To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMSs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, anc
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and morereliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may |lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as a reference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, agorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate al information as a total system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of aproduct contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under alicense from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

-
»
@
ﬁ\
»
<
)
>
-
o

LENESAS

HI7000/4 Renesas Industrial
Realtime Operating System
Configuration Guide

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.1.0 2003.03

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 03/03, page ii of vi
:{ENESAS

Preface

This guide describes how to configure systems using HI7000/4.

To execute application programs registered as tasks on HI7000/4, the Solution Engine®, the
product of Hitachi ULSI Systems Co., Ltd., shall be used as a target board and the HDI of the
E10A emulator as a debugger in the initial debug stage. For details about HI7000/4, see the
HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) User’s Manual (hereinafter referred to as the
HI7000/4 Series User’s Manual). To create application programs and link them with HI7000/4,
you should use the SuperH™ RISC engine C/C++ compiler package (hereinafter referred to as the
SHC/C++ compiler) and the Hitachi Embedded Workshop (HEW), which is an integrated
development tool, supplied with the SuperH™ RISC engine C/C++ compiler package.

This guide describes how to change, add and configure programs before executing the start task on
multitasking operating system using the above target board, emulator, and compiler.

Related manuals

e HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) Hitachi Industrial Realtime Operating
System User’s Manual

e SuperH RISC engine C/C++ Compiler SH-1, SH-2, SH-2E, SH-3, SH3E, SH-4 User’s Manual
e SuperH RISC engine C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual

e H Series Linkage Editor, Librarian, and Object Converter User’s Manual

e Hitachi Embedded Workshop 2 HEW Debugger User’s Manual

e SH7616 Solution Engine™ (MS7616SEO1) Overview

e The hardware manual and programming manual of the SuperH microcomputer used

Pentium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.

Microsoft® Windows® 95 operating system, Microsoft® Windows NT® operating system and
the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The abbreviation LITRON stands for "Micro Industrial TRON". TRON, in turn, stands for "The
Real-time Operating system Nucleus."

Solution Engine® is a registered trademark of Hitachi ULSI Systems Co., Ltd. in Japan.

Other mentioned company and product names are trademarks or registered trademarks of their
respective companies.

Rev. 1.0, 03/03, page iii of vi
:{ENESAS

Rev. 1.0, 03/03, page iv of vi
RRENESAS

Contents

Section 1 INtroduCHiON........cccuiiiiiiiiiiiiiiiiiiiiice e 1
Lol OVEIVIBW .ottt ettt ettt st st et a et sae e 1
1.2 System COonfigurationcc.cocceeierienierieniieiieeeeeese ettt et 1
L3 PIEIEQUISIIES ..c.uveieeiieiieitieiteeit ettt sttt et s e s e s re et e e s s saeesneeane 2
Section 2 Creating Application Programs............ccoeceeeviiiiiniiiennieennieenieeeeenn 5
2.1 Creating CPU Initialization ROULINEc.cccoveiiiiiiiiniiniiniiiniceecteeeceeee e 6
2.2 Creating TasKs......ooieriiiieiieieeteet ettt ettt sttt et ettt st 11
22,1 Main Task ..coouioiiiiiiie e e e e e 12
2.2.2 LED TaSK ...ccoiiiiiiiiriieiieeceenest ettt s 14
2.3 Creating an Interrupt Handlercoocooiiiiiiiiiiiiceeeeeeeee e 15
2.3.1 Creating Initialization Module...........c..coocerviiiiiniiniiniiiieeeeeeee e 16
2.3.2 Creating Interrupt Handler............cocooviiiiiniiniiniiiiiieeeceeeeeeeseeeee 19
Section 3 CONfIUIALIONccecuvieeiiieeiiieeiee et eeiee et e e e e eareeeareeenneees 21
3.1 Starting CONFIGUIALOToccuiiiiiiieiieieeie ettt et 22
3.2 RegISeriNg TaSK ...cc.eooiiiiiiiiiiieiceiee ettt e s 23
3.3 Registering Interrupt Handlerc..cooeiviiiiiiiiiiniiiiececeeeece e 25
3.3.1 Registering Stack Pointer Addresses for Reset Exception.........cccccecveveeneenicnnnen. 26
3.3.2 Registering Interrupt Handlerc.ccooeevieiiniiiniiniiniinicececeeceeeceeae 27
3.4 Registering Initialization ROULINEcccocuiiiiiiiiiiiiiiiiieiceccce e 30
3.5 Registering Event Flag Information............cccccociiiiniiiiiiiiiiniicecccccceceece e 34
3.6 Creating Configuration FIles..........cccoccoiiiiiiiniiiiiiiiiieccccecreee e 35
3.7 Building the Executable File by HEWcccccooiiiiiiiiiiniiiiicccicce et 36
3.7.1 Starting HEW ..ottt 36
3.7.2 Defining a Configuration Filec.cccoceeniiiiiniiniiniiniinecccceeecee 38
3.7.3 Changing a Linkage Addressccceeiiriiniiniiiiiieieeieneereesccceee e 40
374 BUIde ittt sttt ettt 44
3.8 Disabling Parameter Check FUNCHON...........cocooviiiiiiiiiiiiiiiiciceccceeccec e 45
Section 4 Downloading and Executing Application Programs......................... 47
4.1 Initializing SOIUtioN ENGINEcccuiiiiiiiniiiiiiiiiic ittt 47
4.2 Downloading Application Programc...ccccoceiiiiiiiiiiiniiiniiieeeeeeeeee e 49
4.3 Executing Application Program............ccccooceenieiiiiiniiniinieieeeeeie e 50

Rev. 1.0, 03/03, page v of vi
:{ENESAS

Rev. 1.0, 03/03, page vi of vi
RRENESAS

Section 1 Introduction

11 Overview
Follow the procedure below to run application programs on HI7000/4:

1. Create application programs.

2. Use the configurator to register the application programs to HI7000/4.

3. Build the executable file using HEW.

4. Install the application programs to the target board, and download and execute them.

This guide describes the above procedure to run the programs on the target board by using a
sample program.

12 System Configuration

This guide describes how to create sample programs of tasks and an interrupt handler and how to
run the programs on the target board.

Figure 1.1 shows an example of a hardware configuration.

/. \ -])

/ . Z N ‘\ To the PCMCIA slot
|

L

SuperH™ Solution Engine®
(MS7612SE01)

Figure 1.1 Hardware Configuration Example

Table 1.1 lists software configuration.

Rev. 1.0, 03/03, page 1 of 52
:{ENESAS

Tablel.l Software Configuration

Program Description Type Remarks

CPU initialization routine Sets the bus controller. Non-task
Initializes the hardware.

Main task Initializes the environment. Task

Waits for an event after initialization by setting
the wai_flg flag.

Cancels the wait status by setting the event flag
of the timer interrupt handler and starts the LED
task (sta_tsk).

LED task Started by the main task to turn the LED on Task
when it is off or turn it off when it is on, and then
terminates.

Timer interrupt handler ~ Started by the timer interrupt every one second Non-task
and sets the main task event flag (set_flg).

13 Prerequisites
Table 1.2 lists hardware and software required to run the application programs on HI7000/4.

Table1.2 Required Hardware and Software

Product Name Product Type Manufacturer

Windows personal computer — Any manufacturer*’

SuperH Solution Engine MS7612SEO1 Hitachi ULSI Systems Co., Ltd.
E10A emulator HS7612KCMO1H Hitachi, Ltd.

SuperH RISC engine C/C++ compiler PO700CAS6-MWR Hitachi, Ltd. **

HI7000/4 HS0700ITI41SRE Hitachi, Ltd. *°

Notes: 1. Hardware environment: PC/AT compatible machine with 486DX2/66 MHz or more
(Pentium or later recommended)

Operating system: Windows 2000, Window NT 4.0, Windows 98, Windows 95
CD-ROM drive
PCMCIA card slot

Memory: 32 Mbytes or more (For Windows 2000 and Window NT 4.0, memory with 64
Mbytes or more is recommended.)

Free space required on the hard disk: 8 Mbytes or more

2. Version. 6.0 AR2 of the compiler shall be used. You may also use the compilers from
Hitachi ULSI Systems Co., Ltd. or Hitachi Software Engineering Co., Ltd.
HI7000/4 with evaluation license (object) shall be used. You may also use HI7000/4
with mass-production license.

Rev. 1.0, 03/03, page 2 of 52
:{ENESAS

The HDI of the E10A emulator, SuperH RISC engine C/C++ compiler package, and HI7000/4 (for
SHCV6) must have been installed in the Windows personal computer beforehand. The SH7612 is
a target CPU assumed in this manual.

Figure 1.2 shows the folder structure of HI7000/4 that you have just installed.

JEI|E! Edit “iew Go Favorites Tools Help |

j@.».@‘&é@‘@‘x,

Back ey Up Cut Copy Paste Undo Delete Properties Yiews
| Address |1 DAHI7000-4 [|

Al Folders x || “Tconfi
= Hi7000-4 <[[2inta
=21 conig |1 kernel
L0 english |1 Manuals
EI-{:I info
{1 english
i japanese
21 kermel
E{:I for_shch
=1 hios
21 Hihead
[Hili
{:I Hisys
=00 Hiuser
-1 ahj
1 8h70Mm
-1 Bh703x
-1 Sh7048
-1 Sh704x
(21 Sh7080
-1 8h7052
-1 Sh7065
-1 Sh7410
(71 2h7604
-1 8h7612
-1 Tutarial
=1 Manuals
i english -

Figure1.2 Folder Structure of HI7000/4

The install drive is “D” in this guide, but you may use a desired drive for installing HI7000/4. An
install folder is represented as the install folder “folder name” in this manual.

