RENESAS

IPS2550

Contents

1.	Intro	oduction		4
	1.1	Quick-S	Start / Default Configuration	
	1.2	Progra	mming Procedure	4
	1.3	IPS255	0 Block Diagram	5
	1.4	Progra	mming Modes	5
		1.4.1.	Programming Over I2C Pins	5
		1.4.2.	Programming Over Output Pins	
		1.4.3.	Programming Over Output Pins Using the IPS-Comboard	7
	1.5	Automa	atic Gain Control (AGC)	
2.	12C	Interface	•	9
	2.1	Suppor	ted Features	
	2.2	Not Su	pported Optional Features	9
	2.3	Slave A	Address	10
	2.4	Operati	ion and Frame Format	11
	2.5	Memor	y Address	11
	2.6	Conten	t Data Bytes	12
	2.7	SINGLI	E WRITE Operation	12
	2.8	SINGLI	E READ Operation	13
	2.9	Protoco	ol Integrity Check	13
		2.9.1.	Slave Address Parity Check	13
		2.9.2.	Content Data CRC check	13
3.	Mem	nory Arcl	hitecture	
	3.1	Memor	y Map and Default FTP Values	15
	3.2	Registe	er Descriptions	
		3.2.1.	FTP (Non-Volatile) and SRB (Volatile)	
		3.2.2.	SFR (Special Functions Register)	
4.	Glos	sary		
5.		•	tory	
J.	IVEAL	31011113		

Figures

Figure 1. Block Diagram	5
Figure 2. Programming the IPS2550 Over the I2C Interface	6
Figure 3. Programming the IPS2550 Over the Output Pins	6
Figure 4. Enter Programming Mode Over Output Pins	7
Figure 5. Enter Programming Commands	7
Figure 6. AGC Effect on Change in Magnitude	8
Figure 7. I2C Bit Transfer Signal State	9
Figure 8. I2C START and STOP Conditions	10
Figure 9. I2C Acknowledge Signal State	10
Figure 10. I2C Device Address	10
Figure 11. Memory Address Byte	11
Figure 12. Content Data Bytes	12
Figure 13. Single Write Frame	12
Figure 14. Single Read Frame	13
Figure 15. Memory Architecture	14
Figure 16. Compensated and Uncompensated Amplitude Mismatch	20
Figure 17. Compensated and Uncompensated Signal Offset	
Figure 18. Transmitter current configuration for LC Tank	23

Tables

1
1
3
1
5
5
3
7
3
9
)
1
2
2
3
1
1
5
5
3
7

Table 22. IRQN Watchdog: Address 0x0E FTP; 0x4E SRB	28
Table 23. AGC Plausibility Configuration: Address 0x0F FTP; 0x4F SRB	28
Table 24. Customer Identification: Address Register 0x18 FTP	29
Table 25. Product Identifier: Address 0x19 FTP	29
Table 26. Interrupt Clear 1: Address 0x68 SFR	30
Table 27. Interrupt Clear 2: Address 0x69 SFR	
Table 28. Interrupt Clear 3: Address 0x6A SFR	32
Table 29. Interrupt State 1: Address 0x6B SFR	32
Table 30. Interrupt State 2: Address 0x6C SFR	
Table 31. Interrupt State 3: Address 0x6D SFR	34
Table 32. Transmitter Counter State: Address 0x6E SFR	34
Table 33. FTP ECC State: Address 0x70 SFR	35
Table 34. Product Identifier Version: Address 0x73 SFR	35
Table 35. AGC_OBSERVATION: Address 0x78 SFR	35
Table 36. DBIST_STS: Address 0x79 SFR	35
Table 37. External SM for Checking CRC: Address 0x7F SFR	36

1. Introduction

The IPS2550 is a high-speed inductive position sensor with analog sine and cosine voltage output, which can be differential or single-ended. The analog high-speed sensor is optimized for lowest propagation delay.

The IPS2550 high-speed inductive position sensor is used in automotive, industrial, medical, and consumer applications. The sensor configuration can be changed to address a wide range of applications. This document describes digital communication with the IPS2550 and the available configuration options.

The digital communication interface of the IPS2550 uses I2C Standard-mode to program, configure and to read the diagnostic status. In addition to using the dedicated SDA and SCL pins, it is also possible to communicate via I2C protocol over the analog output pins to reduce the number of wires to a sensor module. The Slave Address is programmable in the register and can be modified by applying the correct voltage at ADR_IRQN pin1, for details see section 2.3.

Note: It is highly recommended to read the *IPS2550 Datasheet* for electrical characteristics, product details, such as features, pin descriptions, functionality, and circuit descriptions before reading this manual.

1.1 Quick-Start / Default Configuration

The IPS2550 comes with a default configuration for the transmitter bias current, automatic gain control and output pins in differential sine and cosine voltage mode. Diagnostic alarm at the output pins is not active. The sensor outputs sine and cosine voltages relative to the target position after power-up without the need for programming in case the sensor coils are designed appropriately to work with the default configuration.

Default Configuration: (refer to section 3.1 for details)

Supply Mode:	5V
Output Mode:	SIN/COS differential
AGC Mode:	ON (gain booster off)
Interrupt Signaling:	Off
I2C ADR/IRQN Pin:	I2C address pin
I2C Address:	24dec (ADR pin high), 17dec (ADR pin low)
I2C Integrity check:	ON
RX configuration:	INTERLEAVED - IPS2550
TX bias current:	496µA

1.2 Programming Procedure

The programming parameters depend on the application requirements. Most parameters do not change for production parts. Some parameters can be programmed individually to compensate production tolerances. A programming procedure usually includes following steps:

- 1. **General Configuration** (Select the correct supply voltage, Interface mode, etc. mainly in system configuration registers Adr 0x00, 0x01, ...)
- 2. Transmitter Configuration (TX Bias Current Setting, Adr 0x07)
- 3. Receiver Configuration (can be programmed individually if needed)
 - a. Static Gain Adjustment if AGC is switched off (Adr 0x02)
 - b. Signal Offset Compensation (Adr 0x04, 0x06)
 - c. Amplitude Mismatch Compensation (Adr 0x03, 0x05)

4. **Diagnostics Configuration** (Diagnostic Mask, Alarm Levels, Adr 0x0B, 0x0C, 0x0D, 0x0F, 0x08, 0x09, 0x0A)

Notes:

- To avoid possible error signalling during a configuration procedure, it is recommended to enable the backend interrupt signalling (by System Configuration 1: Address 0x00 FTP; 0x40 SRB, back_end_irqn_ena) and the interrupt mask (in Interrupt Enable 1: Address 0x0B FTP; 0x4B SRB, Interrupt Enable 2: Address 0x0C FTP; 0x4C SRB and Interrupt Enable 3: Address 0x0D FTP; 0x4D SRB) at the end of the programming procedure.
- It is recommended to disable the AGC and configure a fixed gain during configuration of offset compensation and gain mismatch registers to avoid distortion of measurements during a compensation procedure (R1 Fine Gain Compensation: Address 0x03 FTP; 0x43 SRB, R1 Offset Compensation: Address 0x04 FTP; 0x44 SRB, R2 Fine Gain Compensation: Address 0x05 FTP; 0x45 SRB, R2 Offset Compensation: Address 0x06 FTP; 0x46 SRB).

1.3 IPS2550 Block Diagram

Figure 1 shows the main components of the IPS2550.

Figure 1. Block Diagram

1.4 **Programming Modes**

There are two different programming modes available:

- Programming over I2C pins: used for embedded applications with I2C pins permanently connected to the sensor IC.
- Programming over output pins (slower): used for remote applications like a sensor module where only supply and output pins are available.

1.4.1. Programming Over I2C Pins

The IPS2550 can be programmed with a clock frequency of up to 100kHz over the I2C interface pins SDA (pin16) and SCL (pin15). The I2C pins must be tied to VDD using two pull-ups as shown below. Communication over the I2C pins is available during operation and allows reading the diagnostic status while the differential sine cosine output is active.

Figure 2. Programming the IPS2550 Over the I2C Interface

1.4.2. Programming Over Output Pins

The IPS2550 can be programmed with a clock frequency of up to 25kHz over the output pins COS_SDA (pin12) and SIN_SCL (pin14). The I2C pins must be tied to VDD using two pull-ups as shown in Figure 3.

Figure 3. Programming the IPS2550 Over the Output Pins

Programming over the output pins can be enabled only by sending an unlock command within a defined timeframe during the start-up procedure. In operation mode SinP/CosP are solely analog outputs used for either mission mode data, or diagnostics. The procedure to enter and exit the Programming mode is shown below.

