

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

CubeSuite Ver. 1.00

Integrated Development Environment

V850 Build

Target Device
 V850 Microcontrollers

Document No. U19386EJ1V0UM00 (1st edition)

Date Published September 2008

 2008

Printed in Japan

User’s Manual U19386EJ1V0UM 2

[MEMO]

User’s Manual U19386EJ1V0UM 3

SUMMARY OF CONTENTS

CHAPTER 1 GENERAL ... 20

CHAPTER 2 FUNCTIONS ... 23

CHAPTER 3 BUILD OUTPUT LISTS ... 97

APPENDIX A WINDOW REFERENCE ... 140

APPENDIX B COMMAND REFERENCE ... 388

APPENDIX C INDEX ... 806

User’s Manual U19386EJ1V0UM 4

All trademarks or registered trademarks in this document are the property of their respective owners.

User’s Manual U19386EJ1V0UM 5

The information in this document is current as of September, 2008. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U19386EJ1V0UM 6

PREFACE

This manual describes the role of the CubeSuite integrated development environment for developing applications

and systems for V850 microcontrollers and provides an outline of its features.

CubeSuite is an integrated development environment (IDE) for V850 microcontrollers, integrating the necessary

tools for the development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without the

need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the CubeSuite

and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the Cubesuite

to use for reference in developing the hardware or software of systems using these

devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 BUILD OUTPUT LISTS

APPENDIX A WINDOW REFERENCE

APPENDIX B COMMAND REFERENCE

APPENDIX C INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity, logic

circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: XXX
–––

 (overscore over pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numeric representation: Decimal … XXXX

 Hexadecimal … 0xXXXX

User’s Manual U19386EJ1V0UM 7

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Start U19377E

Programming U19390E

Message U19391E

V850 Coding U19383E

V850 Build This document

V850 Debug U19389E

CubeSuite Ver.1.00

Integrated Development Environment

User's Manual

V850 Design U19380E

Caution The related documents listed above are subject to change without notice.

Be sure to use the latest edition of each document when designing.

User’s Manual U19386EJ1V0UM 8

[MEMO

User’s Manual U19386EJ1V0UM 9

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 20

1.1 Overview ... 20
1.2 Features ... 22

CHAPTER 2 FUNCTIONS ... 23

2.1 Overview ... 23
2.1.1 Create a load module ... 23
2.1.2 Create a user library ... 24

2.2 Change the Build Tool Version ... 26
2.3 Set Build Target Files ... 27

2.3.1 Set a startup routine ... 27
2.3.2 Automatically generate link directives ... 28
2.3.3 Add a file to a project ... 33
2.3.4 Remove a file from a project ... 37
2.3.5 Remove a file from the build target ... 37
2.3.6 Classify a file into a category ... 38
2.3.7 Change the file display order ... 38
2.3.8 Update file dependencies ... 39

2.4 Set the Type of the Output File ... 42
2.4.1 Change the output file name ... 42
2.4.2 Output an assemble list ... 43
2.4.3 Output map information ... 44
2.4.4 Output symbol information ... 44

2.5 Set Compile Options ... 45
2.5.1 Perform optimization with the code size precedence ... 45
2.5.2 Perform optimization with the execution speed precedence ... 46
2.5.3 Add an include path ... 46
2.5.4 Set a macro definition ... 47
2.5.5 Enable C++ comments ... 48
2.5.6 Reduce the code size (perform prologue/epilogue runtime calls) ... 49
2.5.7 Change the register mode ... 49

2.6 Set Assemble Options ... 50
2.6.1 Add an include path ... 50
2.6.2 Set a macro definition ... 51

2.7 Set Link Options ... 53
2.7.1 Add a user library ... 53

2.8 Prepare for Implementing Boot-Flash Relink Function ... 55
2.8.1 Prepare the build target files ... 55
2.8.2 Set the boot area project ... 55
2.8.3 Set the flash area project ... 56

2.9 Set ROMization Process Options ... 59
2.9.1 Create an object for ROMization ... 59

2.10 Set Hex Convert Options ... 61
2.10.1 Set the output of a hex file ... 61

10 User’s Manual U19386EJ1V0UM

2.10.2 Fill the vacant area ... 63
2.11 Set Archive Options ... 64

2.11.1 Set the output of an archive file ... 64
2.12 Set Section File Generate Options ... 65

2.12.1 Automatically allocate variables through static analysis ... 65
2.13 Set Dump Options ... 67

2.13.1 Use the dump tool ... 67
2.13.2 Reference the section information ... 67

2.14 Set Cross Reference Options ... 68
2.14.1 Use the cross reference tool ... 68

2.15 Set Memory Layout Visualization Options ... 69
2.15.1 Use the memory layout visualization tool ... 69

2.16 Set Build Options Separately ... 70
2.16.1 Set build options at the project level ... 70
2.16.2 Set build options at the file level ... 70

2.17 Make Settings for Build Operations ... 73
2.17.1 Set the link order of files ... 73
2.17.2 Change the file build order of subprojects ... 74
2.17.3 Display a list of build options ... 74
2.17.4 Change the file build target project ... 75
2.17.5 Add a build mode ... 76
2.17.6 Change the build mode ... 77
2.17.7 Delete a build mode ... 78
2.17.8 Set the current build options as the standard for the project ... 80

2.18 Run a Build ... 81
2.18.1 Run a build of updated files ... 84
2.18.2 Run a build of all files ... 85
2.18.3 Run a build in parallel with other operations ... 85
2.18.4 Run builds in batch with build modes ... 87
2.18.5 Compile/assemble individual files ... 88
2.18.6 Stop running a build ... 89
2.18.7 Save the build results to a file ... 89
2.18.8 Delete intermediate files and generated files ... 90

2.19 Using Stack Usage Tracer ... 91
2.19.1 Starting and exiting ... 91
2.19.2 Check the call relationship ... 92
2.19.3 Check the stack information ... 93
2.19.4 Check unknown functions ... 94
2.19.5 Change the frame size ... 95

CHAPTER 3 BUILD OUTPUT LISTS ... 97

3.1 Assembler ... 97
3.1.1 Output method ... 97
3.1.2 Output example ... 97

3.2 Linker ... 99
3.2.1 Output method ... 99
3.2.2 Link map output example ... 99

3.3 Hex Converter ... 101
3.3.1 Intel expanded ... 101
3.3.2 Motorola S type ... 105
3.3.3 Expanded tektronix ... 107

User’s Manual U19386EJ1V0UM 11

3.4 Section File Generator ... 111
3.4.1 Cautions ... 114

3.5 Dump Tool ... 115
3.5.1 Dump list display contents ... 115
3.5.2 Element values and meanings ... 120

3.6 Disassembler ... 122
3.7 Cross Reference Tool ... 122

3.7.1 Cross reference ... 123
3.7.2 Tag information ... 124
3.7.3 Call tree ... 125
3.7.4 Function metrics ... 127
3.7.5 Call database ... 130

3.8 Memory Layout Visualization Tool ... 132
3.8.1 Memory map table ... 132

3.9 Format of Object File ... 134
3.9.1 Structure of object file ... 134
3.9.2 ELF header ... 134
3.9.3 Program header table ... 135
3.9.4 Section header table ... 135
3.9.5 Sections ... 136

APPENDIX A WINDOW REFERENCE ... 140

A.1 Description ... 140

APPENDIX B COMMAND REFERENCE ... 388

B.1 C Compiler ... 388
B.1.1 I/O files ... 390
B.1.2 Executable object ... 390
B.1.3 Method for manipulating ... 391
B.1.4 Option ... 393
B.1.5 Cautions ... 498

B.2 Assembler ... 505
B.2.1 I/O files ... 505
B.2.2 Method for manipulating ... 505
B.2.3 Option ... 506
B.2.4 Cautions ... 533

B.3 Linker ... 540
B.3.1 Method for manipulating ... 542
B.3.2 Option ... 543
B.3.3 Boot-flash relink function ... 589
B.3.4 Supplementary information ... 602

B.4 ROMization Processor ... 610
B.4.1 I/O files ... 612
B.4.2 rompsec section ... 612
B.4.3 Creating object for ROMization ... 615
B.4.4 Copy function ... 620
B.4.5 Example of using copy function ... 625
B.4.6 Method for manipulating ... 627
B.4.7 Option ... 627

B.5 Hex Converter ... 644

12 User’s Manual U19386EJ1V0UM

B.5.1 I/O files ... 644
B.5.2 Method for manipulating ... 644
B.5.3 Option ... 645

B.6 Archiver ... 661
B.6.1 Method for manipulating ... 661
B.6.2 Key/Option ... 662

B.7 Section File Generator ... 680
B.7.1 Section file ... 680
B.7.2 Method for manipulating ... 682
B.7.3 Option ... 684
B.7.4 Cautions ... 706

B.8 Dump Tool ... 707
B.8.1 Method for manipulating ... 707
B.8.2 Option ... 708

B.9 Disassembler ... 736
B.9.1 Method for manipulating ... 736
B.9.2 Option ... 737
B.9.3 Cautions ... 753

B.10 Cross Reference Tool ... 754
B.10.1 Input/Output ... 754
B.10.2 Method for manipulating ... 755
B.10.3 Option ... 756

B.11 Memory Layout Visualization Tool ... 793
B.11.1 Input/Output ... 793
B.11.2 Method for manipulating ... 793
B.11.3 Option ... 794