Rev. 1.0, 03/03, page 3 of 52
:{ENESAS

Rev. 1.0, 03/03, page 4 of 52
RRENESAS

Section 2 Creating Application Programs

This section describes how to create application programs that run on HI7000/4. Figure 2.1 shows
the relationship among application programs. (The programs in the heavy-outline boxes are
created in this guide.)

CPU initialization routine
Reset start ---»

1HI7000/4 kernel

v
CPU initialization Kernel ¥ Timer
Initialization .- 1" |

routine call <. _ TMU1 initialization

Task execution | ~~~_ [

'
'
'
'
!
' L 8 . AT I X
' ! initialization routine -~ linitialization routind
'
'
'
'
'
'
'

Started by an interrupt - - > return
\\ V3
\ Main task LED task
Interrupt handler | S
Event flag creation| ,
LED task creation S
S LED control
—>| / turning the LED on|
. ! . when it is off or
iset_flg ----f----- -1+ wai_flg K turning it off when
| J it is on)
sta_tsk
-
return _, T~ ext_tsk

Figure2.1 Relationship among Application Programs

Figure 2.2 shows the programs to be created in this guide.

| Create a CPU initialization routine |

| Create tasks |

|Create an interrupt initialization modulel

| Create an interrupt handler |

Figure2.2 Programsto be Created

Rev. 1.0, 03/03, page 5 of 52
RENESAS

21 Creating CPU Initialization Routine

After the CPU reset, the CPU initialization routine is executed for setting a bus state controller and
initializing the hardware.

The ROM monitor supplied with the Solution Engine has already set the bus state controller and
initialized the hardware. Thus, this guide omits the description of them.

Figure 2.3 shows the procedure to create the CPU initialization routine.

Set BSC by _hi_cpuasm (7612_cpuasm.src).

Set BSC Use the assembler language to write a
(Reserve the stack area) program before the stack area is reserved by
setting BSC.

Start a kernel by _hi_cpuini (7612_cpuini.c).
Start a kernel The stack pointer has been set. Use the C
language to write a program.

Figure2.3 Creating a CPU Initialization Routine

In the CPU initialization routine, the stack area must be reserved completely before you attempt to
execute any program written in the C language. Because the program created by the compiler may
locate the stack frame or work area in a stack, you cannot execute it until the stack area is
completely reserved.

Figures 2.4 to 2.6 show the parts to be changed in of _hi_cpuasm (7612_cpuasm.src).

Rev. 1.0, 03/03, page 6 of 52
RENESAS

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkk ko kkkkkkkkkkkk ok ok ok k ok ok ok ok ok ok ko k ok ko kb ok ok ok ok ok ok ok -

x HI 7000/4 CPU initialize routine N
i Copyright (c) Hitachi, Ltd. 2000. N
D Li censed Material of Hitachi, Ltd. N

ok kk kR KRR KKk kkk ok ok kkkkk kA kAR Kk kkkk ok ko kkkkk kA kA Ak kkkkkkkkkkkkkk kA kX kK ok Kk Kok ok k ok ok -
kkk ok kkkkkkkkkkkkk ko ko k ko ok K ok ok ok ok ok -

; * HI 7000/ 4(HSO07001 Tl 41SR) V1.0 H

;* FILE = 7612_cpuasm src ; 0 *
;¥ CPU type = SH7612 e
R R e R e e T e T

. program _hi _cpuasm

. headi ng "hi _cpuasm: CPU initialize routine"

. export _hi _cpuasm

.inport _hi _cpui ni

.section P_hi cpuasm code, al i gn=4

ok kkkkkkhkkkkkkkkkkkkkkhkhhkhkk ok k ok ok ok k ok kkkkh ok h ok ok ko ko ok ok ok ok ok ok ok ok ok k ok ok kb ko ok ok ok ok k-

;* BSC address N

.**;*;
BSC_BASE .assign h'ffffffco ; BSC base address (WCR2)

BCR1L .assign h'ffffffe0-BSC_BASE ; BCRlL address offset

CR2 .assign h'ffffffe4-BSC_BASE ; BCR2 address offset

BCR3 .assign h'fffffffc-BSC_BASE ; BCR3 address offset

WCR1 .assign h'ffffffe8-BSC_BASE ; WCR1 address of fset

WCR2 .assign h'ffffffc0-BSC_BASE ; WCR2 address of fset

WCR3 .assign h'ffffffc4-BSC_BASE ; WCR3 address of fset

MCR .assign h' ffffffec-BSC_BASE ; MCR address of fset

RTCSR .assign h'fffffff0-BSC_BASE ; RTCSR address offset

RTCNT .assign h'fffffff4-BSC_BASE ; RTCNT address offset

RTCOR .assign h'fffffff8-BSC_BASE ; RTCOR address offset

MD_REG BASE .assign h'ffff8000 ; node register base address of SDRAM
CM_BIT .assign h'0080 ; OMF bit in RTCSR

Figure2.4 PartstobeChanged in _hi_cpuasm (7612 _cpuasm.src)

Rev. 1.0, 03/03, page 7 of 52
RENESAS

B
’ ’

;* BSCinitial data D
;* After reset, you nust initialize BSC for nenory(stack) access at first.;*
;* Please nodify these definition in order to your hardware. A
AR KRR AR KR KR KRR XK R KR KRR KA XK R KRR AR AR KA KRR KA AR AR A
BCR1_DATA .assign h'a55a0000 + h'03f0 ; BCR1 initial data

BCR2_DATA .assign h'a55a0000 + h'00fc ; BCR2 initial data

BCR3_DATA .assign h'a55a0000 + h'0f00 ; BCR3 initial data

WCR1_DATA .assign h'a55a0000 + h'aaff ; WCR1L initial data Change the BSC
WCR2_DATA .assign h'a55a0000 + h'000b ; WCR2 initial data .
WOR3_DATA _assign h'a55a0000 + h' 0000 : WCR3 initial data ;’:;”ﬁ;g:f;’fi”g to
MCR_DATA .assign h'a55a0000 + h'0000 ; MCR initial data

RTCSR_DATA .assign h'a55a0000 + h'0000 ; RTCSR initial data

RTCNT_DATA .assign h'a55a0000 + h' 0000 ; RTCNT initial data

RTCOR_DATA .assign h'a55a0000 + h' 0000 ; RTCOR initial data

’STPfREFRESH .assign h'a55a0000 ; RTCSR initial data(stop count-up)
MODE_DATA .assign h'0000 data of SDRAM node regi ster
MODE_ADDRESS . assign MD_REG BASE+MODE_| DATA ; address to set MODE_DATA

| DLE_TI ME .assign 566 ; loop counter for idle-tine
REFRESH CNT .assign h'8 ; counter for dummy refresh
;**;
¥ NAME = _hi _cpuasm e
:* FUNCTION = CPU initialize routine ; BN
ko k ok k kK ok ok kK ko ok ok Kok ko ko ko Rk ko ko ko ko ko ko ko Kk Kk Rk Kk kK Kk Kk ko Kk
_hi _cpuasm

;***** |nitialize BSC

; nov. | #BSC_BASE, r 0 ; set BCR base address to gbr

; I dc r0, gbr

: mov.| #BCRL_DATA, 10 . initialize BORL

; nov. | r0, @BCR1, gbr)

: Omit the comment to
; nov. | #BCR2_DATA, r 0 ; initialize BCR2 set BSC
; nov. | r0, @BCR2, gbr)

: mov.| #BCR3_DATA r0 . initialize BCR3

; nov. | r0, @BCR3, gbr)

: mov.| #WCRL_DATA, 10 S initialize WORL

; nov. | r0, @WCR1, gbr)

: mov. | #WCR2_DATA, r0 ; initialize WR2

; nov. | r0, @WCR2, gbr)

: mov.| #WCR3_DATA, 10 S initialize WOR3

; nov. | r0, @WCR3, gbr)

; nov. | #MCR_DATA, r 0 ; initialize MCR

; nov. | r0, @MCR, gbr)

nov. | @RTCSR, gbr), r0 ; dummy read for CMF of f

; nov. | #STP_REFRESH, r 0 ; stop refresh

; nov. | r0, @RTCSR, gbr)

: mov.| #RTCNT_DATA, r0 - initialize RTCNT

; nov. | r0, @ RTCNT, gbr)

: mov.| #RTCOR DATA, 0 . initialize RTCOR

; nov. | r0, @ RTCOR, gbr)

: mov.| #RTCSR_DATA, r0 - initialize RTCSR

; nov. | r0, @ RTCSR, gbr)

Figure2.5 PartstobeChanged in _hi_cpuasm (7612 _cpuasm.src)

Rev. 1.0, 03/03, page 8 of 52
RENESAS

nov. |

; hi _cpuasnD10:

add

cnp/ eq
bf

mov. w
nov. |
nov. w

nov. |
nov. |

nov
nov. w

: hi _cpuasn020:

;¥** |nitialize SDRAM

DLE_TIME r 0O

#1,10
#0,10
hi _cpuasnD10

#MODE_DATA, r 0
#MODE_ADDRESS, r 1
ro,@1

#RTCSR_DATA, r 0
r0, @ RTCSR, gbr)

#0,r1
#REFRESH_CNT, r 2

,

loop for idle-tinme

set node register

initialize RTCSR

| oop for dummy refresh

Omit the comment
to set BSC.