Figure 4. Enter Programming Mode Over Output Pins

To enter the Programming mode, the programming request must be sent: the master must send the Slave Address byte with R/W bit set to '0' in the 1ms to 3ms time frame after the power-on-reset. If NACK is received, first step of the programming entry is not successful.

Once the programming request is received, the IPS2550 does not start in Normal Operation mode, but a programming window is enabled for 75ms.

During the programming window, a password command must be sent consisting of Slave Address, Memory Address and password code as shown in Figure 5. If the valid password command is received, the programming window counter is stopped and the IPS2550 enters the Programming mode. If no valid password command is received, the IPS2550 enters the Normal Operation mode after the programming window counter is finished after 75ms.

Figure 5. Enter Programming Commands

After successful configuration and programming, exit the Programming mode by sending the exit command.

Notes:

- During programming mode via the analog output pins, the analog output voltage can be read from SIN_N and COS_N pins only for sensor configuration.
- When entering the programming mode via the analog output pins, the i2c_protocol_fail flag in register Interrupt State 1: Address 0x6B SFR is set. Reset the error flag during the programming procedure if needed.

If IPS2550 is programmed via the analog output pins, the outbuf_vcm_fail flag in register Interrupt State 2: Address 0x6C SFR is set.

1.4.3. Programming Over Output Pins Using the IPS-Comboard

When using the IPS-comboard to program an IPS2550 over the analog output pins, consider the following:

- Select 4kHz I2C clock (automatically selected by GUI)
- Filtering capacitors must be max 47nF or lower
- For further details please refer to the User Manual of the IPS2550 Starter Kit

1.5 Automatic Gain Control (AGC)

As default, the automatic gain control is active. The AGC uses the signal of an internal magnitude detector to control the signal amplitudes into a control window as defined in the *IPS2550 Datasheet* document.

The AGC uses all available gain steps per default. If agc_plause_chk_en is activated (0x02, bit10), the AGC uses only gain steps inside the plausibility range defined in the AGC Plausibility register (Address 0x0F FTP; 0x4F SRB). If the AGC plausibility check is enabled, the agc_err bit is set when the plausibility boundary code configured in the AGC Plausibility Configuration register (agc_plause_uthresh, agc_plause_lthresh) is reached.

Note: The upper plausibility threshold must be higher than the lower plausibility threshold.

It is possible to double the overall gain by using d2a_afe_boost_sel (0x02, bit07).

Some applications may require a static gain setting. In this case, the AGC must be disabled (0x00, bit9 afe_agc_dis) and the R1/R2 gain register must be configured for the desired gain.

To see if the AGC is in range, check the agc_err bit (0x6C, bit 1).

By using bits agc_wait_tmr_sel (0x02, bits [9:8]), the wait time after a direction change of the magnitude can be configured as shown in Figure 6. The default is 10µs.

After power-up, the AGC starts to work from the gain value that is configured for R1/R2.

Note: The agc_err bit is set during start-up if an AGC start value is programmed and the magnitude exceeds the AGC target range until the correct gain value is reached. To avoid such situation during start-up, set the R1/R2 gain to a low value or '0' when using the AGC.

Figure 6. AGC Effect on Change in Magnitude

For lab evaluation purpose the actual AGC value can be read from the agc_gain_stage (0x78, bits[6:0]) register.

The target amplitude is $0.9V \pm 0.2V$ (default).

Note: The default typical peak amplitude on an output pin is 0.9V, and 1.8V peak-peak if the sensor is operated within AGC range. The differential typical output voltage between positive and negative output pin is 3.6V.

2. I2C Interface

To communicate with a microcontroller, the IPS2550 uses a two-wire Inter-Integrated Circuit (I2C) interface based on the specification rev. 6. The Slave Address is programmable and pin 1 can be configured as an address or interrupt pin.

2.1 Supported Features

- · Standard-mode (Sm) up to 100 kbit/s
 - Start condition
 - Stop condition
 - $_{\circ}$ Acknowledge
 - 。 7-bit Slave Address
- Single Write Operation
- Single Read Operation

2.2 Not Supported Optional Features

The following features are not supported:

- Clock stretching
- 10-bit Slave Address
- General Call Address
- Software Reset
- Device ID

Two wires connected to the serial data pin (SIO_SDA, pin 16) and serial clock pin (SCK_SCL, pin 15) carry information between the devices connected to the bus. Both SDA and SCL pins are connected to VDD via external pull-up resistors. When the bus is free, both lines are high. An external master (host controller) initiates a transfer, generates clock signals, and terminates a transfer.

The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can only change when the clock signal on the SCL line is low.

Figure 7. I2C Bit Transfer Signal State

A data transfer is initiated by a START condition (S) and is defined as a high to low transition on the SDA line while SCL is high. A STOP condition (P) is defined as a low to high transition on the SDA line while SCL is high as shown in Figure 8.

The master always generates START and STOP conditions. The bus is considered busy after the START condition. The bus is considered to be free again after the STOP condition.

If a repeated START (Sr) is generated instead of a STOP condition, the bus stays busy. In this respect, the START and repeated START conditions are functionally identical.

Every transfer block on the SDA line must have a length of 1 byte (8 bits). The number of bytes that can be transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge bit from the I2C master (see Figure 9). Data is transferred with the most significant bit (MSB) first. Data transfer with acknowledgement is mandatory.

Figure 9. I2C Acknowledge Signal State

2.3 Slave Address

The IPS2550 supports a 7-bit I2C Slave Address. The Slave Address format is shown in Figure 10.

The Slave Address can be configured by four programmable bits (A6, A5, A4, A3). These bits can be modified in System Configuration 1 register (0x00, bits [7:4] i2c_slave_sub_addr). Slave address bits A2, A1, A0 are reserved bits and are set to '0' if pin1 is configured as interrupt pin.

If pin1 is configured as address pin (default, System Configuration 1 (0x00, bit [0]=0b1 system_protocol)), A3 has the state of the address pin and A0 has the inverse state of the address pin.

Figure 10. I2C Device Address

Up to 21 devices can be connected to the same bus when using the address pin, and up 14 devices when using different address pins. Two groups of reserved addresses (0000XXX and 1111XXX) are excluded. A list of configurable slave addresses is shown in Table 1.

Table 1. Programmable I2C Slave Addresses with ADR_IRQN PIN 1 configured for Interrupt Output (0x00, system_protocol='0')

i2c_slave_sub_addr dec	1	2	3	4	5	6	7
[A6:A0] bin	0001000	0010000	0011000	0100000	0101000	0110000	0111000
slave adr dec	8	16	24	32	40	48	56
slave adr hex	8	10	18	20	28	30	38
i2c_slave_sub_addr dec	8	9	10	11	12	13	14
[A6:A0] bin	1000000	1001000	1010000	1011000	1100000	1101000	1110000
slave adr dec	64	72	80	88	96	104	112
slave adr hex	40	48	50	58	60	68	70

Table 2. Programmable I2C Slave Addresses with ADR_IRQN Pin 1 configured for Adress Input (0x00, system_protocol='1')

		Default	Default				
i2c_slave_sub_addr dec	0, 1	2, 3	2, 3	4, 5	4, 5	6, 7	6, 7
[A6:A0] bin	000 <u>1</u> 000	001 <u>0</u> 001	001 <u>1</u> 000	010 <u>0</u> 001	010 <u>1</u> 00 0	011<u>0</u>001	011<u>1</u>000
slave adr dec	8	17	24	33	40	49	56
slave adr hex	8	11	18	21	28	31	38
ADR Pin	<u>High</u>	ADR = " <u>LOW</u> "	ADR = " <u>HIGH</u> "	Low	<u>High</u>	Low	<u>High</u>
i2c_slave_sub_addr dec	8, 9	8, 9	10, 11	10, 11	12, 13	12, 13	14, 15
[A6:A0] bin	100 <u>0</u> 001	100 <u>1</u> 000	101 <u>0</u> 001	101 <u>1</u> 000	110 <u>0</u> 001	110 <u>1</u> 00 0	111 <u>0</u> 001
slave adr dec	65	72	81	88	97	104	113
slave adr hex	41	48	51	58	61	68	71
ADR Pin	Low	<u>High</u>	Low	<u>High</u>	Low	<u>High</u>	Low

2.4 Operation and Frame Format

The IPS2550 supports both read and write operation. By default, the protocol integrity check is enabled for all I2C frames and can be deactivated in System Configuration 2 register (0x01, bit [2] prot_integ_check_dis).