APPENDIX C INDEX ... 806

User’s Manual U19386EJ1V0UM 13

LIST OF FIGURES

Figure No. Title, Page

1-1 Build Tool Process Flow ... 21

2-1 [Version Select] Category ... 26

2-2 Project Tree Panel (After Adding Startup File) ... 27

2-3 Link Directive File Generation Dialog Box ... 28

2-4 Segment Detail (When SCONST Is Selected) ... 29

2-5 Section Detail (When .sconst Is Selected) ... 29

2-6 Add Segment ... 30

2-7 Add Section ... 30

2-8 Segment Detail (When _tp_TEXT Is Selected) ... 31

2-9 Add Symbol ... 31

2-10 Project Tree Panel (After Generating Link Directive File) ... 32

2-11 Project Tree Panel (File Drop Location) ... 33

2-12 Add Folder and File Dialog Box ... 34

2-13 Add File Dialog Box ... 35

2-14 Project Tree Panel (After Adding File "main.c") ... 35

2-15 Project Tree Panel (After Adding Folder "src") ... 36

2-16 [Remove from Project] Item ... 37

2-17 [Set as build-target] Property ... 37

2-18 [Add New Category] Item (For File Node) ... 38

2-19 Project Tree Panel (After Adding Category Node) ... 38

2-20 Toolbar (Project Tree Panel) ... 38

2-21 [Update Dependencies] Item ... 39

2-22 [Update Dependencies of active project] Item ... 40

2-23 [Output file type] Property ... 42

2-24 [ROMized object file name] Property (For ROMized Module File) ... 42

2-25 [Output file name] Property (For Load Module File) ... 43

2-26 [Hex file name] Property ... 43

2-27 [Output file name] Property (For Archive File) ... 43

2-28 [Output assemble list file] Property ... 43

2-29 [Link Map] Category (For Map Information) ... 44

2-30 [Dump Tool] Category ... 44

2-31 Property Panel: [Compile Options] Tab ... 45

2-32 [Type of the optimization] Property (Code Size Precedence) ... 46

2-33 [Type of the optimization] Property (Execution Speed Precedence) ... 46

2-34 [Additional include paths] Property ... 46

2-35 Path Edit Dialog Box ... 47

2-36 [Additional include paths] Property (After Adding Include Paths) ... 47

2-37 [Macro definition] Property ... 48

2-38 Text Edit Dialog Box ... 48

2-39 [Macro definition] Property (After Setting Macros) ... 48

14 User’s Manual U19386EJ1V0UM

2-40 [Use C++ style comment] Property ... 49

2-41 [Use prologue/epilogue library] Property ... 49

2-42 [Select register mode] Property ... 49

2-43 Property Panel: [Assemble Options] Tab ... 50

2-44 [Additional include paths] Property ... 50

2-45 Path Edit Dialog Box ... 51

2-46 [Additional include paths] Property (After Adding Include Paths) ... 51

2-47 [Macro definition] Property ... 51

2-48 Text Edit Dialog Box ... 52

2-49 [Macro definition] Property (After Setting Macros) ... 52

2-50 Property Panel: [Link Options] Tab ... 53

2-51 [Using libraries] Property ... 53

2-52 Text Edit Dialog Box ... 54

2-53 [Using libraries] Property (After Setting Library Files) ... 54

2-54 Boot Area Project ... 55

2-55 [Flash] Category in Boot Area ... 56

2-56 Created Files for Boot Area ... 56

2-57 Flash Area Project ... 57

2-58 [Flash] Category in Flash Area ... 57

2-59 Created Files for Flash Area ... 58

2-60 Property Panel: [ROMization Process Options] Tab ... 59

2-61 [Output ROMized object file] Property ... 60

2-62 [Use standard ROMization area reservation code file] Property ... 60

2-63 [Output hex file] Property ... 60

2-64 Property Panel: [Hex Convert Options] Tab ... 61

2-65 [Output hex file] Property ... 61

2-66 [Hex file format] Property ... 62

2-67 [Hex Format] Category ... 63

2-68 Property Panel: [Archive Options] Tab ... 64

2-69 [Output File] Category ... 64

2-70 Property Panel: [Section File Generate Options] Tab ... 65

2-71 [Use section file generator] Property ... 65

2-72 Project Tree Panel (After Generating Section File) ... 66

2-73 Property Panel: [Dump Options] Tab ... 67

2-74 [Use dump tool] Property ... 67

2-75 [Dump Tool] Category ... 67

2-76 Property Panel: [Cross Reference Options] Tab ... 68

2-77 [Use cross reference tool] Property ... 68

2-78 Property Panel: [Memory Layout Visualization Options] Tab ... 69

2-79 [Use memory layout visualization tool] Property ... 69

2-80 [Set individual compile option] Property ... 70

2-81 Message Dialog Box ... 70

2-82 Property Panel: [Individual Compile Options] Tab ... 71

User’s Manual U19386EJ1V0UM 15

2-83 [Set individual assemble option] Property ... 71

2-84 Message Dialog Box ... 72

2-85 Property Panel: [Individual Assemble Options] Tab ... 72

2-86 Link Order Dialog Box ... 73

2-87 [Format of build option list] Property ... 74

2-88 [Set selected project as Active Project] Item ... 75

2-89 Active Project ... 75

2-90 Build Mode Settings Dialog Box ... 76

2-91 Character String Input Dialog Box ... 76

2-92 Build Mode Settings Dialog Box (After Adding Build Mode) ... 77

2-93 [Build Mode] Property ... 77

2-94 Build Mode Settings Dialog Box ... 78

2-95 Build Mode Settings Dialog Box ... 78

2-96 Message Dialog Box ... 79

2-97 Property Panel (After Changing Standard Build Option) ... 80

2-98 [Set to Default Build Option for Project] Item ... 80

2-99 Property Panel (After Setting Standard Build Option) ... 80

2-100 Build Execution Results (Build, Rebuild, or Batch Build) ... 81

2-101 Build Execution Results (Rapid Build) ... 82

2-102 Build Tool Generated Files ... 82

2-103 [Build active project] Item ... 84

2-104 [Rebuild active project] Item ... 85

2-105 [Rapid Build] Item (When Rapid Build Is Valid) ... 86

2-106 [Rapid Build] Item (When Rapid Build Is Invalid) ... 86

2-107 Batch Build Dialog Box ... 87

2-108 [Compile] Item ... 88

2-109 [Assemble] Item ... 88

2-110 Save As Dialog Box ... 89

2-111 [Clean Project] Item ... 90

2-112 [Clean active project] Item ... 90

2-113 Starting Up Stack Usage Tracer ... 91

2-114 Tree Display Area ... 92

2-115 List Display Area ... 93

2-116 Stack Size Unknown / Adjusted Function Lists Dialog Box ... 94

2-117 Adjust Stack Size Dialog Box ... 95

2-118 Sample Stack Size Specification File ... 96

3-1 File Configuration in Intel Expanded Hex Format ... 102

3-2 File Configuration of Motorola S Type Hex Format ... 105

3-3 File Configuration of Expanded Tek Hex Format ... 107

3-4 Object File Structures ... 134

A-1 Main Window ... 142

A-2 Project Tree Panel ... 146

A-3 Property Panel ... 158

16 User’s Manual U19386EJ1V0UM

A-4 Property Panel: [Common options] Tab ... 162

A-5 Property Panel: [Compile Options] Tab ... 177

A-6 Property Panel: [Assemble Options] Tab ... 197

A-7 Property Panel: [Link Options] Tab ... 202

A-8 Property Panel: [ROMization Process Options] Tab ... 211

A-9 Property Panel: [Hex Convert Options] Tab ... 218

A-10 Property Panel: [Archive Options] Tab ... 225

A-11 Property Panel: [Section File Generate Options] Tab ... 228

A-12 Property Panel: [Dump Options] Tab ... 234

A-13 Property Panel: [Cross Reference Options] Tab ... 235

A-14 Property Panel: [Memory Layout Visualization Options] Tab ... 236

A-15 Property Panel: [Build Settings] Tab (When Selecting C Source File) ... 237

A-16 Property Panel: [Build Settings] Tab (When Selecting Assembler Source File) ... 237

A-17 Property Panel: [Build Settings] Tab (When Selecting Link Directive File) ... 237

A-18 Property Panel: [Build Settings] Tab (When Selecting Section File) ... 238

A-19 Property Panel: [Build Settings] Tab (When Selecting Object File) ... 238

A-20 Property Panel: [Build Settings] Tab (When Selecting Archive File) ... 238

A-21 Property Panel: [Individual Compile Options] Tab ... 241

A-22 Property Panel: [Individual Assemble Options] Tab ... 257

A-23 Property Panel: [File Information] Tab ... 263

A-24 Property Panel: [Category Information] Tab ... 265

A-25 Editor Panel ... 266

A-26 Output Panel ... 269

A-27 Add File Dialog Box ... 272

A-28 Add Folder and File Dialog Box ... 274

A-29 Character String Input Dialog Box ... 276

A-30 Text Edit Dialog Box ... 278

A-31 Path Edit Dialog Box (When Editing Path) ... 280

A-32 Path Edit Dialog Box (When Editing File Name Including Path) ... 280

A-33 Link Directive File Generation Dialog Box ... 283

A-34 Object File Select Dialog Box ... 292

A-35 Segment Select Dialog Box ... 294

A-36 Link Order Dialog Box ... 296

A-37 Build Mode Settings Dialog Box ... 298

A-38 Batch Build Dialog Box ... 300

A-39 Search and Replace Dialog Box ... 302

A-40 Search and Replace Dialog Box: [Quick Search] Tab ... 303

A-41 Search and Replace Dialog Box: [Whole Search] Tab ... 306

A-42 Search and Replace Dialog Box: [Quick Replace] Tab ... 309

A-43 Search and Replace Dialog Box: [Whole Replace] Tab ... 312

A-44 Go to the Location Dialog Box ... 315

A-45 Progress Status Dialog Box ... 316

A-46 Option Dialog Box ... 317

User’s Manual U19386EJ1V0UM 17

A-47 Option Dialog Box ([General - Startup and Exit] Category) ... 319

A-48 Option Dialog Box ([General - Display] Category) ... 321

A-49 Option Dialog Box ([General - Text Editor] Category) ... 323

A-50 Option Dialog Box ([General - Font and Color] Category) ... 325

A-51 Edit Colors Dialog Box ... 328

A-52 Font Dialog Box ... 328

A-53 Option Dialog Box ([General - External Tools] Category) ... 330

A-54 Option Dialog Box ([General - Build/Debug] Category) ... 334

A-55 Option Dialog Box ([General - Update] Category) ... 336

A-56 Option Dialog Box ([Other - User Information] Category) ... 338

A-57 User Setting Dialog Box ... 340

A-58 User Setting Dialog Box: [Toolbars] Tab ... 342

A-59 User Setting Dialog Box: [Commands] Tab ... 344

A-60 New Toolbar Dialog Box ... 346

A-61 Rename Toolbar Dialog Box ... 347

A-62 Customize Keyboard Dialog Box ... 348

A-63 Rearrange Commands Dialog Box ... 350

A-64 Add Command Dialog Box ... 351

A-65 Add Existing File Dialog Box ... 353

A-66 Browse For Folder dialog box ... 355

A-67 Specify Boot Area Object File Dialog Box ... 357

A-68 Specify Function Information File Dialog Box ... 359

A-69 Specify Intermediate Language File for External Variable Sorting Dialog Box ... 361

A-70 Specify Far Jump File Dialog Box ... 363

A-71 Specify ROMization Area Reservation Code File Dialog Box ... 365

A-72 Save As Dialog Box ... 367

A-73 Open with Program Dialog Box ... 369

A-74 Select Program Dialog Box ... 371

A-75 Select External Text Editor Dialog Box ... 373

A-76 Stack Usage Tracer Window ... 375

A-77 Stack Size Unknown / Adjusted Function Lists Dialog Box ... 382

A-78 Adjust Stack Size Dialog Box ... 384

A-79 Open Dialog Box ... 387

B-1 Operation Flow of C Compiler ... 389

B-2 Property Panel: [Compile Option] Tab ... 392

B-3 Optimization Processing and Parameters ... 499

B-4 Operation Flow of Assembler ... 505

B-5 Property Panel: [Assemble Option] Tab ... 506

B-6 Image of Creating Common Object with Assembler ... 533

B-7 Example of Assembler CPU Core Compatibility (V850Ex Core and V850 Core) ... 534