Jump to hi_cpuini

; nov. | @RTCSR, gbr), r0

; tst #CMF_BIT,r0 check CMF bit

; bt hi _cpuasnD20

add #1,r1 | oop counter up

; cnmp/eq rl,r2 if end dumy refresh

; bt hi _cpuasnD30 ; then goto hi_cpuasnD30

; nov. | #RTCSR_DATA, r 0 ; clear CMF bit

; bra hi _cpuasn020
nov. | r0, @RTCSR, gbr)

AT _cpuasno30;
nov. | #_hi _cpuini,ro0 ; get hi_cpuini address
jnp @0 ; junp to hi_cpuini()
nop ; never return to this point

. pool
Y .end

Figure2.6 PartstobeChanged in _hi_cpuasm (7612 _cpuasm.src)

Figure 2.7 shows the part to be changed in _hi_cpuini (7612_cpuini.c).

RENESAS

Rev. 1.0, 03/03, page 9 of 52

[k Kk K K K K K K K KK K K Kk Kk ok Sk ok kK K K K K K K K

I* HI 7000/ 4 CPU initialize routine */
I* Copyright (c) Hitachi, Ltd. 2000. */
/* Li censed Material of Hitachi, Ltd. */
/* HI 7000/ 4(HSO7001 TI 41SR) V1.0 */

[KKK K K K K K K K KK KK KK K K K K K K Kk Kk k ko k ok K ok K K K K K K K K Kk

[KKK K K K kK K K K K K K K K K K K K Kk Kk ok Sk K K K K K K K K K

/* FILE = 7612_cpuini.c ; */
/* CPU type = SH7612 */
/*k*k**********k**********k*k******k*k*k********k*k**********k**********k*k**/
#i ncl ude <machi ne. h>

#i ncl ude "itron.h"

#i ncl ude "kernel . h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpui ni
#pragnma nor egsave(hi _cpuini)

voi d hi _cpui ni (voi d)

{
/*** |nitialize Hardware Environnent ***/
/*** |nitialize Software Environnent ***/

/* _INITSCT(); */ /* Call section-initialize routine */

vsta_knl (); /* Start kernel */

Start a kernel

Figure2.7 Part to be Changed in _hi_cpuini (7612_cpuini.c)

Set a bus state controller and create a hardware initialization routine for the specific hardware.

Rev. 1.0, 03/03, page 10 of 52
RENESAS

2.2 Creating Tasks
A task is the main processing of an application program.

Figure 2.8 shows the procedure to create and register a task.

Create a task

Do you want to use No
a configurator to registe

the task?

Start the configurator and Register the task with the
register the task*? cre_tsk service call*'

Notes: 1.The cre_tsk service call must be enabled to register the task.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.8 Creating and Registering Task

Create a task by changing the sample (task.c) supplied with HI7000/4. The sample is in the install
folder “tutorial”.

In this guide, the main task (MainTask) is registered by the configurator and the LED task by the
cre_tsk service call.

Rev. 1.0, 03/03, page 11 of 52
RENESAS

221 Main Task

This section describes how to change MainTask contained in the sample program (task.c) supplied
with HI7000/4. Figure 2.9 shows the overview of changes made in MainTask. Starting task7
periodically turns the LED on and off.

Before change After change
| Create an event flag | | Create an event flag |
| Create and start task7 | | Create and start task7 |

Wait for an event

' N
| Delete event flag 6 | |

| < | Change stacd |

Start task7 |

~
| Wait for an event | | |

| Terminate and delete MainTask | |

| Delete event flag 6 |

| Terminate and delete task7 |

Figure2.9 Overview of ChangesMadein MainTask

Figure 2.10 shows the parts to be changed in MainTask.

Rev. 1.0, 03/03, page 12 of 52
RENESAS

- - Define the include file supplied with the C compiler.
#i ncl ude <machi ne. h> |

#include "itron. h" [. . .
#incl ude "ker nel . h" Required when using the HI7000/4 service call.
#i ncl ude "kernel _id. h"

voi d Mai nTask(VP_I NT exinf);
voi d task7(VP_I NT exinf); MainTask and task7 are the main functions for each task.
Another function never calls them. #pragma noregsave is
valid to suppress the stack area.

- Define the LED output port address. For details, see the
#define LED ADR (UH *)0x22200000 | Solution Engine Overview Manual.

#pragma nor egsave(Mai nTask, task7) |

[Kk Kk Kk kK K KK KK Kk Kk Kk ok kK K K K K K K KK

* Mai nTask()
* This task is created and activated by Configurator.
* tskid : "I D _MinTask" (defined in kernel_id.h as this task's ID.)

* itskpri @ 6
k**k*t**k**k*t**********k************t*****k**k*t*****k**k*t*********/
voi d Mai nTask(VP_I NT exi nf)
{
uni on CrePacket {

T_CTSK t_ctsk; /* Creation info. for task */

T_CFLG t_cflg; /* Creation info. for eventflag */

} packet;
ER ercd;
FLGPTN wai ptn, flgptn; Define the task attribute.
If task7 uses the DSP, use the OR operator to define
/*** Create eventflag-6 ***/ TA_COPO.
packet.t_cflg.flgatr = TA TFIFQ TA WSG.| TA_CLR; (packet.t_ctsk.tskatr = TA_HLNG | TA_ACT | TA_COPO)

packet.t _cflg.iflgptn = 0; This allows the DSP register to be saved (to guarantee

ercd = cre_flg(6, (T_CFLG *)&packet); a kernel) when changing a task.

[*** Create task-7 ***/
packet .t _ctsk.tskatr = TA HLNG TA_ACT;
packet.t_ctsk.exinf = 0;

packet .t _ctsk.task = (FP)task7;

packet.t_ctsk.itskpri = 7; Register the task and start it.
packet .t _ctsk.stksz = 0x200;

packet .t _ctsk.stk = (VP)NULL;

ercd = cre_tsk(7, (T_CTSK *)&packet);

/*** Wait for eventflag-6 ***/ for(;;) {
wai ptn = 0x11111111; /[*** Wait for eventflag-6 ***/
ercd = wai _flg(6, waiptn, TWF_ANDW &flgptn); wai ptn = 0x11111111;

ercd = wai _flg(6, waiptn, TWF_ANDW &fl gptn);
/*** Del ete eventflag-6 ***/ i f(exinf == 0x00000000L) {
ercd = del _flg(6); exi nf = 0x0000f f O0L;

} else {
ext _tsk(); exinf = 0x00000000L;

}

ercd = sta_tsk(7,exinf);

Wait for the event flag to set by the interrupt }

handler. Change the exinf value and start
task?. At this time, exinf is passed to task7
as a start code.

Figure2.10 Changing MainTask

Rev. 1.0, 03/03, page 13 of 52

RENESAS

222 LED Task

This section describes how to change task7 of the sample program (task.c) supplied with
HI7000/4. Figure 2.11 shows the part to be changed in task7.

[KKk Kk Kk K Kk KK K K Kk Kk ok ok ok ko ko ok ko kK K K K K K K K K K

* task7()

* This task is created and activated by MinTask.

* tskid: 7

* qtskpri o 7
*i***i***************************/

voi d task7(VP_I NT exinf)

ER ercd;

ercd = set_flg(6, Oxffffffff); *LED_ADR = (UH) exi nf; Turn the LED on or off according
) |:> ext _tsk(); to the exinf value, and then

whi | e(1); terminate itself (task7)

Figure2.11 Changing task?

Rev. 1.0, 03/03, page 14 of 52
RENESAS

2.3 Creating an Interrupt Handler
The interrupt handler is started by an external interrupt that suspends another processing.

Figure 2.12 shows the procedure to create and register the initialization module and the interrupt
handler.

Do you need an No

initialization module?

Create the initialization module

Do you want to
use a configurator to register
the initialization
module?

No

Yes
Start the configurator and Call the subroutine
register the initialization module*? (initialization module)*!

Create an interrupt handler

Do you want to
Use the configurator to registe
the interrupt
andler?

No

Yes
Start the configurator and Register the interrupt handler
register the interrupt handler? by the def_inf service call*!

Notes: 1. The def_inf service call must be enabled to register the interrupt handler.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.12 Creating and Registering Initialization Module and Interrupt Handler

This guide describes how to use the on-chip TPU2 in the SH7612 to create the interrupt handler
and how to use a configurator to register it.

Create the tpu2.c file for the initialization module and the interrupt handler and store the file in the
install folder “tutorial”.

Table 2.1 lists the interrupt conditions.

Rev. 1.0, 03/03, page 15 of 52
RENESAS

Table2.1 Interrupt Conditions

Item Description Function File Name

Initialization module Required. Use the configurator to register the TPU2_ini tpu2.c
module.