2.5 Memory Address

The first data byte after the Slave Address is defined as memory address <MemAddr> and consists of:

- D7 Slave Address Parity Bit
- D6....D0 6-bit memory address

Figure 11. Memory Address Byte

2.6 Content Data Bytes

The following consecutive pairs of data bytes (<CmdData> field) contain the 11-bit information for the memory. The remaining 5-bits are reserved and fixed to '1'. The sequence is MSB first.

Data Byte N:

• D7D0 <ContentData[10:3]>

Data Byte N+1:

- D7D5 <ContentData[2:0]>
- D4D3 <Reserved, always 2'b11>
- D2D0 <Reserved>:
 - 。 Integrity check 'On': CRC[2:0] over Memory Address and Content Data
 - Integrity check 'Off': <Reserved> (Always all 1's)
 The <Reserved> field is checked for all 1's and if the check fails the <ContentData> field is not written to the addressed memory space (no write action) and the slave receiver does not produce an acknowledge.

	D7	D6	D5	D4	D3	D2	D1	D0		D7	D6	D5	D4	D3	D2	D1	D0
	CD10	CD9	CD8	CD7	CD6	CD5	CD4	CD3		CD2	CD1	CD0	1	1	CRC2	CRC1	CRC0
1	Content Data (Read or Write) MSB										ontent D or Writ	ata e) LSB	<u>.</u>		• •	-CRC-	

Figure 12. Content Data Bytes

2.7 SINGLE WRITE Operation

For a single write operation, the Slave Address byte has the R/W bit set to '0' and is followed by the memory address byte and two content data bytes as shown below in Figure 13. The master sends the address bytes and content data, which are acknowledged by the slave.

Figure 13. Single Write Frame

Notes:

- If I2C master continue to provide clocks and data after the second write data byte, the IC will NACK the next byte.
- Consider the programming time when writing to a FTP register. Refer to Table 5 for details.

2.8 SINGLE READ Operation

For a single read operation, the Slave Address byte has the R/W bit set to '0', followed by the memory address byte. After a stop (P) or repeated start (Sr) condition, the Slave Address byte follows with the R/W bit set to '1' and two content data bytes. The master sends the address bytes, which are acknowledged by the slave. The slave sends the content data, which are acknowledged by the master.

Figure 14. Single Read Frame

Note: If the I2C master continues to provide clocks after the second read data byte, the IC continues to provide the same read data.

2.9 Protocol Integrity Check

The Data Integrity Check is an extension of the I2C protocol for fail safe communication between I2C master and slave devices. This check is activated by default, and can be disabled in System Configuration 2 register (0x01, bit [2] prot_integ_check_dis).

2.9.1. Slave Address Parity Check

The IPS2550 supports an even parity check of I2C device address. If the check fails, the subsequent command is discarded and the diagnostic status "protocol_integrity_fail" is asserted.

PAR: Even parity calculated and checked for preceding received SlaveAddress address byte:

PAR = XOR ({SlaveAddr, RnW})

Table 3 shows the Slave Address field handling for verified "read/write action".

Table 3. I2C Slave Address Byte and Memory Address Field Integrity Check

Protocol Integrity Check Disable	D7	D6D0	Diagnostic	Description
0b1	0b1	0bxxxxxxx	Asserted	No action, no slave acknowledge
0b1	0b0	0bxxxxxxx	Idle	Read/write action
0b0	PAR _{fail}	0bxxxxxxx	Asserted	Parity check fails, no action, no slave acknowledge
0b0	PAR _{pass}	0bxxxxxxx	Idle	Parity check passes, read/write action

2.9.2. Content Data CRC check

A 16-bit word is defined and transported by two consecutive data bytes (data byte n, data byte n+1).

A 3-bit CRC field is defined to detect the presence of errors in the transmission of each 16-bit data word. If the data transferred does not pass CRC verification, no write action is taken, the slave receiver does not produce an acknowledge, and the diagnostic status "protocol_integrity_fail" is asserted.

The polynomial used to calculate the 3-bit CRC is:

$$CRC(x) = x^3 + x^1 + x^0$$

Table 4 shows the data word handling for verified "write action".

Table 4. I2C <ContentData> Integrity Check

Protocol Integrity Check Disable	<contentdata></contentdata>	<reserved></reserved>		Diagnostic	Description	
0b1	0bxxx_xxxx_xxxx	0b1_11	11	Idle	Write action executed	
0b1	0bxxx_xxxx_xxxx	0b0_0000 0b1_1110		Asserted		Write action suspend, no slave acknowledge
Protocol Integrity Check Enable			Diagnostic	Description		
0b0	0bxxx_xxxx_xxxx	0bxxx_xxxx_xxx 0b11 Pass		Idle	Write action executed	
0b0	0bxxx_xxxx_xxxx	0b11	Fail	Asserted	Write action suspend, no slave acknowledge	
060	0bxxx_xxxx_xxxx	0b00 0b10	Fail	Asserted	Write action suspend, no slave acknowledge	
0b0	0bxxx_xxxx_xxxx	0b00 0b10	Pass	Asserted	Write action suspend, no slave acknowledge	

3. Memory Architecture

The memory architecture of the IPS2550 consists of three different storage blocks with a total address range of 7 bits as follows:

- Few Times Programmable (FTP) 00_{HEX} through 1F_{HEX}
- Internal Configuration (RFU)
- 20_{HEX} through 3F_{HEX}
- Shadow Register Bank (SRB)
- Special Function Register (SFR)

40_{нех} through 67_{нех} 68_{нех} through 7F_{нех}

Figure 15. Memory Architecture

Notes:

- Some registers are be modified by internal processes.
- After power-on-reset (POR), most of the FTP content is mirrored into the corresponding SRB address range within the start-up time window.
- Do not change registers and bits that are marked as "Internal Configuration (RFU)" with note "Read as X".

3.1 Memory Map and Default FTP Values

After writing to a FTP register, a programming time of minimum 3ms is required before a new command can be sent.

Table 5. FTP (Non-Volatile)

Address (hex)	Description		Default Value			
. ,	•	1512	118	74	30	hex
0x00	System configuration 1	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0121
0x01	System configuration 2	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0001
0x02	R1/R2 gain	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0300
0x03	R1 gain compensation	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x04	R1 offset compensation	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x05	R2 gain compensation	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x06	R2 offset compensation	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x07	Transmitter current configuration	ECC	P _{DED} , n10n8	n7n4	n3n0	0x00BE
0x08	Transmitter frequency time-base	ECC	P _{DED} , n10n8	n7n4	n3n0	0x00AF
0x09	Transmitter frequency lower limit	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x0A	Transmitter frequency upper limit	ECC	P _{DED} , n10n8	n7n4	n3n0	0x07FF
0x0B	Interrupt enable 1	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x0C	Interrupt enable 2	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x0D	Interrupt enable 3	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x0E	IRQN watchdog	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x0F	AGC Plausibility configuration	ECC	P _{DED} , n10n8	n7n4	n3n0	0x0000
0x100x17	Internal Configuration		Read as '2	Χ'		
0x18	Customer Identifier	ECC	PDED, n10n8	n7n4	n3n0	0x0000
0x19	Product Identifier	ECC	PDED, n10n8	n7n4	n3n0	0x0019
0x1A0x3E	Internal Configuration		Read as '	X'	•	
0x3F	Entry / Exit analog programming		Read as ')	X'		

Table 6. SRB/SFR (Volatile)

Address (hex)	Description		Bit position					
		1512	118	74	30			
0x40	System configuration 1	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x41	System configuration 2	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x42	R1/R2 gain	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x43	R1 gain compensation	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x44	R1 offset compensation	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x45	R2 gain compensation	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x46	R2 offset compensation	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x47	Transmitter current configuration	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x48	Transmitter frequency time-base	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x49	Transmitter frequency lower limit	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4A	Transmitter frequency upper limit	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4B	Interrupt enable 1	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4C	Interrupt enable 2	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4D	Interrupt enable 3	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4E	IRQN watchdog	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x4F	AGC Plausibility configuration	ECC	P _{DED} , n10n8	n7n4	n3n0			
0x500x67	Internal Configuration		Read as 'X					
0x68	Interrupt clear 1	Not used	ʻx', n10n8	n7n4	n3n0			

