from a Programming Error
The IsiReturnToFactoryDefaults() function described in the previous section
assists with recovering from some programming errors. For example, you can
safely remove incorrectly established connections with this tool. However, if the
application enters a state that causes it to malfunction on an algorithm level,
more application-specific code is needed to assist recovery from such a condition.
A typical implementation is to monitor the status of the Service button (see the
service_pin_state() function in the Neuron C Reference Guide) to determine if
the Service button is activated continuously for a prolonged period, e.g., five
seconds, and then call the IsiReturnToFactoryDefaults() function. This
function call never returns, as it resets the device. Control first returns to the
application within the when (reset) task. In this task, the application can also
check the state of the Service button using the same service_pin_state()
function. If the Service button is pressed while the device resets, the application
can re-initialize the application’s state and variables to return to orderly
behaviour, and might use the Neuron C active_service_led built-in variable to
signal completion of recovery operations without using any other application I/O.

Declaring Network Variable Arrays
Network variable arrays must be declared with the
bind_info(expand_array_info) modifier if you use the default implementation
of IsiCreateCsmo(), IsiGetAssembly(), or IsiGetNextAssembly(). This
includes the forwardees isiCreateCsmo(), isiGetAssembly(), and
isiGetNextAssembly() functions (See Forwarders in Chapter 5). Applications
that override all of these forwarders with application-specific implementations
that do not use the related forwardees do not need to specify the
expand_array_info attribute. This attribute allows the ISI library to
determine the SNVT type ID for every network variable on the device, at the
expense of a larger amount of memory required for self-identification data.

Using the run_unconfigured Compiler Directive
ISI makes use of the run_unconfigured compiler directive to enable the device
application to run without network configuration. This is declared in the isi.h
standard header file and no extra steps are needed. Side-effects of this directive
are described in the Neuron C Reference Guide.

ISI Programmer’s Guide 50

Implementing a SCPTnwrkCnfg CP
ISI applications must implement a SCPTnwrkCnfg configuration property that
is implemented as a configuration network variable. This configuration property
must apply to your application’s Node Object, if available, or apply to the entire
device if there is no Node Object. This configuration property provides an
interface for network tools to disable self-installation on an ISI device. This
allows for the same device to be used in both self-installed and managed
networks. The cp_info(reset_required) attribute is typically used with the
declaration of the SCPTnwrkCnfg CP. This allows you to simply check the
current ISI state in the device’s when (reset) task. See the ISI example
applications for examples.

The default value of the SCPTnwrkCnfg configuration property must be
CFG_EXTERNAL. This allows for the device to be transitioned to a managed
network without error. When setting this as the default for a device that will use
self-installation, detect the first start with a new application image and, in this
case only, change the value of the CP to CFG_LOCAL so that the ISI engine can
come up running with the first power-up.

EXAMPLE
network input SCPTnwrkCnfg cp cp_info(reset_required) cpNetConfig
= CFG_EXTERNAL;

device_properties {
 cpNetConfig
};

eeprom SCPTnwrkCnfg oldNetConfig = CFG_NUL;

when (reset) {
 SCPTnwrkCnfg netConfig;
 netConfig = oldNetConfig;

 if (netConfig == CFG_NUL) {
 // First application start, enable self-installation
 cpNetConfig = CFG_LOCAL;
 }
 oldNetConfig = cpNetConfig;

 if (cpNetConfig == CFG_LOCAL) {
 if (netConfig == CFG_EXTERNAL) {
 // Managed application has returned to self-installation
 IsiReturnToFactoryDefaults(); // Call NEVER returns!
 }
 // Self-installed network--start the ISI engine
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagExtended);
 }
}

51 ISI Programmer’s Guide

4

Quick Start, Revisited

This chapter revisits the quick start example in Chapter 1 to
add connection enrollment support and user feedback.

ISI Programmer’s Guide 52

Here is the quick start example from Chapter 1:

#include <isi.h>

when (reset) {
 // Clear all tables and start the ISI engine
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagNone);
}

mtimer repeating isiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(isiTimer)) {
 // Call the ISI engine to perform periodic tasks
 IsiTickS();
}

when (msg_arrives) {
 if (IsiApproveMsg()) {
 // Process an incoming ISI message
 (void) IsiProcessMsgS();
 }
}

While this application can attach to a network, send status messages, and receive
the status messages from other devices, it has no way of establishing a
connection to any other device in the network. It also has no way of interacting
with the user, which means it cannot relay information to the user, nor can it
receive input from the user. This chapter expands the example to implement
support for one connection, with simple user interaction of the connection status.

To support connections, you must define at least one network variable, call
IsiOpenEnrollment() to open manual or controlled enrollment, call
IsiInitiateAutoEnrollment() to start automatic enrollment, and call
IsiCreateEnrollment() or IsiExtendEnrollment() to accept a connection
invitation for manual or controlled enrollment. For the example, one network
variable is defined that controls the state of a light. This network variable is
created with the following code:

network input SNVT_switch nviLight;

The IsiCreateEnrollment() or IsiExtendEnrollment() call is typically made
when the user activates the Connect button for an assembly that is in the
pending state. To track the state for each assembly, you can override the
IsiUpdateUserInterface() callback function. Because the example application
supports only one assembly, state tracking is simple and can be implemented
with a single variable.

The following code overrides the IsiUpdateUserInterface() callback function to
get updates of the state of the ISI engine:

// Last known state variable. This is used when providing
// user input back to the ISI engine (below)
IsiEvent deviceState = isiNormal;

// IsiUpdateUserInterface() override

53 ISI Programmer’s Guide

void IsiUpdateUserInterface(IsiEvent event,
 unsigned parameter) {
 if (event == isiPending || event == isiPendingHost) {
 SetConnectLed(LED_BLINKING);
 } else if (event == isiApproved ||
 event == isiApprovedHost) {
 SetConnectLed(LED_ON);
 } else {
 SetConnectLed(LED_OFF);
 }
 deviceState = event;
}

SetConnectLed() is a device-specific function that is defined elsewhere. The
function sets the device’s LED into the three states mentioned above. While the
default implementation of the IsiUpdateUserInterface() function contained in
the ISI implementation library does nothing, the overridden implementation
above connects the ISI engine with the user interface—a single LED in this case.
The second parameter of IsiUpdateUserInterface() generally indicates the
assembly number to which the event applies. Since the sample device only has
one assembly, the parameter is disregarded here.
ISI requires no specific user-interface, but a simple user interface is typically
required for devices that implement manual connections. A minimal user
interface can be implemented by monitoring state changes to isiPendingHost,
isiPending, isiApprovedHost, isiApproved, and isiNormal for each
assembly. To relay a user command to the ISI engine, you can detect the related
user interface operation and call the related ISI command function. For a small
device this user input device can be as simple as a single Connect button, which
may be in one of three states: 1) not pressed, 2) pressed for a short while, or 3)
pressed for a prolonged period of time. This single-button input is often
combined with the current state of the related assembly, as indicated with the
DeviceState tracking variable introduced above.
The following table summarizes the response to a button press, based on the
DeviceState value.
DeviceState Connection Host Response to Connect Button
isiPendingHost Yes A pending connection host is one

that has issued a connection
invitation (CSMO message) but
has not yet received a single
CSME. In this state, only
cancellation is a valid operation.
Call IsiCancelEnrollment() to
cancel the open enrollment.

isiPending No A pending connection member is
one that has received and
provisionally approved a
connection invitation. Call
IsiCreateEnrollment() or
IsiExtendEnrollment() to
accept the connection.

ISI Programmer’s Guide 54

DeviceState Connection Host Response to Connect Button
isiApprovedHost Yes An approved connection host is

one that has received at least
one connection enrollment
acceptance message (CSME).
Call IsiCreateEnrollment() or
IsiExtendEnrollment() to
implement the connection. Call
IsiCancelEnrollment() to
cancel the enrollment.

isiApproved No An approved connection
member is one that awaits a
connection enrollment
confirmation (CSMC) or
cancellation (CSMX) message
from the host. Call
IsiCancelEnrollment() to
cancel the acceptance (opt out of
the open enrollment).

isiNormal N/A In the normal state, devices can
become hosts
(IsiOpenEnrollment()) or
leave or delete existing
connections through
IsiLeaveEnrollment() or
IsiDeleteEnrollment().

In the example code below, the application Connect button when task calls
enrollment functions based on the DeviceState, which was set in the overridden
IsiUpdateUserInterface() function above. The if (longPress) test represents
an action that would happen if the button was being held down for an extended
period of time, with the implementation details not shown here.

when (io_changes(...)) {
 switch(deviceState) {
 case isiPendingHost:
 if (longPress) {
 IsiCancelEnrollment();
 }
 break;
 case isiPending:
 IsiCreateEnrollment(assembly);
 break;
 case isiApprovedHost:
 if (longPress) {
 IsiCancelEnrollment();
 } else {
 IsiCreateEnrollment(assembly);
 }
 break;
 case isiApproved:
 if (longPress) {
 IsiCancelEnrollment();
 }

55 ISI Programmer’s Guide

 break;
 case isiNormal:
 if (longPress) {
 IsiDeleteEnrollment(assembly);
 } else {
 IsiOpenEnrollment(assembly);
 }
 break;
 }
 }
}

With the refinements to the quick start example introduced above the resulting
device will do the following:

• Participate in and honor all ISI messages relating to the device’s subnet/node
address.

• Use timing guidance received from a domain address server, if available, and
the application is linked with the IsiCompactS, IsiCompactSHb,
IsiCompactDa, IsiCompactDaHb, or IsiFull library; see Optimizing the
Footprint of ISI Applications for more details about the different ISI libraries.

• Open enrollment for connections with a width of 1, offering a connection with
a SNVT_switch network variable.

• Provisionally approve open enrollment messages for manual connections that
relate to a single standard network variable with a matching SNVT_switch
type.

A typical ISI application will proceed and provide further customization. Such
customization serves two purposes:

• A customized application can support more complex connection types, such as
complex compound assemblies or manufacturer-specific connections.

• Customized applications can be tailored to specific application needs.
Customizing ISI can lead to smaller memory footprint, compared to the
generic default implementations.

Further customization is discussed in Self-Installation Advanced Procedures.

ISI Programmer’s Guide 56

57 ISI Programmer’s Guide

5

Developing and Debugging
an ISI Application

This chapter describes how to develop and debug
applications using the Neuron C ISI Library.

ISI Programmer’s Guide 58

General Considerations
You can develop applications for the Neuron C ISI library using the
NodeBuilder® 3.1 Development Tool or the Mini EVK Evaluation Kit. The
Neuron C ISI Library is included with Mini EVK, and is available as a free
download for the NodeBuilder 3.1 Development Tool. New updates for the
Neuron C ISI Library are posted periodically, so check www.echelon.com/isi for
the latest version before starting a new development.

The NodeBuilder tool includes the LonMaker Integration Tool, and the
LonMaker tool is used to create a managed network when using the NodeBuilder
tool. As a result, without special debugging considerations, self-installation will
be disabled for your devices when you try to debug them with the NodeBuilder
tool. You can also encounter the same problem if you use the LonMaker tool with
the Mini EVK to take advantage of the network debugging capabilities of the
LonMaker tool. This chapter describes the special considerations required when
debugging an ISI application in a managed network.

As described in Chapter 2, ISI applications use a SCPTnwrkCnfg configuration
property to enable and disable self-installation. With this configuration property,
self-installation functions may be enabled or disabled at any time. When testing
an ISI application, test the application with and without self installation enabled
(i.e. both settings for the SCPTnwrkCnfg configuration property), as the ISI
engine impacts the network behavior as well as the timing of the application
algorithm.

When developing and debugging an ISI device, there are two aspects of the device
that must be developed and debugged—the device application and the ISI
implementation.

Developing and Debugging the Application
When developing and diagnosing the application algorithm, such as a washing
machine’s or compressor’s control algorithm, the application may enable or
disable the ISI engine. If the ISI engine remains enabled during this work (the
SCPTnwrkCnfg configuration property remains set to CFG_LOCAL), see the
next section for considerations. Typically, the operation of the ISI engine will be
irrelevant to the correct operation of the application algorithm, and the
SCTPnwrkCnfg configuration property may be set to CFG_EXTERNAL to
disable the ISI engine. In a managed environment, the network management
tool such as the LonMaker tool will automatically set the SCPTnwrkCnfg
configuration property to CFG_EXTERNAL when commissioning your device.
This will disable the ISI engine and prevent any interference with the
NodeBuilder tool.

Developing and Debugging the ISI Implementation
You can develop and debug ISI applications with the NodeBuilder Development
Tool or the Mini EVK Evaluation Kit. The Mini EVK is fully compatible with ISI
applications and does not require any special considerations for development.

59 ISI Programmer’s Guide

http://www.echelon.com/isi

To enable debugging with the managed environment provided by the
NodeBuilder and LonMaker tools, you must ensure that an ISI application in
development cannot modify the primary domain. The primary domain and the
device’s network address are managed by the NodeBuilder tool; modifying this
data as a result of self-installation will prevent testing and diagnosing with the
NodeBuilder or LonMaker tools.

To prevent the primary domain from being overridden when using the
NodeBuilder tool, override the IsiSetDomain() function with one that does
nothing, for a debug target as shown in the following example:

#ifndef _MINIKIT
#ifdef _DEBUG
void IsiSetDomain(domain_struct* pDomain, unsigned Index) {
 ;
}
#endif
#endif

The ISI engine will call this function whenever the primary domain must be
updated. The default implementation routes this call to the update_domain()
standard Neuron C library function. With an override as shown here, an attempt
to update the primary domain has no effect.

WARNING: The IsiSetDomain() override shown here will disable important
aspects of the ISI implementation. This override cannot be used with production-
level devices, or devices that are to be used outside the managed NodeBuilder
environment.

When using the IsiSetDomain() override in the above fashion to allow for
development, testing, and debugging of ISI-related code of a self-installed device
within a managed NodeBuilder environment, a few other restrictions exist:

The LonMaker Browser will not work with self-installed devices when the ISI
engine is running. While monitoring network variable values may work
correctly, updating network variable values may not work.

In a typical ISI application, the SCPTnwrkCnfg configuration property must be
set to CFG_LOCAL to enable the ISI code. If it is not, then the ISI engine will
be disabled. In the debug environment, you can force the ISI engine to always be
running, bypassing the SCPTnwrkCnfg CP setting. The following example
shows how to do this:

network input cp SCPTnwrkCnfg nciNetConfig = CFG_LOCAL;

when (reset) {
#ifndef _DEBUG
 if (cpNetConfig == CFG_LOCAL)
#endif
 {
 scaled_delay(31745UL); // 800ms delay
 IsiStartS();
 }
} // when (reset)

The development network may contain other managed devices. However,
managed and self-installed connections cannot coexist within the same domain

ISI Programmer’s Guide 60

since the different allocation algorithms used for managed and self-installed
connections could result in duplicate resources being assigned. Managed devices
and self-installed devices must always be installed in different domains.

The NodeBuilder tool is the best tool for developing and debugging Neuron C
applications, but there are three other tools that you can use to aid debugging:

• The ISI Packet Monitor Application is a free utility included with
the ISI Developer’s Kit. You can use it to monitor and decode most
ISI messages. To start the ISI Packet Monitor Application, open
the Windows Start menu, point to Programs > Echelon
Interoperable Self-Installation, and then click ISI Monitor
Packet Application. After the Network Interface windows opens,
select your channel type and network interface, and then click
Connect. The ISI Packet Monitor window appears. ISI packets
received by the selected network interface are interpreted and
listed in the lower pane. You can highlight text in the lower pane,
right-click the highlighted text, and then click Copy on the
shortcut menu to copy the log to the Windows clipboard. You can
select one of three tabs in the upper pane to show a summary of
devices reporting DRUMs, a summary of connections reporting
CSMx’s, or a summary of ISI message statistics.

• The NodeUtil Device Utility is a free utility that is available for
download from www.echelon.com/downloads. This application
allows you to see various aspects of a device, including memory and
network variable tables, and also allows you to view and update
network variables.

• The LonScanner Protocol Analyzer is an application for monitoring
and analyzing low-level network traffic received by a network
interface. A free trial edition of the LonScanner tool is included
with the Mini EVK Evaluation Kit. You can also download a free
trial edition from www.echelon.com/lonscanner. The trial edition
runs for a limited time and throws away some of the received
packets. You can order a LonScanner activation key to remove the
time limit and unlock the full functionality.

61 ISI Programmer’s Guide

6

Self-Installation Advanced
Procedures

This chapter describes advanced ISI procedures that are not
typically used by all ISI applications, but support additional
features not supported by the basic ISI procedures described
in Chapter 2. The functions described in this chapter are
further described in Appendixes B and C, and the data
structures used by these functions are documented in
Appendix A.

ISI Programmer’s Guide 62

Overriding a Callback Function
You can have the ISI engine call functions in your application in response to key
ISI events. These functions are called callback functions, because the ISI engine
calls back to your application. To simplify the use of callback functions, the ISI
library includes implementations of all ISI API callback functions. As a result,
you do not have to provide any callback functions. For example, the ISI library
contains a default implementation of the IsiUpdateUserInterface() callback
function. In this case, the default implementation does nothing. To create your
own IsiUpdateUserInterface() function, override the function with your own
application-specific implementation.

Other common callback functions are the IsiGetAssembly() and
IsiGetNextAssembly() functions. You can override these functions to create
application-specific connections.

To override a default implementation, redefine the function with a matching
name and prototype in your application. When the linker recognizes a function
within the application space, it will no longer link the implementation contained
in the library.

When overriding a callback function, avoid calling ISI functions or initiating
time-consuming operations from the override function. Doing so may cause the
ISI engine to function incorrectly. The exceptions to this are when the function
simply returns a flag, such as IsiIsRunning() and IsiIsBecomingHost(), or
when the function is intended to be called from a callback function, like
IsiInitiateAutoEnrollment().

The following table lists the callback functions implemented in the ISI library
and the reasons to override each one.

Function Name Reason to Override

IsiCreateCsmo() Override this function to host connections
that offer more than the default
information, which is the following: the
group ID returned by the
IsiGetPrimaryGroup() function, the
Application field determined by the
device’s program ID, the Width field set by
the value returned by IsiGetWidth(), the
Direction field set to isiDirectionAny, the
NvType field set to the primary network
variable’s SNVT ID, and all other fields set
to zero.yyy

IsiCreatePeriodicMsg() This function is used to determine when a
device should send a periodic message. It
should only be overridden if a device needs a
hook into the periodic message scheduler.

63 ISI Programmer’s Guide

Function Name Reason to Override

IsiGetAssembly() This function should be overridden for
applications with compound assemblies
involving multiple network variables,
connections involving functional blocks, or
automatic enrollment. The default
implementation returns the assembly
number as the network variable’s global
index, if a compatible network variable
exists for a simple connection using
standard network variable types. The
default implementation always returns
ISI_NO_ASSEMBLY for an automatic
enrollment request. To support joining a
connection with automatic enrollment, this
callback function must be overridden.

When overriding this function, also consider
overriding the IsiGetNextAssembly()
function.

IsiGetConnection() This function must be overridden when
implementing a custom connection table.
When this function is overridden,
IsiSetConnection() and
IsiGetConnectionTableSize() must also
be overridden. The default implementation
of the connection table has eight entries
stored in EEPROM.

The connection table functions are typically
overridden to create a connection table with
a size fitting the application, or with a
persistent data storage model that fits the
application’s needs. See Customizing the
ISI Connection Table for more information.

IsiGetConnectionTableSize() This function must be overridden when
implementing a custom connection table.
When this function is overridden,
IsiSetConnection() and
IsiGetConnection() must also be
overridden. The default implementation of
the connection table has eight entries stored
in EEPROM.

The connection table functions are typically
overridden to create a connection table with
a size fitting the application, or with a
persistent data storage model that fits the
application’s needs. See Customizing the ISI
Connection Table for more information.

ISI Programmer’s Guide 64

Function Name Reason to Override

IsiGetNextAssembly() This function should be overridden when
providing for compound assemblies
involving multiple network variables,
connections involving functional blocks, or
automatic enrollment. The default
implementation returns the next assembly
number if a complementary network
variable exists for a simple connection,
using standard network variable types. The
default implementation of this function
always returns ISI_NO_ASSEMBLY for an
automatic enrollment request. To support
joining a connection with automatic
enrollment, this callback function must be
overridden.

When overriding this function, also consider
overriding the IsiGetAssembly() function.

IsiGetNextNvIndex() This function must be overridden in order to
share a single selector among multiple
network variables. The default
implementation always returns
ISI_NO_INDEX.

This function is rarely overridden, but if you
do, consider also overriding the
IsiGetNvIndex() function.

IsiGetNvIndex() This function must be overridden in order to
provide for compound assemblies involving
multiple network variables. The default
implementation returns Assembly + Offset.

This function is commonly overridden. Also
consider overriding the
IsiGetNextNvIndex() function.

IsiGetPrimaryDid() This function can be overridden when using
a non-standard domain ID as the default
domain ID. The default implementation
returns a 3 byte domain, the ASCII values
of the characters “ISI”. Devices using this
override may not be ISI compatible.

IsiGetWidth() This function must be overridden when an
assembly has a width greater then 1. The
default implementation always returns 1.

65 ISI Programmer’s Guide

Function Name Reason to Override

IsiSetConnection() This function must be overridden when
implementing a custom connection table.
When this function is overridden,
IsiGetConnectionTableSize() and
IsiGetConnection() must also be
overridden. The default implementation of
the connection table has eight entries stored
in EEPROM.

The connection table functions are typically
overridden to create a connection table with
a size fitting the application, or with a
persistent data storage model that fits the
application’s needs. See Customizing the
ISI Connection Table for more information.