Interrupt handler Use the configurator to register the handler. TPU2_int tpu2.c

Interrupt cycle

An interrupt occurs every one second. —

Interrupt level

1

231

Creating Initialization Module

This section describes how to create an initialization module for the on-chip TPU2 in the SH7612.
The initialization module initializes the TPU2 and sets the interrupt cycle and level. Figure 2.13
shows the procedure to create the initialization module.

| Save GBR |
|

| Set the TPU base address in GBR |

| Set the VCRJ-TG2A vector number to 81 |

| Stop TCNT of the TMU2 |

Set VCRJ

| Set the INTC base address in GBR |

Set the TPU base address in GBR

| Read IPRD |

Set TCR

| Clear the IPRD-TMUZ level |

Dummy-read TCR

| Set the IPRD-TMU2 level to 1 |
| |
| Set the BL bit to mask the interrupt | Set TGR2A
| |
| Set IPRD | Start TCNT of the TMU2

| Dummy-read IPRA |

Clear the BL bit to enable the interrupt

| Read VCRJ |

|
|
|
|
Set TIER2 |
|
|
|
|

Restore GBR to the original state

|
| Clear the VCRJ-TG2A vector numberl

Figure2.13 Creating Initialization Module

Rev. 1.0, 03/03, page 16 of 52

RENESAS

Figures 2.14 and 2.15 show the contents of TPU2_ini (tpu2.c).

#i ncl ude <machi ne. h>
#include "itron. h"

#i ncl ude "kernel.h"
#define BL_BI T 0x10000000

/* peripheral

#defi ne PCLK 30000000
/* TSTR set value */

#defi ne TCNT2_STA 0x04
#defi ne TCNT2_STP Oxfb

/* TCR2 set value */

#define TCNT_CLR 0x20
#define DI V1024 0x07

/* TIER2 set value */

#define TGFA 0x01

/* TCR2A set value */

#def i ne | NTERVAL 1000000
#define DV 1024
#defi ne TCNT2_DAT

/* 1 PRD set value */

#define | PRD_CLR TPU2 Oxf f Of
#define TPU2_LVL 1

/* VCRJ) set value */

#define VCRI_CLR_ TGA 0x00f f
#define TQA_VCT 81

/* TPU, I PRD |/ O address */

#defi ne | NTC_BASE oxfffffe00
#define | PRD (oxfffffed0
#define VCRJ (Ooxfffffedc
#defi ne TPU_BASE oxfffffcO0
#define TSTR (oxfffffcdo
#define TCR2 (oxfffffc70
#define TIER2 (oxfffffc74
#defi ne TSR2 (Oxfffffc75
#define TCNT2 (Oxfffffc76
#defi ne TGR2A (oxfffffc78

clock (FMR set val ue

/* BL bit pattern */
= H OE(CPU: Bus: P=60: 60: 30MHz)) */
/* Start TCNT of the TPU2 */
/* Stop TCNT of the TPU2 */
/* Clear TCNT by conpare nmatch of TGRA */
/* Division ratio: 1/1024 */
/* Enable an interrupt by the TGFA bit */
/* 1s:1000nms: 1000000us */
/* Division ratio: 4 */

(UH) (((doubl e) I NTERVAL / (((doubl e) 1000000/ (doubl e) PCLK) * (doubl) DI V)) - (doubl e) 1)

/*(1 second/ ((1 second/ 30 MHz)*1024))-1 */

/* IPR bit4-7 clear data */

/* TPU2 interrupt level =1 */

/* VCRJ- TQA(bi t 8-15) clear data */

/* VCRJ- TQRA vector number 81 */

/* INTC base address */

| NTC_BASE) /* INTC | PR(I PRD: TPU- ch2) */
| NTC_BASE) /* I NTC VCRI(TPU2- TG2A) */
/* INTC base address */

TPU_BASE) /* TPU TSTR */
TPU_BASE) /* TPU TCR (ch2) */
TPU_BASE) /* TPU TIER (ch2) */
TPU_BASE) /* TPU TSR (ch2) */
TPU_BASE) /* TPU TCNT (ch2) */
TPU_BASE) /* TPU TCNT (ch2) */

Figure2.14 Contentsof TPUZ2_ ini (tpu2.c)

Rev. 1.0, 03/03, page 17 of 52
RENESAS

/k**********k**********k**********k*k********k*k**********k**********k*******/
/* NAME = TPU2_i ni */
/* FUNCTION = Initialize TPU2 */

[%%k k ok 3k ok ok ok ok ok K S Kk

void TPU2_i ni (voi d)

{
VP gbr save; /* GBR save area */
UH i prd; /* IPRD retention area */
UH verj /* VCR] retention area */
gbrsave = get_gbr(); /* Save GBR */
set _gbr ((VP) TPU_BASE) ; /* Set the TPU base address in GBR */
gbr _and_byt e(TSTR, TCNT2_STP) ; /* Stop TCNT of the TPU2 */
set _gbr ((VP) | NTC_BASE) ; /* Set the INTC base address in GBR */
iprd = gbr_read_word(|PRD); /* Read | PRD */
iprd & | PRD_CLR TPU2; /* Clear the | PRD-TPU2 | evel */
iprd | = TPU2_LVL << 4; /* Set the IPRD-TPU2 level to 1 */
set_cr(BL_BIT | get_cr()); /* Set the BL bit to nask the interrupt */
gbr_write_word(lPRD,iprd); /* Set |PRD */
gbr _read_wor d(| PRD); /* Dumy-read | PRD */
verj = gbr_read_word(VCRJ); /* Read VCR] */
verj & VCRI_CLR TQ2A; /* Clear the VCRJ- TGA vector nunber */
verj | = TQA VCT << §; /* Set the VCRJ-TQ&A vector nunber to 81 */
gbr_write_word(VCRJ, vcrj); /* Set VCRJ */
set _gbr ((VP) TPU_BASE) ; /* Set the TPU base address in GBR */
gbr _write_byte(TCR2, TONT_CLR| DI V1024); /* Set TCR */
gbr _read_byt e(TCR2); /* Dumy-read TCR */
gbr_write_byte(TIER2, TGFA); /* Set TIER2 */
gbr_write_wor d(TGR2A, TCNT2_DAT) ; /* Set TGR2A */
gbr_or_byte(TSTR, TCNT2_STA); /* Start TCNT of the TPU2 */
set_cr(~BL_BIT & get_cr()); /* Clear the BL bit to enable the interrupt
set _gbr (gbrsave); /* Restore GBRto the original state */
}

*/

Figure2.15 Contentsof TPUZ2 ini (tpu2.c)

Rev. 1.0, 03/03, page 18 of 52
RENESAS

232 Creating Interrupt Handler

This section describes how to create an interrupt handler for the on-chip TPU2 in the SH7612. The
interrupt handler clears an interrupt source of the TPU2 and issues an event flag to task7. Figure
2.16 shows the procedure to create the interrupt handler.

| Save GBR |

| Set the TPU base address in GBR |

| Dummy-read TSR |

| Clear TGFA of TSR (Clear an interrupt source) |

| Issue iset_flg |

| Restore GBR to the original state |

Figure2.16 Creating Interrupt Handler

Figure 2.17 shows the contents of TPU2_int (tpu2.c).

/**/
/* NAME = TPU2_i nt */
/* FUNCTION = TPU2 interrupt handler */

[%% Kk k ok K ok Kk

voi d TPU2_i nt (voi d)

{
VP gbrsave; /* GBR save area */
uB tsr2; /* TSR2 retention area */
gbrsave = get_gbr(); /* Save GBR */
set _gbr ((VP) TPU_BASE) ; /* Set the TPU base address in GBR */
tsr2 = gbr_read_byte(TSR2); /* Dummy-read TSR */
gbr_wite_byte(TSR2, (tsr2 & ~TGFA)); /* dear TGFA */
iset_flg(6, Oxffffffff); /* Set an event flag for task?7 */
set _gbr (gbrsave); /* Restore GBR to the original state */

} /* ret_int */

Figure2.17 Contentsof TPU2_int (tpu2.c)
Rev. 1.0, 03/03, page 19 of 52

RENESAS

Rev. 1.0, 03/03, page 20 of 52
RENESAS

Section 3 Configuration

Configuration means to register the programs created in section 2 to HI7000/4. HI7000/4 provides
a tool that allows easy configuration using GUI and a configurator.

This section describes how to use the configurator to register the application programs.

Figure 3.1 shows the programs to be registered in this guide.

| Register the task |

| Register the interrupt initialization routine |

| Register the interrupt handler |

Figure3.1 Programsto be Registered
The defaults are used for programs other than those above.

For details of each program set by the configurator, see the Configurator Help.

Rev. 1.0, 03/03, page 21 of 52
RENESAS

31 Starting Configurator

Double-click the configurator set file (7612.hcf) to start the configurator. The 7612.hcf file is in
the install folder “sh7612”.

Figure 3.2 shows the Configurator Startup screen.

File “iew Qenerate Help

0 = = £l K?

Generate Help

Kernel Execution Condit Kernel Interrupt Mask Level
Kernel Extention Functio

) Specify a level when interrupt inside the kernel is masked.
Time Management Fur pecify P

Debugging Function User interrupts above the selected level are accepted without delay however service
Service Calls Selection calls must not be issued in these interrupt handlers.

In?grrgptﬂ"CPU Ex;eption Timer interrupt level(CF G_TIMLYL) set in time management function view must he
Initislization Routine specified below kermel interrupt mask level.