B-8 Operation Flow of Linker ... 540

B-9 Linker Operation Image (Example) ... 540

B-10 Batch Processing ... 541

18 User’s Manual U19386EJ1V0UM

B-11 Modular Processing ... 541

B-12 Creation of Output Section ... 541

B-13 Allocation to Memory Space ... 542

B-14 Property Panel: [Link Option] Tab ... 543

B-15 In Boot Area ... 590

B-16 In Flash Area ... 590

B-17 From Boot Area to Flash Area ... 591

B-18 From Flash Area to Boot Area ... 592

B-19 Boot Area Project ... 596

B-20 [Flash] Category in Boot Area ... 596

B-21 Created Files for Boot Area ... 597

B-22 Flash Area Project ... 597

B-23 [Flash] Category in Flash Area ... 598

B-24 Created Files for Flash Area ... 598

B-25 Memory Allocation Image of gp Offset Reference Section ... 602

B-26 Creation of Object for ROMization ... 610

B-27 Image of Before and After _rcopy Function Is Called ... 611

B-28 [Output ROMized object file] Property ... 615

B-29 [Use standard ROMization area reservation code file] Property ... 616

B-30 ROMization Image 1 ... 617

B-31 [Output ROMized object file] Property ... 619

B-32 [Input File] Category ... 619

B-33 [Entry label] Property ... 619

B-34 ROMization Image 2 ... 620

B-35 Property Panel: [Romization Process Option] Tab ... 627

B-36 Operation Flow of Hex Converter ... 644

B-37 Property Panel: [Hex Convert Option] Tab ... 645

B-38 Operation Flow of Archiver ... 661

B-39 Property Panel: [Archive Options] Tab ... 662

B-40 Image of Compilation Using Section File Specifications ... 681

B-41 Property Panel: [Section File Generate Option] Tab ... 683

B-42 Operation Flow of Dump Tool ... 707

B-43 Property Panel: [Dump Options] Tab ... 707

B-44 Operation Flow of Disassembler ... 736

B-45 Operation Flow of Cross Reference Tool ... 754

B-46 Property Panel: [Cross Reference Option] Tab ... 755

B-47 Operation Flow of Memory Layout Visualization Tool ... 793

B-48 Property Panel: [Memory Layout Visualization Options] Tab ... 794

User’s Manual U19386EJ1V0UM 19

LIST OF TABLES

Table No. Title, Page

2-1 Build Types ... 81

3-1 Variable Types and Displays ... 111

3-2 Variable Displays and Their Meanings ... 112

3-3 Types of Sections Specifiable by C Compiler ... 113

3-4 Constituent Elements of ELF Header and Their Meanings ... 134

3-5 Constituent Elements of Program Header Table Entries and Their Meanings ... 135

3-6 Constituent Elements of Section Header Table Entries and Their Meanings ... 135

3-7 Section Types and Their Meanings ... 136

3-8 Meanings of Link and Info ... 136

3-9 Constituent Elements of Symbol Table Entries and Their Meanings ... 137

3-10 Relationship Between Indexes and Character Strings in String Table ... 137

3-11 Reserved Sections ... 138

A-1 List of Windows/Panels/Dialog Boxes ... 140

B-1 Compile Options ... 393

B-2 Mark Used in Option Descriptions ... 396

B-3 Register Mode ... 461

B-4 Faults Between CPU Core and -Xv850patch Option ... 491

B-5 Optimization Processing and Items ... 499

B-6 Assemble Options ... 506

B-7 Mark Used in Option Descriptions ... 507

B-8 Faults Between CPU Core and -p Option ... 535

B-9 Correspondence between Created Objects and -p Options ... 538

B-10 Link Options ... 543

B-11 Mark Used in Option Descriptions ... 545

B-12 Reserved Section ... 605

B-13 Special Symbols in Ordinary Object File ... 606

B-14 Reserved Sections Packed by ROMization Processor ... 612

B-15 Copy Routines ... 620

B-16 ROMization Process Options ... 627

B-17 Hex Convert Options ... 645

B-18 HEX Format Block/Record ... 649

B-19 Archive Keys ... 662

B-20 Archive Options ... 663

B-21 Section File Generate Options ... 684

B-22 Dump Tool Option ... 708

B-23 Disassemble Options ... 737

B-24 Cross Reference Options ... 756

B-25 Memory Layout Visualization Options ... 794

CHAPTER 1 GENERAL

20 User’s Manual U19386EJ1V0UM

CHAPTER 1 GENERAL

This chapter explains the product overview of the build tool.

1.1 Overview

The build tool is comprised of components provided by CubeSuite. It enables various types of information to be con-
figured via a GUI tool, enabling you to generate ROMization object files, load module files, hex files, or archive files
from your source files, according to your objectives.

The build tool process flow is shown below.

CHAPTER 1 GENERAL

User’s Manual U19386EJ1V0UM 21

Figure 1-1. Build Tool Process Flow

C source files

Relocatable object files

Archive file

Load module file

Assembler source files

C compiler

Assembler

Archiver

Linker

...

...

...

Hex file

Hex converter

ROMization object file

ROMization processor

Dump tool

DisassemblerNote

Cross reference tool

Memory layout visualization tool

Note Command line only

Link directive file

Include file Section file

Section file generator

Dump list

Memory map table

Output information file

CHAPTER 1 GENERAL

22 User’s Manual U19386EJ1V0UM

1.2 Features

The features of the build tools are shown below.

- Optimization function
You can generate efficient object module files by performing optimizations such as prioritizing code size or exe-
cution speed when compiling.
It is possible to select from six optimization levels and set a different optimization level for each source.

- Functions optimized for embedded systems
It is possible to write interrupt processing and real-time OS tasks in C language.
Access to the peripheral hardware of the microcomputer can be handled in the same way as normal access to
variables.
Overhead associated with saving to and restoring from registers during interrupt processing is reduced by
restricting the number of general registers that are used by the C compiler (register mode).
It is possible to fill the holes between members of structures and unions formed by alignment and handle the
structures and unions predetermined by alignment (structure/union packing function).

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 23

CHAPTER 2 FUNCTIONS

This chapter describes the build procedure using CubeSuite and about the main build functions.

2.1 Overview

This section describes how to create a load module and user library.

2.1.1 Create a load module

The operation flow from setting a project to creating a load module is shown below.

(1) Create or load a project
Create a new project, or load an existing one.

Remark See CubeSuite Start User's Manual for details about creating a new project or loading an existing
one.

(2) Set a build target project
When making settings for or running a build, set the active project (see “2.17 Make Settings for Build
Operations”).
If there is no subproject, the project is always active.

Remark When setting a build mode, change the build mode (see "2.17.6 Change the build mode").

(3) Set build target files
For the project, add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

Remarks 1. See "2.7.1 Add a user library" for the method of adding a user library to the project.
2. Also, you can set the link order of object module files and library files (see "2.17.1 Set the link

order of files").

(4) Specify the output of a load module file
Set the output of a load module file as the product of the build (see "2.4 Set the Type of the Output File").

(5) Set build options
Set the options for the compiler, assembler, linker, and the like (see "2.5 Set Compile Options", "2.6 Set
Assemble Options", "2.7 Set Link Options").

(6) Run a build
Run a build (see "2.18 Run a Build").
The following types of builds are available.

- Build (see "2.18.1 Run a build of updated files")
- Rebuild (see "2.18.2 Run a build of all files")
- Rapid build (see "2.18.3 Run a build in parallel with other operations")
- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,
from the [Common Options] tab, in the [Others] category, set the [Commands executed before build
processing] and [Commands executed after build processing] properties.
If there are any commands you wish to run before or after the build process at the file level, you can

CHAPTER 2 FUNCTIONS

24 User’s Manual U19386EJ1V0UM

set them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble
Options] tab (for an assembler source file).

(7) Save the project
Save the setting information of the project to the project file.

Remark See CubeSuite Start User's Manual for details about saving the project.

2.1.2 Create a user library

The operation flow from setting a project to creating a user library is shown below.

(1) Create or load a project
Create a new project, or load an existing one.
When you create a new project, set a library project.

Remark See CubeSuite Start User's Manual for details about creating a new project or loading an existing
one.

(2) Set a build target project
When making settings for or running a build, set the active project (see “2.17 Make Settings for Build
Operations”).
If there is no subproject, the project is always active.

Remark When setting a build mode, change the build mode (see "2.17.6 Change the build mode").

(3) Set build target files
For the project, add or remove build target files and update the dependencies (see "2.3 Set Build Target Files").

(4) Set build options
Set the options for the compiler, assembler, archiver, and the like (see "2.5 Set Compile Options", "2.6 Set
Assemble Options", "2.11 Set Archive Options").

Remark To create a library common to various devices, set the [Output common object file for various
devices] property in the [Output File Type and Path] category from the [Common Options] tab on the
Property panel.

(5) Run a build
Run a build (see "2.18 Run a Build").
The following types of builds are available.

- Build (see "2.18.1 Run a build of updated files")
- Rebuild (see "2.18.2 Run a build of all files")
- Rapid build (see "2.18.3 Run a build in parallel with other operations")
- Batch build (see "2.18.4 Run builds in batch with build modes")

Remark If there are any commands you wish to run before or after the build process, on the Property panel,
from the [Common Options] tab, in the [Others] category, set the [Commands executed before build
processing] and [Commands executed after build processing] properties.
If there are any commands you wish to run before or after the build process at the file level, you can
set them from the [Individual Compile Options] tab (for a C source file) and [Individual Assemble
Options] tab (for an assembler source file).

(6) Save the project

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 25

Save the setting information of the project to the project file.

Remark See CubeSuite Start User's Manual for details about saving the project.

CHAPTER 2 FUNCTIONS

26 User’s Manual U19386EJ1V0UM

2.2 Change the Build Tool Version

You can change the version of the build tool (compiler package) used in the project (main project or subproject).
Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select

[Always latest version which was installed] or the version on the [Using compiler package version] property in the
[Version Select] category.

Figure 2-1. [Version Select] Category

Remark When the build tool used in the main project and subprojects is the same, you can collectively change
the build tool version by selecting all of the Build tool nodes and setting the property.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 27

2.3 Set Build Target Files

Before running a build, you must add the build target files (such as C source file, assembler source file) to the
project.

This section explains operations on setting files in the project.

2.3.1 Set a startup routine

To set a startup routine, add a startup file (a file that the startup routine is described) to the Startup node on the
project tree. See "2.3.3 Add a file to a project" for the method of adding the file to the project tree.

Figure 2-2. Project Tree Panel (After Adding Startup File)

Caution A build target file added directly below the Startup node on the project tree is treated as the
startup file. It is not treated as a startup file if it is added to the category below the Startup node.
When adding a startup file to the Startup node, if a startup file has already been added then only
the latest startup file to be added is targeted by a build; any such files added prior to this one will
not be targeted.
When setting a startup file that is not targeted by a build as a build target, if other startup files
have also been added then the file will be targeted by the build, and the others will not be
targeted.

Remark To create a new startup routine, copy the following sample and add it to the project. And then edit it.

Note Vx.xx is the version of the C compiler.

A startup routine must be described in assembly language.
See CubeSuite V850 Cording User's Manual for details about a startup routine.

Storage Location File Name Description

Install Folder\CA850\Vx.xxNote\lib850\r22 crtE.s For 22-register mode

Startup routine sample for V850Ex core

Install Folder\CA850\Vx.xxNote\lib850\r26 crtE.s For 26-register mode

Startup routine sample for V850Ex core

Install Folder\CA850\Vx.xxNote\lib850\r32 crtE.s For 32-register mode

Startup routine sample for V850Ex core

CHAPTER 2 FUNCTIONS

28 User’s Manual U19386EJ1V0UM

2.3.2 Automatically generate link directives

Although users can create a link directive file and add it to a project, it is also possible to generate it automatically in
CubeSuite.

Remark See CubeSuite V850 Cording User's Manual for details about link directives and creating a link directive
file.

On the project tree, select the Build tool node, and then select [Create Link Directive File...] from the context menu.
The Link Directive File Generation dialog box opens.

Figure 2-3. Link Directive File Generation Dialog Box

Edit the segments/sections and symbols in the dialog box.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 29

(1) Edit segments/sections
The [Segment / Section list] area displays the device memory allocation information, and a list of the currently
configured segments and sections.
When a segment/section is selected from the list, detailed information on that segment/section is displayed in
the [Segment/Section detail] area. Edit the items in the [Segment / Section detail] area.

Remark Some items in reserved sections cannot be edited (items for which values are set automatically).
See “APPENDIX A WINDOW REFERENCE”, “Link Directive File Generation dialog box” for details
about each item and how reserved sections are handled.

Figure 2-4. Segment Detail (When SCONST Is Selected)

Figure 2-5. Section Detail (When .sconst Is Selected)

Segments and sections can also be added.
Click [Add Segment] to add a new segment "NewSegment_XXX" directly below the row selected in the list
(XXX: 0 to 255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Attribute]
is set to [Executable(RX)] (if added to the internal ROM area or non mapping area) or to [Read/Write(RW)] (if
added to the internal RAM area).