IsiSetDomain() This function should only be overridden to
allow ISI to run in a managed development
and debugging environment by disabling the
ability to change the domain. See
Developing and Debugging an ISI
Application for more information and
important considerations.

IsiUpdateDiagnostics() This function is used to provide feedback
about the internal state of the ISI engine.
The application may override this function
for enhanced diagnostics during
development and testing.

This function is rarely overridden and
should only be used in a debugging or
testing environment. This function may not
be supported by all ISI libraries.

IsiUpdateUserInterface() This function is used to provide feedback
about the state of the ISI engine to the user.
It should be overridden in any application
that needs to provide feedback to a user.

Forwarders
You can create your own compatible implementations of most of the ISI library
functions, which will then be used instead of the library function. You may
frequently override some of the functions. For example, the IsiGetAssembly()
function determines if an incoming open enrollment message describes an
acceptable connection for this device, and to which local assembly the enrollment
could apply. The ISI library contains default implementations of these functions

ISI Programmer’s Guide 66

in order to simplify development; however, most developers will tailor the ISI
implementation by overriding the default implementations. You cannot replace
the functions that indicate they cannot be overridden in Appendix B.

The C language has no concept of overloaded functions, so an overridden function
can no longer call the default implementation: as both have the same name,
calling the function with the same name will result in a recursive function call.

The following illustrates the standard C library case: a library provides a utility
“IsiFoo(),” which an application may call:

Standard Library Case

Overloading the utility function with an application-specific implementation
prevents accessing the implementation provided with the library:

Overridden Library Function

You can use a forwarder to override an ISI function and call its default
implementation at the same time. You can choose not to use the default
implementation, or you can provide additional functionality and continue to call
the default implementation. Every ISI function that supports forwarding has a
sister function with the same definition that starts with a lower-case “i”. For
example, IsiFoo() has a sister function called isiFoo(). The API is defined as
the plain function (i.e. Isi*()). If you choose to override this function, your
override code may still call the isiFoo() function to benefit from the default
implementation:

67 ISI Programmer’s Guide

Library Functions with Forwarders

Forwarders are implemented in a way that eliminates any overhead for the
indirection; there is no benefit in calling the sister function directly other than
from within an overridden function.

Forwarders are often used to provide an application-specific implementation in a
certain aspect, and to fall back to standard behavior in all other cases. For
example, consider this override of the IsiGetWidth() function:

unsigned IsiGetWidth(unsigned Assembly) {
 return Assembly == SPECIAL ? 3 : isiGetWidth(Assembly);
}

The overridden function provides a width of 3 for a single, special, assembly, and
returns the standard width for all other assemblies.

Assembly Number Allocation
Assembly numbers must be in the 0 – 254 range and sequentially assigned by the
device application starting at 0. Required assemblies for standard profiles must
be first, assigned in the order the profiles are declared in the application.
Standard ISI profiles that define multiple assemblies must specify the order the
assemblies are to be assigned.

Many of the default ISI functions use a default assembly numbering scheme
where the assembly number is equal to the associated network variable’s index.
For assemblies containing multiple network variables, the lowest index of all
associated network variables is used.

The following ISI functions use the default assembly numbering scheme. These
functions are forwardees. If you create a custom assembly number scheme, you
must override all of the related forwarders to use your scheme, and may no
longer use these forwardees:

• isiGetNvIndex()

• isiGetNextNvIndex()

• isiCreateCsmo()

• isiGetAssembly()

• isiGetNextAssembly()

Supporting Compound Assembly Connections
You can support connections of compound assemblies with multiple network
variables, either in a single functional block or multiple functional blocks, or
without any functional blocks at all. The default implementation of ISI functions
such as IsiGetAssembly(), IsiGetNextAssembly(), IsiCreateCsmo(),

ISI Programmer’s Guide 68

IsiGetNvIndex(), and IsiGetWidth() handle connections of simple assemblies
referring to a single network variable of a standard network variable type.

For example, a device supporting a compound assembly may implement a closed-
loop actuator with an input and output network variable—the actuator is an
implementation of the SFPTclosedLoopActuator profile called
myClosedLoopActuator with a SNVT_amp input and output called nviValue
and nvoValue. The following code opens enrollment for connections to the
myClosedLoopActuator functional block:

IsiOpenEnrollment(myAssemblyNumber);

In turn, the ISI engine calls the IsiGetWidth() and IsiCreateCsmo() callbacks,
which you may override to honor this particular assembly:

unsigned IsiGetWidth(unsigned Assembly) {
 // Return 2 for the myClosedLoopActuator assembly
 return Assembly == myAssemblyNumber ?
 2 : isiGetWidth(Assembly);
}

When a device becomes a connection host for a compound assembly, the device
issues an open enrollment message (CSMO), which includes the first selector
used in this enrollment S0, and the number of network variable selectors used
with this enrollment Width. For compound assemblies, i.e. assemblies with
Width > 1, devices that accept the connections must understand how to apply the
Width different network variable selector values to the local network variables.

An accepting device derives that knowledge from the CSMO. For example, if the
CSMO refers to a standard functional profile that is recognized by the receiving
device, and if the CSMO’s Variant field is zero, the receiving device knows that
the enrollment contains Width selector values starting with S0, where
subsequent selector values S1, S2 … SWidth-1 follow sequentially to a maximum of
0x2FFF, with any following selector values continuing at 0 (unless a different
mapping is specified in the profile). If not otherwise specified in the profile, the
selector values are applied to the host’s network variables in rising order of the
network variable member number within the functional profile, starting with the
member number contained in the CSMOEX’s Member field.

In case the host offers a SFPTclosedLoopSensor standard functional profile
with Width 2, the host will therefore apply the selector values to the network
variables as shown here:

Assembly Member Allocation

69 ISI Programmer’s Guide

With that knowledge, an accepting device that implements a
SFPTclosedLoopActuator functional block must associate S1 with its local
input network variable, and S0 with its output network variable. The completed
connections are shown next:

Compound Assembly Connections

When the accepting SFPTclosedLoopActuator functional block implements
the connection, the ISI implementation will query the mapping from selector
values to network variables using the IsiGetNvIndex() callback.

The IsiGetNvIndex() function provides an assembly number and offset. The
application must return the index of the matching network variable, or
ISI_NO_INDEX if no matching network variable exists.

In this example, the IsiGetNvIndex() function will be called twice on the
connection host because the CSMO indicated a width of 2. The Assembly
parameter will be set to Y (which was provided through IsiGetAssembly()
callback earlier). When the callback occurs with offset 0, the application returns
the global index of the input network variable. The index of the output is
provided for offset 1. The code regarding AmBecomingHost is included to avoid
having an input network variable on the first device having the same selector
value as the input network variable on the second device, and an output network
variable on the first device having the same selector value as the output network
variable on the second device:

unsigned IsiGetAssembly(...) {
 if (...) {
 // Recognized SFPTclosedLoopSensor with width 2, variant 0,

ISI Programmer’s Guide 70

 // and a compatible network variable type
 return Y;
 }
 ...
}

unsigned IsiGetNvIndex(unsigned Assembly, unsigned Offset) {
 unsigned Result;
 if (Assembly == Y) {
 if (Offset) {
 Result = AmBecomingHost ? nviValue::global_index
 : nvoValue::global_index;
 } else {
 Result = AmBecomingHost ? nvoValue::global_index
 : nviValue::global_index;
 }
 } else {
 Result = isiGetNvIndex(Assembly, Offset);
 }
 return Result;
}

The application may also map multiple network variables to the same selector
with the IsiGetNextNvIndex() callback. The default implementation of
IsiGetNextNvIndex() returns ISI_NO_INDEX, indicating that only one
network variable, the one indicated with IsiGetNvIndex(), applies to this
assembly and offset value pair.

Mapping multiple network variables to a single selector value is an advanced
feature that is only used with standard functional profiles that specify its use, or
with manufacturer-specific connections. When using this feature, you must be
able to ensure that selector values remain unique within the set of input network
variables.

When using multiple functional blocks, the majority of the code is the same as
the code for a single functional block. There is no difference between referencing
a network variable as a global variable and as a functional block member
variable, i.e. nvoOne::global_index is the same as
fbOne::nvoValue::global_index, as long as nvoOne implements nvoValue in
fbOne.

Creating a Polled Connection
You can create a polled connection where devices with an input network variable
in the connection poll one or more output network variables in the connection.
Two fields in the CSMOEX message are used to support polled output NVs. One
field indicates the direction of the network variable that may be subscribed to the
connection on offer. The direction field may have any of the following values:
isiDirectionInput, isiDirectionOutput, isiDirectionAny, and
isiDirectionVarious. The second field indicates a poll Boolean attribute, which
is normally cleared. This allows for the following combinations:

1. Connection host enrolls local, normal, input network variable:
direction(CSMOEX) = isiDirectionOutput or isiDirectionAny,
poll(CSMOEX) = clear;

71 ISI Programmer’s Guide

2. Connection host enrolls local, normal, output network variable:
direction(CSMOEX) = isiDirectionInput or isiDirectionAny,
poll(CSMOEX) = clear;

3. Connection host enrolls local, polling, input network variable:
direction(CSMOEX) = isiDirectionOutput, poll(CSMOEX) = set;

4. Connection host enrolls local, polled, output network variable:
direction(CSMOEX) = isiDirectionInput, poll(CSMOEX) = set.

The isiDirectionAny value is used in unspecific connections; for example,
between multiple switches and multiple lamps. Most connections will be
direction-specific, whereas many general-purpose I/O devices will support
unspecific-direction connections to simplify the manual-connection scenario.
Devices receiving a CSMO include the direction and poll attributes in the
consideration of acceptance.

You can use the isiDirectionVarious value when the compound assembly
contains multiple network variables of different directions, where the network
variable direction is determined by the functional profile.

EXAMPLE

The following example creates a CSMOEX with the direction field set to
output and the poll field set to on. The isiFlagExtended flag is required for
transmitting this CSMOEX (but not for receiving).
static const IsiCsmoData MyCsmo = {
 ISI_DEFAULT_GROUP, // Group
 isiDirectionOutput, // NV direction
 1, // Width
 2, // Profile number (2 =
 // SFPTopenLoopSensor)
 76u, // Network variable type index
 // (76 = SNVT_freq_hz)
 0, // Variant (0 = standard)
 0, // Acknowledged
 1, // Poll
 isiScopeStandard, // Scope that defines FPT or NVT
 {0x9F, 0xFF, 0xFF, 0x05, 0x00, 0x05}, // application
 1 // network variable member
 // number (1 = nvoValue)
};

Creating an Acknowledged Connection
You can create a unicast acknowledged connection. The ISI protocol does not
support multicast acknowledged connections. An acknowledged connection
requires subnet/node ID addressing instead of the group ID addressing typically
used by ISI for network variable connections. Devices initiating acknowledged
network variable updates must track subnet/node ID allocation using some
suitable application-specific algorithm. The ISI library does not provide an
implementation of these algorithms, but applications are free to supply support
for acknowledged service. Acknowledged service is typically not used because of
the additional complexity of tracking subnet/node ID changes. To send an NV
update using the acknowledged service, create an explicit message that is

ISI Programmer’s Guide 72

formatted as a network variable update. Include an explicit address for the
message with addressing details from an application-level address table and
identify the message as using the acknowledged service, and then explicitly send
the message.

EXAMPLE

The following example shows the construction of a CSMOEX for an
acknowledged connection, and monitors DRUMs to update subnet and node
IDs in a device that allows connections to one other device. The
isiFlagExtended flag is required for transmitting this CSMOEX (but not for
receiving).
static const IsiCsmoData myCsmoData = {
 ISI_DEFAULT_GROUP, // Group
 isiDirectionOutput, // NV direction
 1, // Width
 2, // Profile number (2 =
 // SFPTopenLoopSensor)
 76u, // Network variable type index
 // (76 = SNVT_freq_hz)
 0, // Variant (0 = standard)
 1, // Acknowledged
 0, // Poll
 isiScopeStandard, // Scope that defines FPT or NVT
 {0x9F, 0xFF, 0xFF, 0x05, 0x00, 0x05}, // application
 1 // Network variable member
 // number (1 = nvoValue)
};

typedef struct {
 unsigned NeuronId[NEURON_ID_LEN];
 unsigned subnet;
 unsigned node;
} AddressTracker;

AddressTracker eeprom addressTracking = {
 {0,0,0,0,0,0}, 0, 0
};

when (msg_arrives) {
 IsiMessage msg;
 if (IsiApproveMsg()) {
 // Prior to calling IsiProcessMsg(), pre-process DRUM
 // messages by updating the AddressTracker
 memcpy(&msg, msg_in.data, sizeof(IsiMessage));
 if (msg.Header.Code == isiDrum) {
 if (memcmp(addressTracking.NeuronId,
 msg.Msg.Drum.NeuronId, NEURON_ID_LEN) == 0) {
 addressTracking.subnet = msg.Msg.Drum.SubnetId;
 addressTracking.node = msg.Msg.Drum.NodeId;
 }
 }
 // Call the ISI message handler
 (void) IsiProcessMsgS();
 }
}

The addressTracking variable maintains the current subnet/node ID pair for
the device with the Neuron ID that is also kept in the addressTracking

73 ISI Programmer’s Guide

variable. The Neuron ID to be tracked must be discovered and written to the
addressTracking variable when a connection invitation is accepted. When
sending an (acknowledged) network variable message, this message is explicitly
constructed like an application message, with explicit addressing provided using
address details from the addressTracking variable.

Turnaround Connections
You can create a turnaround connection on an ISI device. A turnaround
connection is a connection between two network variables on the same device.
The following limitations apply for ISI turnaround connections:

• The connection host for the turnaround connection must be the device
containing the connected network variables.

• Only one local assembly can enroll with the host assembly, but
assemblies on other devices may also be enrolled.

• The host assembly must contain at least one output network variable.

• Applications overriding the IsiGetNextNvIndex() function to apply
multiple network variables to a shared selector may only support ISI
turnaround connections if these multiple network variables are all output
network variables.

• ISI turnaround connections can only be created with manual or controlled
enrollment. You cannot create turnaround connections with automatic
enrollment.

An alternative to creating a turnaround connection is to create an application-
level connection. This is a connection where your application passes the data
written to an output network variable to the function or when task that reads an
input network variable. An application-level connection is easy to implement and
requires fewer network resources such as connection table space or NV selectors.
The primary disadvantage of an application-level connection is that it is invisible
to any network management tools that may later be used to transition an ISI
network to a managed network.

To create a manual turnaround connection, select one host assembly on a device,
and then add at most one member assembly per device and enrollment. If this
member assembly is on the hosting device, a turnaround connection will be
created.

Customizing the ISI Connection Table
You can customize the ISI connection table. The connection table is a table
containing the state and details of all connections that the device has joined.
The ISI engine maintains this table and uses the information in this table to host
or join connections. By default, the ISI implementation provides a small
connection table with eight entries suitable for devices with limited resources.

ISI Programmer’s Guide 74

The connection table contains one entry for each simple connection the device has
joined, and for each simple extension to a connection. Connections and
connection extensions from compound assemblies require N connection table
entries, with N being 1 + (Width / 4).

You can replace the connection table to support more simultaneous connections
or to support more complex connections, requiring a larger connection table. You
can also replace the default connection table to implement one with less than
eight entries to suit resource-limited devices. When you replace the connection
table, you can have 0 – 254 entries in the table. To replace the connection table,
override the IsiGetConnectionTableSize(), IsiGetConnection(), and
IsiSetConnection() functions. If any of these functions are overridden, then all
three must be overridden. If some but not all are overridden, the ISI engine will
not function properly.

The connection table requires persistent storage; the content of the connection
table must not change when the device is reset or looses power. The size of the
connection table must be constant between device resets.

EXAMPLE 1

The following example creates a connection table with 16 entries stored in on-
chip EEPROM:
#define CTABSIZE 16u
static eeprom fastaccess IsiConnection
myConnectionTable[CTABSIZE];
unsigned IsiGetConnectionTableSize(void) {
 return CTABSIZE;
}
const IsiConnection* IsiGetConnection(unsigned index) {
 return myConnectionTable + index;
}
void IsiSetConnection(IsiConnection* pConnection, unsigned index)
{
 myConnectionTable[index] = *pConnection;
}

You can also move the connection table to off-chip storage, including an off-chip
serial EEPROM for low-cost non-volatile memory. The ISI engine accesses one
connection table entry at a time so that you only need to buffer one connection
table entry at a time if you move it out of the Neuron memory space. The ISI
engine makes no assumptions about the pointer that your application returns to
the IsiGetConnection() call, except that it points to a single valid connection
table entry. You can therefore buffer a single connection table entry within the
Neuron address space, and always return the same address.

The connection table is accessed frequently, so your IsiGetConnection()
implementation should minimize processing time.

EXAMPLE 2

The following example creates a connection table with 16 entries stored in
off-chip storage:

75 ISI Programmer’s Guide

#define CONTABSIZE 16u

static IsiConnection connectionBuffer;

unsigned IsiGetConnectionTableSize(void) {
 return CONTABSIZE;
}

const IsiConnection* IsiGetConnection(unsigned index) {
 // TODO: fetch data for index from external storage,
 // for example by using a I2C serial I/O model; fill
 // connectionBuffer with that data.
 …
 return &connectionBuffer;
}

void IsiSetConnection(IsiConnection* pConnection,
 unsigned index) {
 // TODO: transfer data referenced by pConnection to
 // external storage, saving it for the given Index
 …
}

Getting ISI Version Information
unsigned IsiImplementationVersion(void);
unsigned IsiProtocolVersion(void);

You can get the version number of the ISI engine, and of the ISI protocol
supported by the ISI engine. Two functions are included to provide information
about the current implementation of ISI.

To get the version number of the ISI engine, call the
IsiImplementationVersion() function.

To get the maximum version of the ISI protocol supported by the ISI engine, call
the IsiProtocolVersion() function. The ISI engine implicitly supports protocol
versions less then the version returned by the function unless otherwise noted.

Discovering Devices
You can discover all the devices in an ISI network. All devices in an ISI network
periodically broadcast their status by sending out DRUM messages. To discover
devices, you can monitor these status messages. This is useful for gateways and
controllers that need to maintain a table of all devices in a network, or provide
unique capabilities for specific types of devices in a network.

To discover devices, monitor the DRUM messages being sent on the network by
other devices and store the relevant information in a device table. A device table
is a table containing a list of devices and their attributes including their network
addresses. The DRUM messages contain all of the relevant information to do
explicit messaging. To create a device table, store the relevant DRUM fields,
such as subnet ID, node ID, and Neuron ID in a table that you can use to directly
communicate with other devices as described in the next section. To detect

ISI Programmer’s Guide 76

deleted devices, monitor the time of the last update for each entry in the table
and detect devices that have not recently sent a DRUM.

EXAMPLE 1

The following example maintains a device table, adding new devices when
discovered, updating subnet and node IDs when they change, and deleting
stale devices.
#include <isi.h>
#include <mem.h>

#define MAX_DEVICES 16
#define MAX_CREDITS 5
#pragma num_alias_table_entries 6

unsigned deviceCount;

// Struct to hold device information
typedef struct {
 unsigned credits;
 unsigned subnetId;
 unsigned nodeId;
 unsigned neuronId[NEURON_ID_LEN];
} Device;

Device devices[MAX_DEVICES];

when (reset) {
 deviceCount = 0; // Not required since global RAM is zeroed
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagNone);
}

void MaintainDevices(const IsiDrum* pDrum) {
 unsigned i;

 // Iterate through the device list and see if the Neuron ID
 // of the stored device matches that of the new device; if it
 // does, then update the related details
 for (i = 0; i < deviceCount; i++) {
 if (memcmp(Devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN) == 0) {
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;
 break;
 }
 }
 // If i is equal to the device count, then the device was not
 // found, so add it to the device table if possible
 if (i == deviceCount && deviceCount < MAX_DEVICES) {
 memcpy(devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN);
 deviceCount++;
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;
 }
}

77 ISI Programmer’s Guide

// Iterate through the device table again and decrement the
// credits at each call of IsiCreatePeriodicMsg(), removing any
// devices that have not sent a DRUM in the max possible amount
// of credits. IsiCreatePeriodicMsg() calls occur at a rate
// roughly equal to the DRUM rate expected from each device;
// this IsiCreatePeriodicMsg() override does not actually cause
// the generation of a periodic message (it always returns
// FALSE), and is used here to decrement each device’s
// credit at the best interval possible
boolean IsiCreatePerodicMsg(void) {
 unsigned i;
 for (i = 0; i < devicecount; i++) {
 devices[i].credits--;
 if (devices[i].credits == 0) {
 devicecount--;
 if (devicecount != i) {
 // Move device from end to this spot’s location
 memcpy(devices+i, devices+devicecount,
 sizeof(Device));
 }
 }
 }
 return FALSE;
}

when (msg_arrives) {
 IsiMessage message;
 if (IsiApproveMsg()) {
 // Received packets are kept in msg_in;
 // compare the message code of the received msg
 // to that of a DRUM
 memcpy(&message, msg_in.data, sizeof(IsiMessage));
 if (message.Header.Code == isiDrum ||
 message.Header.Code == isiDrumEx) {
 MaintainDevices(&message.Msg.Drum);
 }
 IsiProcessMsgS();
 }
}

Accelerating Device Discovery
You can accelerate device discovery to reduce the time to discovery of all devices
in an ISI network. Discovering devices using DRUMs as described in the
previous section can take a long time due to the automatic bandwidth utilization
control implemented by the ISI protocol. For example, discovering five devices in
an ISI-S power line network without a domain address server can take up to 5
minutes 30 seconds. Discovering 200 devices in an ISI-DA power line network
can take up to 34 minutes.