Task

Semaphore Kenel Interrupt Mask Level [CFG_IKNLMEKLYL] 14 -

Ewent Flag

Data Cueue

Mailbox Interrupt Mest Count

Futex

Message Butter Interrupt nest caunt with a level higher than the kernel interrupt [4 =
Fixed-size Memary Foo mask level [CFG_UPPINTNST]

Yariable-size Memaory F

Cyclic Handler Interrupt nest count with a level equal to or lower than the 2 -

Alarm Handler kernel interrupt mask level [CFG_LOWINTRST]

Owerrun Handler
Extended Service Call

N =

ForHelp, press F1 MUK

Figure3.2 Configurator Startup Screen

Rev. 1.0, 03/03, page 22 of 52
RENESAS

3.2 Registering Task

Click Task in the HI7000/4 Configuration Information area on the Configuration Startup screen to
view the Task Information screen in figure 3.3.

File “iew Generate Help
0O = = ‘ = Y2
RE Open Save Generate Help
=-HI7000/4Configuration infor =
- Kernel Execution Condit ~Task Infarmation
- Kemel Extention Functio Max. Task ID [CFG_MAXTSKID] Imi
- Time Managerment Fum
- Debugging Function Max. Static Stack Task D [CFG_STSTKID] 4
-~ Benvice Calls Selection Max. Task Priority [CFG_MAXTSKPRI o
- InterruptfCPU Exception
- Initialization Foutine Dynamic Stack Area Size [CFG_TSKSTKSZ] (x00004000 Modify |
- Semaphore . .
List of Static Stacks
- Ewent Flag
- Data Queus Stack Mame Stack Size Task IDs which use this stack
- Mailbiox _kernel_ststkd001 000000400 1
- bt _kernel_ststk0onz Ox00000400 2
- Message Buffer _kemel_ststk0003 0x00000400 3
- Fixad-size Memaory Foo _kernel_ststk00o04 Ox00000400 4-5
- Yariable-size Memory B .
- Cyelic Handler List of Tasks
-~ Alarm Handler % | IDiName Status after creation | Address | Priority | Stack iz
- Owerrun Handler & Ready State MainTask & 0x00000.
- Extended Service Call |
Di—— B | oot B 1
ForHelp, press F1 I_IW i

Figure3.3 Task Information Screen

Click the Change button in the Task Information area in figure 3.3 to view the Modification of
Task Information screen in figure 3.4.

Rev. 1.0, 03/03, page 23 of 52
RENESAS

Modification of Task Information

—Max Task D [CFG_MAXTSKID]

Cancel

[Automatically sets the Ma 1D of Task |

Wawx. 1D 10 -

—Max. Static Stack Task ID [CFG_STSTKID]

]

Max. 1D

—Max. Task Priority [CFG_MAXTSKPRI]
= | sutomatically sets the Maw Eriarily afiliask and it

as. Priority 10 -

—Total Size of Dynamic Stack Area [CFG_TSKETKEL]

[~ Automatically sets the Required Size of Task

Total Size 0x00004000

Ox0000042c

b

Figure3.4 Maodification of Task Information Screen

On this screen, you can change the maximum task ID, the maximum task ID using static stacks,
maximum task priority, and the total size of the dynamic stack area. For details about differences
between static stacks and dynamic stacks, see section 2.6.6, Task Stack, in the HI7000/4 Series
User’s Manual.

For details about how to calculate the task stack size, see Appendix C, Calculation of Work Area
Size, in the HI7000/4 Series User’s Manual.

In this guide, the defaults are used for registering the task. You do not need to change the task
information.

Rev. 1.0, 03/03, page 24 of 52
RENESAS

3.3 Registering Interrupt Handler

Click Interrupt and CPU Exception Handler in the HI7000/4 Configuration Information area on
the Configuration Startup screen to view the List of Interrupt/CPU/Trap Exception Handlers
screen in figure 3.5.

onfiguratar - HI?

File ¥iew Generate Help
O = = El K2
[lew Open Sawve Generate Help
=- HI?000/4Configuration informatio =
- Kernel Execution Candition - Interrupt Infarmation
- Kemel Extention Function Max, Wector Mumber [CFG_MAXVCTNO] 255 Modify |
~ Time Management Function Interrupt Handler Stack Size [CF G_IRGSTKSZ] ’m
- Debugging Function
- Senvice Calls Selection Use of Direct Interrupt Handler NOT ONLY
- Interrupt!CPL Exception Harm
 Initialization Rautine Position to place definition information of handlers ROM
- Task
- Semaphore . .
-EventFlag List of InterruptfCPLYTrap Exception Handlers
Dat.a Queus ¥ | vector Number | Address SR Registervalue | Description Languai’
- Mailbax ¥ o0 hi_cpuasem 0%00000000 Assernbly Languag
- Mutex v Dx0G0B0000 000000000 Assembly Languag:
- Message Buffer vz hi_cpuasm 0x00000000 Assembly Languag
- Fixed-size Memary Poal v 3 DKDE0S0000 DxD000000D Assemibaly Languag:
- “ariahle-size Memory Pool 4
- Cyclic Handler 5
- Alarm Handler B
- Owerrun Handler 7
- Extended Service Call g
9
10
ih
12 -
4 = =

YWhen placed in RAM isnt selected in Interrupt Infarmation, the definition of InterruptiCPL
Exception Handler {not link with kernel) is ignored here, itisn't outputted to the build file.

Fresent setting conditions are def_inh == NOTLISE, def_exc == NOTUSE. -
1 | o« | B
ForHelp, press F1 MUK i

Figure3.5 List of Interrupt/CPU/Trap Exception Handlers Screen

The following sections describes how to register an interrupt handler including the setting of the
stack pointer address to be set at a power-on or a manual reset.

Rev. 1.0, 03/03, page 25 of 52
RENESAS

331 Registering Stack Pointer Addressesfor Reset Exception

For the SH-1/SH-2 core CPU, you must set the stack pointer addresses in vector addresses 1 and 3
for reset exception.

The SH7612 Solution Engine is supplied with the 32 Mbytes SDRAM between 0x0600000 and
O0xO7FFFFFF. In this guide, 16 Mbytes between 0x0600000 and OxO6FFFFFF are used and the
end address of the RAM area to be used + 1 address (0x27000000: cache through area) is set for
the stack pointer addresses. Figure 3.6 shows the screen for registering the stack pointer addresses
for the reset exception.

File “iew Generate Help
O = = &l K2
RE Open Save | Generate Help
= HI?000/AConfiguration informatio : 1=
- Kermel Execution Condition - Interrupt Information
- Kernel Extention Function Max. Vector Number [CF G_MAXYCTNG] 285 Modify |
- Time Management Function
nageme Interrupt Handler Stack Size [CF G_IRQSTKSZ] 000001000
- Dehbugging Function
- Senvice Calls Selection Use of Direct Interrupt Handler NOT DMLY
- Interrupt!CPL Exception Harm
- Initialization Routine Position to place definition information of handlers ROM
- Task
- Semaphors List of InterruptiCPUTrap Exception Handl
-EventFlag ist of Interrup rap Exception Handlers
aat.le::'@ueue ki | Wector Mumber | Address SR Register Walue Description Langua;l
""Mat' o v 0%27000000 0x00000000 Assembly Languagr—!
- Mutex w2 hi_cpuasm 0x00000000 Assembly Languam
~Message Buffer w3 027000000 0x00000000 Assembly Languag
- Fixed-size Memory Pool 1
- Wariahle-size Memary Paoal 5
- Cyclic Handler I3
- Alarm Handler T
- Owerrun Handler g
- Extended Service Call]
11
12
13 -
4| | - o
YWhen placed in RAM isnt selected in Interrupt Infarmation, the definition of InterruptiCPL
Exception Handler {not link with kernel) is ignored here, itisn't outputted to the build file.
Fresent setting conditions are def_inh == NOTLISE, def_exc == NOTUSE. -
1] | e | b
FarHelp, press F1 ISR 4

Figure3.6 Registeringthe Stack Pointer Addressesfor Reset Exception

Rev. 1.0, 03/03, page 26 of 52
RENESAS

332 Registering Interrupt Handler
In this guide, the on-chip TPU2 in the SH7612 is used as an interrupt source.

For the SH-1/SH-2 core CPU, you can freely use the vector numbers between 0 and 127 of the on-
chip peripheral module.

The system timer interrupt handler supplied with HI7000/4 uses the FRT and allocates its vector
number to 80. The timer interrupt handler implemented in this guide allocates the vector number
to 81.

Use the mouse on the scroll bar on the right of the List of Interrupt/CPU/Trap Exception Handlers
to specify vector number 81. Double click vector number 81 to view the Defination of
Interrupt/CPU/Trap Exception Handler screen in figure 3.7.

Definition of Interrupt/CPU/Trap Exception Handler

—Yector Mumber
Iv | it Eemmelllibrary
Vectar Murmber |81 .
o t

— Description Language

& High-Level Language(TA_HLMNG) & Assembly Language(TA_ASh)

—BR Registervalug————— Address

Setting Yalue IUKUUUUUUUU Address I
0]78 I Cancel |

Figure 3.7 Definition of Interrupt/CPU/Trap Exception Handler Screen
Set TPU2_int in the Address box.

Uncheck the Direct Interrupt checkbox to issue the iset_flg service call from the timer interrupt
handler.

Table 3.1 lists the type of interrupt (direct interrupt and normal interrupt).