Address (hex)	Description		Bit position						
		1512	118	74	30				
0x69	Interrupt clear 2	Not used	ʻx', n10n8	n7n4	n3n0				
0x6A	Interrupt clear 3	Not used	ʻx', n10n8	n7n4	n3n0				
0x6B	Interrupt state 1	Not used	ʻx', n10n8	n7n4	n3n0				
0x6C	Interrupt state 2	Not used	ʻx', n10n8	n7n4	n3n0				
0x6D	Interrupt state 3	Not used	ʻx', n10n8	n7n4	n3n0				
0x6E	Transmitter counter state	Not used	ʻx', n10n8	n7n4	n3n0				
0x6F	Internal Configuration		Read as 'X'						
0x70	FTP ECC state	Not used	ʻx', n10n8	n7n4	n3n0				
0x710x72	Internal Configuration		Read as 'X'						
0x73	Product Identifier Version	Not used	ʻx', n10n8	n7n4	n3n0				
0x740x77	Internal Configuration		Read as 'X'	•					
0x78	AGC_OBS	Not used	ʻx', n10n8	n7n4	n3n0				
0x79	DBIST_STS	Not used	ʻx', n10n8	n7n4	n3n0				
0x7A	Internal Configuration	Not used	ʻx', n10n8	n7n4	n3n0				
0x7B0x7E	Internal Configuration		Read as 'X'	•	•				
0x7F	External SM for checking CRC	Not used	ʻx', n10n8	n7n4	n3n0				

3.2 Register Descriptions

3.2.1. FTP (Non-Volatile) and SRB (Volatile)

Table 7. System Configuration 1: Address 0x00 FTP; 0x40 SRB

	ss FTP RB	P Bits Function		Access FTP SRB		Reset SRB	Default FTP
0x00	0x40	[15:12]	12] Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	 ana_prgm_dis: Disables programming over output pins and enables faster start-up. 0b0: programming through analog enabled; start-up time 5ms 0b1: programming through analog disabled; start-up time 3ms 	RW	RO	0	0
		[9]	 afe_agc_dis: Disables the automatic gain control. 0b0: AGC enabled 0b1: AGC disabled Note: If the AGC is enabled, afe_gain_code [6:0] in Table 9 is used as start value for the AGC during power-up. 			0	0
		[8]	 intr_volatile_mode: Enables dynamic interrupt signaling. If this mode is enabled, an interrupt is cleared automatically if the error disappears after a debounce time of up to 5ms. 0b0: disable, IRQN cleared by uC host 0b1: enable, IRQN event type 			1	1
		[7:4]	i2c_slave_sub_addr: Programmable most significant nibble (MSN) of the I2C Slave Address. Refer to section 2.3 for details.			0x2	0x2

Address FTP SRB	Bits	Function		Access FTP SRB		Default FTP	
	[3:2]	 back_end_irqn_ena: Enable Interrupt signaling at back-end interface. 2'b00: interrupt signaling @ SinP/CosP/SinN/CosN OFF 2'b01: interrupt signaling @ SinP/CosP ON; SinN/CosN OFF 2'b10: interrupt signaling @ SinP/CosP OFF; SinN/CosN ON 2'b11: interrupt signaling @ SinP/CosP / SinN/CosN ON Vote: Critical alarm flags will always put the outputs in diagnostic mode. 			0x3	0x0	
	[1]	 back_end_protocol: Configuration option to switch from Differential Ouptut into Single Ended mode. 0b0: analog differntial: SINP, SINN, COSP; COSN 0b1: analog single ended: SINP, REF, COSP, REF 			0	0	
	[0]	 system_protocol: Configures Pin1 as Interrupt or address pin. 0b0: Interrupt: I2C Slave Address: MSN & 3'b000 0b1: Address Pin: I2C Slave Address: MSN[3:1] and PIN1 and 3'b000 Consider reserved address groups (0000XXX and 1111XXX) 			1	1	

Table 8. System Configuration 2: Address 0x01 FTP; 0x41 SRB

	ss FTP RB	Bits	Bits Function		Access FTP SRB		Default FTP
0x01	0x41	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	thermal_shutdown_en: Enable automatic shutdown of the transmitter (Stop excitation emitter current = 8'h00) in case the temperature exceeds the T_{OVT_ERR} (over-temperature error) threshold defined in the <i>IP2550 Datasheet</i> document Note: The output buffers are switched off automatically to reduce the power consumption after exceeding the T_{OVT_WARN} (temperature warning) threshold defined in the <i>IP2550 Datasheet</i> document. • 0b0: disable automatic shutdown • 0b1: enable shutdown	RW	RO	0	0
		[9:8]	 rc_amp_swap_time: Configures the RX amplifier swapping time if RX swapping is enabled in sysconf2[7:6]: 0b11: (For FuSa) 0b00: 10μs 0b01: 50μs 0b10: 100μs 0b11: 200μs Consider system sampling time and noise requirements when selecting swap time. 			0x0	0

Address FTP SRB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP
	[7:6]	 rc_swap: Configuration bits to activate static or dynamic swapping of the RX amplifier (for FuSa) 0b00: off 0b01: R1/2 swap static 0b11: R1/2 swap static 0b11: R1/2 swap toggle If swapped, amplifier 2 is swapped into channel 1 and vice versa. Amplifier 2 errors are identified on channel1 output. For swap toggle, the setting is exchanged periodically, and error on one amplifier is visible as a ripple on the output signals. If "swap toggle" is activated: higher noise must be expected. The internal offset compensation can be used to minimize the output ripple caused by residual offsets. In this situation, the internal offset compensation for R1 and R2 cannot be used to compensate for coil offsets any more and must be compensated by the application microcontroller. 			0x0	0x0
	[5]	 rc_switch: Switch between interleaved or straight receiver pin configurations. 0b0: interleaved connections, IPS2550 default (FuSa) 0b1: straight connection, IPS2200 compliant 			0	0
	[4:3]	 cyber_security: Configures the I2C access mode. 0b00: I2C read/write access 0b01: I2C read only access 0b10: no read/write access 0b11: I2C read / write access 			0x0	0x0
	[2]	 prot_integ_check_dis: Deactivates the I2C integrity check. 0b0: integrity check 'On' 0b1: integrity check 'Off' 			0	0
	[1]	 agc_mode: Configures the output voltage target for the AGC in 5V mode. In 3V3 supply mode it is 0.9V. 0b0 – Programming option1: 1.8Vpp mode (for 5V and 3V3 supply) 0b1 – Programming option2: 3.0Vpp mode (for 5V mode only) 			0	0
	[0]	 vdda_3v_5v: Configuration bit for the supply voltage range. 0b0: 3.3V mode 0b1: 5.0V mode 			1	1

Table 9. R1/R2 gain: Address 0x02 FTP; 0x42 SRB

	ress SRB	Bits	Function	Acc FTP		Reset SRB	Default FTP
0x02	0x42	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	 agc_plause_chk_en: Enable AGC plausibility check. Behaviour defined by register agc_plause_cfg. If enabled, AGC stops gain code update when out of plausibility range. If the plausibility check is enabled, the threshold limits in register "AGC Plausibility Configuration: Address 0x0F FTP; 0x4F SRB" must be configured correctly. The upper threshold must be configured obove the lower threshold. 0b1: enabled 0b0: disabled 	RW	RW	0	0

Address FTP SRB	Bits				Fund	ction				Access FTP SRB	Reset SRB	Default FTP
	[9:8]	agc_wait_ direction: 1 • 2'b00: 3 • 2'b01: 1 • 2'b10: 3 • 2'b11: 1	Used for s 80ms 100ms 800ms								0	0x3
	[7]	d2a_afe_l 0b1: en 0b0: dis	abled , Ga	ain factor 2	2x .	olication by	/ factor of	2			0	0
	[6:0]	afe_gain_	code: Ov	eral gain c	configurati	ion for rec	eiver 1 an	d 2.			0x0	0x0
		Code in hex	Gain Factor	Code in hex	Gain Factor	Code in hex	Gain Factor	Code in hex	Gain Factor			
		0x0	2.00	0x18	5.66	0x30	16.00	0x48	45.25			
		0x1	2.10	0x19	5.94	0x31	16.80	0x49	47.51			
		0x2	2.18	0x1A	6.17	0x32	17.45	0x4A	49.36			
		0x3	2.29	0x1B	6.48	0x33	18.32	0x4B	51.83			
		0x4	2.38	0x1C	6.73	0x34	19.02	0x4C	53.82			
		0x5	2.50	0x1D	7.06	0x35	19.98	0x4D	56.52			
		0x6	2.59	0x1E	7.34	0x36	20.75	0x4E	58.69			
		0x7	2.72	0x1F	7.70	0x37	21.79	0x4F	61.62			
		0x8	2.83	0x20	8.00	0x38	22.62	0x50	64.00			
		0x9	2.97	0x21	8.40	0x39	23.76	0x51	67.20			
		0xA	3.09	0x22	8.72	0x3A	24.68	0x52	69.79			
		0xB	3.24	0x23	9.16	0x3B	25.91	0x53	73.28			
		0xC	3.36	0x24	9.51	0x3C	26.91	0x54	76.10			
		0xD	3.53	0x25	9.99	0x3D	28.26	0x55	79.90			
		0xE	3.67	0x26	10.38	0x3E	29.34	0x56	83.01			
		0xF	3.85	0x27	10.89	0x3F	30.81	0x57	87.16			
		0x10	4.00	0x28	11.31	0x40	32.00	0x58	90.50			
		0x11	4.20	0x29	11.88	0x41	33.60	0x59	95.02			
		0x12	4.36	0x2A	12.34	0x42	34.90	0x5A	98.72			
		0x13	4.58	0x2B	12.96	0x43	36.64	0x5B	103.66			
		0x14	4.76	0x2C	13.46	0x44	38.05	0x5C	107.65			
		0x15	4.99	0x2D	14.13	0x45	39.95	0x5D	113.03			
		0x16	5.19	0x2E	14.67	0x46	41.50	0x5E	117.38			
		0x17	5.45	0x2F	15.41	0x47	43.58	0x5F	123.24			