You can accelerate device discovery by using the 709.1 Query ID message. You
can broadcast this message to all devices in the primary domain. All devices will
respond with their Neuron ID and program ID. If there are many devices in the
network, it is likely that some of the responses will be lost due to the requesting
device’s buffers becoming full, or due to network collisions. To accommodate this,
the requesting device disables responses from any devices discovered by the first

ISI Programmer’s Guide 78

request, and then repeats the process on the remaining devices. To accelerate
device discovery, follow these steps:

1. Broadcast a Respond to Query message with a parameter of MODE_ON
to the primary domain. This enables all devices to respond to the Query
ID message.

2. Broadcast a Query ID message to the primary domain.

3. If there are no responses, exit the procedure.

4. For each response, save the Neuron ID in the device table and then send
a Respond to Query message with a parameter of 0 addressed to the
Neuron ID. This disables the device from responding to subsequent
Query ID messages.

5. Repeat steps 2 – 4.

EXAMPLE

The following example uses 709.1 Query ID messages to discover all devices
in the primary domain.

#include <msg_addr.h>
#include <netmgmt.h>

msg_tag bind_info(nonbind) discoveryTag;

#define RETRY_COUNT 3
#define ENCODED_RPT_TIMER 8 // 256ms
#define ENCODED_TX_TIMER 8 // 256ms
#define PRIMARY_DOMAIN 0

// The function broadcases a respond_to_query(MODE_ON) command,
// requesting that every receiving device shall respond to query
// ID requests.
void RespondOn(void) {
 msg_out.code = NM_opcode_base | NM_respond_to_query;
 msg_out.service = UNACKD_RPT;
 msg_out.dest_addr.bcast.type = BROADCAST;
 msg_out.dest_addr.bcast.domain = PRIMARY_DOMAIN;
 msg_out.dest_addr.bcast.rpt_timer = ENCODED_RPT_TIMER;
 msg_out.dest_addr.bcast.retry = RETRY_COUNT;
 msg_out.dest_addr.bcast.tx_timer = ENCODED_TX_TIMER;
 msg_out.dest_addr.bcast.subnet = 0;
 msg_out.tag = discoveryTag;
 msg_out.data[0] = MODE_ON;
 msg_send();
}

// Issue a single Query ID request. This function
// gets called repeatedly as long as positive
// responses to this request are received.
void QueryNetwork(void) {
 NM_query_id_request queryIdRequest;

 msg_out.code = NM_opcode_base | NM_query_id;
 msg_out.service = REQUEST;
 msg_out.dest_addr.bcast.type = BROADCAST;
 msg_out.dest_addr.bcast.domain = PRIMARY_DOMAIN;

79 ISI Programmer’s Guide

 msg_out.dest_addr.bcast.rpt_timer = ENCODED_RPT_TIMER;
 msg_out.dest_addr.bcast.retry = RETRY_COUNT;
 msg_out.dest_addr.bcast.tx_timer = ENCODED_TX_TIMER;
 msg_out.dest_addr.bcast.subnet = 0;
 msg_out.tag = discoveryTag;
 queryIdRequest.selector = SELECTED;
 memcpy(msg_out.data, &queryIdRequest,
 sizeof(NM_query_id_request));
 msg_send();
}

// Handle incoming responses. For successful responses to
// the query ID request, store the response data and process according
// to the application's needs.
// Issue a respond_to_query(MODE_OFF) command to the device that responded
// to the query, requesting that the same device should refrain from responding
// to repeated queries, and repeat the Query ID request to the remaining
// devices in the domain.
when (resp_arrives(discoveryTag)) {
 NM_query_id_response queryIdResponse;

 if (resp_in.code == (NM_resp_success|NM_query_id)) {
 // Save response data:
 memcpy(&queryIdResponse, resp_in.data,
sizeof(NM_query_id_response));

 // To do: Process new device here...
 ...

 // Disable this device's query ID response
 msg_out.dest_addr.nrnid.type = NEURON_ID;
 msg_out.dest_addr.nrnid.domain = PRIMARY_DOMAIN;
 msg_out.dest_addr.nrnid.rpt_timer = ENCODED_RPT_TIMER;
 msg_out.dest_addr.nrnid.retry = RETRY_COUNT;
 msg_out.dest_addr.nrnid.tx_timer = ENCODED_TX_TIMER;
 memcpy(msg_out.dest_addr.nrnid.nid, queryIdResponse.neuron_id,
NEURON_ID_LEN);
 msg_out.code = NM_opcode_base | NM_respond_to_query;
 msg_out.tag = discoveryTag;
 msg_out.service = REQUEST;
 msg_out.data[0] = MODE_OFF;
 msg_send();

 // Try again to query the ID message from other devices
 QueryNetwork();
 }
}

// Start the device discovery process by enabling each device's
// response to Query ID request, and issueing such a request.
// Repeat the query for every
void DiscoverDevices(void)
{
 RespondOn();
 QueryNetwork();
}

ISI Programmer’s Guide 80

Creating a Connection with Controlled Enrollment
You can create a connection from a connection controller using controlled
enrollment. The connection controller is not a network management tool—it
simply takes the place of the push buttons on devices used to create connections
using manual enrollment. Based on user input to the connection controller, the
controller sends requests to the devices to be connected that are translated to the
same ISI API calls used to create manual connections. A connection controller
will typically be some sort of user interface device such as a user interface touch
panel.

To send a request for controlled enrollment, the connection controller sends a
control request (CTRQ) message to the devices to be connected. If the devices
support controlled enrollment, they respond with control response (CTRP)
messages. The CTRQ and CTRP message are described in Appendix A.

The CTRQ message causes the device to execute the ISI API function indicated
with the control value, using the parameter if needed. For example, a CTRQ
message specifying an isiOpen function with a parameter of 2 may be sent to
cause a device to become a manual enrollment host for assembly 2. The device
receives this message, sends a positive response, and then calls
IsiOpenEnrollment(2). The connection controller must send the CTRQ
message using the request/response service. If the device doesn’t implement
controlled enrollment at all, no response will be received. If the device supports
controlled enrollment, but not the requested operation, a negative response will
be received. If the device supports the requested operation, a positive response
will be received. The request is always sent on the primary domain, typically
using Neuron ID addressing. Using the primary domain is required so that the
response can reach the connection controller. Using Neuron ID addressing
relieves the connection controller from keeping track of Neuron ID versus
subnet/node ID tracking, but the connection controller is free to use subnet/node
ID addressing,

The connection controller must send requests for the ISI API functions described
in Enrolling in a ConnectionEnrolling in a Connection in Chapter 2 to create a
connection.

When a CTRP response is received from a device, the connection controller can
use the Neuron ID contained in the response to correlate the response to its
device table.

EXAMPLE

The following connection controller example implements a simple ISI
connection from a switch to a light.

#include <msg_addr.h>
#include <isi.h>
#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 11 // 768ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

// Issue the ISI controlled enrollment command (with parameter
// assembly) to the destination device indicated by neuronId.

Formatted: Font: Italic

81 ISI Programmer’s Guide

void ControlCommand(const unsigned* neuronId, IsiControl command,
unsigned assembly) {
 IsiMessage request;
 msg_out_addr destination;

 request.Header.Code = isiCtrq;
 request.Msg.Ctrq.Control = command;
 request.Msg.Ctrq.Parameter = assembly;

 destination.nrnid.type = NEURON_ID;
 destination.nrnid.domain = PRIMARY_DOMAIN;
 destination.nrnid.rpt_timer = ENCODED_RPT_TIMER;
 destination.nrnid.subnet = 0;
 destination.nrnid.retry = RETRY_COUNT;
 destination.nrnid.tx_timer = ENCODED_TX_TIMER;
 memcpy(destination.nrnid.nid, neuronId, NEURON_ID_LEN);

 IsiMsgSend(&request, sizeof(IsiMessageHeader)+sizeof(IsiCtrq),
REQUEST, &destination);
}

// State information for this enrollment controller.
// Using this state information allows the application to track
// completion of the entire process, and possibly to cancel out
// upon failure.

enum {
 idle, // do nothing
 opening, // open enrollment with host, awaiting response from host
 enrolling, // enrolling members, awaiting responses from each member
 creating // close enrollment and create connection
} controlState;

// Hold data to open enrollment on a host, enroll one member, and close
// enrollment with the host. The structure is filled in by the
// ConnectTwoDevices function and used with the when (resp_arrives) task.

typedef struct {
 unsigned neuronId[NEURON_ID_LEN];
 unsigned assembly;
} ControlledAssembly;

struct {
 ControlledAssembly host;
 ControlledAssembly member;

} controlJob;

when (resp_arrives) {
 IsiMessage response;

 if (resp_in.code == isiApplicationMessageCode) {
 memcpy(&response, resp_in.data, resp_in.len);
 if (response.Header.Code == isiCtrp) {
 // This is a controlled enrollment response
 if (response.Msg.Ctrp.Success) {
 // This is a successful response. See where we are
 // and proceed to next step, if any:
 switch(controlState) {
 case opening:
 // Host has opened; enroll member
 ControlCommand(controlJob.member.neuronId, isiCreate,
controlJob.member.assembly);

ISI Programmer’s Guide 82

 controlState = enrolling;
 break;
 case enrolling:
 // Just one member for this example; close enrollment
 ControlCommand(controlJob.host.neuronId, isiCreate,
controlJob.host.assembly);
 controlState = creating;
 break;
 case creating:
 // We're done; rport successful completion
 // to the user
 ...
 controlState = idle;
 break;
 }
 } else {
 // This is a failure response. For this example, simply
 // cancel the enrollment.
 ControlCommand(controlJob.host.neuronId, isiCancel,
controlJob.host.assembly);
 // Indicate failure via user interface
 ...
 controlState = idle;
 }
 }
 }
}

// Open enrollment with a host device and host assembly, enroll one
// member device and assembly, and closes enrollment. The function
// initializes the description of the control job and kick-starts
// the process; the when (resp_arrives) task handles the
// completion, or cancellation, of the remaining steps.

void ConnectTwoDevices(unsigned* hostId, unsigned hostAssembly,
 unsigned* memberId, unsigned memberAssembly) {
 // Copy the job description
 memcpy(controlJob.host.neuronId, hostId, NEURON_ID_LEN);
 controlJob.host.assembly = hostAssembly;
 memcpy(controlJob.member.neuronId, memberId, NEURON_ID_LEN);
 controlJob.member.assembly = memberAssembly;
 // Start the process by opening enrollment on the host
 controlState = opening;
 ControlCommand(hostId, isiOpen, hostAssembly);
}

Recovering Connections
You can recover existing connections so that a connection controller can display
connections not created by the connection controller, and display connections
created by the connection controller that are no longer in the connection
controller’s database. To recover connections, a connection controller must first
discover all the devices in the network as described in Discovering Devices. To
recover the connections, the controller uses the read connection table request
(RDCT) message, which allows reading a device’s connection table via the
network. Support for this message is optional (except for devices that support
controlled enrollment), and therefore this message can only be used with devices
that support it.

83 ISI Programmer’s Guide

The RDCT message includes optional host and member assembly fields that
specify which connection table entries are requested. If they are not supported
by the device, or are both set to 0xFF, the connection table entry indicated by the
index is requested. If they are supported and the host or member field is not
0xFF, the index provided is the starting index. The first matching connection
table entry is returned, if any. If both host and member fields are set to a value
different from 0xFF, the connection table entries are returned that match either
the host or the member fields, if any.

This allows a connection controller to read the entire connection table, or to read
the table selectively in order to provide quick answers to questions like “is
assembly Z on device X connected, and is it the host of the connection?”

If the requested data is available, the response to a RDCT message is a read
connection table success (RDCS) message. This message contains the requested
connection table index and data. If the connection table index does not exist, or if
the requested assemblies do not exist, the response is a read connection table
failure (RDCF) message.

A connection controller can determine if a device does not support the optional
host and member assembly fields by comparing the assembly numbers in the
read response to the requested assembly number, or by receiving an RDCF
message indicating a failed read. If a device does not support the host and
member assembly fields, the connection controller must read every entry in the
connection table individually. This has minimal impact for devices with one or
two connection table entries, but increases network traffic for devices with many
connection table entries.

EXAMPLE 1

The following connection controller example recovers all the connections from
a device.

#include <msg_addr.h>
#include <isi.h>

#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 11 // 768ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

// This structure holds information required while reading a remote
// device's connection table
struct {
 unsigned neuronId[NEURON_ID_LEN];
 unsigned index;
} recoveryJob;

// Issue one read connection table request using the global
// recoveryJob variable for destination address and current
// connection table index information. Increment the index
// kept in that global variable.
void RequestConnectionTable(void) {
 IsiMessage request;
 msg_out_addr destination;

 request.Header.Code = isiRdct;

ISI Programmer’s Guide 84

 request.Msg.Rdct.Index = recoveryJob.index++;
 request.Msg.Rdct.Host = request.Msg.Rdct.Member = ISI_NO_ASSEMBLY;

 destination.nrnid.type = NEURON_ID;
 destination.nrnid.domain = PRIMARY_DOMAIN;
 destination.nrnid.rpt_timer = ENCODED_RPT_TIMER;
 destination.nrnid.subnet = 0;
 destination.nrnid.retry = RETRY_COUNT;
 destination.nrnid.tx_timer = ENCODED_TX_TIMER;
 memcpy(destination.nrnid.nid, recoveryJob.neuronId, NEURON_ID_LEN);

 IsiMsgSend(&request, sizeof(IsiMessageHeader)+sizeof(IsiRdct), REQUEST,
&destination);
}

// Handle receipt of incoming responses. This example focusses on
// isiRdcs and isiRdcf responses.
when (resp_arrives) {
 IsiMessage response;
 if (resp_in.code == isiApplicationMessageCode) {
 // This is an ISI response
 memcpy(&response, resp_in.data, resp_in.len);
 if (response.Header.Code == isiRdcf) {
 // The remote device rejected our request, probably because we
 // have queried all available connection table entries already
 // (bad index). Notify the user interface, if needed.
 ...

 } else if (response.Header.Code == isiRdcs) {
 // The remote device replied to our request with the connection
 // table entry requested, in response.Msg.Rdcs. Notify the UI
 // and/or process this data further, as needed by the application:
 ...

 // Because we received a positive response, let's try for the
 // next index
 RequestConnectionTable();
 }
 }
}

// Initiate the process of reading a remote device's connection table.
// The function kick-starts the process, where the majority of the work
// is done in the when (resp_arrives) task. Calling this function before
// the previous connection table read job completes causes the previous
// job to abort, and the new one to start
void ReadRemoteConnectionTable(const unsigned* remoteNeuronId) {
 memcpy(recoveryJob.neuronId, remoteNeuronId, NEURON_ID_LEN);
 recoveryJob.index = 0;
 RequestConnectionTable();
}

EXAMPLE 2

The following ISI device example receives a read connection table request
(RDCT) message and then sends the appropriate response.
#pragma num_alias_table_entries 6

#include <isi.h>

// Reply with isiRdcf (connection table read failure), or with
// isiRdcs (connection table read success) message for the

85 ISI Programmer’s Guide

// connection table index provided.
void SendConnectionTableResponse(unsigned index, boolean success) {
 IsiMessage response;
 unsigned length;

 if (success) {
 response.Header.Code = isiRdcs;
 response.Msg.Rdcs.Index = index;
 memcpy(&response.Msg.Rdcs.Data, IsiGetConnection(index),
sizeof(response.Msg.Rdcs.Data));
 length = sizeof(IsiMessageHeader)+sizeof(IsiRdcs);
 } else {
 response.Header.Code = isiRdcf;
 length = sizeof(IsiMessageHeader);
 }
 memcpy(resp_out.data, &response, length);
 resp_send();
}

when (msg_arrives) {
 IsiMessage request;
 unsigned index, connectionTableSize;
 const IsiConnection* pConnection;

 if (IsiApproveMsg() && IsiProcessMsgS()) {
 // The message is approved (it is a genuine ISI message), but
 // was not processed by IsiProcessMsgS(). This might be a
 // connection table request.

 memcpy(&request, msg_in.data, msg_in.len);
 connectionTableSize = IsiGetConnectionTableSize();

 if (request.Header.Code == isiRdct) {
 // This is a connection table read request

 index = request.Msg.Rdct.Index;

 if (request.Msg.Rdct.Host != ISI_NO_ASSEMBLY) {
 // Try locating a connection table entry that is active and
 // report the requested assembly as the host assembly
 while (index < connectionTableSize) {
 pConnection = IsiGetConnection(index);
 if (pConnection->State >= isiConnectionStateInUse
 && pConnection->Host == request.Msg.Rdct.Host) {
 break;
 }
 ++index;
 }
 } else if (request.Msg.Rdct.Member != ISI_NO_ASSEMBLY) {
 // Try locating a connection table entry that is active and
 // report the requested assembly as the member assembly
 while (index < connectionTableSize) {
 pConnection = IsiGetConnection(index);
 if (pConnection->State >= isiConnectionStateInUse
 && pConnection->Member == request.Msg.Rdct.Member) {
 break;
 }
 ++index;
 }
 }
 SendConnectionTableResponse(index, index < connectionTableSize);
 }
 }

ISI Programmer’s Guide 86

}

Sending an NV Update or Polling an NV from a
Controller

You can send an individual network variable update to, or poll an individual
network variable from, an individual device. This is typically done on a gateway
or controller that provides a user interface for individual devices on an ISI
network. The process is based on building and maintaining a device table as
discussed in the previous section, identifying the individual device from this
table, and explicitly constructing explicitly addressed network variable messages
to communicate with the remote device. The explicit network variable updates
and polls require more code than the equivalent implicit update or poll that
occurs when you assign to or poll a network variable.

To send an individual update or poll, first build and maintain a device table as
described in the previous section. Based on the criterion needed to identify an
individual device, you may need to add more fields to the table, filled with data
from the DRUM message, or queried from the device.

When inspecting all live devices held in the table, you can identify types of
devices based on the device program IDs—for instance, you can identify all
appliances to give the user the capability to control individual appliances.

To select an individual device among multiple candidate devices, additional logic
is required. For instance, the gateway device might list three refrigerators. For
service and diagnosis, however, your application may want to communicate with
only one specific refrigerator at a time.

The gateway application may use addressing details from the table to directly
communicate with each instance, and to obtain further details that could assist
with identification. For instance, the refrigerators could implement a
SCPTname1 and SCPTname2 configuration property that lets the gateway
determine the name of each unit, or a SCPTlocation configuration property that
lets the gateway determine the physical location of each unit. Alternatively, the
gateway could issue Wink commands and obtain input from the user, guided by
the refrigerators’ Wink responses, to choose an individual instance. Once the
instance has been identified, the gateway application can communicate directly
with the remote device.

To send a network variable update to the remote device, create an explicit
message that is formatted as a network variable update. Include an explicit
address for the message with addressing details that you fetch from the device
table.

To poll a network variable output on a device in the device table, create an
explicit message that is formatted as a network variable fetch. Include an
explicit address for the message with addressing details that you fetch from the
device table.