Caution When a section row is selected in the list, the [Add segment] button is invalid.

CHAPTER 2 FUNCTIONS

30 User’s Manual U19386EJ1V0UM

Figure 2-6. Add Segment

Click [Add Section] to add a new section "NewSection_XXX" directly below the row selected in the list (XXX: 0
to 255 in decimal numbers). Edit the items in the [Segment / Section detail] area. By default, [Type] is set to
[Exist data (PROGBITS)], and [Attribute] inherits the value of the parent segment.

Figure 2-7. Add Section

(2) Edit symbols
The [Symbol list] area displays the list of currently configured symbols.
When a symbol is selected from the list, detailed information on that symbol is displayed in the [Symbol detail]
area. Edit the items in the [Symbol detail] area.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 31

Figure 2-8. Segment Detail (When _tp_TEXT Is Selected)

Symbols can also be added.
Click [Add symbol] to add a new symbol "NewSymbol_XXX" directly below the row selected in the list (XXX: 0 to
255 in decimal numbers). Edit the items in the [Symbol detail] area. By default, [Type] is set to [TP
symbol(%TP_SYMBOL)].

Figure 2-9. Add Symbol

After editing the segments/sections and symbols, click the [Generate] button.
A link directive file (named project-name.dir) is generated based on the specified memory, segments, sections, and

symbol allocation information, and then added to the project.
The link directive file is generated in the project folder. The link directive file that has been generated is also shown

on the project tree, under the File node.

CHAPTER 2 FUNCTIONS

32 User’s Manual U19386EJ1V0UM

Figure 2-10. Project Tree Panel (After Generating Link Directive File)

Caution The generated link directive file will be a build target. If a link directive file has already been
registered to the project, then the file will be removed from the build target.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 33

2.3.3 Add a file to a project

Files can be added to a project by the following methods.
- Adding an existing file
- Creating and adding an empty file

(1) Adding an existing file

(a) Add individual files
Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree.
The file is added below the File node.

Figure 2-11. Project Tree Panel (File Drop Location)

Caution To add other than a startup routine, drop a file onto the Startup node. See "2.3.1 Set a
startup routine" for details about using other than a startup routine.

(b) Add a folder
Drag a folder from Explorer or the like, and drop it onto the empty space below the project tree. The Add
Folder and File dialog box opens.

Remark You can also add multiple folders to the project at the same time by dragging multiple folders at
same time and dropping them onto the project tree.

Caution When a folder with the name that is more than 200 characters is dropped, the folder is
added to the project tree as a category with the name that 201st character and after are
deleted.

Drop the file here

CHAPTER 2 FUNCTIONS

34 User’s Manual U19386EJ1V0UM

Figure 2-12. Add Folder and File Dialog Box

In the dialog, select the file types to add to the project, specify the number of subfolder levels to add, and
then click the [OK] button.

Remark You can select multiple file types by left clicking while holding down the [Ctrl] or [Shift] key.
If nothing is selected, it is assumed that all types are selected.

The folder is added below the File node. Note that on the project tree, the folder is the category.

Remark When the category node created by the user exists, you can add a file below the node by dropping
the file onto the node (see "2.3.6 Classify a file into a category" for a category node.).

(2) Creating and adding an empty file
On the project tree, select either one of the Project node, Subproject node, or File node, and then select [Add]
>> [Add New File...] from the context menu. The Add File dialog box opens.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 35

Figure 2-13. Add File Dialog Box

In the dialog box, specify the file to be created and then click the [OK] button.
The file is added below the File node.

The project tree after adding the file will look like the one below.

Figure 2-14. Project Tree Panel (After Adding File "main.c")

CHAPTER 2 FUNCTIONS

36 User’s Manual U19386EJ1V0UM

Figure 2-15. Project Tree Panel (After Adding Folder "src")

Remark The location of the file added below the File node depends on the current file display order setting. See
“2.3.7 Change the file display order” for the method of changing the file display order.

Cautions 1. If the paths differ, you can add source files with the same name. Note, however, that if the
setting of the output file name is left as the default, the output files will have the same name,
which will prevent the build from running correctly (for example, when adding
D:\sample1\func.c and D:\sample2\func.c, the default output file name for these files is both
func.o).
To correctly run a build, set the output file name for each of those files to a different name
with the individual build options for the source files.
The changing the name of the C source file is made with the [Object file name] property in the
[Output File] category from the [Individual Compile Options] tab. The changing the name of
the assembler source file is made with the [Object file name] property in the [Output File]
category from the [Individual Assemble Options] tab. See "2.16.2 Set build options at the
file level" for how to set the individual build options.

2. If a file with an extension of "dr" or "dir" is added to the project, it is treated as a link directive
file. It is also treated as a link directive file if it is added below the Startup node.
When adding a link directive file to the project, if a link directive file has already been added
then only the latest link directive file to be added is targeted by a build; any such files added
prior to this one will not be targeted.
When setting a link directive file that is not targeted by a build as a build target, if other link
directive files have also been added then the file will be targeted by the build, and the others
will not be targeted.

3. Up to 5000 files can be added to the main project or subproject.

When a new file is added, an empty file is created in the location specified in the Add File dialog box.
By double clicking the file name on the project tree, you can open the Editor panel and edit the file.
The files that can be opened with the Editor panel are shown below.

- C source file (.c)
- Assembler source file (.s)
- Header file (.h, .inc)
- Link directive file (.dr, .dir)

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 37

- Section file (.sf)
- Map file (.map)
- Hex file (.hex)
- Text file (.txt)

Remarks 1. You can use one of the methods below to open files other than those listed above in the Editor
panel.

- Drag a file and drop it onto the Editor panel.
- Select a file and then select [Open with Internal Editor...] from the context menu.

2. When the environment is set to use an external editor on the Option dialog box, the file is opened
with the external editor that has been set. Other files are opened with the applications associated by
the host OS.

2.3.4 Remove a file from a project

To remove a file added to a project, select the file to be removed from the project on the project tree and then select
[Remove from Project] from the context menu.

In addition, the file itself is not deleted from the file system.

Caution If you select a file on the project tree and press the [Delete] key, the file is deleted from the file
system.

Figure 2-16. [Remove from Project] Item

2.3.5 Remove a file from the build target

You can remove a specific file from the build target out of all the files added to the project.
Select the file to be removed from the build target on the project tree and select the [Build Settings] tab on the

Property panel. Select [No] on the [Set as build-target] property in the [Build] category.

Figure 2-17. [Set as build-target] Property

CHAPTER 2 FUNCTIONS

38 User’s Manual U19386EJ1V0UM

Remark The files that can be applied this function are C source files, assembler source files, link directive files,
section file, object files, and archive file.

2.3.6 Classify a file into a category

You can create a category under the File node and classify files by the category. This makes it easier to view files
added to the project on the project tree, and makes it easier to manage files according to function.

To create a category node, select either one of the Project node, Subproject node, or File node on the project tree,
and then select [Add] >> [Add New Category] from the context menu.

Figure 2-18. [Add New Category] Item (For File Node)

Figure 2-19. Project Tree Panel (After Adding Category Node)

Remarks 1. The default category name is "New category".
To change the category name, you can use [Rename] from the context menu of the category node.

2. You can also add a category node with the same name as an existing category node.
3. Categories can be nested up to 20 levels.

You can classify files into the created category node by dragging and dropping the file.

2.3.7 Change the file display order

You can change the display order of the files and category nodes on the project tree.
Select any of the buttons below on the toolbar of the Project Tree panel.

Figure 2-20. Toolbar (Project Tree Panel)

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 39

2.3.8 Update file dependencies

When you perform a change (changing include file paths, adding an include statement of the header file to a C
source file, etc.) that effects the file dependencies in the compile option settings or assemble option settings, you must
update the dependencies of the relevant files.

Updating file dependencies is performed for the entire project (main project and subprojects) or active project.

(1) For the entire project
From the [Build] menu, select [Update Dependencies].

Figure 2-21. [Update Dependencies] Item

(2) For the active project
From the [Build] menu, select [Update Dependencies of active project].

Button Description

Sorts category nodes and files by name.

: Ascending order

: Descending order

: Ascending order

Sorts category nodes and files by timestamp.

: Descending order

: Ascending order

: Descending order

Displays category nodes and files in the specified order by the user (default).

You can change the display order of the category nodes and files arbitrarily by dragging and dropping
them.

CHAPTER 2 FUNCTIONS

40 User’s Manual U19386EJ1V0UM

Figure 2-22. [Update Dependencies of active project] Item

Remark If there are files being edited with the Editor panel when updating file dependencies, then all these files
are saved.

Cautions 1. During checking of dependence relationships of include files with CubeSuite, condition
statements such as #if and comments are ignored. Therefore, include files not required for
build are mistaken as required files (In the example below, header1.h and header5.h are
judged as required for build).

2. During checking of dependence relationships of include files with CubeSuite, include
statements described after comments are ignored. Therefore, include files required for build
are mistaken as no-required files (In the example below, header6.h and header7.h are judged
as no-required for build).

#if 0

#include "header1.h" /* Dependence relationship judged to exist */

#else /* ! zero */

#include "header2.h" /* Dependence relationship to exist */

#endif

#define AAA

#ifdef AAA

#include "header3.h" /* Dependence relationship to exist */

#else

#include "header4.h" /* Dependence relationship to exist */

#endif

/*

#include "header5.h" /* Dependence relationship judged to exist */

*/

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 41

/* Dependence relationship judged not to exist */

/* comment */ #include "header6.h"

/* Dependence relationship judged not to exist */

/*

comment

*/ #include "header7.h"

CHAPTER 2 FUNCTIONS

42 User’s Manual U19386EJ1V0UM

2.4 Set the Type of the Output File

Set the type of the file to be output as the product of the build.
Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Select the

file type on the [Output file type] property in the [Output File Type and Path] category.

Figure 2-23. [Output file type] Property

(1) When [Execute Module(ROMization Module)] is selected
A ROMization module file is created.
The file set in the [Output File] category on the [ROMization Process Options] tab is the debug target.

(2) When [Execute Module(Load Module File)] is selected (default)
A load module file is created.
The file set in the [Output File] category on the [Link Options] tab is the debug target.

(3) When [Execute Module(Hex File)] is selected
A hex file is also created.
The file set in the [Output File] category on the [Hex Convert Options] tab is the debug target.

Caution For library projects, this property is always [Library] and cannot be changed.

2.4.1 Change the output file name

The names of the ROMization module file, load module file, hex file, archive file output by the build tool are set to the
following names by default.

"%ProjectName%" is an embedded macro. It is replaced to the project name.
ROMization module file name: romp.out
Load module file name: %ProjectName%.out
Hex file name: %ProjectName%.hex
Archive file name: %ProjectName%.a

The method to change these file names is shown below.

(1) When changing the ROMization module file name
Select the build tool node on the project tree and select the [ROMization Process Options] tab on the Property
panel. Enter the file name to be changed to on the [ROMized object file name] property in the [Output File]
category.

Figure 2-24. [ROMized object file name] Property (For ROMized Module File)

Remark You can also change the option in the same way with the [ROMized object file name] property in the
[Frequently Used Options(for ROMization)] category on the [Common Options] tab.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 43

(2) When changing the load module file name
Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. Enter the
file name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-25. [Output file name] Property (For Load Module File)

Remark You can also change the option in the same way with the [Output file name] property in the
[Frequently Used Options(for Link)] category on the [Common Options] tab.