Rev. 1.0, 03/03, page 27 of 52
RENESAS

Table3.1 Direct Interrupt and Normal Interrupt

Type Description Note
Direct o Directly activates an interrupt handler e The service call of a kernel cannot be
interrupt not via a kernel used
e Implements a high-speed interrupt e The handler must be written by
response #pragma interrupt*
Normal e Akernel manages an interrupt e The time required for an interrupt
interrupt - T interrupt handler can be written in response via kernel is longer
the subroutine (function) format compared with the direct interrupt
e The service call of a kernel can be
issued

Note: * For an example of the interrupt handler written by #pragma interrupt, see section 4.7.2,
Direct Interrupt Handler (HI7000/4), in the HI7000/4 Series User's Manual.

The direct interrupt is generally used to process urgent interrupts if a system error occurs. Use the
appropriate type of interrupt depending on the type of processing an interrupt.

The SR register set value is meaningless. The interrupt handler is processed according to the
priority that has been set in the CPU interrupt control register.

Figures 3.8 and 3.9 show the Definition of Interrupt/CPU/Trap Exception Handler screen after you
made definitions.

Definition of Interrupt/CPU/Trap Exception Handler

—Yector Mumber
Iv | it Eemmelllibrary
Wectar Mumber |81 _
[~ Direct Interrupt

— Description Language

& High-Level Language(TA_HLMNG) & Assembly Language(TA_ASh)

—BR Registervalug————— Address

Setting YWalue ID}{DDDDDDDD Address ITPUE_inﬂ
Ok I Cancel |

Figure 3.8 Definition of Interrupt/CPU/Trap Exception Handler Screen
(after Making Definitions)

Rev. 1.0, 03/03, page 28 of 52
RENESAS

Eile
O = = £l 74
[lew Open Sawve Generate Help
=- HI?000/4Configuration informatio =
- Kernel Execution Candition - Interrupt Infarmation
- Kemel Extention Function Max, Wector Mumber [CFG_MAXVCTNO] 255 Modify |
- Time Management Function Interrupt Handler Stack Size [CF G_IRGETKSZ] Dx00001 000
- Debugging Function
- Service Calls Selection Use of Direct Interrupt Handler MOT OkLY
- Interrupt!CPL Exception Harm
 Initialization Rautine Position to place definition information of handlers ROM
- Task
- Semaphore . .
-EventFlag List of InterruptfCPLYTrap Exception Handlers
Dat.a Queus ¥ | vector Number | Address SR Registervalue | Descriptian Langua]
- Mailbiox 70
- hutex T4
~Message Buffer 80 SYSTEM TIMER
-~ Fixed-size Memary Pool ¥ s TPUZ_int 0x00000000 High-Level Languac_|
- “ariahle-size Memory Pool a2
- Cyclic Handler a3
- Alarm Handler a4
- Owerrun Handler g5
- Extended Service Call g6
a7
a8
a4
a0 -
J = =
YWhen placed in RAM isnt selected in Interrupt Infarmation, the definition of InterruptiCPL
Exception Handler {not link with kernel) is ignored here, itisn't outputted to the build file.
Fresent setting conditions are def_inh == NOTLISE, def_exc == NOTUSE. -
| | Ml | _>I_I
ForHelp, press F1 I—IW i

Figure3.9 List of Interrupt/CPU/Trap Exception Handler Screen
(after Making Definitions)

Rev. 1.0, 03/03, page 29 of 52
RENESAS

34 Registering Initialization Routine

Click Initialization Routine in the HI7000/4 Configuration Information area on the Configurator
Startup screen to view the List of Initialization Routines screen in figure 3.10.

The initialization routine that is registered on this screen is called immediately after the kernel
startup (setup) completes and executed with the kernel mask level (the value set for the kernel
operational conditions in the configuration information). This routine differs from the CPU
initialization routine that is executed immediately after a reset.

In the initialization routine, the service call of a kernel can be issued.

The issuable service call is the one that can be called from non-task context (system state: N)
described in section 3, Service Calls, in the HI7000/4 Series User’s Manual.

The initialization routine is used for the following purposes:

Interrupt initialization
Initialization routine for task setup

Event flag, mailbox, or memory pool of which initial setting is to be completed before passing
the control to a task or an interrupt handler

Rev. 1.0, 03/03, page 30 of 52
RENESAS

tor- Hl
File ¥iew Generate Help

O = = £l L3
[lew Open Sawve Generate Help
= HIF000/4Canfiguration infarmetio N

- Kermel Execution Condition
- Kermel Extention Function
- Time Management Function K | Address Stack Size Description Language Extended Informatic
- Debugging Function

- Bervice Calls Selection

- InterruptCPU Exception Harm
n Boutine

List of Initialization Routines

- Task
- Semaphore

- EwentFlag

- Data Queue

- Mailbiox

- Mutex

- Message Buffer

- Fixed-size Memory Pool

- “ariahle-size Memory Pool
- Cyclic Handler 4| | ©ml
- &larm Handler

- Owerrun Handler

- Extended Service Call

4 |]« |_'|;I

ForHelp, press F1 lil—l—lm’— ~
Figure3.10 List of Initialization Routines Screen

Right click on the blank area of the List of Initialization Routines to view the menu. Then, select
Register to view the Registration of Initial Initialization Routine screen in figure 3.11.

The following explains how to register the initial routine.

Rev. 1.0, 03/03, page 31 of 52
RENESAS

ration of Intialization Routine

—Address Stack Size

Address || Size Inxnunumnu

—Description Language

% High-Level LanguageiTA HLMNG) Assembly Language(TA_AS)

— Extended Information

Infarmation I

[T Linkwith Kemel Library

Begister I Cancel

Figure3.11 Registration of Initialization Routine Screen

Set TMU| _ini in the Address box and click the Register button, and then the Close button. Use the
expression below to obtain the stack size.

e TPU2_ini stack frame size: 8 bytes
e Required size for the initialization routine: 184 + 24 bytes
Total: 216 bytes

For details about how to calculate the stack size, see Appendix C, Calculation of Work Area Size,
in the HI7000/4 Series User’s Manual. Use the default since the calculated stack size is smaller
than it.

Figure 3.12 shows the Registration of Initialization Routine screen after registration. Figure 3.13
shows the List of Initialization Routines screen after registration.

Rev. 1.0, 03/03, page 32 of 52
RENESAS

tion of Initialization Routine

Address Stack Size
Address TPUZ ini Size 0x0oooo100

Description Language

* High-Level LanguageTaA_HLNG) © Assembly LanguageTA_ASK)

Extended Information

Infarmation

[~ Linkwith Kernel Library

Begister | Cancel |

Figure3.12 Registration of Initialization Routine Screen (after Registration)

Yiew Generate Help

File
0 = = = 74
RE Open Save | Generate Help
=1- HI7000/4Configuration informatio 1=
Kemal Exacution Condition List of Initialization Routines
Kernel Extention Function
Time Management Function % | Address Stack Size Description Language Extended Informatic
TPUZ_ini 0x00000100 High-Level Language

Debugging Function

Service Calls Selection
Interrupt/CPU Exception Ham
Initialization Routine

Task

Semaphore

Ewvent Flag

Data Queue

taillox

Mutex

Message Buffer

Fixed-size Memony Pool
Yariable-size Memory Poal
Cyclic Handler L fm
Alarm Handler
Owerrun Handler
Extended Service Call

q [l |sd I;Ij

FarHelp, press F1 ISR

Figure3.13 List of Initialization Routines Screen (after Registration)

Rev. 1.0, 03/03, page 33 of 52
RENESAS

35 Registering Event Flag Information

Click Event Flag in the HI7000/4 Configuration Information area on the Configuration Startup
screen to view the Event Flag Information screen in figure 3.14.

Click the Change button in the Event Flag Information area to change the maximum event flag ID.
Right click on the blank area of the Event Flag List and select Create to view the Creation of
Event Flag screen in figure 3.15. For initial creation of an event flag, set the information about the
event flag on this screen.

The application implemented in this guide dynamically creates one event flag in the task. Use the
default event flag information.

File “iew Generate Help

O = = El Y2
New Open Save Generate Help
=- HI7000/4Canfiguration informatio =
- Kermel Execution Candition Event Flag Information

- Kemel Extention Function Max. Event Flag ID [CFG_MAXFLGID] 10 Modify |

- Time Management Function
- Dehugging Function

- Bervice Calls Selaction

- InterruptfCRL Exception Han
- Initialization Routine List of Event Flags
- Task

- Zemaphore

- BEwentFlag

- Data Clusue

- hdailloe

- Mutex

- hessage Buffer

- Fixed-size Mernaory Pool

- Wariahle-size Memory Fool
- Cyclic Handler

- Alarm Handler

- Overrun Handler

- Extended Service Call

5 | IDikame Initial Bit Pattern itfaiting Qlueue | Multiple Tasks in Yait State

< | 10|

When cre_flg isn't selected in Serice Call Selection, the creation of ohjects is ignored here, it —
isnt outputted to the build file. Present setting conditions are cre_flg == LISE.

4 | ol |_’|j

For Help, press F1 | | [NUM | 4

Figure3.14 Event Flag Information Screen

Rev. 1.0, 03/03, page 34 of 52
RENESAS

Creation of Event Flag

—Ewent Flag 1D

1D Mumber g ID Mame I

1D Mame can be specified when Auto is selected in

the 1D MURbEr = | Winkewith Kermel Likrany
—Attribute Waiting Queue

[~ Enahles Multiple Tasks to YWaittTA_WWhUL) & FIFO Order (TA_TFIFO)

[T Clears Bits when Eeleased fram Yyait StateTA_CLR) & Priatity Order (TA_TPRD

—Initial Bit Pattern

Bit Pattern IU}{UUUUUUUU Create I Cancel

Figure3.15 Creation of Event Flag Screen

3.6 Creating Configuration Files

Click the Create button on the Configurator Startup screen to create the configuration files
required for configuring HI7000/4. For details about the configuration files, see section 5.1.2,
Configurator Output File, in the HI7000/4 Series User’s manual.