87 ISI Programmer’s Guide

EXAMPLE 1

The following example sends a network variable fetch message to a device
with a specified NV index, subnet ID, and node ID. These may be fetched
from the device table created in the previous section.
#include <msg_addr.h>
#include <netmgmt.h>

#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 11 // 768ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

msg_tag bind_info(nonbind) fetchNvTag;

// Issue a fetch NV request using the NV index on the remote
// device, and the remote device's subnet/node ID pair for the
// destination address. Return when the request has been sent;
// see when (resp_arrives) task for processing of the response.
void FetchNv(unsigned nvIndex, unsigned subnetId, unsigned nodeId)
{
 NM_nv_fetch_request fetchRequest;

 memset(&fetchRequest, 0, sizeof(NM_nv_fetch_request));

 fetchRequest.nv_index = nvIndex;
 memcpy(msg_out.data, &fetchRequest,
sizeof(NM_nv_fetch_request));

 // Use Subnet/Node ID addressing
 msg_out.dest_addr.snode.type = SUBNET_NODE;
 msg_out.dest_addr.snode.domain = PRIMARY_DOMAIN;
 msg_out.dest_addr.snode.subnet = subnetId;
 msg_out.dest_addr.snode.node = nodeId;
 msg_out.dest_addr.snode.retry = RETRY_COUNT;
 msg_out.dest_addr.snode.tx_timer = ENCODED_TX_TIMER;
 // Copy the relevant data to msg_out
 msg_out.code = NM_opcode_base | (NM_nv_fetch &
NM_opcode_mask);
 msg_out.service = REQUEST;
 msg_out.tag = fetchNvTag; // Destination address
 msg_send();
}

// Handle receipt of responses to the fetch request issued
// by the FetchNv() function.
when (resp_arrives(fetchNvTag)) {
 NM_nv_fetch_response fetchResponse;

 if (resp_in.code == (NM_resp_success | NM_nv_fetch)) {
 memcpy(&fetchResponse, resp_in.data,
sizeof(NM_nv_fetch_response));
 // Process returned NV Value
 ...
 }
}

ISI Programmer’s Guide 88

EXAMPLE 2

The following example sends an explicit network variable update to a device
in the device table created in the previous section after sending a query NV
request to determine the selector of the target network variable.
#include <msg_addr.h>
#include <netmgmt.h>
#include <isi.h>

#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 8 // 256ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

#define NV_UPDATE_MESSAGE 0x80u

// This explicit message tag is used when querying the remote
// network variable's configuration, and when issuing the
// acknowledged network variable update.
msg_tag bind_info(nonbind) nvTag;

// This variable holds the remote device's subnet/node ID pair,
// used when sending the acknowledged NV update which copies
// the value from a local network variable, indicated by the
// localNvIndex detail, to a remote input network variable.
struct {
 unsigned subnetId;
 unsigned nodeId;
 unsigned localNvIndex;
} nvUpdateJob;

// Initiate an acknowledged network variable update by copying
// relevant data into the nvUpdateJob variable. The function
// then issues a network variable configuration request, which is
// required to obtain the remote network variable's selector value.
// The when (resp_arrives) task, below, handles the response to that
// request and issues the acknowledged network variable update.
void InitiateNvUpdate(unsigned remoteNvIndex, unsigned
localNvIndex,
 unsigned remoteSubnetId, unsigned
remoteNodeId) {

 NM_query_nv_cnfg_request queryNvRequest;

 // Preserve data needed when the NV configuration response arrives
 nvUpdateJob.localNvIndex = localNvIndex;
 nvUpdateJob.subnetId = remoteSubnetId;
 nvUpdateJob.nodeId = remoteNodeId;

 // Prepare the network variable configuration request
 memset(&queryNvRequest, 0, sizeof(NM_query_nv_cnfg_request));
 queryNvRequest.nv_index = remoteNvIndex;
 memcpy(msg_out.data, &queryNvRequest,
sizeof(NM_query_nv_cnfg_request));

 // Use Subnet/Node ID addressing
 msg_out.dest_addr.snode.type = SUBNET_NODE;
 msg_out.dest_addr.snode.domain = PRIMARY_DOMAIN;
 msg_out.dest_addr.snode.subnet = remoteSubnetId;
 msg_out.dest_addr.snode.node = remoteNodeId;
 msg_out.dest_addr.snode.retry = RETRY_COUNT;
 msg_out.dest_addr.snode.tx_timer = ENCODED_TX_TIMER;

89 ISI Programmer’s Guide

 msg_out.code = NM_opcode_base | (NM_query_nv_cnfg &
NM_opcode_mask);
 msg_out.service = REQUEST;
 msg_out.tag = nvTag;
 msg_send();
}

// Handle receipt of the network variable configuration response, and
// build a network variable update message that copies the value of the
// local network variable to the remote network variable. This example
// does not ensure that the remote network variable is an input, or
// that the both network variables share the same type.
when (resp_arrives(nvTag)) {
 NM_query_nv_cnfg_response queryNvResponse;
 unsigned localNvLength;
 const unsigned* pLocalNvValue;

 if (resp_in.code == (NM_resp_success | NM_query_nv_cnfg)) {
 memcpy(&queryNvResponse, resp_in.data,
sizeof(NM_query_nv_cnfg_response));
 // queryNvResponse now holds the remote network variable's selector,
 // which will be used to build the acknowledged network variable update

 memset(&(msg_out.dest_addr.snode), 0, sizeof(struct
snode_struct));

 // Use Subnet/Node ID addressing
 msg_out.dest_addr.snode.type = SUBNET_NODE;
 msg_out.dest_addr.snode.subnet = nvUpdateJob.subnetId;
 msg_out.dest_addr.snode.node = nvUpdateJob.nodeId;

 // Construct the network variable update message
 msg_out.code = NV_UPDATE_MESSAGE |
queryNvResponse.nv_selector_hi;
 msg_out.data[0] = queryNvResponse.nv_selector_lo;

 // Copy the value of the local variable
 pLocalNvValue = IsiGetNvValue(nvUpdateJob.localNvIndex,
&localNvLength);
 memcpy(&msg_out.data[1], pLocalNvValue, localNvLength);

 msg_out.dest_addr.snode.retry = RETRY_COUNT;
 msg_out.dest_addr.snode.tx_timer = ENCODED_TX_TIMER;
 msg_out.service = ACKD;
 msg_send();
 }
}

Monitoring Data from a Controller
and Designing Devices for Monitoring

There are three common methods for a controller to monitor network variables in
an ISI network: polling, controlled enrollment, and automatic enrollment. The
advantage of polling is that it does not require any additional code in the
monitored devices, but the disadvantage is that the controller may require a long
time to poll all network variables in a network—this may cause the controller to
appear to have a poor response time after a network variable value on a

ISI Programmer’s Guide 90

monitored device changes. Controlled and automatic enrollment both address
responsiveness by supporting event-driven updates—the controller is notified
whenever a monitored network variable value changes. The disadvantage of both
controlled and automatic enrollment is that additional code space is required on
the monitored device, with automatic enrollment requiring the most code space.
This section describes the three methods for both controller and device
developers. If you are developing a general-purpose controller, you should
support all three methods to be able to monitor any type of device. If you are
developing an ISI device, you should consider supporting either controlled or
automatic enrollment if polling will not provide adequate monitoring
performance. Some standard ISI profiles require controlled enrollment, so using
controlled enrollment for monitoring with these profiles does not require
additional code space.

Polling
Polling is the simplest of the three methods. The controller uses a device table as
described in Discovering Devices in this chapter to create network variable fetch
requests that it sends to the monitored devices. The 709.1 protocol engine in
each of the monitored devices automatically responds to the fetch requests with
the requested network variable value, so no special code is required in the
monitored device. This works whether the network variable is in a connection or
not since the fetch request uses a network variable index that does not change
when the network variable enrolls in a connection. The problem with polling is
performance. On a power line channel, a controller should not do more than one
poll per second on a network with a power line channel or 12 polls per second on
an exclusive TP/FT-10 network. Controllers supporting multiple outgoing
transactions should have no more than one outstanding polling transaction at a
time. In a network with 100 devices and one monitored network variable per
device, the controller will require 10 minutes to poll every device at 10 polls per
minute. If the monitored devices are lamps, the controller will take up to 10
minutes to indicate a change in the state of the lamp. This is probably not
satisfactory for a lamp, but may be satisfactory for a device with slowly changing
data like an air temperature sensor.

Controlled Enrollment
Controlled enrollment as described in Creating a Connection with Controlled
Enrollment in this chapter provides an easy way for a controller to orchestrate
event-driven updates from monitored devices, at a cost of at least 100 bytes on
the monitored devices. Some standard ISI profiles require controlled enrollment,
in that case there is no additional code or code space required on the device to
support controlled enrollment for monitoring. When a controller uses controlled
enrollment for monitoring, it must also provide a user interface for creating peer-
to-peer connections with controlled enrollment. The reason is that a connection
created by a controller for monitoring will make the assembly used for
monitoring no longer available for a peer-to-peer connection if the device does not
support connection replacement or connection extension—this will be the case for
many simple devices. By supporting peer-to-peer controlled enrollment, the
controller can re-build the required connections when the user adds a monitored

91 ISI Programmer’s Guide

device to a peer-to-peer connection. To support controlled enrollment, the
controller must maintain a device description table that lists:

• the program IDs that support controlled enrollment,

• which network variables on each of those devices are to be monitored by
the controller,

• the assembly containing each monitored network variable, and

• which of the devices support connection replacement and which support
connection extension.

For devices with program IDs that are not in the device description table, the
controller may query the device for the required information. The controller can
query and interpret the device’s node self-documentation string to get a list of the
functional blocks implemented by the device, then use the standard functional
profiles to determine the required network variables, and then use the standard
assembly number to functional block number mapping described in ISI
Connection Model in Chapter 2 to determine the assemblies.

To support controlled enrollment for monitoring, a controller follows these steps
upon discovering a device as described in Discovering Devices in this chapter:

1. The controller looks up the discovered device in the device description
table and determines whether it supports controlled enrollment,
connection replacement, and/or connection extension.

2. If the device supports controlled enrollment and connection extension, the
controller extends any existing connection for the monitored assembly by
sending isiOpen and isiExtend requests to the device, and then
recovers connections to confirm that the connection was successfully
extended. If the connection was not successfully created, the controller
proceeds with the remaining steps.

3. If the device supports controlled enrollment and connection replacement,
but does not support connection extension or could not extend the
existing connection, the controller determines if the monitored NV is
already in a connection. It does this by using connection recovery as
described in Recovering Connections in this chapter. If the monitored NV
is not already in a connection, the controller creates a connection from the
monitored NV to the controller using the isiOpen and isiCreate
requests. If the monitored NV is already in a connection, the controller
rebuilds the connection using the isiOpen and isiCreate requests on all
assemblies in the connection, adding the controller to the connection.

4. If the device supports controlled enrollment but does not support
connection replacement or connection extension, the controller
determines if the monitored NV is already in a connection. It does this by
using connection recovery as described in Recovering Connections in this
chapter. If the monitored NV is not already in a connection, the
controller creates a connection from the monitored NV to the controller
using the isiOpen and isiCreate requests. If the monitored NV is
already in a connection, the controller sends the isiFactory request to
the device to clear all of its existing connections, and then rebuilds all

ISI Programmer’s Guide 92

connections for the device and all devices that it is connected to using the
isiOpen and isiCreate requests.

To support controlled enrollment for monitoring, a controller must also recreate
monitored connections to a device when the device overwrites on clears any
connections created by the controller. There are two cases where this may
happen. A device that supports connection replacement may overwrite a
controller connection by creating a new connection that replaces the controller
connection. Any device may overwrite a controller connection by resetting the
device to factory defaults, clearing all connections. Either case can occur if the
device supports manual enrollment and the user manually adds the device to a
connection, or if the device supports automatic enrollment and the device
automatically joins a connection. In the first case, the controller can monitor all
CSMO and CSMA messages, and silently add itself to the connection if the
connection will overwrite a monitored connection. A controller silently adds itself
by not issuing a CSMA message, but otherwise doing all the steps described in
Enrolling in a Connection in Chapter 2 to enroll in a connection. In the second
case, the controller repeats the procedure described above to create a monitored
connection using controlled enrollment. The controller can also periodically
recover the connections from all devices in the network to ensure any monitoring
connections are still intact. If the controller discovers any missing monitoring
connections, it can recreate them. This periodic traffic should be minimized to
reduce network overhead. For example, sending one request every 10 seconds to
recover a connection should be sufficient.

Automatic Enrollment
Automatic enrollment, as described in Enrolling in a Connection in Chapter 2,
provides an easy way for a controller and monitored device to work together to
support event-driven updates. This provides a method that requires fewer
network transactions than controlled enrollment, and no wait states, at a cost of
at least a few hundred bytes on the monitored devices. This method requires the
monitored device to support automatic connections and connection replacement,
and also requires the device to be more involved in creating the monitored
connection, since the monitored device will determine which network variables on
the device will be connected to the controller.

For a controller to use automatic enrollment for monitoring, the controller
becomes the automatic connection host for data used by the controller. Standard
ISI profiles define standard functional profiles called monitor points that
controllers can use to request data to be monitored from monitored devices, and
that devices can identify as connections offered for monitoring use.

For a device to support automatic enrollment for monitoring, when a monitored
device receives a monitor point automatic invitation, the device application
follows these steps:

1. If the device supports automatic enrollment for monitoring and also
supports connection extension, the device extends the existing connection
by accepting the connection invitation. If the extension fails, the device
proceeds with the next step.

93 ISI Programmer’s Guide

2. If the device supports automatic enrollment for monitoring and but does
not support connection extension, the device calls the the
IsiIsConnected() function to determine if the monitored NV is already
in a connection. If the monitored NV is not already in a connection, the
device accepts the connection invitation from the monitor point. If the
monitored NV is already in a connection, the device does not accept the
invitation.

If a device has accepted an automatic monitoring connection, and later needs to
create a connection due to a manual request or other automatic request, it either
extends the connection if it supports connection extension, or it replaces the
monitoring connection if it does not or if it cannot extend the connection due to
lack of an available alias and connection table entries. In the latter case, the
controller will lose its monitoring connection. The controller can detect this by
monitoring CSMO and CSMA messages. When either is received from a
monitored device, the controller must map the assembly number to monitored
network variables as described in ISI Connection Model in Chapter 2 and silently
join the connection. If the device supports heartbeats, the controller can also
detect lost monitoring connections by detecting lost heartbeat messages.

Selecting a Monitoring Method
A controller should implement all three monitoring methods described in this
section to support all device types with the best response time supported by each.
Device manufacturers can choose from the monitoring methods described in this
section depending on how time-critical monitored data is for each device, and
depending on available code space. The following are the recommended
monitoring methods for devices, in decreasing order code size and functionality:

1. Support automatic enrollment to monitor points with connection
extension and heartbeats.

2. Support automatic enrollment to monitor points with connection
extension.

3. Support automatic enrollment to monitor points with connection
replacement.

4. Support controlled enrollment with connection extension.

5. Support controlled enrollment with connection replacement.

6. Support controlled enrollment without connection extension or connection
replacement.

7. Support polling.

Sending Periodic Heartbeats
boolean IsiQueryHeartbeat(unsigned NvIndex);
boolean IsiIssueHeartbeat(unsigned NvIndex);

ISI Programmer’s Guide 94

You can use periodic processing in the ISI engine to schedule and send periodic
heartbeat updates for any of the output network variables in your application.
To send periodic heartbeats, follow these steps:

1. Start the ISI engine with the isiFlagHeartbeat flag. This causes the
ISI engine to periodically call the IsiQueryHeartbeat() callback. This
function returns TRUE if a heartbeat has been propagated, and FALSE
otherwise.

2. Implement an IsiQueryHeartbeat() callback function and call the
IsiIssueHeartbeat() function from within the function to send a
heartbeat update. The IsiIssueHearbeat() function sends a network
variable heartbeat for the indicated network variable index and all
associated aliases. These heartbeats are sent with unacknowledged
service with one repeat.

The IsiIssueHeartbeat() function only propagates network variables using
group addressing. For example, if you use subnet/node ID addressing to
implement an acknowledged connection as described in Creating an
Acknowledged ConnectionCreating an Acknowledged Connection, the output will
not be propagated by the IsiIssueHeartbeat() function. To propagate outputs
that do not use group addressing; use the propagate() Neuron C library function
in combination with an IsiCreatePeriodicMessage() callback described in the
next section for customized but scheduled network variable heartbeats.

EXAMPLE

The following starts the ISI engine with heartbeats enabled and issues a
heartbeat in response to the IsiQueryHeartbeat() callback.
when (reset) {
 IsiStartDa(isiFlagHeartbeat);
}

boolean IsiQueryHeartbeat(unsigned nv) {

// Agree to all heartbeats suggested by the ISI engine
return IsiIssueHeartbeat(nv);

}

Sending Application-Specific Periodic Messages
You can send periodic messages, taking into account network size so that you
optimize use of available channel bandwidth. The ISI engine automatically
sends periodic messages in a controlled and scheduled manner to limit channel
utilization for both ISI and application heartbeat messages. When each cycle of
periodic messages is completed, the ISI engine calls the
IsiCreatePeriodicMsg() callback function. The default implementation of this
function always returns FALSE. To send application-specific periodic messages,
follow these steps:

1. Start the ISI engine with the isiFlagApplicationPeriodic flag.

2. Override the IsiCreatePeriodicMsg() callback function to set an
application-specific flag and return TRUE to signal that the application
has a periodic message to send. Do not send the message from within

Formatted: Font: Italic

95 ISI Programmer’s Guide

this function; just set the application-specific flag if there is a message to
send and return control to the ISI engine immediately.

3. Use the application-specific flag in a separate when task to send the
periodic message soon after the IsiCreatePeriodicMsg() function is
completed. If you are sending an ISI message, you can use the
IsiMsgSend() function. This function sets header fields for an ISI
message, and then passes the message on to IsiMsgDeliver(), which
propagates the message. If you are sending a network variable update,
use the propagate() function to send the update.

A typical use-case is an application that does not participate in the default
implementation of the network variable heartbeat scheme provided with ISI, but
chooses to insert more specialized network variable heartbeat messages into the
ISI cycle of periodic messages.

EXAMPLE
boolean sendApplicationPeriodic = FALSE;

when (reset) {
 …
 IsiStartS(isiFlagApplicationPeriodic);
 …
}

boolean IsiCreatePeriodicMsg(...) {
 if (have something to do) {
 // have something to do may always be TRUE
 sendApplicationPeriodic = TRUE;
 }
 return sendApplicationPeriodic;
}

when (sendApplicationPeriodic) {
 sendApplicationPeriodic = FALSE;
 // Send periodic message, for example, with IsiMsgSend()
 // For network variable heartbeats, use propagate()
}

Optimizing the Footprint of ISI Applications
The ISI implementation is packaged in several different libraries named
IsiFull.lib, IsiCompactAuto.lib, IsiCompactManual.lib, IsiCompactS.lib,
IsiCompactSHb.lib, IsiCompactDa.lib, IsiCompactDaHb.lib, IsiPl3170.lib
and Isi6000.lib. When creating an application that uses the ISI implementation,
you must choose one of these libraries to link to the application. If you are
developing an ISI application for a PL 3170 device, you must use the
IsiPl3170.lib library. You must use the Isi6000.lib library for use with a Series
6000 chip.

The libraries vary in the supported features and required resources. This section
discusses the differences, and helps you choose the best library for your
application.

ISI Programmer’s Guide 96

IsiFull
This library contains the complete feature set as defined in this document. The
IsiFull library may require device resources for library code and constant data
that are unavailable for a specific target platform, especially if the platform is
based on a 3120 chip. If there are insufficient resources on a device for the
IsiFull library, then choose one of the other libraries.

IsiCompactAuto
This library supports features contained under All Compact Libraries, below,
with the added limitation that this implementation only supports automatic
connections. The IsiOpenEnrollment(), IsiCreateEnrollment(), and
IsiExtendEnrollment() functions are not present in this library, and ISI
network messages related to manual enrollment are ignored.

Network variable heartbeats are not supported by this version of the ISI engine,
and devices created with this library are not ISI-DA compatible and do not
support domain acquisition.

IsiCompactManual
This library supports features contained under All Compact Libraries, below,
with the added limitation that this implementation only supports manual, but no
automatic, connections. The IsiInitiateAutoEnrollment() function is not
present in this library, and ISI network messages related to automatic
enrollment are ignored.

Network variable heartbeats are not supported by this version of the ISI engine,
and devices created with this library are not ISI-DA compatible and do not
support domain acquisition.

IsiCompactS
This library supports features contained under All Compact Libraries, below,
with the addition of timing guidance support, allowing devices created with this
library to be installed in ISI-DA networks with up to 200 devices, and aliases,
which allows for one network variable to participate in multiple connections and
usage of the IsiExtendEnrollment() call. In addition, it also supports both
manual and automatic enrollment.

Network variable heartbeats are not supported by this version of the ISI engine,
and devices created with this library do not support domain acquisition.

97 ISI Programmer’s Guide

IsiCompactSHb
This library supports the same features as the IsiCompactS library, with the
addition of support for network variable heartbeats, as described in Sending
Periodic Heartbeats.

Devices created with this library do not support domain acquisition.

IsiCompactDa
This library supports the same features as IsiCompactS, with the addition of
support for domain acquisition.

Network variable heartbeats are not supported by this version of the ISI engine.

IsiCompactDaHb
This library supports the same features as IsiCompactDa, with the addition of
support for network variable heartbeats, as described in Sending Periodic
Heartbeats.

All Compact Libraries
All compact ISI libraries support all features detailed under IsiFull, except those
specifically excluded in the description of the particular version of compact ISI
library. The following features are also not supported by compact ISI libraries:

• Direct removal or replacement of existing network variable connections is
not supported. Connection invitations will be ignored for assemblies that
are already in a connection. The IsiLeaveEnrollment() and
IsiDeleteEnrollment() functions are not present. To remove an
existing connection from a device that uses a compact ISI library, call the
IsiReturnToFactoryDefaults() function to return the device to the
factory defaults. To replace an existing connection on such a device,
return the device to the factory defaults, and then create the new
connection.

• Network variable turnaround connections are not supported with the
compact libraries.

• The compact libraries require support by the application to pre-validate
resources prior to enrolling with a new connection, whereas the IsiFull
library contains more comprehensive, built-in, support for this validation.
See the IsiGetFreeAliasCount() function for more information.

• Diagnostics are not supported; the isiFlagSupplyDiagnostics flag is ignored.

The following table compares the features of each library.

ISI Programmer’s Guide 98

To identify the smallest possible ISI implementation that meets your application
needs, start with the leftmost column (IsiCompactManual.lib) and proceed
towards the right until you have found a library that supports all required
features. When in doubt and device resources allowing, prefer using IsiFull.lib.

IsiPl3170
The core ISI functions for an ISI-S or ISI-DA device are embedded in the read-
only memory (ROM) of a PL 3170 Smart Transceiver. The IsiPl3170.lib library
supports all of the core features of ISI, except the IsiUpdateDiagnostics()
callback function.

For a PL 3170 device, you must use the IsiPl3170.lib library; if you select a
different library, the ISI engine will not start. This library is not supported for
other device types.

You must use the Neuron Linker Version 4.04.08, or later, to link your
application with the IsiPl3170.lib library. Previous versions of the linker do not
support this library. Neuron Linker Version 4.04.08 is available with Service
Pack 4 or later for the NodeBuilder 3.1 Development Tool.

The ISI engine for a PL 3170 device is delivered in two parts (one part in device
ROM and the other in the IsiPl3170.lib library). Because the links between the
ISI engine in the PL 3170 ROM and the callbacks in the application are defined
when the device resets, you must call the IsiPreStart() function from the
when(reset) task before calling any other ISI functions. You must call this
function even if you do not plan to start the ISI engine.