(3) When changing the hex file name
Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel.
Enter the file name to be changed to on the [Hex file name] property in the [Output File] category.

Figure 2-26. [Hex file name] Property

Remark You can also change the option in the same way with the [Hex file name] property in the [Frequently
Used Options(for Hex Convert)] category on the [Common Options] tab.

(4) When changing the archive file name
Select the build tool node on the project tree and select the [Archive Options] tab on the Property panel. Enter
the file name to be changed to on the [Output file name] property in the [Output File] category.

Figure 2-27. [Output file name] Property (For Archive File)

2.4.2 Output an assemble list

The results of the assembly are output to the assembler list file.
Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel. To output

the assemble list, select [Yes(-a -l)] on the [Output assemble list file] property in the [Assemble List] category.

Figure 2-28. [Output assemble list file] Property

Remark See "3.1 Assembler" for the assemble list.

CHAPTER 2 FUNCTIONS

44 User’s Manual U19386EJ1V0UM

2.4.3 Output map information

Map information (information on the location of section) is output to the link map file.
Select the build tool node on the project tree and select the [Link Options] tab on the Property panel. To output the

link map file, select [Yes(-m)] on the [Output link map file] property in the [Link Map] category.

Figure 2-29. [Link Map] Category (For Map Information)

When outputting a link map file, you can set the output folder and output file name.

(1) Set the output folder
Setting the output folder is made with the [Output folder for link map file] property by directly entering to the text
box or by the [...] button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by
default. "%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name
Setting the output file is made with the [Link map file name] property by directly entering to the text box. Up to
259 characters can be specified in the text box. "%ProjectName%.map" is set by default. "%ProjectName%" is
an embedded macro. It is replaced to the project name.

Remark See "3.2 Linker" for map information.

2.4.4 Output symbol information

To output symbol information defined in the input module, use the -t option of the dump tool.
Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.
Set the -t option in the [Dump Tool] category. If you select [Yes] on the [Use dump tool] property, the [Additional

options for dump tool] property is displayed.

Figure 2-30. [Dump Tool] Category

Specify "-t" on the [Additional options for dump tool] property.

Remarks 1. See "(8) Symbol table" for symbol information to be output.
2. If "-t num" on the [Additional options for dump tool] property, the numth and greater symbol table

entries will be displayed. If "-v" is also specified, a value such as a section attribute can be
displayed as a string instead of a number.
See "B.8.2 Option" for details about the options.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 45

2.5 Set Compile Options

To set options for the compiler, select the Build tool node on the project tree and select the [Compile Options] tab on
the Property panel.

You can set the various compile options by setting the necessary properties in this tab.

Figure 2-31. Property Panel: [Compile Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Compile)] category on
the [Common Options] tab.

2.5.1 Perform optimization with the code size precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To perform optimization with the code size precedence, select [Level 2 Advanced Opt.(Code size precedence)(-Os)]

on the [Type of the optimization] property in the [Optimization] category ([Default Optimization(None)] is selected by
default).

CHAPTER 2 FUNCTIONS

46 User’s Manual U19386EJ1V0UM

Figure 2-32. [Type of the optimization] Property (Code Size Precedence)

Remarks 1. You can also set the option in the same way with the [Type of the optimization] property in the
[Frequently Used Options(for Compile)] category on the [Common Options] tab.

2. See "(3) Efficient use of optimization" for details about optimization.

2.5.2 Perform optimization with the execution speed precedence

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To perform optimization with the execution speed precedence, select [Level 2 Advanced Opt.(Speed precedence)(-

Ot)] on the [Type of the optimization] property in the [Optimization] category ([Default Optimization(None)] is selected
by default).

Figure 2-33. [Type of the optimization] Property (Execution Speed Precedence)

Remarks 1. You can also set the option in the same way with the [Type of the optimization] property in the
[Frequently Used Options(for Compile)] category on the [Common Options] tab.

2. See "(3) Efficient use of optimization" for details about optimization.

2.5.3 Add an include path

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-34. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 47

Figure 2-35. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to
64 line.

Remark You can also specify the include path via the [Browse...] button. Select the [Subfolders are automatically
included] check box before clicking the [Browse...] button to add all paths under the specified one (down
to 5 levels) to [Path(One path per one line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-36. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Additional include paths] property in the
[Frequently Used Options(for Compile)] category on the [Common Options] tab.

2.5.4 Set a macro definition

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

CHAPTER 2 FUNCTIONS

48 User’s Manual U19386EJ1V0UM

Figure 2-37. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

Figure 2-38. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can
specify up to 256 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is
used as the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-39. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the
subproperty.

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used
Options(for Compile)] category on the [Common Options] tab.

2.5.5 Enable C++ comments

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To enable C++ comments, select [Yes(-Xcxxcom)] on the [Use C++ style comment] property in the [Preprocess]

category (default).

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 49

Figure 2-40. [Use C++ style comment] Property

2.5.6 Reduce the code size (perform prologue/epilogue runtime calls)

It is possible to reduce the code size by performing a part of prologue/epilogue processing of the function based on
runtime library function calls. However, the execution time overhead will increase because the callt instruction
performs a runtime call.

Select the build tool node on the project tree and select the [Compile Options] tab on the Property panel.
To perform prologue/epilogue processing of the function based on runtime library function calls, select [Yes(-

Xpro_epi_runtime=on)] on the [Use prologue/epilogue library] property in the [Output Code] category.

Figure 2-41. [Use prologue/epilogue library] Property

2.5.7 Change the register mode

Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.
Select the register mode to on the [Select register mode] property in the [Register Mode] category.

Figure 2-42. [Select register mode] Property

You can select from the following register modes.

Remark See CubeSuite V850 Cording User's Manual for details about the register mode.

Register Mode Working Registers Registers for Register Variables

32-register mode(None) (default) r10 to r19 r20 to r29

26-register mode(-reg26) r10 to r16 r23 to r29

22-register mode(-reg22) r10 to r14 r25 to r29

CHAPTER 2 FUNCTIONS

50 User’s Manual U19386EJ1V0UM

2.6 Set Assemble Options

To set options for the assembler, select the Build tool node on the project tree and select the [Assemble Options] tab
on the Property panel.

You can set the various assemble options by setting the necessary properties in this tab.

Figure 2-43. Property Panel: [Assemble Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Assemble)] category on
the [Common Options] tab.

2.6.1 Add an include path

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.
The include path setting is made with the [Additional include paths] property in the [Preprocess] category.

Figure 2-44. [Additional include paths] Property

If you click the [...] button, the Path Edit dialog box will open.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 51

Figure 2-45. Path Edit Dialog Box

Enter an include path per line in [Path(One path per one line)]. You can specify up to 259 characters per line, up to
64 line.

Remark You can also specify the include path via the [Browse...] button. Select the [Subfolders are automatically
included] check box before clicking the [Browse...] button to add all paths under the specified one (down
to 5 levels) to [Path(One path per one line)].

If you click the [OK] button, the entered include paths are displayed as subproperties.

Figure 2-46. [Additional include paths] Property (After Adding Include Paths)

To change the include paths, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Additional include paths] property in the
[Frequently Used Options(for Assemble)] category on the [Common Options] tab.

2.6.2 Set a macro definition

Select the build tool node on the project tree and select the [Assemble Options] tab on the Property panel.
The macro definition setting is made with the [Macro definition] property in the [Preprocess] category.

Figure 2-47. [Macro definition] Property

If you click the [...] button, the Text Edit dialog box will open.

CHAPTER 2 FUNCTIONS

52 User’s Manual U19386EJ1V0UM

Figure 2-48. Text Edit Dialog Box

Enter the macro definition in the format of "macro name=defined value", with one macro name per line. You can
specify up to 31 characters per line, up to 30 line. The "=defined value" part can be omitted, and in this case, "1" is
used as the defined value.

If you click the [OK] button, the entered macro definitions are displayed as subproperties.

Figure 2-49. [Macro definition] Property (After Setting Macros)

To change the macro definitions, you can use the [...] button or enter the path directly in the text box of the
subproperty.

Remark You can also set the option in the same way with the [Macro definition] property in the [Frequently Used
Options(for Assemble)] category on the [Common Options] tab.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 53

2.7 Set Link Options

To set options for the linker, select the Build tool node on the project tree and select the [Link Options] tab on the
Property panel.

You can set the various link options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-50. Property Panel: [Link Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Link)] category on the
[Common Options] tab.

2.7.1 Add a user library

Select the build tool node on the project tree and select the [Link Options] tab on the Property panel.
Adding a user library is made with the [Using libraries] property in the [Library] category.

Figure 2-51. [Using libraries] Property

If you click the [...] button, the Text Edit dialog box will open.

CHAPTER 2 FUNCTIONS

54 User’s Manual U19386EJ1V0UM

Figure 2-52. Text Edit Dialog Box

In the [Text], specify only the "string" part of the library file name "libstring.a" (example: if you specify "user",
"libuser.a" is assumed to be specified). Add one item in one line. You can specify up to 63 characters per line, up to
256 line.

If you click the [OK] button, the entered library files are displayed as subproperties.

Figure 2-53. [Using libraries] Property (After Setting Library Files)

To change the library files, you can use the [...] button or enter the path directly in the text box of the subproperty.

Remark You can also set the option in the same way with the [Using libraries] property in the [Frequently Used
Options(for Link)] category on the [Common Options] tab.

The library files are searched from the library path. To add a library path, set the [Additional library paths] property.

Caution Library files can also be linked by adding them directly to the project. In this case, the library
files are not searched from the library paths because they are linked directly via their absolute
paths.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 55

2.8 Prepare for Implementing Boot-Flash Relink Function

Depending on the system, in addition to the area which cannot be rewritten/replaced (boot area), there are
occasions when you can use the area which can be rewritten/replaced (flash area), such as the flash or external ROM.

In these kinds of systems, when you wish to change the program in the flash area, a function called the "relink
function" correctly performs function calls between the boot area and flash area without rebuilding the program in the
boot area.

By creating load module files for the boot area and flash area, you can implement the relink function. The method to
implement the relink function is shown below.

Remark See "B.3.3 Boot-flash relink function" for details about the relink function and how to implement it.

2.8.1 Prepare the build target files

(1) Prepare the link directive files
Prepare link directive files for the projects for both the boot area and flash area.

Remark You can use the same link directive file with the boot area and flash area, but since the description
will become complicated, it is recommend to use a separate link directive file for each area.

(2) Describe the .ext_func quasi directive
Describe the .ext_func quasi directive in the assembler source file.
With the .ext_func directive, specify the ID value for the target function (the actual function exists in the flash
area and is called from the boot area).

Remark In order to prevent description mistakes and inconsistencies between source files, it is recommend
that you organize the .ext_func directive description in a single file, and regardless of the boot area
or flash area, include that file in all the assembler source files using the .include directive.

2.8.2 Set the boot area project

(1) Create the boot area project
Create a project for the boot area and add the build target files to the project.
Add the startup routine to the Startup node.

Figure 2-54. Boot Area Project

CHAPTER 2 FUNCTIONS

56 User’s Manual U19386EJ1V0UM

(2) Set the build options for the boot area project
Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Set
the build options in the [Flash] category.
If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and [Object file
type] property are displayed.

Figure 2-55. [Flash] Category in Boot Area

Specify the start address of the branch table (address in the flash area) in the [Branch table address] property.
The range that can be specified for the value is 0x0 to 0xffffffff (hexadecimal). "0x0" is set by default.
Also, select [Boot area object file(None)] on the [Object file type] property.

(3) Run a build of the boot area project
When you run a build of the boot area project, a load module file is created.