Table 10. R1 Fine Gain Compensation: Address 0x03 FTP; 0x43 SRB

	ss FTP RB	Bits	Function	Access FTP SRB NA NA		Reset SRB	Default FTP
0x03	0x43	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA

Address FTP SRB	Bits	Function		Access FTP SRB		Default FTP
	[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
	[10:7]	RFU: Read as X	RW	RO	0x0	0x0
	[6:0]	 afe_r1_gain_cal: Used for increasing the amplitude of receiver 1 to compensate amplitude mismatch caused by not ideal coils. Overall range is 16% with 0.125% step size. 0x00: no correction 0x01: 0.125% 0x02: 0.250% 0x03: 0.375% 0x7E: 15.875% 0x7F: 16% 		RW	0x00	0x00

The output signals can have amplitude mismatch resulting from production tolerances or a non-ideal coil structure. Such amplitude mismatch leads to increased angle non-linearity that is calculated from sine and cosine signals. Therefore, the application microcontroller usually calculates and eliminate the amplitude mismatch before angle calculation. IPS2550 is able to eliminate such amplitude mismatch already within the sensor IC as shown in Figure 16. The left picture shows amplitude mismatch on the cosine channel causing angle error, the right picture shows the error and the improved signal after compensation.

Figure 16. Compensated and Uncompensated Amplitude Mismatch

Address FTP SRB Bit		Bits	Function		Access FTP SRB		Default FTP
0x04	0x44	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	 dis_fsm_output_err: Use for disabling the FSM output error interrupt signalizing. 0b0: signalizing enabled 0b1: signalizing disabled 	RW	RW	0	0
		[9]	 bist_dis: Used for disabling the BIST (Built-in Self Test during startup) 0b0: Diagnostic BIST enabled 0b1: Diagnostic BIST disabled 			0	0
		[8]	 dis_r12_short_fail: Disable diagnostic alarm at R1/2 short fail. 1'b0: enabled, R1/2 short fail triggers diagnostic state 1'b1: disabled, R1/2 short fail doesn't trigger diagnostic state 			0	0

Address FTP SRB	Bits	Function		Access FTP SRB		Default FTP
	[7]	 afe_r1_offset_cal: Define the offset compensation polarity. 0b0: addition 0b1: subtraction 			0	0
	[6:0]	 afe_r1_offset_cal: R1 Offset compensation relative to the LC oscillator amplitude. Used for reducing the signal offset caused by non-ideal coils. Overall range is 0.2% relative to the LC oscillator amplitude, the step size is 0.0015%. 0x00: no correction 0x01: 0.0015% 0x02: 0.0030% 0x03: 0.0045% 0x7E: 0.189% 0x7F: 0.1905% 			0x00	0x00

The output signals can have offset resulting from production tolerances or a non-ideal coil structure. Such offset leads to increased angle non-linearity that is calculated from the sine and cosine signals. Therefore, the application microcontroller usually calculates and eliminate signal offset before angle calculation. IPS2550 is able to eliminate such offset already within the sensor IC as shown in Figure 17. The left picture shows signal offset on the cosine channel causing angle error, the right picture shows the error and the improved signal after compensation.

Figure 17. Compensated and Uncompensated Signal Offset

Table 12. R2 Fine Gain Compensation: Address 0x05 FTP; 0x45 SRB

	ss FTP RB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP	
0x05	0x45	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA	
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA	
		[10:7]	RFU: Read as X	RW	RO	0x0	0x0	
		[6:0]	 afe_r2_gain_cal: Used for increasing the amplitude of receiver 1 to compensate amplitude mismatch caused by non-ideal coils. Overall range is 16%, one step is 0.125% 0x00: no correction 0x01: 0.125% 0x02: 0.250% 0x03: 0.375% 0x7E: 15.875% 0x7F: 16% 		RW	0x00	0x0	

	ss FTP RB	Bits	Function		ess SRB	Reset SRB	Default FTP
0x06	0x46	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:8]	RFU: Read as X	RW	RO	0x0	0x0
		[7]	 afe_r2_offset_cal: Define the applied offset polarity. Offset compensation polarity. 0b0: addition 0b1: subtraction 		RW	0x00	0x00
		[6:0]	 afe_r2_offset_cal: Offset compensation relative to the LC oscillator amplitude. Used for reducing the signal offset cause by non-ideal coils. Overall range is 0.2%, the step size is 0.0015%. 0x00: no correction 0x01: 0.0015% 0x02: 0.0030% 0x03: 0.0045% 0x7E: 0.189% 0x7F: 0.1905% 				

Table 13. R2 Offset Compensation: Address 0x06 FTP; 0x46 SRB

Table 14. Transmitter Current Configuration: Address 0x07 FTP; 0x47 SRB

	ss FTP RB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP
0x07	0x47	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:8]	RFU: Read as X	RW	RO	0x0	0x0
		[7:6]	 exc_current_cal: LC oscillator bias current setting multiplication factor. Multiplication factor for LC oscillator bias current. 0b00: mult. 1 0b01: mult. 4 0b10: mult. 16 0b11: mult. 64 		RW	0x00	0xBE
		[5:0]	 exc_current_cal: Base value for LC oscillator bias current. The total current is the base value multiplied by the multiplication factor. Calculate the bias current based on LC tank parameters and bias current equation as follows: 0b00_0000 = 0.0µA 0b00_0001 = 0.5µA 0b00_0010 = 1.0µA 0b11_1111 = 31.5µA 				

The transmitter current for the LC Tank as shown in Figure 18 must be configured based on the application requirements. Reducing the transmitter bias current decreases the transmitter amplitude and lowers the total current consumption. The behavior is not linear and depends on the configuration of the LC oscillator.

Note that the oscillator requires sufficient bias current to ensure stable oscillation. Refer to following equation to estimate the bias current setting. The estimated value might be adjusted to meet application requirements.

Figure 18. Transmitter current configuration for LC Tank

 $I_{BIAS} = VDD / (35 \times L_Tx \times Q \times F)$

Where:

VDD = Supply voltage in Volt

L_TX = Inductance of transmitter coil in Henry

F = Transmitter oscillator frequency in Hz

Q = Quality factor of the Transmitter coil, it is calculated according to the following formula:

$$Q = \frac{1}{R_{L_TX}} \sqrt{\frac{L_Tx}{C}}$$

Where:

 R_{L_TX} = Resistance of the Transmitter Coil

C = Capacitance of the Transmitter resonator (C = C_{Tx1}/2)

For Example:

If L = 6μ H, R = 1Ω , C = 345pF (such that the transmitter oscillates at F = 3.5MHz) and VDD = 5V

According to the formula above:

Q = 132

I_{BIAS} = 51.5μA

The bit configuration for the bias current base value and multiplication factor can be selected from Table 15. An example is highlighted by blue, where 26 dec for the base value and 1 dec for the multiplication factor is shown.

							exc_	current	_cal[5:0]: Base	value i	n dec					
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0:1x	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
:[9]:	1:4x	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
cal [7	2:16x	0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120
ť	3:64x	0	32	64	96	128	160	192	224	256	288	320	352	384	416	448	480
urre		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
exc_c	0:1x	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	13.5	14	14.5	15	15.5
9 -	1:4x	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62