The PL 3170 Smart Transceiver does not support the ISI-DAS functions.
Therefore, your PL 3170 ISI application should not use DAS-specific functions,
such as IsiProcessMsgDas() or IsiApproveMsgDas(). In addition, your PL
3170 ISI application should not use generic ISI functions, such as IsiStart() or

IsiC
ompact

Man
ual.l

ib

IsiC
ompact

Auto
.lib

IsiC
ompact

S.lib

IsiC
ompact

SHb.l
ib

IsiC
ompact

Da.lib

IsiC
ompact

DaHb.l
ib

IsiF
ull.

lib

Core Functions X X X X X X X
Manual Enrollment X X X X X X
Automatic Enrollment X X X X X X
Aliases (extending enrollment) X X X X X
Heartbeats X X X
Connection Removal X
Turnaround Connections X
Domain Acquisition X X X
Timing Guidance X X X X X
Diagnostics X

99 ISI Programmer’s Guide

IsiTick(), because using these functions causes the linker to include the more
specific functions (including the DAS functions) with the application.

If your application uses the CENELEC Configuration Library functions to enable
or disable the CENELEC Media Access protocol at runtime, your ISI application
does not need to link with the cenelec.lib library because the PL 3170 system
image includes these functions.

Isi6000
This library contains the complete feature set as defined in this document. The
Isi6000 library is functionally equivalent to the IsiFull library, but supports the
Series 6000 chips.

Extended Address Table
Series 6000 chips support an extended address table. The Isi6000 library tolerates an address table
with more than 15 entries, but never allocates an address in the extended address table. However,
executing the IsiReturnToFactoryDefaults() API also resets the extended address table.

DHCP
Applications for series 6000 chips typically enable the dynamic host configuration protocol
(DHCP). Isi6000 supports the use of DHCP as follows:

• Isi6000 assigns a primary domain address only if the primary domain is invalid at
that time. The DHCP selection is preserved.

• When Isi6000 detects a primary domain address conflict with another ISI device,
Isi6000 resolves this address conflict only if it arises with an address assigned by
Isi6000. Isi6000 does not resolve conflicts with DHCP-assigned addresses.

• Isi6000 assigns and manages the secondary domain as detailed in the ISI Protocol
Specification.

Mixed Networks
When Isi6000 is used in a mixed-media network, you must manage this network using an ISI
domain address server (DAS) to assign the primary domain ID of the ISI network. When a DHCP
server is used to allocate addresses to some or all of these devices, the ISI DAS must use a
primary domain to match the DHCP server.

ISI Programmer’s Guide 100

 7

Transitioning between
Managed and Self-Installed

Networks

This chapter describes how you can transition a self-
installed network to a managed network. This is useful
when you want to introduce the benefits of a network
management tool into an operating self-installed network.

101 ISI Programmer’s Guide

You can upgrade a network from a self-installed network to a managed network.
You may do this to add non-ISI devices to an ISI network, to extend the network
beyond the ISI limits, or to introduce managed monitoring and control tools to
the network.

You can use the LonMaker Integration Tool or another application that
implements LNS recovery to automatically analyze an ISI network and create a
LNS database reflecting the present network configuration. The LonMaker tool
will also automatically create a LonMaker drawing that shows all the channels,
devices, functional blocks, and connections in the ISI network. You can then use
the LonMaker tool to further enhance and extend the network.

To transition an ISI network to a managed network using the LonMaker tool,
follow these steps:

1. Ensure all devices in the network are powered on.

2. Recover the network as described in Recovering a Network in the
LonMaker User’s Guide. One of the steps of the recovery procedure is to
optionally create device templates based on device interface (XIF) files for
your devices. This step is typically optional, but is required for any
devices created with the disable_snvt_si compiler directive. These
devices do not provide a network accessible definition of their interface,
and can only be recovered if an XIF file is available. For all devices, an
XIF file may have additional information that is not reported by the
device itself, and may therefore improve recovery.

3. Open the recovered LonMaker network and verify that all devices were
correctly discovered.

4. Change the network to the OnNet management mode.

5. Resynchronize the devices in the network to the LNS database as
described in Resynchronizing the Drawing, Database, and Network in the
LonMaker User’s Guide. This will update the SCPTnwrkCnfg
configuration property that is implemented in all ISI devices to disable
self-installation and enable configuration by the LonMaker tool and other
LNS applications. This will also correct network configuration errors
identified during recovery.

You can read the SCPTnwrkCnfg configuration property in an ISI device to
determine if the device is currently in the self-installed or managed state. If the
SCPTnwrkCnfg CP is set to CFG_LOCAL, then the device is currently self-
installed. If it is set to CFG_EXTERNAL, then the device is in the managed
state.

For more considerations, and example code, see Implementing a
SCPTnwrkCnfg CP.

You can also transition a device from a managed network back to a self-installed
network by deinstalling it as described in Deinstalling a Device in Chapter 2.

ISI Programmer’s Guide 102

Appendix A

API Data Types

This appendix describes the data types used by the ISI
library. Byte offset values shown refer to the IsiMessage
structure, starting with IsiMessageHeader at index 0.
This ISI API reference describes the ISI API for Neuron C,
and uses the Neuron C programming model. The Neuron C
language employs a 1-byte-centric, big-endian, programming
model. The char, int, short, and enum types all use a single
byte. The long type uses 2 bytes in big-endian ordering.
Bitfields are arranged in big-endian order within a single byte
boundary. Aggregate packing is 1, aggregate padding is 0.

The Neuron C language boolean constant FALSE has a value
of 0 (zero) and the boolean constant TRUE has a value of 1,
Any non-zero value is evaluated as true in a boolean
expression, and any function returning a boolean value may
return any non-zero value.

103 ISI Programmer’s Guide

ConnDesc Structure
Contains details describing a connection. Used in the IsiConnection structure.

Data Type Field
Name

Note

unsigned : 6 Offset Offset into the larger selector set for
connections from compound
assemblies with more than four
selectors, 0 for connections from
simple assemblies, connections from
compound assemblies covering four or
less than selectors, or the first
connection table entry related to a
connection from a compound assembly
with a width > 4. Also see CSMI.

unsigned : 1 Auto 1 for connections created with
automatic enrollment; 0 for
connections created with manual or
controlled enrollment.

unsigned : 1 Reserved. Set to zero when writing;
ignore when reading.

IsiAbortReason Enumeration
Identifies the cause of domain or device acquisition termination. Used as the
parameter for the isiAbort event for theIsiUpdateUserInterface() function.

IsiAbortReason Valu
e

Note

isiAbortUnsuccessful 1 Domain acquisition stopped after 20
retries, or any other failure to obtain
an unambiguous domain ID.

isiAbortMismatchingDidrm 2 Domain acquisition stopped due to
arrival of mismatching DIDRM.

isiAbortMismatchingDidcf 3 Domain acquisition stopped due to
arrival of mismatching DIDCF.

isiAbortMismatchService 4 Domain acquisition stopped due to
mismatching confirmation service
message.

IsiCid Structure
Contains the unique connection ID for a connection. The data held by this
structure uniquely identifies a connection in an ISI network.

ISI Programmer’s Guide 104

Byte offset Data Type Field Name Note

N unsigned [5] UniqueId A unique identifier for the
connection host, based on
the host’s Neuron ID.

N+5 unsigned long SerialNumber Connection host-allocated
serial number.

The byte offset N is 1 for the IsiCid or IsiConnectionHeader structure used
with ISI message types, and is 0 (zero) when used with the IsiConnection
structure.

IsiConnection Structure
Represents a row in the connection table that is read with IsiGetConnection()
and written using IsiSetConnection().

Data Type Field
Name

Note

IsiConnectionHeader Header See IsiConnectionHeader

unsigned Host Local assembly number that acts as
host for this connection, or
ISI_NO_ASSEMBLY if none.

unsigned Member Local assembly number that is member
to this connection, or
ISI_NO_ASSEMBLY if none.

unsigned : 2 State Use IsiConnectionState enumerated
values

unsigned : 1 Extend For pending enrollment: this is a
pending connection extension.

unsigned : 1 HaveCsme For pending enrollment hosts: at least
one member has enrolled.

unsigned : 4 Width Width, as governed by this connection
table entry. A single connection table
entry can govern up to 4 selectors;
connections from compound assemblies
with a larger width are split into
multiple connection table entries.

ConnDesc structure Desc.Bf For—sometimes more efficient—access
via 8 bit cardinals, use the
Desc.OffsetAuto construct; see isi.h
for definition details.

105 ISI Programmer’s Guide

IsiConnectionHeader Structure
Contains the connection identifier (CID) and selector value for a connection-
related ISI message.

Byte offset Data Type Field Name Note

N IsiCid Cid See IsiCid.

N+7 unsigned long Selector Selector value 0 – 0x2FFF.
The most significant 2 bits
must be cleared.

The byte offset N is 1 for the IsiConnectionHeader structure used with ISI
message types, and is 0 (zero) when used with the IsiConnection structure.

IsiConnectionState Enumeration
Specifies the state of a connection table entry.

IsiConnectionState Value Note

isiConnectionStateUnused 0 The connection table entry is
unused.

isiConnectionStatePending 1 This connection table entry refers to
a currently or previously open
enrollment. A new open enrollment
message may override this record.

isiConnectionStateInUse 2 This connection table entry is in use.

isiConnectionStateTcsmr 3 This device will broadcast a CSMR
for this connection table entry
following the completion of domain
acquisition. After sending the
CSMR, the connection state returns
to isiConnectionStateInUse.

This state does not apply to devices
that do not support domain
acquisition.

IsiControl Enumeration
Specifies the requested operation for a controlled enrollment request contained in
a control request (CTRQ) message.

IsiControl Value Note

isiNoop 0 No action.

isiOpen 1 Call IsiOpenEnrollment() using the
assembly number passed in as the
parameter.

ISI Programmer’s Guide 106

IsiControl Value Note

isiCreate 2 Call IsiCreateEnrollment() using the
assembly number passed in as the
parameter.

isiExtend 3 Extend a connection by calling
IsiExtendEnrollment() using the
assembly number passed in as the
parameter.

isiCancel 4 Cancel an open (pending or approved)
enrollment by calling
IsiCancelEnrollment().

isiLeave 5 Remove the specified assembly from all
enrolled connections on the local device
by calling IsiLeaveEnrollment() using
the assembly number passed in as the
parameter.

isiDelete 6 Remove the specified assembly from all
enrolled connections on all devices by
calling IsiDeleteEnrollment() using
the assembly number passed in as the
parameter.

isiFactory 7 Restore the device’s self-installation
data to factory defaults by calling
IsiReturnToFactoryDefaults().

IsiCsma Structure
An alias for the IsiCsmo data type, see there for details. The IsiCsma data type
is exchanged with automatic enrollment messages (CSMAs).

IsiCsmc Structure
An alias for the IsiConnectionHeader data type, see there for details. The
IsiCsmc data type is exchanged with enrollment confirmation messages
(CSMCs).

IsiCsmd Structure
An alias for the IsiConnectionHeader data type, see there for details. The
IsiCsmd data type is exchanged with enrollment deletion messages (CSMDs).

IsiCsme Structure
An alias for the IsiConnectionHeader data type, see there for details. The
IsiCsme data type is exchanged with enrollment acceptance messages (CSMEs).

107 ISI Programmer’s Guide

IsiCsmi Structure
Defines an enrollment information message (CSMI) sent by the ISI engine.

Byte offset Data Type Field Name Note

1 IsiConnection
Header

Header See IsiConnectionHeader

10 unsigned : 6 Offset Offset into the selector set of
a connection from a
compound assembly with
five or more selectors; zero
for a connection from a
simple assembly or a
connection from a compound
assembly using less than
five selectors.

10 unsigned : 2 Count Number of selectors
governed by this CSMI
message minus one, which
is a value between zero and
three.

The value in this field is one
less than the width
controlled by this CSMI
message.

IsiCsmo Structure
Defines a manual open enrollment message (CSMO).

Byte offset Data Type Field Name Note

1 IsiConnection
Header

Header See IsiConnectionHeader.

10 IsiCsmoData Data See IsiCsmoData.

IsiCsmoData Structure
Contains the fields of a CSMO message to be sent by the ISI engine, and is
constructed in IsiCreateCsmo().

Byte offset Data Type Field Name Note

ISI Programmer’s Guide 108

Byte offset Data Type Field Name Note

N unsigned Group The group (or device
category) this connection
applies to. See text for valid
group ID values, and
allocation of group ID
values.

N+1 unsigned : 2 Direction Direction of the primary
network variable on offer.
See the IsiDirection
enumeration.

N+1 unsigned : 6 Width Number of selector values
used with this connection,
starting with the value of
the Selector field.

Value 0 is reserved.

N+2 unsigned long Profile Functional profile number of
the functional profile that
defines the functional block
containing the primary
network variable, or zero if
none.

N+4 unsigned NvType NV type index of the NV
type for the primary
network variable, or zero if
none specified. The NV type
index is an index into
resource file that defines the
network variable type for
the primary network
variable on offer.

109 ISI Programmer’s Guide

Byte offset Data Type Field Name Note

N+5 unsigned Variant Variant number for the
offered connection. Variants
may be defined for any
device category and/or
functional profile/member
number pair. Variants
allow different
interpretations of the
offered data, based on a
variant value. Set to zero
unless otherwise known.
Values 1 – 127 are standard
variant values specified by
the ISI Protocol
Specification and by ISI
profiles published by
LONMARK International.
Values 128 – 254 are
available for use by
manufacturer-specific
connections.

Value 255 is reserved.

N+6 unsigned : 1 Extended.
Acknowledged

Normally cleared. For
regular CSMO, CSMA, and
CSMR messages, this field
is always zero. You must
specify isiFlagExtended
when starting the ISI
engine to use this field.

See text for special
considerations.

N+6 unsigned : 1 Extended.Poll Normally cleared. For
regular CSMO, CSMA, and
CSMR messages, this field
is always zero. You must
specify the
isiFlagExtended flag when
starting the ISI engine to
use this field.

See text for special
considerations.

ISI Programmer’s Guide 110

Byte offset Data Type Field Name Note

N+6 unsigned : 2 Extended.
Scope

Scope of the resource file
containing the functional
profile and network variable
type definitions specified by
the Profile and NvType
fields. See the IsiScope
enumeration.

Values 1 and 2 are reserved.

For regular CSMO, CSMA,
and CSMR messages, this
field is always zero. You
must specify the
isiFlagExtended flag when
starting the ISI engine to
use this field.

N+6 unsigned : 4 Reserved. Clear when
sending, ignore when
receiving.

For regular CSMO, CSMA,
and CSMR messages, this
field is always zero.

N+7 unsigned [6] Extended.
Application

The first 6 bytes of the
connection host’s standard
program ID. The last two
standard program ID bytes
(channel type and model
number) are not included.

For regular CSMO, CSMA,
and CSMR messages, this
field is always zero. You
must specify the
isiFlagExtended flag when
starting the ISI engine to
use this field.

N+13 unsigned Extended.
Member

NV member number within
the functional profile for the
primary network variable,
or zero if none.

For regular CSMO, CSMA,
and CSMR messages, this
field is always one. You
must specify the
isiFlagExtended flag when
starting the ISI engine to
use this field.

111 ISI Programmer’s Guide

The byte offset N is 10 for the IsiCsmoData structure used with ISI message
types (IsiCsmo structure), and is zero when used with the IsiGetAssembly()
and IsiGetNextAssembly() functions.

IsiCsmr Structure
An alias for the IsiCsmo data type, see there for details. The IsiCsmr data type
is used with automatic enrollment reminder messages (CSMRs).

IsiCsmx Structure
An alias for the IsiConnectionHeader data type, see there for details. The
IsiCsmx data type is used with enrollment cancellation messages (CSMXs).

IsiCtrp Structure
Defines a control response (CTRP) message used for controlled enrollment.

Byte Offset Data Type Field Name Note

1 boolean Success Non-zero if the requested
operation is supported,
FALSE otherwise.

2 unsigned[6] NeuronID Neuron ID of the device
sending the control
response.

IsiCtrq Structure
Defines a control request (CTRQ) message used for controlled enrollment.

Byte Offset Data Type Field Name Note

1 IsiControl Control Requested operation.

2 unsigned Parameter Parameter to be used with
the requested operation
passed in through the
Control field. See the
IsiControl enumeration for
more details.

IsiDiagnostic Enumeration
Represents the possible diagnostic values that are passed into
IsiUpdateDiagnostics().
IsiDiagnostic Value Note

ISI Programmer’s Guide 112

IsiDiagnostic Value Note

isiSubnetNodeAllocation 1 A local subnet/node ID has been
allocated.

isiSubnetNodeDuplicate 2 A subnet/node ID duplicate has been
detected.

isiReceiveDrum 4 DRUM or DRUMEX message received.

isiReceiveTimg 5 TIMG message received.

isiSendPeriodic 6 Periodic message other than an NV
heartbeat message sent (see
IsiQueryHeartbeat() for these). The
ISI message code for the message sent
is in the numeric parameter. DRUM
and DRUMEX messages are reported
with the same message code (0), and
CSMR and CSMREX are reported with
the same message code (6).

isiSelectorDuplicate 7 Selector duplicate detected. The
parameter indicates the associated
assembly.

isiSelectorUpdate 8 Selector update detected. The
parameter indicates the associated
assembly.

isiReallocateSlot 9 Broadcasting slot has been reallocated
as a result of message spreading.

IsiDidcf Structure
An alias of the IsiDidrm data type, see there for details. The IsiDidcf data type
is used with domain confirmation messages (DIDCFs).

IsiDidrm Structure
Defines a domain response message.

Byte Offset Data Type Field Name Note

1 unsigned : 3 DidLength Number of significant bytes
in the DID array, may be 1,
3, or 6.

1 unsigned : 5 Reserved; set to zero when
sending, ignore when
receiving.

113 ISI Programmer’s Guide

Byte Offset Data Type Field Name Note

2 unsigned [6] Did Domain ID. This field is
always 6 bytes long; the
number of significant bytes
is contained in the
DIDlength field

8 unsigned [6] NeuronId Neuron ID of the DAS, used
for matching DIDRM
messages with DIDCF
messages.

14 unsigned DeviceCountEst Estimated device count used
for throttling periodic
messages. The device count
is an approximation and will
typically be larger than the
actual network size.

15 unsigned ChannelType The least performing
channel ID observed.

IsiDidrq Structure
Defines a domain request message.

Byte Offset Data Type Field Name Note

1 unsigned [6] NeuronId Neuron ID of the requesting
device.

7 unsigned Nuid Non-unique device ID. This ID
is a random number between 0
and 255 that may be used by a
DAS to approximate the number
of devices within earshot. This
number does not need to be
unique between devices, but a
statistic distribuition of Nuid
values is required.

IsiDirection Enumeration
Specifies the direction of the primary network variable on offer in a CSMO.
IsiEvent Value Note

isiDirectionOutput 0 Indicates the network variable is an
output NV.

isiDirectionInput 1 Indicates the network variable is an
input NV.

ISI Programmer’s Guide 114

IsiEvent Value Note

isiDirectionAny 2 Indicates that both input and output
network variables may be applicable to
this connection. Used to support N:M
connections.

isiDirectionVarious 3 Indicates the network variable direction
is distinct and a combination of inputs
and outputs. Used in compound
assemblies, where the network variable
directions are defined by the functional
profile.

IsiDrum Structure
Defines a domain resource usage message (DRUM/DRUMEX).

Byte Offset Data Type Field Name Note

1 unsigned : 3 DidLength States the number of
significant bytes in the DID
array, may be 1, 3, or 6.

1 unsigned : 3 Reserved. Set to zero when
sending, ignore field when
receiving DRUM message
unless otherwise known.

1 unsigned : 2 UserDefined Reserved. Set to zero when
sending, ignore when
receiving.

2 unsigned [6] DomainId Primary domain ID (see
DidLength for number of
significant bytes).

8 unsigned [6] NeuronId Sender’s Neuron ID.

14 unsigned SubnetId Sender’s current subnet ID.

15 unsigned NodeId Sender’s current node ID.

16 unsigned Nuid Sender’s non-unique device
ID. See the IsiDidrq
structure for a description.

17 unsigned ChannelType Value from the Channel Type
standard program ID field.

115 ISI Programmer’s Guide

Byte Offset Data Type Field Name Note

18 unsigned
long

Extended.Device
Class

Value from the Device Class
standard program ID field.

For regular DRUM messages,
this field is always zero. You
must specify the
isiFlagExtended flag when
starting the ISI engine to use
this field.

20 unsigned Extended.Usage Value from the Usage
standard program ID field.

For regular DRUM messages,
this field is always zero. You
must specify the
isiFlagExtended flag when
starting the ISI engine to use
this field.

IsiEvent Enumeration
Specifies an event that is passed into IsiUpdateUserInterface() when the ISI
engine does a callback.
IsiEvent Value Note

isiNormal 0 User interface needs to be reset to the normal,
or idle, state. The parameter value is always
set to ISI_NO_ASSEMBLY.

isiRun 1 ISI engine successfully started (parameter =
1) or stopped (parameter = 0).

isiPending 2 Connection member related to the assembly
given with the numerical parameter entered the
pending state. The device has received an
acceptable CSMO, but has not accepted the
enrollment yet.

isiApproved 3 Connection member related to the assembly
given with the numerical parameter changed
from pending to approved. Occurs when a
pending enrollment has been accepted.

isiImplemented 4 Approved connection has been implemented.
The parameter identifies the assembly. For a
connection host this occurs when the device
invokes IsiCreateEnrollement() or
IsiExtendEnrollment(). For a connection
member this event occurs at the receipt of the first
CSMC.