Figure 2-56. Created Files for Boot Area

2.8.3 Set the flash area project

(1) Create the flash area project
Create a project for the boot area and add the build target files to the project.
Add the startup routine to the Startup node.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 57

Figure 2-57. Flash Area Project

(2) Set the build options for the flash area project
Select the build tool node on the project tree and select the [Common Options] tab on the Property panel. Set
the build options in the [Flash] category.
If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and [Object file
type] property are displayed.

Figure 2-58. [Flash] Category in Flash Area

Specify the start address of the branch table (same as the address specified in the boot area project) in the
[Branch table address] property.
If you select [Flash area object file(-Wa, -zf)] on the [Object file type] property, the [Boot area object file name]
property are displayed. Specify the boot area object file.

Caution Specify an object output by the linker. An error occurs if an object output by the ROMization
processor is specified.

(3) Run a build of the flash area project
When you run a build of the flash area project, a load module file which implements the relink function is
created.

CHAPTER 2 FUNCTIONS

58 User’s Manual U19386EJ1V0UM

Figure 2-59. Created Files for Flash Area

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 59

2.9 Set ROMization Process Options

To set options for the ROMization processor, select the Build tool node on the project tree and select the
[ROMization Process Options] tab on the Property panel.

You can set the various ROMization processor options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-60. Property Panel: [ROMization Process Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for ROMization)] category
on the [Common Options] tab.

2.9.1 Create an object for ROMization

The following procedure shows how to create an object for ROMization using the ROMization area reservation code
(rompcrt.o) that is provided as the default object.

The ROMization processor is a tool that takes default value information for variables in data-attribute sections as
well as programs allocated to RAM and packs them into a single section. By default, this section becomes the
"rompsec section". By allocating the rompsec section to ROM and calling the copy function, it is possible to deploy
default value information and programs into RAM.

Remark See “B.4.3 Creating object for ROMization” for details about the method of creating the ROMization
object.

(1) Call a copy function within the application
In the program, specify the section you want to copy from ROM to RAM using the copy function (_rcopy,
_rcopy1, _rcopy2 and _rcopy4).
Specify the label "__S_romp" (label defined in rompcrt.o) which indicates the start address of the rompsec
section as the first argument of the copy function.

Remark Call the copy function as early as possible in the program, such as within the startup routine or at the
start of the main function.

(2) Create a link directive
During ROMization, a rompsec section is added immediately after the .text section. By allocating the .text
section to the end of ROM in the link directive, the rompsec section up to the end of ROM can be allocated.

(3) Set ROMization process options
Select the build tool node on the project tree and select the [ROMization Process Options] tab on the Property
panel.

CHAPTER 2 FUNCTIONS

60 User’s Manual U19386EJ1V0UM

(a) Configure the object for ROMization output
To create the object for ROMization, select [Yes(-Xr -lr)] on the [Output ROMized object file] property in the
[Output File] category.

Figure 2-61. [Output ROMized object file] Property

When outputting a ROMized object file, you can set the output folder and output file name.

<1> Set the output folder
Setting the output folder is made with the [Output folder for ROMized object file] property by directly
entering to the text box or by the [...] button. Up to 259 characters can be specified in the text box.
"%BuildModeName%" is set by default. "%BuildModeName%" is an embedded macro. It is replaced
to the build mode name.

<2> Set the output file name
Setting the output file is made with the [ROMized object file name] property by directly entering to the
text box. Up to 259 characters can be specified in the text box. "romp.out" is set by default.

(b) Configure using the standard ROMization area reservation code file
To use the standard ROMization area reservation code file, set the [Use standard ROMization area
reservation code file] property to [Yes] (default).

Figure 2-62. [Use standard ROMization area reservation code file] Property

(4) Run a build
By running a build, the code that specifies "__S_romp" as the label indicating the start address of the rompsec
section is generated, and the ROMization area reservation code (rompcrt.o) and ROMization library that stores
the _rcopy function (libr.a) are linked. Finally, the ROMization object file will be generated from the generated
load module file.
If [Yes] on the [Output hex file] property in the [Output File] category from the [Hex Convert Options] tab on the
Property panel is selected, a hex file is also generated.

Figure 2-63. [Output hex file] Property

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 61

2.10 Set Hex Convert Options

To set options for the hex converter, select the Build tool node on the project tree and select the [Hex Convert
Options] tab on the Property panel.

You can set the various hex converter options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-64. Property Panel: [Hex Convert Options] Tab

Remark Often used options have been gathered under the [Frequently Used Options(for Hex Convert)] category
on the [Common Options] tab.

2.10.1 Set the output of a hex file

Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel.
The setting to output a hex file is made with the [Output hex file] property in the [Output File] category. To output a

hex file, select [Yes] (default), to not output a hex file, select [No].

Figure 2-65. [Output hex file] Property

When outputting a hex file, you can set the output folder and output file name.

(1) Set the output folder
Setting the output folder is made with the [Output folder for hex file] property by directly entering to the text box
or by the [...] button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by
default. "%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

CHAPTER 2 FUNCTIONS

62 User’s Manual U19386EJ1V0UM

(2) Set the output file name
Setting the output file is made with the [Hex file name] property by directly entering to the text box. Up to 259
characters can be specified in the text box. "%ProjectName%.hex" is set by default. "%ProjectName%" is an
embedded macro. It is replaced to the project name.

You can also set the format of the hex file.
Select the format on the [Hex file format] property in the [Hex Format] category.

Figure 2-66. [Hex file format] Property

You can select any of the formats below.

Remark See "3.3 Hex Converter" for details about the hex file format.

Format Configuration

Intel expanded hex format(-fI)

(default)

Start address record, expanded address record, data record, and end
record

Motorola S type format(standard address)(-fS) S0 record as a header record, S2 record as data record, and S8 record as
end record

Motorola S type format(32-bit address)(-fs) S0 record as a header record, S3 record as data record, and S7 record as
end record

Expanded Tektronix hex format(-fT) Data block, symbol block, and termination block

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 63

2.10.2 Fill the vacant area

Select the build tool node on the project tree and select the [Hex Convert Options] tab on the Property panel.
The setting to fill the vacant area is made with the [HEX Format] category. If you select [Yes(-U)] on the [Specify

converted address range] property, the [Filling value] property is displayed.

Figure 2-67. [Hex Format] Category

Enter the fill value for the vacant area directly to the text box. The range that can be specified for the value is 0x00
to 0xFF (hexadecimal). "0xFFFF" is set by default.

Set the address range of the area to be converted to a hex file. The range that can be specified for the value is 0x0
to the maximum value of the address that can be handled by the device (hexadecimal) for the [Start address] property,
0x1 to the maximum value of the address that can be handled by the device (hexadecimal) for the [Size] property. By
default, the start address and size of the internal ROM area defined in the device file are set.

CHAPTER 2 FUNCTIONS

64 User’s Manual U19386EJ1V0UM

2.11 Set Archive Options

To set options for the archiver, select the Build tool node on the project tree and select the [Archive Options] tab on
the Property panel.

You can set the various archive options by setting the necessary properties in this tab.

Caution This tab is displayed only for library projects.

Figure 2-68. Property Panel: [Archive Options] Tab

2.11.1 Set the output of an archive file

Select the build tool node on the project tree and select the [Archive Options] tab on the Property panel.
The setting to output an archive file is made with the [Output File] category.

Figure 2-69. [Output File] Category

(1) Set the output folder
Setting the output folder is made with the [Output folder] property by directly entering to the text box or by the
[...] button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by default.
"%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name
Setting the output file is made with the [Output file name] property by directly entering to the text box. Up to 259
characters can be specified in the text box. "%ProjectName%.a" is set by default. "%ProjectName%" is an
embedded macro. It is replaced to the project name.
Add "lib" to the head of the output file name, naming the file "lib%ProjectName%.a" so that it can be specified in
the link options.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 65

2.12 Set Section File Generate Options

To set options for the section file generator, select the Build tool node on the project tree and select the [Section File
Generate Options] tab on the Property panel.

You can set the various section file generate options by setting the necessary properties in this tab.

Figure 2-70. Property Panel: [Section File Generate Options] Tab

2.12.1 Automatically allocate variables through static analysis

To allocate variables automatically through static analysis, use the section file generator. This tool generates a
section file (a file defining the sections to which external variables are allocated). Variables will be allocated to the
specified sections by performing compilation using that file.

Select the build tool node on the project tree and select the [Section File Generate Options] tab on the Property
panel.

In the [Output File] category, set the [Use section file generator] property to [Yes] to generate an empty section file,
and add it to the project (it will also appear in the File node of the project tree). The output destination is the file set in
the [Output folder for section file] property and the [Section file name] property.

Remark If a section file with the same name already exists, the build will be configured to use it.

Figure 2-71. [Use section file generator] Property

CHAPTER 2 FUNCTIONS

66 User’s Manual U19386EJ1V0UM

Figure 2-72. Project Tree Panel (After Generating Section File)

Remark See "3.4 Section File Generator" for details about the format of the section file to be generated.

The settings of the output folder and file of the section file are can be changed.

(1) Set the output folder
Setting the output folder is made with the [Output folder for section file] property by directly entering to the text
box or by the [...] button. Up to 259 characters can be specified in the text box. "%BuildModeName%" is set by
default. "%BuildModeName%" is an embedded macro. It is replaced to the build mode name.

(2) Set the output file name
Setting the output file is made with the [Section file name] property by directly entering to the text box. Up to 259
characters can be specified in the text box. "%ProjectName%.sf" is set by default. "%ProjectName%" is an
embedded macro. It is replaced to the project name.
If this property is changed, an empty section file is generated and added to the project (it will also appear in the
File node of the project tree).

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 67

2.13 Set Dump Options

To set options for the dump tool, select the Build tool node on the project tree and select the [Dump Options] tab on
the Property panel.

You can set the various dump options by setting the necessary properties in this tab.

Figure 2-73. Property Panel: [Dump Options] Tab

2.13.1 Use the dump tool

Using the dump tool, you can output information such as the address, attribute, and symbol name of a section/
segment in the object file and archive file.

Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.
To use the dump tool, select [Yes] on the [Use dump tool] property in the [Dump] category ([No] is selected by

default).

Figure 2-74. [Use dump tool] Property

Remark See "3.5 Dump Tool " for details about the information output by the dump tool.

2.13.2 Reference the section information

To output section information defined in the input module, use the -h option of the dump tool.
Select the build tool node on the project tree and select the [Dump Options] tab on the Property panel.
Set the -h option in the [Dump Tool] category. If you select [Yes] on the [Use dump tool] property, the [Additional

options for dump tool] property is displayed.

Figure 2-75. [Dump Tool] Category

Specify "-h" on the [Additional options for dump tool] property.

Remark See "3.5 Dump Tool" for section information to be output.

CHAPTER 2 FUNCTIONS

68 User’s Manual U19386EJ1V0UM

2.14 Set Cross Reference Options

To set options for the cross reference tool, select the Build tool node on the project tree and select the [Cross
Reference Options] tab on the Property panel.

You can set the various cross reference options by setting the necessary properties in this tab.

Figure 2-76. Property Panel: [Cross Reference Options] Tab

2.14.1 Use the cross reference tool

Using the cross reference tool, you can take all the C source files registered to the project as an input and output all
information (cross reference information, tag jump information, call tree, function metrics and call database) to the files
in text format and CSV format.

Select the build tool node on the project tree and select the [Cross Reference Options] tab on the Property panel.
To use the cross reference tool, select [Yes] on the [Use cross reference tool] property in the [Cross Reference Tool]

category ([No] is selected by default).