Now, the definition and registration by the configurator are complete. To close 7612.hcf, choose
Overwrite or Save As from the File menu to save all the information.

Rev. 1.0, 03/03, page 35 of 52
RENESAS

3.7 Building the Executable File by HEW

Compile and link the files created by the configurator using HEW supplied with SHC/C++
compiler to create the executable file to be downloaded. This section describes how to build the
executable file by HEW.

There are two methods to configure HI7000/4. Table 3.2 lists the type of links.

Table3.2 TypeofLinks

Type Description

Whole linkage Links the kernel and all configuration files into a single load module (called a
whole load module).

Separate linkage Links the kernel code portion (called a kernel load module) and the kernel
data portion (called a kernel environment load module) into separate load
modules.

Application files can be included in a kernel load module, a kernel
environment load module, or in an independent application load module.

For details, see section 5, Configuration, in the HI7000/4 Series User’s Manual.

This guide describes how to use the whole link method to configure the program.

371 Starting HEW

Double click hios.hws in the install folder “hios” to start HEW to build HI7000/4. Figure 3.16
shows the HEW Startup screen.

Rev. 1.0, 03/03, page 36 of 52
RENESAS

£ 7410 mi

File Edit Froject Options

ld Tools Window Help

D3 1 55| 5) |0 [8 o e

FEE EE

[=&

— feswm||s&(esz]a@
————"|x|

[T Buitd /4 Fintin Fies_Js_version Gorol

For Help. press F1

Figure3.16 HEW Startup Screen

The standard project file hios.hws contains three sub-projects to configure the program for the
target CPU. Table 3.3 lists the type of project files.

Table3.3 Project Files

7612_mix

Project file for creating the whole load module for the whole link method

7612_cfg

Project file for creating the kernel load module for the separate link method

7612_def

Project file for creating the kernel environment load module for the separate
link method

Select the project file

7612_mix for creating the whole load module.

Figure 3.17 shows the Set Current Project screen.

Rev. 1.0, 03/03, page 37 of 52

RENESAS

o

Fie Edit[Froject Options Build Took Window el
D@k s I [5 e e El R
Femove Files
T File Extnsions. EEEEEN
ExlProject Geniratien
ST 7o ste
011 et
01 _mix
o 0 che
e
W mic T
M6 che 703 mix
04 et 046 che
;gﬁsﬂ"x T4 e
cfe
Wi et T
Whmix 4 e cfe
W che b ct
050 def Wb mix
W0 mix y
e e D
052 et 7060, et
62 mix 060, mix
Nt che 052 che
065 et
065 mix T
W0cts 7052 mix
10 et 065 che
L= : Sl
Projects y
r = 7ot
410 cet
604 che
604 et
504 mix
812 cle
suild TR
Aotivate 7612 mix T = = = T

Figure3.17 Set Current Project Screen

3.7.2 Defining a Configuration File

Define each application program created in section 2 as a project file. Use the default project file
configuration and define only the timer driver to implement the sample program operation in this
guide.

On the Current Project Set screen, select Add Files... from the Project menu to add tpu2.c as a
project file. Figures 3.18 and 3.19 show the screen for adding a file.

Rev. 1.0, 03/03, page 38 of 52
RENESAS

Edit Project Options Build Tools Window Help

File
0 e | e o

sEEEE

7612_def
E-IE 1612 mix
423 Project Files
. 7612 cpuasm
-] 7612 cpuinic

kerne-l_cfgc
kernel_def.c
task.c

Dep

R

itronh
itron.inc
kernelh
kerneling
kernel_apih

kernel cfg_ini
[=h [

7612 sxpent sre

5] 7612 tmrdsth
-5 7612 tmrdreh

kernel_apiinc
kernel_cfe_defaulth
kernel_cfe_inc.def

=

sIC

et |

EERENEEIEERE]
=

3 Projects | =] Navigaion

z

Find in Files

‘ersion Gonfrol

For Help, press F1

NS

Look i I 25 Tutorial

Figure3.18 AddingaFile

=] .
] tpuiz

File name: |

Add

Files of bope: IF'roiect Files

- Cahicel
1 BT

Now, defining the configuration files completes.

RENESAS

Figure3.19 AddingaFile

Rev. 1.0, 03/03, page 39 of 52

373 Changing a Linkage Address
Change the linkage addresses to run the programs on the Solution Engine address map.

The Solution Engine is supplied with 32-Mbyte SDRAM from 0x0600000 to 0xO7FFFFFF. In this
guide, 16 Mbytes from 0x0600000 to 0xO6FFFFFF are used.

Select OptLinker from the Options menu to view the OptLinker Options screen (figure 3.20).

Options B ol Window Help

SH GG+ Library Generator. g o [Bl
SH GAC+ Compiler.

T2 0 g phases

= IE 1612_mi
=43 Pr

12 expentsrc
12 intdwn sre
7612 sysdune

] 5] Projects =

E|

Edit aptians for phase OptLinker [F—F= me T4

Figure3.20 Selecting OptLinker

Rev. 1.0, 03/03, page 40 of 52
RENESAS

e Changing a section address

Click the Section tab to view the Define Section screen (figure 3.21).

COptLinker optionsis

Thput | Clutput | Optimize Section |‘-.-‘erify | Cither |

Felocatable section start address :

Address Sectioh - Add..
HTOODOOO00 | ©_hivct

HTOODOD400 - | ©_hibaze Modify. |

P hireset
P_hiknl L Mew Owverlay |
Z_hidef

Z hizvamt Bemaove |

Z hicfe
et 4+
II-ET‘| ;I Up Diowun
Generate external symbal file :
fdd

™ Use external subcommand file I I Cancel I

Figure3.21 Define Section Screen

Click the section P_hicpuasm and then Up button to highlight the first section of address
H’00000400 (figure 3.22).

Rev. 1.0, 03/03, page 41 of 52
RENESAS

Ihput | Cutput | Cptimize Section |‘-.-‘erif;-.r' | CQither |

Felocatable gection start addreszs :
Addrezs | Section | - Add...

HOOOOOO0D | G hivet
_hibaze
F hirezet |- Mew Owverlaw |
P hiknl
G _hidef Bemove |

G hizvamt
(PJ__EllsC:-'gsdwn 1' *
it = ® o
Generate external symbol file :
fdd

[~ Use external subcommand file e [0 Cancel |

Figure3.22 Define Section Screen

Click Address for each section to enable the Modify... button. Change the section addresses as
listed in table 3.4.

Rev. 1.0, 03/03, page 42 of 52
RENESAS

Table3.4 Section Addresses

Section Before Section Before
Name Change After Change | Name Change After Change
C_hivct 00000000 26000000 B_hiwrk 06000000 26010000
P_hicpuasm 00000400 26000400 B_himpl
C_hibase B_hidystk
P_hireset B_histstk
P_hiknl | B_hiirgstk
C_hidef B_hitrcbuf
C_hisysmt B_hitrceml
C_hicfg B
P_hisysdwn R
P_hiexpent
P_hiintdwn
P_hicpuini
P_hitmrdrv
S EEE—
C
D

Rev. 1.0, 03/03, page 43 of 52

RENESAS

3.74 Build

Execute HEW to build an executable file that can be downloaded to the Solution Engine by the
E10A emulator. Select Build from the Build menu. Figure 3.23 shows the screen for selecting
Build.

C"“ 5 B 2 oo FHEEE
2@l

Update All D

B 1612Zmix
=423 Project Files
TO12.cpuas 9 ¢
TE12_cpuin
2612 expeil IITEEOTEN To5]
7612_intdwn.src
7612 sysdunc
7612 tmrdrv.c
kernel cfec
kerneldefe
taske
tpuZe
=423 Dependencies
7612 tmrdeth o
7612 tmrdrvh
itronh
itron.inc
kernelh
kermelinc

5 Projects | <Ihavigtion

£

Generate Makefile

GirfBresk

4 Build /i Find in Files A, Version Conirol

Build out of date active project and out of date dependant projects [== ms | [7

Figure3.23 Selecting Build

The executable file is created by selecting Build. The result of compilation and linkage is shown at
the bottom of the window. If a compile error occurs, correct the applicable source and build the
file again. The executable file (with the file extension .abs) is created in the install folder “obj”.

Now you can download the file to the Solution Engine by the E10A emulator and execute it. For
details about how to download and execute the file, see section 4, Downloading and Executing
Application Programs.

Rev. 1.0, 03/03, page 44 of 52
RENESAS

3.8 Disabling Parameter Check Function

When debugging the application programs completes and they are ready to be installed into the
product, you can disable the parameter check function. This check function is an unnecessary
routine performed in the beginning of the service call, in the HI series operating system.

You can use the configurator to disable the parameter check function. Figure 3.24 shows the
screen for disabling the parameter check function.