Table 15. Transmitter Bias Current in μA

-															1	
2:16x	128	136	144	152	160	168	176	184	192	200	208	216	224	232	240	248
3:64x	512	544	576	608	640	672	704	736	768	800	832	864	896	928	960	992
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
0:1x	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	23	23.5
1:4x	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94
2:16x	256	264	272	280	288	296	304	312	320	328	336	344	352	360	368	376
3:64x	1024	1056	1088	1120	1152	1184	1216	1248	1280	1312	1344	1376	1408	1440	1472	1504
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
0:1x	24	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31	31.5
1:4x	96	98	100	102	104	106	108	110	112	114	116	118	120	122	124	126
2:16x	384	392	400	408	416	424	432	440	448	456	464	472	480	488	496	504
3:64x	1536	1568	1600	1632	1664	1696	1728	1760	1792	1824	1856	1888	1920	1952	1984	2016

Table 16 Transmitter Frequency	y Time-Base: Address 0x08 FTP; 0x48 SRB
Table 10. Transmiller Frequency	Y TIME-Base. AUDIESS UXUO FTF, UX40 SKD

Address FTP	SRB	Bits	Function		cess SRB	Reset SRB	Default FTP
0x08	0x48	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:0]	 exc_freq_wdg¹: Time base setting for the TX frequency measurement. 0x000: counter off 0x001: 1 osc_dig cycle 0x002: 2 osc_dig cycles 0x7FF: 2047 osc_dig cycles 	RW	RW	0x00	0xAF

1. Configures the time base for the transmitter frequency measurement. The default value is 175dec or AF hex. Do not change the time-base configuration. Refer to Table 17 and Table 18 for details on transmitter frequency.

Table 17. Transmitter Frequency Lower Limit: Address 0x09 FTP; 0x49 S	SRB
---	-----

Addres SF		Bits	Function		ess SRB	Reset SRB	Default FTP
0x09	0x49	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:0]	 exc_freq_ll: Lower limit fort the TX frequency alarm. 0x000: 0 osc_dig cycle 0x001: 1 osc_dig cycle 0x002: 2 osc_dig cycles 0x7FF: 2047 osc_dig cycles 	RW	RW	0x00	0x00

The programmed time base must be AF hex (default) in FTP 0x08 and SRB 0x48. For this time base, the lower limit is calculated as:

$$exc_frq_ll = \frac{F_{TXlow}}{20000}$$

Where

FTXIow = lower frequency limit in Hz

Example: Lower limit is 2.8 Mhz

$$exc_frq_ll = \frac{2800000}{20000} = 140 \text{ dec}$$

Table 18. Transmitter Frequency Upper Limit: Address 0x0A FTP; 0x4A SRB

Addres SF		Bits	Function	Acce FTP \$		Reset SRB	Default FTP
0x0A	0x4A	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:0]	 exc_freq_ul: Upper limit fort the TX frequency alarm. 0x000: 0 osc_dig cycle 0x001: 1 osc_dig cycle 0x002: 2 osc_dig cycles 0x7FF: 2047 osc_dig cycles 	RW	RW	0x00	0x7FF

The programmed time base must be AF hex (default) in FTP 0x08 and SRB 0x48. For this time base, the upper limit is calculated as:

$$exc_frq_ul = \frac{F_{TXup}}{20000}$$

Where

 F_{TXup} = upper frequency limit in Hz

Example: Upper limit is 4.2 Mhz

$$exc_frq_ll = \frac{4200000}{20000} = 210 \text{ dec}$$

Table 19. Interrupt Enable 1: Address 0x0B FTP; 0x4B SRB

	ss FTP RB	Bits	Function	Acc FTP	ess SRB	Reset SRB	Default FTP
0x0B	0x4B	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	 Overvoltage_vdd: Enables Interrupt at VDD over-voltage alarm 0b0: irstate1[10] disable to drive interrupt request IRQN 0b1: irstate1[10] drives interrupt request IRQN 	RW	RW	0	0
		[9]	 Undervoltage:_vdd: Enables Interrupt at VDD under-voltage alarm 0b0: irstate1[9] disable to drive interrupt request IRQN 0b1: irstate1[9] drives interrupt request IRQN 			0	0
		[8]	 Temperature alarm: Enables Interrupt at temperature alarm if the junction temperature exceeds the warning level. 0b0: irstate1[8] disable to drive interrupt request IRQN 0b1: irstate1[8] drives interrupt request IRQN 			0	0

Address FTP SRB	Bits	Function	Acce FTP S	 Reset SRB	Default FTP
	[7]	 data_access_fail: Enables Interrupt at I2C access timeout 0b0: irstate1[7] disable to drive interrupt request IRQN 0b1: irstate1[7] drives interrupt request IRQN 		0	0
	[6]	 i2c_protocol_fail: Enables Interrupt at I2C protocol fail 0b0: irstate1[6] disable to drive interrupt request IRQN 0b1: irstate1[6] drives interrupt request IRQN 		0	0
	[5]	 srb_ded SRB: double bit error detection / SFR testmode register 1/2 parity bit error detection. Enables Interrupt at SRB DED error 0b0: irstate1[5] disable to drive interrupt request IRQN 0b1: irstate1[5] drives interrupt request IRQN 		0	0
	[4]	 srb_sed SRB: Enables Interrupt at SRB SED error 0b0: irstate1[4] disable to drive interrupt request IRQN 0b1: irstate1[4] drives interrupt request IRQN 		0	0
	[3]	 nvm_ded: Enables Interrupt at FTP DED error 0b0: irstate1[3] disable to drive interrupt request IRQN 0b1: irstate1[3] drives interrupt request IRQN 		0	0
	[2]	 nvm_sed: Enables Interrupt at FTP SED error 0b0: irstate1[2] disable to drive interrupt request IRQN 0b1: irstate1[2] drives interrupt request IRQN 		0	0
	[1]	 Ic_osc_freq_fail: Enables Interrupt at TX frequency alarm (see limits register exc_freq_II, exc_freq_uI, and exc_freq_wdg) 0b0: irstate1[1] disable to drive interrupt request IRQN 0b1: irstate1[1] drives interrupt request IRQN 		0	0
	[0]	 Ic_osc_stuck: Enables Interrupt at LC oscillator stuck alarm 0b0: irstate1[0] disable to drive interrupt request IRQN 0b1: irstate1[0] drives interrupt request IRQN 		0	0

Table 20. Interrupt Enable 2: Address 0x0C FTP; 0x4C SRB

	Address FTP SRB		Function	Access FTP SRB		Reset SRB	Default FTP
0x0C	0x4C	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	 csn_data_overvoltage: Enables Interrupt at IRQN_CSN/DATA pin overvoltage alarm 0b0: irstate2[10] disable to drive interrupt request IRQN 0b1: irstate2[10] drives interrupt request IRQN 	RW	RW	0	0
		[9]	 vdda_undervoltage: Enables Interrupt at VDDA under-voltage alarm 0b0: irstate2[9] disable to drive interrupt request IRQN 0b1: irstate2[9] drives interrupt request IRQN 			0	0
		[8]	 apb_transfer_fail: APB bus transfer failure. Any write access of read-only register are rejected by the APB-bus control and flagged (see sys_conf2[6]). Enables Interrupt at APB bus transfer failure 0b0: irstate2[8] disable to drive interrupt request IRQN 0b1: irstate2[8] drives interrupt request IRQN 			0	0