Figure 2-77. [Use cross reference tool] Property

Remark See "3.7 Cross Reference Tool " for details about the information output by the cross reference tool.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 69

2.15 Set Memory Layout Visualization Options

To set options for the memory layout visualization tool, select the Build tool node on the project tree and select the
[Memory Layout Visualization Options] tab on the Property panel.

You can set the various memory layout visualization options by setting the necessary properties in this tab.

Caution This tab is not displayed for library projects.

Figure 2-78. Property Panel: [Memory Layout Visualization Options] Tab

2.15.1 Use the memory layout visualization tool

Using the memory layout visualization, you can take an object file (*.out) as an input and output a memory map table
(memory map information of variables) to the files in text format and CSV format.

Select the build tool node on the project tree and select the [Memory Layout Visualization Options] tab on the
Property panel.

To use the memory layout visualization tool, select [Yes] on the [Use memory layout visualization tool] property in the
[Memory Layout Visualization Tool] category ([No] is selected by default).

Figure 2-79. [Use memory layout visualization tool] Property

Remark See "3.8 Memory Layout Visualization Tool" for details about the memory map table.

CHAPTER 2 FUNCTIONS

70 User’s Manual U19386EJ1V0UM

2.16 Set Build Options Separately

Build options are set at the project or file level.
- Project level: See "2.16.1 Set build options at the project level"
- Project level: See "2.16.2 Set build options at the file level"

2.16.1 Set build options at the project level

To set options for build options for a project (main project or subproject), select the Build tool node on the project tree
to display the Property panel.

Select the component tabs, and set build options by setting the necessary properties.
- Compiler: [Compile Options] tab
- Assembler: [Assemble Options] tab
- Linker: [Link Options] tab
- ROMization processor: [ROMization Process Options] tab
- Hex converter: [Hex Convert Options] tab
- Archiver: [Archive Options] tab
- Section file generator: [Section File Generate Options] tab
- Dump tool: [Dump Options] tab
- Cross reference tool: [Cross Reference Options] tab
- Memory layout visualization tool: [Memory Layout Visualization Options] tab

2.16.2 Set build options at the file level

You can individually set compile and assemble options for each source file added to the project.

(1) When setting compile options for a C source file
Select a C source file on the project tree and select the [Build Settings] tab on the Property panel. In the [Build]
category, if you select [Yes] on the [Set individual compile option] property, the following tab is displayed.

Figure 2-80. [Set individual compile option] Property

Figure 2-81. Message Dialog Box

If you click the [Yes] button in the dialog box, the [Individual Compile Options] tab will be displayed.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 71

Figure 2-82. Property Panel: [Individual Compile Options] Tab

You can set compile options for the C source file by setting the necessary properties in this tab. Note that this
tab takes over the settings of the [Compile Options] tab by default.

(2) When setting assemble options for an assembler source file
Select an assembler source file on the project tree and select the [Build Settings] tab on the Property panel. In
the [Build] category, if you select [Yes] on the [Set individual assemble option] property, the following tab is
displayed.

Figure 2-83. [Set individual assemble option] Property

CHAPTER 2 FUNCTIONS

72 User’s Manual U19386EJ1V0UM

Figure 2-84. Message Dialog Box

If you click the [Yes] button in the dialog box, the [Individual Assemble Options] tab will be displayed.

Figure 2-85. Property Panel: [Individual Assemble Options] Tab

You can set assemble options for the assembler source file by setting the necessary properties in this tab. Note
that this tab takes over the settings of the [Assemble Options] tab by default.

Remark You can also set assemble options for assembler source files created from C source files. Select a
C source file on the project tree and select the [Individual Compile Options] tab on the Property
panel. If you select [Yes(-Fs)] on the [Output assemble file] property in the [Output File] category, the
[Individual Assemble Options] tab is displayed.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 73

2.17 Make Settings for Build Operations

This section explains operations on a build.
- Set the link order of files
- Change the file build order of subprojects
- Display a list of build options
- Change the file build target project
- Add a build mode
- Change the build mode
- Delete a build mode
- Set the current build options as the standard for the project

2.17.1 Set the link order of files

The link order of object module files and library files is decided automatically, but you can also set the order.
On the project tree, select the Build tool node, and then select [Set Link Order...] from the context menu. The Link

Order dialog box opens.

Figure 2-86. Link Order Dialog Box

The names of the following files are listed in [File] in the order that the files are input to the linker.
- Object module files generated from the source files added to the selected main project or subproject
- Object module files added directly to the project tree of the selected main project or subproject
- Library files added directly to the project tree of the selected main project or subproject

Remark The default order is the order the files are added to the project.
Object module files created from newly added source files and newly added object module files are
added after the last object module file in the list. Newly added library files are added to the end of the list.

By changing the display order of the files, you can set the input order of the files to the linker.
To change the display order, use the [Up] and [Down] buttons, or drag and drop the file names. After changing the

display order, click the [OK] button.

CHAPTER 2 FUNCTIONS

74 User’s Manual U19386EJ1V0UM

2.17.2 Change the file build order of subprojects

Builds are run in the order of subproject, main project, but when there are multiple subprojects added, the build order
of subprojects is their display order on the project tree.

To change the display order of the subprojects on the project tree, drag the subproject to be moved and drop it on
the desired location.

2.17.3 Display a list of build options

You can display the list of build options set currently on the Property panel for the project (main project and
subproject).

If you select [Build Options List] from the [Build] menu, the current settings of the options for the project are
displayed on the [Build Tool] tab from the Output panel in the build order.

Remark You can change the display format of the build option list.
Select the build tool node on the project tree and select the [Common Options] tab on the Property panel.
Set the [Format of build option list] property in the [Others] category.

Figure 2-87. [Format of build option list] Property

“%FileName% : "%FileName% : %Program% %Options%" is set by default.
"%FileName%", "%Program%", and "%Options%" are embedded macros. They are replaced to the file name
being built, program name under execution, and command line option under build execution.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 75

2.17.4 Change the file build target project

When running a build that targets a specific project (main project or subproject), you must set that project as the
"active project".

To set the active project, select the main project or subproject to be set as the active project on the project tree and
select [Set selected subproject as Active Project] from the context menu.

Figure 2-88. [Set selected project as Active Project] Item

When a project is set as the active project, that project is underlined.

Figure 2-89. Active Project

Remarks 1. Immediately after creating a project, the main project is the active project.
2. When you remove a subproject that set as the active project from a project, the main project will be

the active project.

CHAPTER 2 FUNCTIONS

76 User’s Manual U19386EJ1V0UM

2.17.5 Add a build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can
collectively change those settings. Build options and macro definition settings are organized into what is called "build
mode", and by changing the build mode, you eliminate the necessity of changing the build options and macro definition
settings every time.

The build mode prepared by default is only "DefaultBuild". Add a build mode according to the purpose of the build.
Adding a build mode is performed with the procedure below.

(1) Create a new build mode
Creating a new build mode is performed with duplicating an existing build mode.
Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

Figure 2-90. Build Mode Settings Dialog Box

Select the build mode to be duplicated from the build mode list and click the [Duplicate...] button. The Character
String Input dialog box opens.

Figure 2-91. Character String Input Dialog Box

In the dialog box, enter the name of the build mode to be created and then click the [OK] button. The build
mode with that name will be duplicated. The created build mode is added to the build modes of the main project
and all the subprojects which belong to the project.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 77

Figure 2-92. Build Mode Settings Dialog Box (After Adding Build Mode)

(2) Change the build mode
Change the build mode to the newly created build mode (see "2.17.6 Change the build mode").

(3) Change the setting of the build mode
Select the build tool node on the project tree and change the build options and macro definition settings on the
Property panel.

Remark Creating a build mode is regarded a project change. When closing the project, you will be asked to
confirm whether or not to save the build mode.

2.17.6 Change the build mode

When you wish to change the build options and macro definitions according to the purpose of the build, you can
collectively change those settings. Build options and macro definition settings are organized into what is called "build
mode", and by changing the build mode, you eliminate the necessity of changing the build options and macro definition
settings every time.

(1) When changing the build mode for the main project or subprojects
Select the Build tool node of the target project on the project tree and select the [Common Options] tab on the
Property panel. Select the build mode to be changed to on the [Build mode] property in the [Build Mode]
category.

Figure 2-93. [Build Mode] Property

(2) When changing the build mode for the entire project
Select [Build Mode Settings...] from the [Build] menu. The Build Mode Settings dialog box opens.

CHAPTER 2 FUNCTIONS

78 User’s Manual U19386EJ1V0UM

Figure 2-94. Build Mode Settings Dialog Box

If you select the build mode to be changed from the build mode list, the selected build mode is displayed in
[Selected build mode]. If you click the [Apply to All] button, the build mode for the main project and all the
subprojects which belong to the project will be changed to the build mode selected in the dialog box.

Caution For projects that the selected build mode does not exist, the build mode is duplicated from
"DefaultBuild" with the selected build mode name, and the build mode is changed to the
duplicated build mode.

Remarks 1. The build mode prepared by default is only "DefaultBuild". See "2.17.5 Add a build mode" for the
method of adding a build mode.

2. You can change the name of the build mode by selecting the build mode from the build mode list and
clicking the [Rename...] button. However, you cannot change the name of "DefaultBuild".

2.17.7 Delete a build mode

Deleting a build mode is performed with the Build Mode Settings dialog box.
Select [Build Mode Settings...] from the [Build] menu. The dialog box opens.

Figure 2-95. Build Mode Settings Dialog Box

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 79

Select the build mode to be deleted from the build mode list and click the [Delete] button. The Message dialog box
below opens.

Figure 2-96. Message Dialog Box

To continue with the operation, click the [OK] button in the dialog box.
The selected build mode is deleted from the project.

Caution You cannot delete "DefaultBuild".

CHAPTER 2 FUNCTIONS

80 User’s Manual U19386EJ1V0UM

2.17.8 Set the current build options as the standard for the project

On the Property panel, if you add a change to the settings for the standard build options, the value of the property
will be displayed in boldface.

Figure 2-97. Property Panel (After Changing Standard Build Option)

To make the build options for the currently selected project (main project or subproject) the standard build options
(remove the boldface), select the Build tool node on the project tree and select [Set to Default Build Option for Project]
from the context menu.

Figure 2-98. [Set to Default Build Option for Project] Item

The value of the properties after setting them as the standard build option are as shown below.

Figure 2-99. Property Panel (After Setting Standard Build Option)

Caution When the main project is selected, only the main project settings are made. Even if subprojects
are added, their settings are not made.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 81

2.18 Run a Build

This section explains operations related to running a build.

(1) Build types
The following types of builds are available.

Table 2-1. Build Types

Remarks 1. Builds are run in the order of subproject, main project.
Subprojects are built in the order that they are displayed on the project tree (see "2.17.2
Change the file build order of subprojects").

2. If there are files being edited with the Editor panel when running a build, rebuild, or batch build,
then all these files are saved.

(2) Display execution results
The execution results of the build (output messages of the build tool) are displayed in each tab on the Output
panel.

- Build, rebuild, or batch build: [All Messages] tab and [Build Tool] tab
- Rapid build: [Rapid Build] tab

Figure 2-100. Build Execution Results (Build, Rebuild, or Batch Build)

Type Description

Build Out of build target files, runs a build of only updated files.

See "2.18.1 Run a build of updated files"

Rebuild Runs a build of all build target files.

See "2.18.2 Run a build of all files".

Rapid build Runs a build in parallel with other operations.

See "2.18.3 Run a build in parallel with other operations".