File “iew Qenerate Help

O = = = L7
TN ey Open Save Generate Help
=1- HI7000/4Canfiguration infar 1=

Kernel Execution Condit Parameter Check Function

2 [ollnel If a parameter check function is installed, parameters will be
Time Management Funy checked when service calls issued.
Debugging Function
Senvice Calls Selection W Install the Parameter Check Function [CFG_PARCHEK]

Interupt{CPU Exception
Initialization Rautine
Task

Semaphore

Ewent Flag

Diata Queue

helailbon

hutex

hessage Buffer
Fixed-size Memory Foa
Yariakle-size Memory B
Cyclic Handler

Alarm Handler

Crerrun Handler o
Extended Service Call

I =

FaorHelp. press F1 LUK

Figure3.24 Disabling Parameter Check Function

Click Kernel Extended Function on the Configurator Startup screen to view the screen in figure
3.24. Uncheck the Install the Parameter Check Function checkbox and create and build the
configuration files. The executable file with the parameter check function disabled is created.

Rev. 1.0, 03/03, page 45 of 52
RENESAS

Rev. 1.0, 03/03, page 46 of 52
RENESAS

Section 4 Downloading and Executing
Application Programs

This section describes how to use the E10A to download the executable file created in section 3,
Configuration, and run it on the Solution Engine.

4.1 Initializing Solution Engine

The ROM monitor supplied with the Solution Engine initializes the CPU. In this guide, this
monitor is used for the CPU initialization. (When using another board, you must use a specific
CPU initialization routine. For details of CPU initialization, see section 2.1, Creating CPU
Initialization Routine.)

Configure the system as shown in figurel.1 in section 1, Overview. Start the host computer, turn
the Solution Engine on, select HDI for EI0A SH7612 from the Windows Start menu to start the
HDI. Figure 4.1 shows the HDI Startup screen.

g Jmterface - - SHTG16 E10A Emulator

_Eile Edit Yiew Bun Memory Setup Window Help
D amESE el ||l R aD ||
FER O AAEEE, REH |||t os 2 A

CEEERESAT |

e |

|Link up | ’_’_’— v
Figure4.1 HDI Startup Screen

Rev. 1.0, 03/03, page 47 of 52
RENESAS

Then, choose Go from the Run menu (figure 4.2).

frtarface = - SHIG19 E10A Emulator
Eile Edit Wiew |Run Memory Setup Window Help
o Reset GPU
R Wi aeeea e

7] [Mo [Go - 6 10 8 2
] [foe 2ol Reset Go Shift+F5 7 “3,? Le:z@aH

G T Elrsar
Set B e Gursar
Bun..

Step In
Step Over
Step Cut
Step...

Hal

EEELob Bed|

e |

[Fun from current PG

Figure4.2 Gomenu

After one or two seconds, click the STOP button (red) on the menu bar. Now, initializing the
Solution Engine completes and this allows reading from or writing to the SDRAM supplied with
the Solution Engine.

Rev. 1.0, 03/03, page 48 of 52
RENESAS

4.2

Downloading Application Program

Download the executable file created in section 3, Configuration, to the E10A.

Figure 4.3 shows the screen for downloading the executable file.

3 116 E104 Emulatar
“ File Edit Miew PRun Memory Setup Window Help |
H Mew Session.. CirkN |“ EiEn L. ® TR oD |H ? |
Al Load Session.. Citr (1
“ Save Sezsion Cirl+5 |E| (i..xi,- W @ HJS,E o s 2 g A T |
e s
Load Program | feganhlar Source -
§ e iHBER4 1R
£ hnitialize MY #H°00,R0
o Exi Alt+F4 HOY . @(H’00DG:8,PC),RE
I TUO0JJ0E TZ5 Moy 4,R2
S |l 000055480 3051 WOV .B ROL@(H'01:4,R5)
& 000058592 3zac A00 ,R2
00005594 9066 Moy W @(H 00CC:8,PC),RO
7= ||| 000055496 064E WOY.L #(R0,R4),RE
#a ||| 00005598 3620 CHP/EQ RZ,RB
“ 110000559 gF03 BF /3 @H 554408
& ||| 0000559¢ G560 WOV .B BRE.RE
5 0000359 8243 Moy f4,R2
000055a0 &003 BRA [T B
——J|| 00005542 0446 MOV . L Rﬂ,@(RD:R‘U -
B |l Y
22

4

‘Lnad code and symbals

Offeet:

Qpen

H|

File name:

v Werify

Cancel |

ID:¥H1'."EIEID—4¥keme|¥f0r_shcﬁ¥hios¥hiuser¥0bj¥?61 2_mix.a;|

[T Load only debugeing information

[~ Load stack information file(SMI filed

Browze... |

Figure4.3 Downloading Executable File

Select Load Program... from the File menu on the HDI Startup screen. On the Load Program

screen in figure 4.3, enter the name of the executable file to download in the File Name box and

click the Open button to download it. The executable file is 7612_mix.abs in the install folder

113 Lt}

obj

After downloading succeeds, the Complete Download screen in figure 4.4 appears.

Rev. 1.0, 03/03, page 49 of 52

RENESAS

HDI

Module name: D#HIPO00-4%kerne¥for_shoG¥hios¥hiuzer¥ob 761 2_mix.abs
freaz loaded:
26000000 - 26000840
260008B0 - 2600BCGDA
2E00BCDGC - 26000418

Figure4.4 Complete Download Screen

Click the OK button on the Complete Download screen.

4.3 Executing Application Program

To execute the program, choose Registers from the View menu on the HDI Startup screen to view
the register information (figure 4.5).

5 E104 Emulator

= Breakpaints Cirl+B L T o
g 1; a Command Line Cirl+L be 05 W W {}® |“ ? |
] (] fy Dizaszembly.. Cirl+D 3’3 W e z @A |
—] 1/0 Area Cir+I
— |~ 19 [=] B3
o Labels Ctrbfs
e BSSI Locals CtrkeShiftel |vecny.o Solliict -
Eﬁ oo Memory... Ctrl+M H'O00,.RO
-ﬁ\ ggg| Eerformeance Analysiz L1 gHégUDB:E,PC) ,R3
| o
BrafilesList irir R s o
o ggg: Profile=Tree Girlahiftar g:géH 07:4,R5)
= COGI (1 0000:5,PC) RO
@F Source. Cir kK éﬂgéﬂ‘n JRE
) Status Cirlel] i
4 Trace GirbT Eas,gé}‘ 0
n Watch Citr +ie 4,R2
Localized Dump... H'BERA:12
? U™ Stack Trace ﬂ;?(ﬁﬂzﬁﬂl
H
|

A

|Open register window [L s
Figure4.5 Register Information

Then, change the PC value. Double click the PC value on the Register Information screen to view
the Change PC Value screen (figure 4.6).

Rev. 1.0, 03/03, page 50 of 52
RENESAS

Walle:

|26EIEIEI4EIEI
oet A

Ok I

I'I.I'I.ﬂm:ule Feeizter

j Cancel |

Figure4.6 Change PC Value Screen

Change the PC value to 26000400 as shown in figure 4.6 and click the OK button. This value is
the start address of the CPU initialization routine.

Now, you can execute the program. Select Go from the Run menu to execute the program (figure

4.7).

7 E104 Emulator

File Edit Wiew Bun Memory Setup Window Help

T

EEEETE Ak

=

FENHS GRS E.FER | [Msne 2 @an|

Register

[
[
[
[
[
[
[
0 RS
[
[
[
[
[
[

=g e R R e e e e e e

Ofd| EEE3L PR 8|

Yalue

noooooon
27F00BAT
nooooogs
noooooon
27FO0BSG
27FO0BSG
noooooot
Z7FO0EBD
nonoa4an
2TFO0B0G
noonoooon
27F00ADD
00004Fa4
O7FFFFDO
noooooo
O7FFFFBC
26000400

noooooonooon

00000000
2TF01048
00000000
00000000

———————— 111000-7

5:8,PC),R3
"01:4,R5)
C:8,PC),RO
6

1:8

|

|For Help, pres= F1

|)

Figure4.7 Execute Program Screen

Rev. 1.0, 03/03, page 51 of 52

RENESAS

Rev. 1.0, 03/03, page 52 of 52
RENESAS

H17000/4 Hitachi Industrial Realtime Operating System
Configuration Guide

Publication Date: 1st Edition, March 2003
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Introduction
	1.1	Overview
	1.2	System Configuration
	1.3	Prerequisites

	Section 2 Creating Application Programs
	2.1	Creating CPU Initialization Routine
	2.2	Creating Tasks
	2.2.1	Main Task
	2.2.2	LED Task

	2.3	Creating an Interrupt Handler
	2.3.1	Creating Initialization Module
	2.3.2	Creating Interrupt Handler

	Section 3 Configuration
	3.1	Starting Configurator
	3.2	Registering Task
	3.3	Registering Interrupt Handler
	3.3.1	Registering Stack Pointer Addresses for Reset Exception
	3.3.2	Registering Interrupt Handler

	3.4	Registering Initialization Routine
	3.5	Registering Event Flag Information
	3.6	Creating Configuration Files
	3.7	Building the Executable File by HEW
	3.7.1	Starting HEW
	3.7.2	Defining a Configuration File
	3.7.3	Changing a Linkage Address
	3.7.4	Build

	3.8	Disabling Parameter Check Function

	Section 4 Downloading and Executing �Application Programs
	4.1	Initializing Solution Engine
	4.2	Downloading Application Program
	4.3	Executing Application Program

	Colophon