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB	Default FTP
	[7]	 irqn watchdog: Enables Interrupt at interrupt watchdog timeout. The watchdog is enabled, an interrupt is triggered at watchdog timeout (for configuration options see Table 22). To get the interrupt signaled at Pin1 (ADR_IRQN), the system_protocol setting must be configured for interrupt, and intr_volatile_mode must be diabled as shown in Table 7. 0b0: irstate2[7] disable to drive interrupt request IRQN 0b1: irstate2[7] drives interrupt request IRQN 		0	0
	[6]	 seal_ring_break: Enables Interrupt at sealring break / mechanical failure 0b0: irstate2[6] disable to drive interrupt request IRQN 0b1: irstate2[6] drives interrupt request IRQN 		0	0
	[5]	 fsm_err: Enables Interrupt at Internal Finit State Machine (FSM) error 0b0: irstate3[1] disable to drive interrupt request IRQN 0b1: irstate3[1] drives interrupt request IRQN 		0	0
	[4]	 outbuf_vcm_fail: VCM voltage level of SINP/N or COSP/N not equal VDD/2. Enables Interrupt at output buffer VCM error. 0b0: irstate2[4] disable to drive interrupt request IRQN 0b1: irstate2[4] drives interrupt request IRQN 		0	0
	[3]	 outbuf_current_fail: Output buffer SINP, SINN, COSP, COSN exceeds limit. Enables Interrupt at output buffer error. 0b0: irstate2[3] disable to drive interrupt request IRQN 0b1: irstate2[3] drives interrupt request IRQN 		0	0
	[2]	 vddd_overvoltage: Digital power supply overvoltage Enables Interrupt at digital supply overvoltage. 0b0: irstate3[4] disable to drive interrupt request IRQN 0b1: irstate3[4] drives interrupt request IRQN 		0	0
	[1]	 agc_err: AGC control loop error - boundary code reached, amplitude NOT in range. Enables Interrupt at AGC range alarm. 0b0: irstate3[3] disable to drive interrupt request IRQN 0b1: irstate3[3] drives interrupt request IRQN 		0	0
	[0]	 rx_fail: Receiver path fail: short to GND / VDD or R1P/N or R2P/N open, LPF fail or short between R1 and R2. Enables Interrupt at RX coil error. 0b0: irstate2[0] disable to drive interrupt request IRQN 0b1: irstate2[0] drives interrupt request IRQN 		0	0

Table 21. Interrupt Enable 3: Address 0x0D FTP; 0x4D SRB

Addre: SF	ss FTP RB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP
0x0D	0x4D	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:2]	RFU: Read as X	RW	RO	0x0	0

Address FTP SRB	Bits	Function	Acc FTP	 Reset SRB	Default FTP
	[1]	 tx_coil_fail: Transmitter coil short to VDD or open Enables Interrupt at TX coil error. 0b0: irstate3[0] disable to drive interrupt request IRQN 0b1: irstate3[0] drives interrupt request IRQN 		0	0
	[0]	 bist_err: Failure in BIST for the test mechanism. Enables Interrupt at BIST failure. 0b0: irstate3[2] disable to drive interrupt request IRQN 0b1: irstate3[2] drives interrupt request IRQN 		0	0

Table 22. IRQN Watchdog: Address 0x0E FTP; 0x4E SRB

Addres SF	ss FTP RB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP
0x0E	0x4E	[15:12]	ecc Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par Parity bit for double bit error detection	NA	NA	NA	NA
		[10:0]	 irq_wdg Timer value for interrupt request watchdog timer 11'h000: 584μs 11'h001: 584μs×2 = 1.168ms 11'h002: 584μs×3 = 1.752ms 11'h7FF: 584μs×2048 = 1.196s 	RW	RW	0x00	0x00

Table 23. AGC Plausibility Configuration: Address 0x0F FTP; 0x4F SRB

	Address FTP SRB Bi		Function	Acc FTP	ess SRB	Reset SRB	Default FTP
0x0F	0x4F	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
		[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10]	RFU: Read as X	RW	RW	0	0
		[9:5]	 agc_plause_uthresh: ACG upper threshold for plausibility check (absolute gain value). Note: The upper threshold must be configured above the lower threshold. 5'h0: gain code 2 5'h1: gain code 5 5'h2: gain code 8 5'h3: gain code 11 5'h1D: gain code 89 5'h1E: gain code 92 5'h1F: gain code 95 			0x1F	0x00

Address FTP SRB	Bits	Function	 ess SRB	Reset SRB	Default FTP
	[4:0]	 agc_plause_Ithresh: ACG lower threshold for plausibility check (absolute gain value) Note: The lower threshold must be configured below the upper threshold. 5'h0: gain code 2 5'h1: gain code 5 5'h2: gain code 8 5'h3: gain code 11 5'h1D: gain code 89 5'h1E: gain code 92 5'h1F: gain code 95 		0x00	0x00

Table 24. Customer Identification: Address Register 0x18 FTP

Addres SF		Bits	Function	Access FTP SRB		Reset SRB	Default FTP				
0x18	NO	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA				
	SRB	[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA				
						[10:8]	RFU: Read as X	RO	NA	NA	NA
		[7:0]	customer_id: Customer Programmable Identification: Used by the customer to program a customer specific identification code.	RW	NA	NA	0x0				

Table 25. Product Identifier: Address 0x19 FTP

Addre: SF	ss FTP RB	Bits	Function	Access FTP SRB		Reset SRB	Default FTP
0x19	NO	[15:12]	Ecc: Parity word for error correction	NA	NA	NA	NA
	SRB	[11]	ded_par: Parity bit for double bit error detection	NA	NA	NA	NA
		[10:8]	RFU: Read as X	RO	NA	NA	NA
		[7:0]	<pre>product_id: Renesas traceability: Product Identification Factory traceability code</pre>		NA	NA	0x19

3.2.2. SFR (Special Functions Register)

Table 26. Interrupt Clear 1: Address 0x68 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x68	[15:12]	NA	NA	NA
	[11]	NA	NA	NA
	[10]	Overvoltage: Over-voltage detection0b0: no action0b1: reset irstate	WO	0
	[9]	Undervoltage: Under-voltage detection0b0: no action0b1: reset irstate		0
	[8]	 Temperature alarm: Clears the temperature alarm. 0b0: no action 0b1: reset irstate 		0
	[7]	 data_access_fail: I2C data access timeout 0b0: no action 0b1: reset irstate 		0
	[6]	 i2c_protocol_fail: I2C interface serial received data fail / data access aborted 0b0: no action 0b1: reset irstate 		0
	[5]	 srb_ded SRB: Double bit error detection / SFR testmode register 1/2 parity bit error detection 0b0: no action 0b1: reset irstate 		0
	[4]	srb_sed SRB: Single bit error detection and correction 0b0: no action 0b1: reset irstate		0
	[3]	 nvm_ded NVM: Double bit error detection 0b0: no action 0b1: reset irstate 		0
	[2]	 nvm_sed NVM: Single bit error detection and correction 0b0: no action 0b1: reset irstate 		0
	[1]	 lc_osc_freq_fail: LC oscillator frequency range check (see limits register 0x07, 0x08, and 0x0A) 0b0: no action 0b1: reset irstate 		0
	[0]	 Ic_osc_stuck: LC oscillator stuck check 0b0: no action 0b1: reset irstate 		0

Table 27. Interrupt Clear 2: Address 0x69 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x69	[15:12]	NA	NA	NA
	[11]	NA	NA	NA
	[10]	 csn_data_overvoltage: IRQN_CSN/DATA pin over-voltage 0b0: no action 0b1: reset irstate 	WO	0
	[9]	 vdda_undervoltage: VDDA under-voltage 0b0: no action 0b1: reset irstate 		0
	[8]	 apb_transfer_fail: APB bus transfer failure. Any write access of read-only register are rejected by the APB-bus control, and they are flagged. (see sys_conf2.6) 0b0: no action 0b1: reset irstate 		0
	[7]	irqn watchdog: Timeout of interrupt watchdog0b0: no action0b1: reset irstate		0
	[6]	 seal_ring_break: Seal ring break 0b0: no action 0b1: reset irstate 		0
	[5]	 fsm_err: Internal Finit State Machine (FSM) error detected 0b0: no action 0b1: reset irstate 		0
	[4]	 outbuf_vcm_fail: VCM voltage level of SINP/N or COSP/N not equal to VDD/2 0b0: no action 0b1: reset irstate 		0
	[3]	 outbuf_current_fail: Output buffer SINP, SINN, COSP, COSN exceeds limit. 0b0: no action 0b1: reset irstate 		0
	[2]	 vddd_overvoltage: Digital power supply over-voltage 0b0: no action 0b1: reset irstate 		0
	[1]	 agc_err: AGC control loop error - boundary code reached, amplitude NOT in range 0b0: no action 0b1: reset irstate 		0
	[0]	 rx_fail: Receiver path fail: short to GND / VDD or R1P/N or R2P/N open, LPF fail or short between R1 and R2 0b0: no action 0b1: reset irstate 		0

Table 28. Interrupt Clear 3: Address 0x6A SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x6A	[15:12]	NA	NA	NA
	[11]	NA	NA	NA
	[10:2]	RFU: NA	NA	NA
	[1]	 tx_coil_fail: Transmitter coil short to GND / VDD or open 0b0: no action 0b1: reset irstate 	WO	0
	[0]	 bist_err: Failure in BIST for the test mechanism 0b0: no action 0b1: reset irstate 		0