ISI Programmer’s Guide 116

IsiEvent Value Note

isiCancelled 5 Connection has been cancelled by a timeout,
user, or network action. The parameter is
always set to ISI_NO_ASSEMBLY.

isiDeleted 6 Connection has been deleted. The parameter
identifies the assembly.

isiWarm 7 ISI engine has warmed up—i.e., some
reasonable, but random, time has passed since
the last reset. From this moment on, the
application may call the
IsiInitiateAutoEnrollment() function.

isiPendingHost 8 Connection host related to the assembly given
with the numerical parameter entered the
pending state. The device has issued the CSMO
but not yet received a CSME.

isiApprovedHost 9 Connection host related to the assembly given
with the numerical parameter changed from the
pending state to the approved state. Occurs at
the receipt of the first CSME.

isiAborted 10 Device stopped the domain or device
acquisition. The parameter is a member of the
IsiAbortReason enumeration and indicates
the reason for the abort.

isiRetry 11 The device is retrying device acquisition. The
parameter is set to the remaining number of
retries.

isiWink 12 Device should perform its wink function. The
specific function is application-dependent, but
should provide some visible feedback to the
user. For example, the application may blink
an LED on the device.

isiRegistered 13 Indicates either acquisition start or successful
acquisition completion process on either an ISI-
DA or ISI-DAS device. The parameter indicates
either a successful start (parameter = 0) or
completion (parameter = 0xFF).

IsiFlags Enumeration
Specifies option flags for the IsiStart() functions used to start the ISI engine.
These flags may be combined.
IsiFlags Value Note

isiFlagNone 0x00 Typical default value with no flags
specified.

117 ISI Programmer’s Guide

IsiFlags Value Note

isiFlagExtended 0x01 Enables the use of the extended
DRUMEX, CSMOEX, CSMAEX, and
CSMREX messages.

isiFlagHeartbeart 0x02 Enables automatic network variable
heartbeats. Heartbeats are disabled
by default. Automatic heartbeats
apply to all bound output network
variables and related aliases.

See Optimizing Footprint of ISI-
enabled Applications for which
libraries this feature can be used in.

isiFlagApplicationPeriodic 0x04 Enables the
IsiCreatePeriodicMsg() callback,
which allows an application to
participate in the periodic broadcast
schedule. May not be supported by all
versions of the ISI library;
implementations that do not support
this feature ignore this flag, if set.

The feature is disabled by default.

isiFlagSupplyDiagnostics 0x08 Enables additional diagnostics data to
be provided to the application via the
IsiUpdateDiagnostics() callback.
This callback must be explicitly
enabled by raising the
isiFlagSupplyDiagnostics flag.

See Optimizing Footprint of ISI-
enabled Applications for which
libraries this feature can be used in.

ISI Programmer’s Guide 118

IsiMessage Structure
Contains the header and body of an ISI protocol message. These messages are
typically sent using IsiSendMsg().
Byte Offset IsiMessage Data Type Note

0 Header IsiMessageHeader Message Header

1 Msg union Contents of the message.
Union of the following ISI messages:
IsiCsma Csma,
IsiCsmc Csmc,
IsiCsmd Csmd,
IsiCsme Csme,
IsiCsmi Csmi,
IsiCsmo Csmo,
IsiCsmr Csmr,
IsiCsmx Csmx,
IsiCtrp Ctrp,
IsiDidcf Didcf,
IsiDidrm Didrm,
IsiDidrq Didrq,
IsiDrum Drum,
IsiRdct Rdct,
IsiRdcs Rdcs,
IsiTimg Timg

IsiMessageCode Enumeration
Specifies the ISI message type in an IsiMessageHeader structure.
IsiMessageCode Value Note

isiDrum 0x00 Domain resource usage information

isiDrumEx 0x01 Extended domain resource usage
information

isiCsmo 0x02 Connections: open enrollment

isiCsmoEx 0x03 Connections: extended open enrollment

isiCsma 0x04 Connections: automatic open enrollment

isiCsmaEx 0x05 Connections: extended automatic open
enrollment

isiCsmr 0x06 Connections: automatic enrollment
reminder

isiCsmrEx 0x07 Connections: extended automatic
enrollment reminder

isiLastEx isiCsmrEx Last extended message code

isiDidrq 0x08 Domain ID request

119 ISI Programmer’s Guide

IsiMessageCode Value Note

isiDidrm 0x09 Domain ID response

isiDidcf 0x0A Domain ID confirmation

isiTimg 0x0B Timing guidance message

isiCsmx 0x0C Connections: cancel enrollment

isiCsmc 0x0D Connections: close and confirm enrollment

isiCsme 0x0E Connections: accept enrollment

isiCsmd 0x0F Connections: delete connection

isiCsmi 0x10 Connections: status and resource
information

isiCtrq 0x11 Controlled enrollment: control request

isiCtrp 0x12 Controlled enrollment: control response

isiRdct 0x13 Controlled enrollment: read connection
table request

isiRdcs 0x14 Controlled enrollment: read connection
table success

isiRdcf 0x15 Controlled enrollment: read connection
table failure

isiLastCode isiRdcf Last message code

isiCodeMask 0x1F Mask for ISI message codes

IsiMessageHeader Structure
Contains the header that is sent with all ISI messages.

Byte offset Data Type Field Name Note

0 IsiMessageCode Code ISI message code. See
IsiMessageCode
enumeration.

IsiRdcs Structure
Defines a read connection table success (RDCS) response message used for
controlled enrollment.

Byte offset Data Type Field Name Note

1 unsigned Index Index of the connection
table that is being sent.

2 IsiConnection Data Connection table entry.

ISI Programmer’s Guide 120

IsiRdct Structure
Defines a read connection table (RDCT) request message used for controlled
enrollment.

Byte offset Data Type Field Name Note

1 unsigned Index Connection table index to
return, or the starting
index to start searching
from (if Host or Member
are not
ISI_NO_ASSEMBLY).

2 unsigned Host Host assembly to search
for in the connection table,
or ISI_NO_ASSEMBLY.
Support for this field is
optional. Devices
supporting the RDCT
request but not the Host
field may always return
the entry specified by the
Index field, or isiRdcf if
an index is not specified.

3 unsigned Member Member assembly to
search for in the
connection table, or
ISI_NO_ASSEMBLY.
Support for this field is
optional. Devices
supporting the RDCT
request but not the
Member field may always
return the entry specified
by the Index field, or
isiRdcf if an index is not
specified.

IsiScope Enumeration
Specifies the scope of the data types referenced in a CSMO message. This value
represents the scope of the resource file containing the functional profile and
network variable type definitions specified by the Profile and NvType fields.
IsiScope Value Note

isiScopeStandard 0 Indicates that the Profile and NvType
values are defined in the standard
resource file

121 ISI Programmer’s Guide

IsiScope Value Note

isiScopeManufacturer 3 Indicates that Profile and NvType
values refer to user-defined scope 3 – 5
resource files that match the applicable
fields in the ProgramIDShort field

All other values are reserved.

IsiTimg Structure
Defines a timing guidance message (TIMG).

Byte Offset Data Type Field Name Note

1 unsigned : 4 Originator Set to 8 for a regular
DAS. All other values
are reserved.

1 unsigned : 4 Reserved.

2 unsigned DeviceCountEst Estimated device count
used for throttling
periodic messages. The
device count is an
approximation and will
typically be larger than
the actual network size.

3 unsigned ChannelType The least performing
channel type ID
observed.

IsiType Enumeration
Specifies the ISI protocol to be implemented by the ISI engine.
IsiType Value Note

isiTypeS 0 ISI without domain acquisition.

isiTypeDa 1 ISI with domain acquisition.

isiTypeDas 2 ISI-DAS.

ISI Programmer’s Guide 122

Appendix B

API Functions

This appendix describes the functions provided by the ISI
library.
Important: To minimize its memory requirements, the ISI
engine performs only limited function parameter
verification. You must ensure that your ISI application
passes correct parameters to the ISI functions.

123 ISI Programmer’s Guide

IsiAcquireDomain()
void IsiAcquireDomain(boolean SharedServicePin);

Starts or re-starts the domain ID acquisition process in a device that supports
domain acquisition. The IsiAcquireDomain() function must not be called from
a DAS or device that does not support domain acquistion.

The IsiFetchDevice() function provides an alternate method to assign a domain
from a DAS. A DAS must support both methods.

When SharedServicePin is set to FALSE, calling this function will always result
in a service pin message, regardless of the state of the ISI engine. When it is set
to TRUE, a service pin message will not be sent. If your application senses the
service pin state and uses that to call the IsiAcquireDomain() function, call it
with SharedServicePin set to TRUE. This indicates that the device has already
sent the service pin message, and will not send its own. If your application uses
some other UI to start the domain acquisition procedure, then call
IsiAcquireDomain() with SharedServicePin set to FALSE. With the ISI
engine running, this begins the domain acquisition procedure, and with the
engine stopped it simply issues a service pin message.

EXAMPLE

The following example starts domain acquisition on an ISI-DA device when
the user pushes a Connect button on the device:
when (connect_button_pressed) {
 IsiAcquireDomain(FALSE);
}

IsiApproveMsg()
boolean IsiApproveMsg(void);

Determines if an incoming message is an ISI message by verifying the message
code and length. If approved, the received message may be processed by one of
the IsiProcessMsg() functions.

The IsiApproveMsg() function always returns FALSE if the ISI engine is
stopped.

When implementing a domain address server, use IsiApproveMsgDas()
instead.

EXAMPLE

The following example tests for incoming ISI messages, and calls
IsiProcessMsgS() to process them:
when (msg_arrives) {
 if (IsiApproveMsg() && IsiProcessMsgS()) {
 // TODO: process unprocessed ISI messages here (if any)
 } else {
 // TODO: process other application messages here (if any)
 }
}

ISI Programmer’s Guide 124

IsiApproveMsgDas()
boolean IsiApproveMsgDas(void);

Determines if an incoming message is an ISI or service pin message by verifying
the message code and length. If approved, the received message may be
processed by one of the IsiProcessMsg() functions. This function must be used
on ISI-DAS devices instead of IsiApproveMsg(). The function has the same
functionality as IsiApproveMsg(), but also approves additional messages
required by a domain address server. This function does not approve messages
belonging to the response queue; use IsiProcessResponse() to process those.

The IsiApproveMsgDas() function always returns FALSE if the ISI engine is
stopped.

EXAMPLE

The following partial example tests for incoming ISI messages and responses
on a domain address server. For a complete implementation of a DAS device,
the IsiStartDas() and IsiTickDas() functions must also be called at a
minimum:
when (msg_arrives) {
 if (IsiApproveMsgDas() && IsiProcessMsgDas()) {
 // TODO: process unprocessed ISI messages here (if any)
 } else {
 // TODO: process other application messages here (if any)
 }
}

when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

IsiCancelAcquisition()
void IsiCancelAcquisition(void);

Cancels both device and domain acquisition. Following the completion of this
function call, IsiUpdateUserInterface() is called with the isiNormal event.

You must use IsiCancelAcquisitionDas() on a domain address server instead.

This function has no effect unless the ISI engine is running and the device is
either in device or domain acquisition mode.

IsiCancelAcquisitionDas()
void IsiCancelAcquisitionDas(void);

The IsiCancelAcquisitionDas() function is only available to domain address
servers. The function provides a superset to the regular
IsiCancelAcquisition() function, additionally resetting the extended state
information unique to a domain address server.

125 ISI Programmer’s Guide

This function has no effect unless the ISI engine is running and the device is
either in device or domain acquisition mode.

IsiCancelEnrollment()
void IsiCancelEnrollment(void);

Cancels an open (pending or approved) enrollment. When used on a connection
host, a CSMX connection cancellation message is issued to cancel enrollment on
the connection members. When used on a device that has accepted, but not yet
implemented, an open enrollment, this causes the device to opt out of the
enrollment locally.

The function has no effect unless the ISI engine is running and in the pending or
approved state.

EXAMPLE

The following example cancels enrollment on a connection host if the Connect
button is pushed prior to any devices accepting the invitation, or if the
Connect button is held down for an extended period:
when (io_changes(...)) {
 switch(DeviceState) {
 …
 case isiApprovedHost:
 if (Long) {
 IsiCancelEnrollment();
 } else {
 IsiCreateEnrollment(Assembly);
 }
 break;
 case isiApproved:
 if (Long) {
 IsiCancelEnrollment();
 }
 break;
 …
 }
}

IsiCreateEnrollment()
void IsiCreateEnrollment(unsigned Assembly);

Accepts a connection invitation. This function may be called after the application
has received and approved a CSMO open enrollment message. If the assembly is
not already in a connection, or if the assembly is in a connection and the device
supports direct connection removal, the connection will be created anew. If the
assembly is already in a connection, any previous connection information will be
replaced. This function must not be called with an assembly that is already in a
connection on a device that does not support direct connection removal.

On a connection host that has received at least one CSME enrollment acceptance
message, this command completes the enrollment and implements the connection
as new, replacing any previously existing enrollment information associated with
this assembly.

ISI Programmer’s Guide 126

Calling this function on a device that does not support connection removal while
indicating an assembly number that is already engaged in another connection,
will not implement the new connection. The isiImplemented event will not be
fired in this case. The application may use the IsiIsConnected() function to
determine if a given assembly is currently engaged in a connection.

Where supported and unless application requirements dictate otherwise, the
IsiExtendEnrollment() function should be used instead.

The ISI engine must be running and in the correct state for this function to have
any effect. For a connection host, the ISI engine must be in the approved state.
Other devices must be in the pending state.

EXAMPLE

The following example accepts a connection invitation on a connection
member if the Connect button is pushed when a connection is pending:
when (io_changes(...)) {
 switch(DeviceState) {
 …
 case isiPending:
 IsiCreateEnrollment(Assembly);
 break;
 …
 }
 }
}

IsiDeleteEnrollment()
void IsiDeleteEnrollment(unsigned Assembly);

Removes the specified assembly from all connections, and sends a CSMD
connection deletion message to all other devices in each connection to remove
them from the connection as well. This function has no effect if the ISI engine is
stopped.

EXAMPLE

The following removes an assembly from all connections when the Connect
button is held for a long period during normal operation.
when (io_changes(...)) {
 switch(DeviceState) {
 …
 case isiNormal:
 if (Long) {
 IsiDeleteEnrollment(Assembly);
 } else {
 IsiOpenEnrollment(Assembly);
 }
 break;
 }
 }
}

127 ISI Programmer’s Guide

IsiExtendEnrollment()
void IsiExtendEnrollment(unsigned Assembly);

Accepts a connection invitation on a device that supports connection extension.
This function may be called after the application has received and approved a
CSMO open enrollment message. The connection will be added to any previously
existing connections. If no previous connection exists for Assembly, a new
connection will be created. This function must not be called on a device that does
not support connection extension.

Where supported and unless application requirements dictate otherwise, this
function should be used instead of the IsiCreateEnrollment() function.

On a connection host that has received at least one CSME enrollment acceptance
message, this command completes the enrollment and extends any existing
connections. If no previous connection exists for Assembly, a new connection will
be created.

Devices using the IsiFull library automatically use comprehensive resource
validation included with the full version of the ISI library. See
IsiGetFreeAliasCoung() for discussion and recommendations when using this
function with devices built with one of the compact ISI libraries.

The ISI engine must be running and in the correct state for this function to have
any effect. For a connection host, the ISI engine must be in the approved state.
Other devices must be in the pending state.

EXAMPLE

The following example accepts a connection invitation for a connection
member if the Connect button is pushed when a connection is pending, or
extends an existing connection if the Alternative flag is set:
IsiEvent isiState;

void ProcessIsiButton(unsigned Assembly, boolean Alternative) {
 switch(isiState) {
 ...
 case isiPending:
 if (Alternative) {
 IsiExtendEnrollment(Assembly);
 } else {
 IsiCreateEnrollment(Assembly);
 }
 break;
 ...
 }
}

ISI Programmer’s Guide 128

IsiFetchDevice()
void IsiFetchDevice(void);

Fetches a device by assigning a domain to the device from a domain address
server (DAS). The IsiFetchDevice() function must not be called from a device
that is not a domain address server.

To use the IsiFetchDevice() function, you must implement a when
(resp_arrives) task and call the IsiProcessResponse() function from the
domain address server’s application to complete the processing involved with
fetching a remote device.

The IsiFetchDevice() operation does not require application code on the remote
device. The remote device remains unaware of the change to its primary domain.

An alternate method to assign a domain to a device is for the device to use the
IsiAcquireDomain() function. This function provides more immediate recovery
from network addressing conflicts and more immediate maintenance of automatic
connections. The disadvantage of using the IsiAcquireDomain() function is
that it typically requires more code on the device, and it requires that the device
support ISI-DA. The IsiFetchDevice() function may be used with any device. A
DAS must support both methods.

The ISI engine must be running for this function to have any effect, and this
function only operates on a domain address server.

EXAMPLE

The following example is part of the domain address server’s application.
The example assigns the domain address server’s domain to a device when
the user presses the Connect button on the server:
when (connect_button_pressed) {
 IsiFetchDevice();
}

// Handle responses to requests in IsiFetchDomain()
when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

IsiFetchDomain()
void IsiFetchDomain(void);

Starts or re-starts the fetch domain process in a domain address server, described
above in Fetching a Domain for a DAS. The IsiFetchDomain() function must
not be called from a device that is not a domain address server.

The ISI engine must be running for this function to have any effect, and this
function only operates on a domain address server.

129 ISI Programmer’s Guide

To use the IsiFetchDomain() function, you must implement a when
(resp_arrives) task and call the IsiProcessResponse() function function with
the domain address server’s application to complete the processing involved with
fetching a domain ID.

EXAMPLE

The following example is part of the domain address server’s application.
The example fetches the domain ID from a remote device and assigns it to a
domain address server when the user presses the Connect button on the
server:
when (connect_button_pressed) {
 IsiFetchDomain();
}

// Handle responses to requests in IsiFetchDomain()
when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process unprocessed responses here (if any)
 }
}

IsiGetFreeAliasCount()
unsigned IsiGetFreeAliasCount(void);

Returns the number of unused network variable aliases on the local device. This
function may be used with applications using one of the compact ISI libraries
that do not supply fully automated resource validation, or with connection hosts.
Devices that share a single network variable among multiple network variable
selectors within one connection also must validate available resources with this
function.

On devices that are built with the IsiFull library, which includes fully automated,
built-in, comprehensive resource validation, an attempt to extend an existing
connection with an explicit IsiExtendEnrollment() call or with the acceptance
of an automatic enrollment, leads to this validation step. The step, implemented
with the ISI engine, determines exactly how many local aliases are currently
unused, and how many are required to implement the pending connection. If
those required exceed those available, the connection will not be implemented.
On a host, the enrollment will be cancelled.

The compact ISI libraries do not include this validation step, but applications
may use the IsiGetFreeAliasCount() function to implement a more compact,
and possibly overestimating, version of this validation step. This more compact
code may take application-specific knowledge into account, and it may ignore
previous connection history for simplicity and brevity, thereby possibly leaning
towards an over-cautious decision.

Example 1:

This example illustrates how an application built with one of the compact ISI
libraries may use the IsiGetFreeAliasCount() function to implement an
application-specific resource validation step. This simple implementation
assumes that every connection extension requires one network variable alias per

ISI Programmer’s Guide 130

selector, and rejects the open enrollment message if insufficient network variable
aliases are available to meet that assumption:

unsigned IsiGetAssembly(const CsmoData* pCsmo, boolean Auto) {
 unsigned candidateAssembly;
 // Determine an eligible assembly based on local knowledge and
 // inspection of data provided with pCsmo and Auto arguments
 candidateAssembly = …
 return IsiGetFreeAliasCount() >= pCsmo->Width ?
 candidateAssembly : ISI_NO_ASSEMBLY;
}

Example 2:
This example illustrates how a connection host can verify that sufficient local
resources are available using IsiGetFreeAliasCount (), prior to opening
enrollment:

void myValidatedOpenEnrollment (unsigned assembly) {
 if (IsiGetFreeAliasCount (assembly) >= IsiGetWidth (assembly)) {
 IsiOpenEnrollment (assembly) ;
 }
}

This example assumes each network variable that is part of the connection
requires a network variable alias. The assumption ignores that some of the
network variables may not require an alias because they are not enrolled in a
connection, and ignores advanced connection schemes that use network variable
selector or network variable sharing. This is a worst-case assumption.

Typical applications may have better knowledge of the resource requirements,
and will often be able to provide a more efficient resource validation step. For
example,say you have an application that always uses IsiCreateEnrollment()
and never calls IsiExtendEnrollment() for the assembly in question. That
application never needs to validate available aliases for this assembly. Or, an
application that only implements a single assembly may find more efficient ways
to ensure the availability of sufficient network variable aliases.

IsiImplementationVersion()
unsigned IsiImplementationVersion(void);

Returns the version number of this ISI implementation, which is 3 for the
Release 3 and Release 3.01 ISI libraries. No forwarder is provided for the
IsiImplementationVersion() function. This function operates in any state of
the ISI engine.

131 ISI Programmer’s Guide

IsiInitiateAutoEnrollment()
void IsiInitiateAutoEnrollment(const IsiCsma* pCsma, unsigned Assembly);

Starts automatic enrollment. The local device will become the connection host.
Automatic enrollment may replace previous connections, if any. No forwarder
exists for this function. Once this call returns, then the ISI connection is
implemented for the associated assembly.

This function cannot be called before the isiWarm event has been signaled in the
IsiUpdateUserInterface() callback.

This function does nothing when the ISI engine is stopped, or when the given
assembly is already automatically enrolled.

EXAMPLE

The following example opens automatic enrollment:
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter) {
 if (Event == isiWarm && !IsiIsConnected(MyAssembly)) {
 IsiInitiateAutoEnrollment(&MyCsmoData, MyAssembly);
 }
}

IsiIsAutomaticallyEnrolled()
boolean IsiIsAutomaticallyEnrolled(unsigned Assembly);

Returns TRUE if Assembly is member of an automatically enrolled connection.
The function returns FALSE otherwise.

This API can be used to determine whether additional steps are required before
opening or joining automatic enrollment, such as leaving a previously joined
automatic enrollment.

IsiIsBecomingHost()
boolean IsiIsBecomingHost(unsigned Assembly);

Returns TRUE if IsiOpenEnrollment() has been called for the specified
assembly and the enrollment has not yet timed out, been cancelled, or confirmed.
The function returns FALSE otherwise.

You can also override the IsiUpdateUserInterface() callback function and
track the state of the assembly. IsiIsBecomingHost() returns TRUE if that
state is isiPendingHost or isiApprovedHost.

The IsiIsBecomingHost() function does not support a forwarder. The function
operates whether the ISI engine is running or not.

ISI Programmer’s Guide 132

IsiIsConnected()
boolean IsiIsConnected(unsigned Assembly);

Returns TRUE if the specified assembly is enrolled in a connection.

No forwarder is provided for IsiIsConnected(). The function operates whether
the ISI engine is running or not. The function returns FALSE if the ISI engine
is stopped.

133 ISI Programmer’s Guide

IsiIsRunning()
boolean IsiIsRunning(void);

Returns TRUE if the ISI engine is running and FALSE if the ISI engine is
stopped. Non-zero values are considered TRUE.

No forwarder is provided for this function. The function operates in all states of
the ISI engine.

IsiIssueHeartbeat()
boolean IsiIssueHeartbeat(unsigned NvIndex);

Sends a network variable update for the specified network variable index and its
aliases, as long as the network variable is a bound output network variable using
group addressing. The function returns TRUE if at least one update has been
propagated, and FALSE otherwise. IsiIssueHeartbeat() uses the address table
for addressing information, but always uses unacknowledged service with one
repeat when issuing the heartbeat. IsiIssueHeartbeat() only sends a network
variable if it uses group addressing (the default ISI addressing mode)—it skips
updates that use a different addressing mode.

This function is typically called in an IsiQueryHeartbeat() callback. If the
function is called outside of this callback to create a custom heartbeat scheme,
the application must only call this function for bound output network variables.

This function requires that the ISI engine has been started with the
isiFlagHeartbeat flag passed in.

EXAMPLE

The following starts the ISI engine with heartbeats enabled and issues a
heartbeat in response to the IsiQueryHeartbeat() callback.
when (reset) {
 IsiStartDa(isiFlagHeartbeat);
}

boolean IsiQueryHeartbeat(unsigned nv) {

// Agree to all heartbeats suggested by the ISI engine
return IsiIssueHeartbeat(nv);

}

IsiLeaveEnrollment()
void IsiLeaveEnrollment(unsigned Assembly);

Removes the specified assembly from all enrolled connections as a local operation
only. When used on the connection host, the function will automatically be
interpreted as IsiDeleteEnrollment().

No forwarder is provided for this function. This function has no effect if the ISI
engine is stopped.

ISI Programmer’s Guide 134

IsiMsgDeliver()
void IsiMsgDeliver(IsiMessage* pMsg, unsigned Length, msg_out_addr*
pDestination);

Sends an ISI message to the address specified in the pDestination parameter.

An ISI application must implement the IsiMsgDeliver() function. The function
is used by the ISI library for sending messages, and should not be used by the
application itself. In most cases, the application code need not explicitly declare
the IsiMsgDeliver() function; it is automatically implemented by including the
isi.h header file. The function that should be used for sending messages is
IsiMsgSend().

No forwarder is provided for this function. This function operates in any state of
the ISI engine.

IsiMsgSend()
void IsiMsgSend(IsiMessage* pMsg, unsigned IsiMessageLength, service_type
Service, msg_out_addr* pDestination);

Sends an ISI message of the specified length using the specified service to the
specified address, for example from a function invoked via an
IsiCreatePeriodicMsg() event.

No forwarder is provided for this function. This function operates in any state of
the ISI engine.

IsiOpenEnrollment()
void IsiOpenEnrollment(unsigned Assembly);

Opens manual enrollment for the specified assembly. This operation turns the
device into a connection host for this connection and sends a CSMO manual
connection invitation to all devices in the network.

No forwarder is provided for this function. The ISI engine must be running, and
in the idle state.

EXAMPLE

The following example opens manual enrollment for a simple assembly with
one network variable, using the network variable’s global index as the
application-specific assembly number:
void startEnrollment(void) {
 unsigned myAssembly;
 myAssembly = nvoValue::global_index;
 IsiOpenEnrollment(myAssembly);
}

135 ISI Programmer’s Guide

IsiPreStart()
void IsiPreStart(void);

Establishes runtime links between the ISI engine in the read-only memory
(ROM) of a PL 3170 Smart Transceiver and the callbacks in the application.

For PL 3170 devices, you must call the IsiPreStart() function from the
when(reset) task before calling any other ISI functions. You must call this
function even if you do not plan to start the ISI engine.

Important: The IsiPreStart() function is supported only for PL 3170 devices,
and is not supported for other device types.

EXAMPLE 1

The following example demonstrates the use of the IsiPreStart() function
within the when(reset) task.
network input SCPTnwrkCnfg cp cp_info(reset_required,
device_specific) cpNetConfig;

device_properties {
 cpNetConfig = CFG_EXTERNAL;
};

when (reset) {
 IsiPreStart();
 if (cpNetConfig == CFG_LOCAL) {
 // Self-installed network--start the ISI engine
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagNone);
 }
}

EXAMPLE 2

The following example demonstrates reset tracking, in addition to the use of
the IsiPreStart() function within the when(reset) task.
network input SCPTnwrkCnfg cp cp_info(reset_required) cpNetConfig
= CFG_EXTERNAL;
eeprom SCPTnwrkCnfg oldNetConfig = CFG_NUL;

when (reset) {
 SCPTnwrkCnfg netConfig;
 netConfig = oldNetConfig;

 // For a PL 3170 device only, establish links to callbacks
 IsiPreStart();

 if (netConfig == CFG_NUL) {
 // First application start, enable self-installation
 cpNetConfig = CFG_LOCAL;
 }
 oldNetConfig = cpNetConfig;

 if (cpNetConfig == CFG_LOCAL) {
 if (netConfig == CFG_EXTERNAL) {
 // Managed application has returned to self-installation

ISI Programmer’s Guide 136

 IsiReturnToFactoryDefaults(); // Call NEVER returns!
 }
 // Self-installed network--start the ISI engine
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagExtended+isiFlagHeartbeat);
 }
}

IsiProcessMsg()
boolean IsiProcessMsg(IsiType Type);
boolean IsiProcessMsgDa(void);
boolean IsiProcessMsgDas(void);
boolean IsiProcessMsgS(void);

Processes an ISI message that has been verified as an ISI message by the
IsiApproveMsg() function. The function returns FALSE if the message
received has been recognized and processed, and returns TRUE if the message is
unrecognized and not processed.

Typically, the IsiApproveMsg() and IsiProcessMsg() functions are used in a
single Boolean expression, as shown:

EXAMPLE
when (msg_arrives) {
 if (IsiApproveMsg() && IsiProcessMsgS()) {
 // TODO: Process unrecognized ISI messages here
 }
}

You can use the IsiProcessMsg() function to process an ISI message on a device
that supports multiple ISI types. You can use specialized versions of the
IsiProcessMsg() function to minimize the memory footprint of your application.
Devices that only support a single ISI type may use one of the following
functions:

• IsiProcessMsgS()—processes an ISI message for a device that does not
support domain acquisition.

• IsiProcessMsgDA()—processes an ISI message for a device that
supports domain acquisition, but is not a domain address server.

• IsiProcessMsgDAS()—processes an ISI message for an ISI-DAS
application that supports domain acquisition and is a domain address
server.

When selecting one of the specialized versions IsiProcessMsgS(),
IsiProcessMsgDA(), or IsiProcessMsgDAS(), you must make sure to use the
same type of specialized start function (IsiStartS(), etc) and tick function
(IsiTickS(), etc).

No forwarders are provided for these functions. All functions operate in any
state of the ISI engine, but must not be called unless IsiApproveMsg() returned
TRUE within the same critical section (when task).

137 ISI Programmer’s Guide

IsiProcessResponse()
boolean IsiProcessResponse(void);

Processes a response to a request message sent in the domain acquisition process.
Only needs to be called on a DAS device.

DAS devices must call this function, or the fetch requests will fail.

EXAMPLE
when (resp_arrives) {
 if (IsiProcessResponse()) {
 // TODO: process non-ISI responses
 }
}

IsiProtocolVersion()
unsigned IsiProtocolVersion(void);

Returns the version of the ISI protocol supported by the ISI engine, which is
always one for the Release 3 ISI Library. The number indicates the maximum
protocol version supported. The ISI engine also supports protocol versions less
than the number returned unless explicitly indicated.

No forwarder is provided for the IsiProtocolVersion() function. The function
operates in either state of the ISI engine.

IsiReturnToFactoryDefaults()
void IsiReturnToFactoryDefaults(void);

Restores the device’s self-installation data to factory defaults, causing the
immediate and unrecoverable loss of all connection information. This function
has the same functionality regardless of whether the ISI engine is running or not.
This function calls the IsiUpdateUserInterface() callback with the isiRun
event, stops the ISI engine, and then resets the device to complete the process.

Due to the reset, this function never returns to the caller. Any changes related to
returning to factory defaults, such as resetting of device-specific configuration
properties to their initial values, must occur prior to calling this function.

No forwarder is provided for this function.

EXAMPLE

The following example returns to factory defaults if the device is returned to
self-installation mode after being installed in a managed network:
network input SCPTnwrkCnfg cp cp_info(reset_required) nciNetConfig
= CFG_EXTERNAL;
eeprom SCPTnwrkCnfg OldNetConfig = CFG_NUL;

when (reset) {
 SCPTnwrkCnfg cpNwrkConfig;

ISI Programmer’s Guide 138

 cpNwrkConfig = OldNetConfig;

 if (cpNwrkConfig == CFG_NUL) {
 // For the first application start, set nciNetConfig to
 // CFG_LOCAL, allowing the ISI engine to run by default:
 nciNetConfig = CFG_LOCAL;
 }
 OldNetConfig = nciNetConfig;

 if (nciNetConfig == CFG_LOCAL) {
 if (cpNwrkConfig == CFG_EXTERNAL) {
 // The application has just returned into the self-
 // installed environment. Make sure to re-initialize
 // the entire ISI engine:
 IsiReturnToFactoryDefaults(); // Call NEVER returns!
 }

// We are in a self-installed network:
 // Start the ISI engine:
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagExtended);
 }
}

IsiStart()
void IsiStart(IsiType Type, IsiFlags Flags);
void IsiStartDAS(IsiFlags Flags);
void IsiStartS(IsiFlags Flags);
void IsiStartDA(IsiFlags Flags);

Starts the ISI engine. The ISI engine sends and receives ISI messages, and
manages the network configuration of your device. You will typically start the
ISI engine in your reset task when self-installation is enabled, and you will
typically stop the ISI engine when self-installation is disabled.

The function accepts a combination of flags, defined in the IsiFlags enumeration.
Certain features of the ISI engine will only become available if the corresponding
flag had been raised with the IsiStart() function.

You can use the IsiStart() function to start the ISI engine using any ISI type.
You can use specialized versions of the IsiStart() function to minimize the
memory footprint of your application. Devices that only support a single ISI type
may use one of the following functions:

• IsiStartS()—starts the ISI engine for a device that does not support
domain acquisition.

• IsiStartDA()—starts the ISI engine for a device that supports domain
acquisition, but is not a domain address server.

• IsiStartDAS()—starts the ISI engine for an ISI-DAS application that
supports domain acquisition and is a domain address server.

To maximize compatibility with network management tools used for managed
networks, insert an 800 millisecond to one-and-a-half second delay before calling
any of the IsiStart() functions.

139 ISI Programmer’s Guide

When selecting one of the specialized versions IsiStartS(), IsiStartDA(), or
IsiStartDAS(), you must make sure to use the same type of specialized message
processor function (IsiProcessMsgS(), etc) and tick function (IsiTickS(), etc).

No forwarders are provided with the IsiStart() functions.

EXAMPLE

The following example starts the ISI engine after confirming the device is in
self-installation mode:
network input SCPTnwrkCnfg cp cp_info(reset_required) cpNetConfig
= CFG_EXTERNAL;
eeprom SCPTnwrkCnfg oldNetConfig = CFG_NUL;

when (reset) {
 SCPTnwrkCnfg netConfig;
 netConfig = oldNetConfig;

 if (netConfig == CFG_NUL) {
 // First application start, enable self-installation
 cpNetConfig = CFG_LOCAL;
 }
 oldNetConfig = cpNetConfig;

 if (cpNetConfig == CFG_LOCAL) {
 if (netConfig == CFG_EXTERNAL) {
 // Managed application has returned to self-installation
 IsiReturnToFactoryDefaults(); // Call NEVER returns!
 }
 // Self-installed network--start the ISI engine:
 scaled_delay(31745UL); // 800ms delay
 IsiStartS(isiFlagExtended+isiFlagHeartbeat);
 }
}

IsiStartDeviceAcquisition()
void IsiStartDeviceAcquisition(void);

Starts or retriggers device acquisition mode on a domain address server. The
domain address server will respond to domain ID requests from ISI-DA devices
as long as it is in device acquisition mode. When the domain address server is in
device acquisition mode and has responded to a domain request (DIDRQ) with a
domain response (DIDRM), calling the IsiStartDeviceAcquisition() function
also confirms that the correct device has been allocated, and triggers the release
of a domain confirmation message (DIDCF).

This function has no effect on a device that is not a domain address server, or if
the ISI engine is stopped. No forwarder is provided for this function.

EXAMPLE

The following example starts domain acquisition mode on a domain address
server when the user presses a Connect button on the server:
when (connect_button_pressed) {
 IsiStartDeviceAcquisition();
}

ISI Programmer’s Guide 140

IsiStop()
void IsiStop(void);

Stops the ISI engine. Use one of the IsiStart() functions to re-start the ISI
engine.

The IsiStop() function has no forwarder. Calling IsiStop() when the ISI engine
is stopped has no action.

IsiTick()
void IsiTick(IsiType Type);
void IsiTickS(void);
void IsiTickDa(void);
void IsiTickDas(void);

Performs periodic processing for the ISI engine. You must periodically call one of
the IsiTick() functions after you have started the ISI engine with one of the
IsiStart() functions. You should call this function approximately every 250ms.
You can use the IsiTick() function for an application that supports any ISI type.
You can use specialized versions of the IsiTick() function to minimize the
memory footprint of your application. Devices that only support a single ISI type
may use one of the following functions:

• IsiTickS()—performs periodic processing for the ISI engine for a device
that does not support domain acquisition.

• IsiTickDA()—performs periodic processing for the ISI engine for a device
that supports domain acquisition, but is not a domain address server.

• IsiTickDAS()—performs periodic processing for the ISI engine for an
ISI-DAS application that supports domain acquisition and is a domain
address server.

When selecting one of the specialized versions (IsiTickS(), IsiTickDa(), or
IsiTickDas()) you must make sure to use the same type of specialized message
processor function (IsiProcessMsgS(), etc) and start function (IsiStartS(), etc).

No forwarders are provided with the IsiTick() functions. Calling IsiTick() when
the ISI engine is stopped causes no effect.

EXAMPLE

The following example for a device that does not support domain acquisition
declares a timer and calls IsiTickS() to do periodic processing:
mtimer repeating isiTimer = 1000ul / ISI_TICKS_PER_SECOND;

when (timer_expires(isiTimer)) {
 // Call the ISI engine to perform periodic tasks
 IsiTickS();
}

141 ISI Programmer’s Guide

Appendix C

Callback Functions

This appendix describes the callback functions that your
application may provide for the ISI library. The ISI library
includes default implementations of all ISI API callback
functions. As a result, you only have to provide callback
functions where you need to customize the default behavior.

ISI Programmer’s Guide 142

IsiCreateCsmo()
void IsiCreateCsmo(unsigned Assembly, IsiCsmoData* pCsmoData);

Constructs the IsiCsmoData portion of a CSMO Message. The pCsmoData
parameter is a pointer to an IsiCsmoData structure that is filled by this
function call. This function is called by the ISI engine prior to sending a CSMO
message. This function has the same effect if the ISI engine is running or not.

IsiCreateCsmo() is a forwarder to isiCreateCsmo().

The isiCreateCsmo() forwardee sets the fields of the IsiCsmoData structure as
follows: it uses the IsiGetPrimaryGroup() function to obtain the group ID, and
sets all fields to zero except the Application field (which is filled with data from
the device’s program ID), the Direction field (which is set to isiDirectionAny,
which corresponds to the value 2), and the NvType field, which is set to the
primary network variable’s SNVT ID, or zero for a UNVT.

Most applications will override this function to supply the application-specific
data for open enrollment messages.

IsiCreatePeriodicMsg()
boolean IsiCreatePeriodicMsg(void);

Specifies whether the application has any messages for the ISI engine to send
using the periodic broadcast scheduler. Since the ISI engine sends periodic
outgoing messages at regular intervals, this function allows an application to
send a message at one of the periodic message slots. If the application has no
message to send, then this function should return FALSE. If it does have a
message to send, then this function should return TRUE.

To use this function, you must enable application-specific periodic messages
using the isiFlagApplicationPeriodic flag when you call the IsiStart()
function.

The default implementation of IsiCreatePeriodicMsg() does nothing but return
FALSE. You can override this function by providing an application-specific
implementation of IsiCreatePeriodicMsg().

Do not send any messages, start other network transactions, or call other ISI API
functions while the IsiCreatePeriodicMsg() callback executes. To call other
ISI API functions or start other network transactions, set an application-specific
flag in the IsiCreatePeriodicMsg() callback function and check the flag in a
separate when task. This separate when task can send the periodic message
soon after the IsiCreatePeriodicMsg() function is completed.

143 ISI Programmer’s Guide

EXAMPLE

The following example sends a periodic message:
boolean SendApplicationPeriodic = FALSE;

boolean IsiCreatePeriodicMsg(...) {
 if (have something to do) {
 SendApplicationPeriodic = TRUE;
 }
 return SendApplicationPeriodic;
}

when (SendApplicationPeriodic) {
 SendApplicationPeriodic = FALSE;
 // Send periodic message, for example, with IsiMsgSend()
 // For network variable heartbeats, use propagate()
}

IsiGetAssembly()
unsigned IsiGetAssembly(const IsiCsmoData* pCsmoData, boolean Auto);

Returns the number of the first assembly that may join the enrollment
characterized with pCsmoData. The function returns ISI_NO_ASSEMBLY
(0xFF) if no such assembly exists, or an application-defined assembly number 0 –
254. The Auto parameter specifies a manually initiated enrollment (Auto =
FALSE) or an automatically initiated enrollment (Auto = TRUE). The Auto flag
is true both for initial automatic enrollment messages (CSMA) or reminders that
relate to a possibly new connection (CSMR). Automatic enrollment reminder
messages that relate to existing connections on the local device are not passed to
the application.

The pointer provided with the pCsmoData parameter is only valid for the
duration of this function call.

IsiGetAssembly() is a forwarder to isiGetAssembly(). The isiGetAssembly()
forwardee returns the assembly number if a compatible network variable exists
for a simple connection, using standard network variable types. The default
implementation is compatible with the default implementation of
IsiCreateCsmo(), and is sufficient for simple devices. The isiGetAssembly()
forwardee always refuses automatic enrollment.

The isiGetAssembly() forwardee assumes the default assembly numbering
scheme that is described in Assembly Number Allocation, earlier.

Applications overriding IsiGetAssembly() should also override
IsiGetNextAssembly().

The function operates whether the ISI engine is running or not.

ISI Programmer’s Guide 144

IsiGetConnection()
const IsiConnection* IsiGetConnection(unsigned Index);

Returns a pointer to an entry in the connection table. The default
implementation returns a pointer to a built-in connection table with 8 entries,
stored in on-chip EEPROM memory. You can override this function to provide an
application-specific means of accessing the connection table, or to provide an
application table of a different size.

The ISI engine requests only one connection table entry at a time, and makes no
assumption on the pointer value. Applications using storage outside the Neuron
address space may use a single buffer to transfer all connection table entries, as
shown in Customizing the ISI Connection Table earlier in this document.

This function is frequently called and should return as soon as possible.

There is no forwarder for this function.

You must override the IsiSetConnection() and IsiGetConnectionTableSize()
functions if you override the IsiGetConnection() function.

EXAMPLE

The following example creates a connection table with 16 entries stored in on-
chip EEPROM:
#define CTABSIZE 16u
static eeprom fastaccess IsiConnection
MyConnectionTable[CTABSIZE];
unsigned IsiGetConnectionTableSize(void) {
 return CTABSIZE;
}
const IsiConnection* IsiGetConnection(unsigned Index) {
 return MyConnectionTable + Index;
}
void IsiSetConnection(IsiConnection* pConnection, unsigned Index){
 MyConnectionTable[Index] = *pConnection;
}

IsiGetConnectionTableSize()
unsigned IsiGetConnectionTableSize(void);

Returns the number of entries in the connection table. The default
implementation returns the number of entries in the built-in connection table (8).
You can override this function to support an application-specific implementation
of the ISI connection table. You can use this function to provide a larger
connection table or to store the connection table outside of the Neuron address
space.

The ISI library supports connection tables with 0 to 254 entries. The connection
table size is considered constant following a call to IsiStart(); you must first stop,
then re-start, the ISI engine if the connection table size changes dynamically.

There is no forwarder for this function.

145 ISI Programmer’s Guide

You must override the IsiSetConnection() and IsiGetConnection() functions
if you override the IsiGetConnectionTableSize() function.