Table 29. Interrupt State 1: Address 0x6B SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x6B	[15:12]	NA	NA	NA
-	[11]	NA	NA	NA
	[10]	 Overvoltage: Over-voltage detection 0b0: idle 0b1: interrupt request 	RO	0
	[9]	Undervoltage: Under-voltage detection 0b0: idle 0b1: interrupt request 		0
	[8]	 Temperature alarm: Error flag indicating that the temperature exceeds the T_{OVT_WARN} (warning threshold) defined in the <i>IP2550 Datasheet</i> document. The output buffers are switched off automatically to reduce the power consumption after exceeding the warning threshold. 0b0: idle 0b1: interrupt request 		0
	[7]	 data_access_fail: I2C data access timeout 0b0: idle 0b1: interrupt request 		0
	[6]	 i2c_protocol_fail: I2C interface serial received data fail / data access aborted 0b0: idle 0b1: interrupt request 		0
	[5]	 srb_ded: SRB double bit error detection / SFR testmode register 1/2 parity bit error detection 0b0: idle 0b1: interrupt request 		0
	[4]	 srb_sed: SRB single bit error detection and correction 0b0: idle 0b1: interrupt request 		0
	[3]	 nvm_ded: NVM double bit error detection 0b0: idle 0b1: interrupt request 		0

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
	[2]	 nvm_sed: NVM single bit error detection and correction 0b0: idle 0b1: interrupt request 		0
	[1]	 Ic_osc_freq_fail: LC oscillator frequency range check (see limits register 0x07, 0x08, 0x0A) 0b0: idle 0b1: interrupt request 		0
	[0]	Ic_osc_stuck: LC oscillator stuck check • 0b0: idle • 0b1: interrupt request		0

Table 30. Interrupt State 2: Address 0x6C SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x6C	[15:12]	NA	NA	NA
-	[11]	NA	NA	NA
	[10]	 csn_data_overvoltage: IRQN_CSN/DATA pin over-voltage 0b0: idle 0b1: interrupt request 	RO	0x000
	[9]	 vdda_undervoltage: VDDA under-voltage 0b0: idle 0b1: interrupt request 		0
	[8]	 apb_transfer_fail: APB bus transfer failure. Any write access of read-only register are rejected by the APB-bus control, and are flagged (see sys_conf2.6) 0b0: idle 0b1: interrupt request 	-	0
	[7]	irqn watchdog: Timeout of interrupt watchdog0b0: idle0b1: interrupt request		0
	[6]	 seal_ring_break: Seal ring break 0b0: idle 0b1: interrupt request 		0
	[5]	 fsm_err: Internal Finit State Machine (FSM) error detected 0b0: idle 0b1: interrupt request 		0
	[4]	 outbuf_vcm_fail: VCM voltage level of SINP/N or COSP/N not equal to VDD/2. 0b0: idle 0b1: interrupt request Note: This bit is set during programming over the analog output pins. 	-	0
	[3]	 outbuf_current_fail: Output buffer SINP, SINN, COSP, COSN exceeds the limit. 0b0: idle 0b1: interrupt request 		0
	[2]	 vddd_overvoltage: Digital power supply over-voltage 0b0: idle 0b1: interrupt request 		0

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
	[1]	 agc_err: AGC control loop error - boundary code reached, amplitude NOT in range 0b0: idle 0b1: interrupt request 		0
	[0]	 rx_fail: Receiver path fail: short to GND / VDD or R1P/N or R2P/N open, LPF fail or short between R1 and R2 0b0: idle 0b1: interrupt request 		0

Table 31. Interrupt State 3: Address 0x6D SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x6D	[15:12]	NA	NA	NA
	[11]	NA	NA	NA
	[10:3]	RFU: Read as X	RO	0
	[2]	 dig_osc_fail: Digital oscillator fail 0b0: idle 0b1: interrupt request 	RO	0
	[1]	 tx_coil_fail: Transmitter coil short to GND / VDD or open 0b0: idle 0b1: interrupt request 		0
	[0]	 bist_err: Failure in BIST for the test mechanism 0b0: idle 0b1: interrupt request 		0

Table 32. Transmitter Counter State: Address 0x6E SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x6E	[15:12]	NA	NA	NA
	[11]	NA	NA	NA
	[10:0]	<pre>transmitter_cntr: Excitation frequency counter • 0x000: 0 excitation cycle • 0x001: 1 excitation cycle • 0x002: 2 excitation cycles • • 0x7FF: 2047 excitation cycles</pre>	RO	0x000

The transmitter frequency can be calculated from the transmitter_cntr value.

For a time base value of AF hex (default) in register 0x48, the frequency is calculated as:

 $F_{TX} = transmitter cntr * 20000$

Example for a timebase of $50\mu s$ (0x08 = AF_{hex}):

$$F_{TX} = 200 * 20000 = 4 MHz$$

Table 33. FTP ECC State: Address 0x70 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x70	[15:11]	RFU: Read as X	RO	0x0
	[10]	ded_flag: Double error detection flag0b0: Idle0b1: Asserted		0x000
	[9]	sec_flag: Single Error Correction flag0b0: idle0b1: Asserted		
	[8]	sec_id8: Renesas internal use		
	[7]	sec_id4: Renesas internal use		
	[6]	sec_id2: Renesas internal use		
	[5]	sec_id1: Renesas internal use		
	[4:0]	ftp_fail_addr: Last failed FTP address with SEC or DED detection		

Table 34. Product Identifier Version: Address 0x73 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x73	[15:8]	RFU: Read as X	RO	0x00
	[7:4]	prod_version: Renesas traceability: product version0x00: A silicon		0x00
	[3:0]	 prod_sub_version: Renesas traceability: product subversion 0x00: Engineering version 0x01: Engineering version 0x02: Production version 		0x00

Table 35. AGC_OBSERVATION: Address 0x78 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x78	[15:11]	NA	RO	0x00
	[10:7]	RFU: Read as X		0
	[6:0]	agc_gain_stage: Current AGC code value		0x00

The current AGC code value indicates the signal strength at the inputs.

Table 36. DBIST_STS: Address 0x79 SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x79	[15:11]	NA	RO	0x00
	[10:9]	RFU: Read as X		0
	[8]	dbist_secded_chks_fail: Fail in the SECDED checks		0

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
	[7]	dbist_irst_chks_fail: Fail in the IRSTATE registers		0
	[6]	dbist_lc_chks_fail: Fail in the LC oscillator stuck and frequency measurement mechanisms		0
	[5]	dbist_agc_chks_fail: Fail in the AGC window comparators (debouncers and synchronization logic)		0
	[4]	dbist_fsm_chks_fail: Fail in the internal FSM error detection mechanims		0
	[3]	dbist_ilm_chks_fail: Fail in the current limitation window comparators (debouncers and synchronization logic)		0
	[2]	dbist_vcm_chks_fail: Fail in the VCM window comparators (debouncers and synchronization logic)		0
	[1]	dbist_grp2_chks_fail: Fails in the second group of signals tested in parallel: undervolgate_vdd, undervolgate_vdda		0
	[0]	dbist_grp1_chks_fail: Fails in the first group of signals tested in parallel: rx_fail,overvoltage_vdd, overvoltage_vddd, temperature, tx_fail,agc_err, dig_osc_fail,data_access_fail		0

Table 37. External SM for Checking CRC: Address 0x7F SFR

Address FTP SRB	Bits	Function	Access FTP SRB	Reset SRB
0x7F	[15:11]	NA	RO	0x00
	[10]	Programmed: Set to 1 upon first write access; sticky write		0
	[9:0]	 ext_sm_self_test: Self test that needs to be performed externally using following steps: 1. Read the default value, IC generate wrong CRC 2. Write value to this SFR with incorrect CRC 3. Write value to this SFR with correct CRC 4. Read the changed value, IC generate correct CRC 	RW	0x2A3

4. Glossary

Term	Description
FTP	Few Times Programmable
FSM	Finite State Machine
I ² C	Inter-Integrated Circuit; serial two-wire data bus
LSB	Least Significant Bit
MSB	Most Significant Bit
MSN	Most Significant Nibble
NVM	Nonvolatile Memory
POR	Power-On Reset
RFU	Reserved for Future Use
SRB	Shadow Register Bank

5. Revision History

Revision Date	Description of Change
Apr.26.24	Pin numbering updated for system_protocol.
	Some typos corrected
Mar.20.24	Values for 7E and 7F are updated in registers 4, 44, 6, and 46.
Jul.7.21	Updated Descriptions for AGC, Register 0x7A and corrections in formating
May.5.21	Updated descriptions for sensor programming, I2C addresses, FTP/SRB, and flags.
Jan.19.21	Initial release

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Disclaimer Rev.5.0-1)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.