EXAMPLE

The following example creates a connection table with 16 entries stored in on-
chip EEPROM:
#define CTABSIZE 16u
static eeprom fastaccess IsiConnection
MyConnectionTable[CTABSIZE];
unsigned IsiGetConnectionTableSize(void) {
 return CTABSIZE;
}
const IsiConnection* IsiGetConnection(unsigned Index) {
 return MyConnectionTable + Index;
}
void IsiSetConnection(IsiConnection* pConnection, unsigned Index){
 MyConnectionTable[Index] = *pConnection;
}

IsiGetNextAssembly()
unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmoData,
 boolean Auto, unsigned Assembly);

Returns the next applicable assembly following the one indicated with the
Assembly argument for an incoming CSMO following the specified assembly. The
function returns ISI_NO_ASSEMBLY (0xFF) if there are no such assemblies, or
an application-specific assembly number 1 – 254. This function is called after
calling the IsiGetAssembly() function, unless IsiGetAssembly() returned
ISI_NO_ASSEMBLY. The Auto parameter specifies a manually initiated
enrollment (Auto = FALSE) or an automatically initiated enrollment (Auto =
TRUE). The Auto flag is true both for initial automatic enrollment messages
(CSMA) or reminders that relate to a possibly new connection (CSMR).
Automatic enrollment reminder messages that relate to existing connections on
the local device are not passed to the application. The pointer provided with the
pCsmoData parameter is only valid for the duration of this function call.

IsiGetNextAssembly() is a forwarder to isiGetNextAssembly().

The isiGetNextAssembly() forwardee returns the next assembly number if a
complementary network variable exists for a simple connection, using standard
network variable types. The isiGetNextAssembly() forwardee always refuses
automatic enrollment. The default implementation is compatible with the
default implementation of IsiCreateCsmo(), and is sufficient for simple devices.

The isiGetNextAssembly() forwardee assumes the default assembly numbering
scheme that is described in Assembly Number Allocation earlier.

Applications overriding IsiGetNextAssembly() should also override
IsiGetAssembly().

The function operates whether the ISI engine is running or not.

ISI Programmer’s Guide 146

IsiGetNextNvIndex()
unsigned IsiGetNextNvIndex(unsigned Assembly, unsigned Offset, unsigned
Previous);

Returns the network variable index of the network variable at the specified offset
within the specified assembly, following the network variable specified by the
Previous index. Returns ISI_NO_INDEX if there are no more network variables,
or a valid network variable index 1– 254 otherwise. The Offset parameter is zero-
based and relates to the selector number Offset within the assembly that is used
with the enrollment of this assembly.

This function is a forwarder to isiGetNextNvIndex().

The isiGetNextNvIndex() forwardee always returns ISI_NO_INDEX.

Applications may override IsiGetNextNvIndex() to map multiple local network
variables to a single network variable selector. The ISI application is responsible
for observing the various binding and protocol limitations when using this
feature.

The isiGetNextNvIndex() forwardee assumes the default assembly numbering
scheme that is described in Assembly Number Allocation earlier.

Applications overriding IsiGetNextNvIndex() should also override
IsiGetNvIndex().

This function operates whether the ISI engine is running or not.

IsiGetNvIndex()
unsigned IsiGetNvIndex(unsigned Assembly, unsigned Offset);

Returns the network variable index 0 – 254 of the network variable at the
specified offset within the specified assembly, or ISI_NO_INDEX if no such
network variable exists. This function must return at least one valid network
variable index for each assembly number returned by IsiGetAssembly() and
IsiGetNextAssembly(). The Offset parameter is zero-based and relates to the
selector number Offset that is used with the enrollment of this assembly.

This function is a forwarder to isiGetNvIndex().

The isiGetNvIndex() forwardee returns Assembly + Offset.

The isiGetNvIndex() forwardee assumes the default assembly numbering
scheme that is described in Assembly Number Allocation earlier.

Applications overriding IsiGetNvIndex() should also override
IsiGetNextNvIndex().

This function operates whether the ISI engine is running or not.

147 ISI Programmer’s Guide

IsiGetPrimaryDid()
const unsigned* IsiGetPrimaryDid(unsigned* pLength);

Returns a pointer to the default primary domain ID for the device. The function
also provides the domain ID length in the location provided by the pLength
parameter. Domain IDs may be 1, 3, or 6 bytes long—the 0-length domain ID
cannot be used for the primary domain. Only the number of bytes provided
through the pLength output parameter must be valid in the returned pointer.
You can override this function to override the ISI standard domain ID value.
This function is only used to create a non-ISI system.

Both length and value of the domain ID provided are considered constant once
the ISI engine is running. To change the primary domain ID at runtime using
the IsiGetPrimaryDid() callback, stop and re-start the ISI engine.

No forwarder is provided with this function.

Warning: Non ISI devices will not interoperate with ISI devices.

IsiGetPrimaryGroup()
unsigned IsiGetPrimaryGroup(unsigned Assembly);

Returns the group ID for the specified assembly. The default implementation
returns ISI_DEFAULT_GROUP (128). This function is only required if the
default implementation, or the forwardee, of IsiCreateCsmo() is in use.

No forwarder is provided with IsiGetPrimaryGroup().

The function operates whether the ISI engine is running or not.

IsiGetRepeatCount()
unsigned IsiGetRepeatCount(void);

Specifies the repeat count used with all network variable connections, where all
connections share the same repeat counter. The repeat counter value is
considered constant for the lifetime of the application, and will only be queried
when the device powers up the first time after a new application image has been
loaded and every time IsiReturnToFactoryDefaults() runs. Only repeat
counts of 1, 2 or 3 are supported. To take full advantage of the secondary
frequency on a PL transceiver, only use a repeat count of 1 or 3. This function
has no affect on ISI messages.

The default implementation of this function always returns 3.

This function operates whether the ISI engine is running or not.

ISI Programmer’s Guide 148

IsiGetWidth()
unsigned IsiGetWidth(unsigned Assembly);

Returns the width in the specified assembly. The width is equal to the number of
network variable selectors associated with the assembly.

This function is a forwarder to isiGetWidth().

The isiGetWidth() forwardee always returns one.

Applications must override the IsiGetWidth() function to support compound
assemblies.

This function operates whether the ISI engine is running or not.

IsiQueryHeartbeat()
boolean IsiQueryHeartbeat(unsigned NvIndex);

Returns TRUE if a heartbeat for the network variable with the global index
NvIndex has been sent, and returns FALSE otherwise. When network variable
heartbeat processing is enabled and the ISI engine is running, the engine queries
bound output network variables using this callback (including any alias
connections) whenever the heartbeat is due. This function does not send the
heartbeat update—see IsiIssueHeartbeat(). For more details on network
variable heartbeat scheduling, see the ISI Protocol Specification.

The isiQueryHeartbeat() forwardee always returns FALSE.

IsiSetConnection()
void IsiSetConnection(IsiConnection* pConnection, unsigned Index);

Updates an entry in the connection table, which must be kept in persistent, non-
volatile, storage.

The default implementation updates an entry in the built-in connection table
with 8 entries, stored in on-chip EEPROM memory. You can override this
function to provide an application-specific means of accessing the connection
table, or to provide an application table of a different size.

The ISI engine requests only one connection table entry at a time, and makes no
assumption on the pointer value. Applications using storage outside the Neuron
address space may use a single buffer to transfer all connection table entries, as
shown by example in Customizing the ISI Connection Table earlier in this
document. The ISI engine may implement locals of the IsiConnection type for
use with IsiSetConnection() callbacks; the application implementing this
override must not maintain a copy of the pointer value.

This function is frequently called and should return as soon as possible.

There is no forwarder for this function.

149 ISI Programmer’s Guide

You must override the IsiGetConnection() and IsiGetConnectionTableSize()
functions if you override the IsiSetConnection() function.

IsiSetDomain()
void IsiSetDomain(domain_struct* pDomain, unsigned Index);

Sets the domain, subnet, and node ID in the primary entry of the domain table
for a device. You can override this function with an empty function during
development in a managed environment to prevent conflicts with the network
management tool. For example, if you are using the NodeBuilder Development
Tool, the LonMaker tool manages the devices you are developing. To prevent
conflicts with the LonMaker tool, the following code disables domain table
updates for a NodeBuilder development target:

#ifndef _MINIKIT
ifdef _DEBUG
 void IsiSetDomain(domain_struct* pDomain,
 unsigned Index) {
 ; // do nothing.
 }
endif
#endif

When you override this function, only the domain, subnet, and node ID
management functions of the ISI engine are disabled—all other portions of the
ISI protocol will continue to function. This passes control of the subnet and node
IDs to an external network management tool, which means they may no longer
follow the ISI subnet/node value ranges. When disabled, any detected
subnet/node ID conflicts will not be resolved.

Warning: This function can only be overridden during development. Overriding
the IsiSetDomain() callback in the way shown above allows for debugging of the
device application with the ISI engine running, but disables important features of
the ISI protocol. Devices using this approach will not function correctly in a self-
installed environment.

IsiUpdateDiagnostics()
void IsiUpdateDiagnostics(IsiDiagnostic Event, unsigned Parameter);

Provides optional detailed ISI diagnostic events. These events are useful for
debugging ISI applications and are not typically used for production products. To
receive notification of diagnostic events, enable diagnostics in the IsiStart()
function and override the IsiUpdateDiagnostics() callback function. This
callback is normally disabled and the default implementation of
IsiUpdateDiagnostics() does nothing. The ISI engine calls this function with
the Event parameter set to one of the values defined for the IsiDiagnostic
enumeration in Appendix A. Some of these events carry a meaningful value in
the Parameter argument, as detailed in the IsiDiagnostic definition. Most
diagnostics events supplement UI events; use a combination of both events for a
complete trace record.

No forwarder is supported for this function.

ISI Programmer’s Guide 150

IsiUpdateUserInterface()
void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter);

Provides status feedback from the ISI engine. These events are useful for
synchronizing the device’s user interface with the ISI engine. To receive
notification of ISI status events, override the IsiUpdateUserInterface()
callback function. The default implementation of IsiUpdateUserInterface()
does nothing. The ISI engine calls this function with the Event parameter set to
one of the values defined for the IsiEvent enumeration in Appendix A. Some of
these events carry a meaningful value in the Parameter argument, as detailed in
the IsiEvent definition.

You can use the Event parameter passed to the IsiUpdateUserInterface()
callback function to track the state of the ISI engine. This is a simple way to
determine which ISI function calls make sense at any time, and which ones don’t.

The following table lists this state information, based on the last Event value
provided with this callback, over possible ISI actions:

 isiPending isiPending
Host/

isiApproved

isiApproved
Host

isiNormal

IsiCancelEnrollment

IsiCreateEnrollment

IsiExtendEnrollment

IsiDeleteEnrollment

IsiLeaveEnrollment

IsiOpenEnrollment

IsiAcquireDomain
IsiStartDeviceAcquisition
IsiReturnToFactoryDefaults

151 ISI Programmer’s Guide

Appendix D

ISI Router Configuration

This appendix provides information for preparing a
LONWORKS router for use with an ISI network.

ISI Programmer’s Guide 152

LONWORKS Routers and ISI Networks
To prepare a LONWORKS router for use with an ISI network, configure the device
as follows:

 TP/FT-10 Side PL-20 Side
Domain[0] 0x49-0x53-0x49 (“ISI”) 0x49-0x53-0x49 (“ISI”)
Domain[1] n/a n/a
Channel ID 0x04 0x10
Router Mode Repeater, Online Repeater, Online

You can find more information about LONWORKS router modules and their
configuration from the LONWORKS Router User’s Guide, available for download
from http://www.echelon.com/support/documentation/manuals/routers/.

153 ISI Programmer’s Guide

http://www.echelon.com/support/documentation/manuals/routers/

Appendix E

Glossary

This appendix defines the key ISI terms.

ISI Programmer’s Guide 154

Term Definition

Application
message

An ANSI/CEA-709.1 (EN14908-1) message with a message code in
the range of 0 to 62. Message codes 48 to 62 are reserved for
standard application messages, including messages used for ISI
(message code 61) and file transfer (message code 62). Message
codes 0 to may be used for proprietary manufacturer-specific
messages.

Assembly See connection assembly.

Automatic
enrollment

The process of creating an ISI connection without user interaction.

Callback function A function called by the ISI engine that may be overridden by an
application-specific function in order to relay data back and forth
between the application and the ISI engine.

Compatible
network variable

A network variable of the same type and direction.

Complementary
network variable

A network variable of the same type but opposite direction.

Compound
assembly

A connection assembly that has more then one network variable.

Connection A configured data flow or flows between one or more output
network variables and one or more input network variables. In ISI,
a connection may be a network variable connection or an ISI
connection. An ISI connection consists of one or more network
variable connections.

Connection
assembly

A block of functionality for a device represented by one or more
network variables, and one or more functional blocks. Connection
assemblies are used to create ISI connections.

Connection
controller

A device that initiates enrollment of one or more ISI devices in an
ISI connection. Typically a user interface panel or controller.

Connection host A device that begins the enrollment process by sending a
connection invitation specifying a connection assembly.

Connection
invitation

A message sent by a connection host to open enrollment for a
connection assembly.

Connection member A device that has joined an ISI connection, but is not the
connection host.

Connection message Messages used to create, delete, and describe ISI connections.

Connection Status
Message (CSM)

Periodic messages used to create, delete, and describe ISI
connections.

155 ISI Programmer’s Guide

Term Definition

Controlled
enrollment

The process of creating an ISI connection requiring a connection
controller to specify the devices to be connected.

Domain Address
Server (DAS)

A device present in ISI-DA networks that does ISI management
tasks such as assigning a domain ID and monitoring and reporting
network size. An ISI-DA network may include multiple domain
address servers.

Domain Resource
Usage Message
(DRUM)

Periodic message containing the physical address (Neuron ID),
logical address (domain, subnet, and node ID), and part of the
program ID for a device.

Enrollment The process of creating a self-installed ISI connection.

Explicit message A message that is explicitly constructed by the application. The
message may be an application message, network management
message, network diagnostic message network variable message, or
a foreign-frame message. See also implicit message.

Forwarder A function that allows the default implementation of a function to
be called while still allowing for an application-specific
implementation.

Implicit message A message that is constructed by the 709.1 protocol engine within
an application. Only used for network variable messages.

ISI connection See connection.

ISI engine Part of the ISI library that implements most of the ISI protocol and
relays information back to the application through use of callback
functions.

ISI-S network A network that does not include a domain address server, or
contains any devices that are not ISI-DA compatible. ISI-S
networks are limited to 32 devices.

ISI-DA network A network that includes a domain address server and consists
solely of ISI-DA compatible devices. ISI-DA networks are limited
to 200 devices.

ISI-DAS protocol The protocol implemented by a domain address server.

Managed network A network that is managed by a network management tool, and is
therefore not self-installed.

Manual enrollment The process of creating an ISI connection requiring user interaction
with the devices to be connected.

Message Information sent from a source device to one or more destination
devices. In the 709.1 protocol, a message may be an application
message, network management message, network diagnostic
message, a network variable message, or a foreign-frame message.

ISI Programmer’s Guide 156

Term Definition

Network
management

The act of putting network configuration data into a persistent
store (typically a database) with the intent of making the network
configuration data in a network of devices consistent with that
network configuration data in the persistent store, and
maintaining that consistency over time. Just storing the data into
a persistent store, for example, is not network management; it is
just a backup or snapshot of the data at any one point.

Network
management tool

A tool that stores network configuration data into its persistent
store and actively maintains consistency between the data in its
persistent store and the devices on the network being managed.

Network variable A data item that a particular device application program expects to
get from other devices on a network (an input network variable) or
expects to make available to other devices on a network (an output
network variable). Examples are a temperature, switch value, and
actuator position setting.

Network variable
connection

See connection.

Periodic message A status message that is sent at a specified interval.

Self-installed
network

A network that has network addresses and connections created
without the use of a network management tool.

Simple assembly A connection assembly that has one network variable.

Timing Guidance
Message (TIMG)

A periodic message that is broadcast by all domain address servers.
It includes information about network size and latency. It is an
optional message, but if available, ISI devices use this information
to schedule all periodic message based on network size. This
ensures efficient use of the channel bandwidth and minimizes the
overhead of the ISI protocol

Variant A field in a connection message that allows for different
interpretations of the assembly members.

157 ISI Programmer’s Guide

	Introduction
	Overview
	Changes since Revision 2
	Table of Contents
	Installing ISI Devices
	ISI Types
	ISI Messages
	ISI Limits
	Device Count Limits
	Channel Types and Limits
	Supported Topology and Routers
	Connection Complexity
	Identification of Connections
	Address Table Size
	Alias Table Size
	Domain Table Size
	Earshot Problems

	ISI and Energy Storage Devices
	 2
	Quick Start

	Example ISI Application
	3
	Self-Installation Basic Procedures

	Starting and Stopping Self-Installation
	Implementing Periodic Services
	Handling an Incoming Message
	Acquiring a Domain Address
	Acquiring a Domain Address from a Domain Address Server
	Fetching a Device from a Domain Address Server
	Fetching a Domain for a Domain Address Server

	Enrolling in a Connection
	ISI Connection Model
	Opening Enrollment
	Receiving an Invitation
	Accepting a Connection Invitation
	Implementing a Connection

	Canceling a Connection
	Deleting a Connection
	Handling ISI Events
	Deinstalling a Device
	Recovering from a Programming Error
	Declaring Network Variable Arrays
	Using the run_unconfigured Compiler Directive
	Implementing a SCPTnwrkCnfg CP
	4
	Quick Start, Revisited
	5
	Developing and Debugging an ISI Application

	General Considerations
	Developing and Debugging the Application
	Developing and Debugging the ISI Implementation
	6
	Self-Installation Advanced Procedures

	Overriding a Callback Function
	Forwarders
	Assembly Number Allocation
	Supporting Compound Assembly Connections
	Creating a Polled Connection
	Creating an Acknowledged Connection
	Turnaround Connections
	Customizing the ISI Connection Table
	Getting ISI Version Information
	Discovering Devices
	Accelerating Device Discovery
	Creating a Connection with Controlled Enrollment
	Recovering Connections
	Sending an NV Update or Polling an NV from a Controller
	Monitoring Data from a Controller and Designing Devices for Monitoring
	Polling
	Controlled Enrollment
	Automatic Enrollment
	Selecting a Monitoring Method

	Sending Periodic Heartbeats
	Sending Application-Specific Periodic Messages
	Optimizing the Footprint of ISI Applications
	IsiFull
	IsiCompactAuto
	IsiCompactManual
	IsiCompactS
	IsiCompactSHb
	IsiCompactDa
	IsiCompactDaHb
	All Compact Libraries
	IsiPl3170
	Isi6000
	Extended Address Table
	DHCP
	Mixed Networks
	 7
	Transitioning between Managed and Self-Installed Networks
	API Data Types

	ConnDesc Structure
	IsiAbortReason Enumeration
	IsiCid Structure
	IsiConnection Structure
	IsiConnectionHeader Structure
	IsiConnectionState Enumeration
	IsiControl Enumeration
	IsiCsma Structure
	IsiCsmc Structure
	IsiCsmd Structure
	IsiCsme Structure
	IsiCsmi Structure
	IsiCsmo Structure
	IsiCsmoData Structure
	IsiCsmr Structure
	IsiCsmx Structure
	IsiCtrp Structure
	IsiCtrq Structure
	IsiDiagnostic Enumeration
	IsiDidcf Structure
	IsiDidrm Structure
	IsiDidrq Structure
	IsiDirection Enumeration
	IsiDrum Structure
	IsiEvent Enumeration
	IsiFlags Enumeration
	IsiMessage Structure
	IsiMessageCode Enumeration
	IsiMessageHeader Structure
	IsiRdcs Structure
	IsiRdct Structure
	IsiScope Enumeration
	IsiTimg Structure
	IsiType Enumeration
	API Functions

	IsiAcquireDomain()
	IsiApproveMsg()
	IsiApproveMsgDas()
	IsiCancelAcquisition()
	IsiCancelAcquisitionDas()
	IsiCancelEnrollment()
	IsiCreateEnrollment()
	IsiDeleteEnrollment()
	IsiExtendEnrollment()
	IsiFetchDevice()
	IsiFetchDomain()
	IsiGetFreeAliasCount()
	IsiImplementationVersion()
	IsiInitiateAutoEnrollment()
	IsiIsAutomaticallyEnrolled()
	IsiIsBecomingHost()
	IsiIsConnected()
	IsiIsRunning()
	IsiIssueHeartbeat()
	IsiLeaveEnrollment()
	IsiMsgDeliver()
	IsiMsgSend()
	IsiOpenEnrollment()
	IsiPreStart()
	IsiProcessMsg()
	IsiProcessResponse()
	IsiProtocolVersion()
	IsiReturnToFactoryDefaults()
	IsiStart()
	IsiStartDeviceAcquisition()
	IsiStop()
	IsiTick()
	Callback Functions

	IsiCreateCsmo()
	IsiCreatePeriodicMsg()
	IsiGetAssembly()
	IsiGetConnection()
	IsiGetConnectionTableSize()
	IsiGetNextAssembly()
	IsiGetNextNvIndex()
	IsiGetNvIndex()
	IsiGetPrimaryDid()
	IsiGetPrimaryGroup()
	IsiGetRepeatCount()
	IsiGetWidth()
	IsiQueryHeartbeat()
	IsiSetConnection()
	IsiSetDomain()
	IsiUpdateDiagnostics()
	IsiUpdateUserInterface()
	ISI Router Configuration

	LONWORKS Routers and ISI Networks
	Glossary