Batch build Runs builds in batch with the build modes that the project has.

See "2.18.4 Run builds in batch with build modes".

CHAPTER 2 FUNCTIONS

82 User’s Manual U19386EJ1V0UM

Figure 2-101. Build Execution Results (Rapid Build)

Remarks 1. The text in the [Rapid Build] tab becomes dimmed.
2. When a file name or line number can be obtained from the output messages, if you double click

on the message, you can jump to the relevant line in the file.
3. If you press the [F1] key when the cursor is on a line displaying the warning or error message,

you can display the online help related to that line's message.

Files generated by the build tool appear on the Project Tree panel, under the Build tool generated files node.

Figure 2-102. Build Tool Generated Files

Remark Files displayed under the Build tool generated files node are as follows.
- For other than library projects

Load module file (*.out)
Link map file (*.map)
Hex file (*.hex)
Dump list (dump.txt)
Cross reference information (cxref)
Tag information (ctags)
Call tree information (ccalltre.csv, ccalltre.lst)
Function metrics information (cmeasure.csv, cmeasure.lst)
Call database information (cprofile.csv, cprofile.dat)
Memory map table (rammap.csv)

- For library projects
Archive file (*.a)

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 83

Dump list (dump.txt)
Cross reference information (cxref)
Tag information (ctags)
Call tree information (ccalltre.csv, ccalltre.lst)
Function metrics information (cmeasure.csv, cmeasure.lst)
Call database information (cprofile.csv, cprofile.dat)

Caution The Build tool generated files node is created during build.
This node will no longer appear if you reload the project after building.

CHAPTER 2 FUNCTIONS

84 User’s Manual U19386EJ1V0UM

2.18.1 Run a build of updated files

Out of build target files, run a build of only updated files (hereafter referred to as "build").
Running a build is performed for the entire project (main project and subprojects) or active project (see "2.17.4

Change the file build target project").

(1) When running a build of the entire project
Click on the toolbar.

(2) When running a build of the active project
Select the project, and then select [Build active project] from the context menu.

Figure 2-103. [Build active project] Item

Remark If the included source files are not built after editing the header file and running the build, update the file
dependencies (see "2.3.8 Update file dependencies").

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 85

2.18.2 Run a build of all files

Run a build of all build target files (hereafter referred to as "rebuild").
Running a rebuild is performed for the entire project (main project and subprojects) or active project (see "2.17.4

Change the file build target project").

(1) When running a rebuild of the entire project
Click on the toolbar.

(2) When running a rebuild of the active project
Select the project, and then select [Rebuild active project] from the context menu.

Figure 2-104. [Rebuild active project] Item

2.18.3 Run a build in parallel with other operations

CubeSuite has a function that a build is started automatically when one of the following events occurs (hereafter
referred to as "rapid build").

- When C source files, assembler source files, or header files that has been added to the project are saved
- When a build target file has been added to or removed from the project
- When the link order of object module files and library files has changed
- When the properties of the build tool or build target files are changed

(except, however, when the properties of [Dump Options] tab, [Cross Reference Options] tab, and [Memory
Layout Visualization Options] tab are changed)

If a rapid build is enabled, it is possible to perform a build in parallel with the above operations.
To enable/disable a rapid build, select [Rapid Build] from the [Build] menu. A rapid build is enabled by default.

CHAPTER 2 FUNCTIONS

86 User’s Manual U19386EJ1V0UM

Figure 2-105. [Rapid Build] Item (When Rapid Build Is Valid)

Figure 2-106. [Rapid Build] Item (When Rapid Build Is Invalid)

Remarks 1. After editing source files, it is recommend to save frequently by pressing the [Ctrl] + [S] key.
2. Enabling/disabling a rapid build is set for the entire project (main project and subprojects).
3. If you disable a rapid build while it is running, it will be stopped at that time.

Caution This function is valid only when editing source files with the Editor panel.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 87

2.18.4 Run builds in batch with build modes

You can run builds, rebuilds and cleans in batch with the build modes that the project (main project and subproject)
has (hereafter referred to as "batch build").

Remark See the sections below for a build, rebuild, and clean.
- Build: See "2.18.1 Run a build of updated files".

- Rebuild: See "2.18.2 Run a build of all files".

- Clean: See "2.18.8 Delete intermediate files and generated files".

Select [Batch Build] from the [Build] menu. The Batch Build dialog box opens.

Figure 2-107. Batch Build Dialog Box

In the dialog box, the list of the combinations of the names of the main project and subprojects in the currently
opened project and their build modes and macro definitions is displayed.

Select the check boxes for the combinations of the main project and subprojects and build modes that you wish to
run a batch build, and then click the [Build], [Rebuild], or [Clean] button.

Remark The batch build order follows the project build order, the order of the subprojects, main project.
When multiple build modes are selected for a single main project or subproject, after running builds of
the subproject with all the selected build modes, the build of the next subproject or main project is run.

CHAPTER 2 FUNCTIONS

88 User’s Manual U19386EJ1V0UM

2.18.5 Compile/assemble individual files

You can just compile or assemble for each source file added to the project.

(1) When compiling a C source file
Select a C source file on the project tree and select the [Compile] from the context menu.

Figure 2-108. [Compile] Item

(2) When assembling an assembler source file
Select an assembler source file on the project tree and select the [Assemble] from the context menu.

Figure 2-109. [Assemble] Item

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 89

2.18.6 Stop running a build

To stop running a build, rebuild, or batch build, click on the toolbar.

2.18.7 Save the build results to a file

You can save the execution results of the build (output messages of the build tool) that displayed on the Output
panel.

Select the [Build Tool] tab on the panel, and then select [Save Output - Build Tool As...] from the [File] menu. The
Save As dialog box opens.

Figure 2-110. Save As Dialog Box

In the dialog box, specify the file to be saved and then click the [Save] button.

CHAPTER 2 FUNCTIONS

90 User’s Manual U19386EJ1V0UM

2.18.8 Delete intermediate files and generated files

You can delete all the intermediate files and generated files output by running a build (hereafter referred to as
"clean").

Running a clean is performed for the entire project (main project and subprojects) or active project (see "2.17.4
Change the file build target project").

(1) When running a clean of the entire project
From the [Build] menu, select [Clean Project].

Figure 2-111. [Clean Project] Item

(2) When running a clean of the active project
Select the project, and then select [Clean active project] from the context menu.

Figure 2-112. [Clean active project] Item

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 91

2.19 Using Stack Usage Tracer

The stack usage tracer performs a static analysis, and displays the functions called by a function in a tree format, as
well as stack information for each function (function name, total stack size, frame size, additional margin, and file
name) in list format.

2.19.1 Starting and exiting

To start the stack usage tracer, from the Main window, select the [Tool] menu >> [Startup Stack Usage Tracer].
After the stack usage tracer finishes starting up, it will display the function call relationship and stack information for

each function in the tree display area/list display area of the Stack Usage Tracer window.

Figure 2-113. Starting Up Stack Usage Tracer

To exit the stack usage tracer, from the Stack Usage Tracer window, select [File] menu >> [Exit sk850].

CHAPTER 2 FUNCTIONS

92 User’s Manual U19386EJ1V0UM

2.19.2 Check the call relationship

You can check the function-call relationship in the tree display area of the Stack Usage Tracer window.

Figure 2-114. Tree Display Area

Remark The table below shows the meaning of the icon displayed to the left of the string representing the function
name.
The display priority for icons is from High: to Low: .

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been modified via the Adjust
Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 93

2.19.3 Check the stack information

You can check the stack information (function name, total stack size, frame size, additional margin, and file name)
from the list display area of the Stack Usage Tracer window.

- Total stack size (including stack size of callee functions)
- Frame size (not including stack size of callee functions)
- Additional margin (value mandatorily added to frame size)

Figure 2-115. List Display Area

Remark If you make changes to the project that will affect the total stack size while the stack usage tracer is run-
ning (e.g. you edit the files in your project so that the total stack size changes), then after rebuilding the
project, click the button to update the display.

CHAPTER 2 FUNCTIONS

94 User’s Manual U19386EJ1V0UM

2.19.4 Check unknown functions

You can check functions for which the stack usage tracer could not obtain stack information in the Stack Size
Unknown / Adjusted Function Lists dialog box, under [Unknown Functions].

Figure 2-116. Stack Size Unknown / Adjusted Function Lists Dialog Box

Remark Functions will appear under [Unknown Functions] in the following circumstances.
- The frame size could not be measured.
- A recursive function for which the recursion depth has not been set in the Adjust Stack Size dialog box.
- The function includes indirect function calls which are not set as callee functions in the Adjust Stack

Size dialog box.

CHAPTER 2 FUNCTIONS

User’s Manual U19386EJ1V0UM 95

2.19.5 Change the frame size

You can dynamically change the frame size of functions for which the stack usage tracer was not able to obtain stack
information, or for functions that you intentionally want to modify, using the Adjust Stack Size dialog box or a stack size
specification file.

(1) Using the Adjust Stack Size dialog box
The procedure for using the Adjust Stack Size dialog box is as follows.

- Select the desired item in the tree display area of the Stack Usage Tracer window, then click toolbar >>
 . The Adjust Stack Size dialog box opens.

Figure 2-117. Adjust Stack Size Dialog Box

- After setting [Additional Margin], [Recursion Depth], and [Callee Functions], click [OK].

CHAPTER 2 FUNCTIONS

96 User’s Manual U19386EJ1V0UM

(2) Using a stack size specification file
Below is the procedure for using a stack size specification file.

- Create a stack size specification file
Write the functions in the stack size specification file that you would like to set dynamically, using the
following format.

function name [, ADD=additional margin] [, RECTIME=recursion depth] [, CALL=callee function] ...

Figure 2-118. Sample Stack Size Specification File

- From the Stack Usage Tracer window, select [File] menu >> [Load Stack Size Specification File...]. The
Open dialog box opens. Specify the stack size specification file, then click [Open].

Set the frame size of function "_flib" written in assembly

language to 50

[flib], ADD=50

Set the frame size of function "sub2" written in C to 100

sub2, ADD=100

#Set the recursion depth of recursive function "sub3" written

in C to 123

sub3, RECTIME=123

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 97

CHAPTER 3 BUILD OUTPUT LISTS

This chapter describes format and other aspects of lists output by the build via various commands.

3.1 Assembler

This section describes the assemble list. An assemble list is a list-formatted version of the code that is produced
when the source has been compiled and assembled. It can be used to check the code resulting from compilation and
assembly.

Remark See "B.2.1 I/O files" for details about input and output files of the assembler.

3.1.1 Output method

The assemble list can be output as follows.

(1) Command input
When the -a option has been specified, the assemble list is output via standard output. If the -a option is speci-
fied along with the -I option which specifies an output file name, the assemble list is output to the specified file.
When using the C compiler to compile the C source, if the "output assemble list" has been specified along with
"output source comment" (via the -Xc option), the C source line that corresponds to the code appears as com-
ments in the assemble list.
However, the code line and source line may not correspond if optimization has been forced.

(2) CubeSuite
On the Project Tree panel, select the Build tool node, and then select the [Assemble Options] tab on the Prop-
erty panel. To output the assemble list file, in the [Assemble List] category, set the [Output assemble list file]
property to [Yes(-a -l)]. The output destination is the folder set in the [Output folder for assemble list file] prop-
erty.
The list is output to a file, and the file name extension is changed to ".v".
When compiling the C source, open the [Compile Options] tab , then in the [Output File] category, set the [Out-
put assemble list file] property to [Yes(-Fv)]. And then, in the [Output Code] category, set the [Output comment
to assembly language source file] property to [Yes(-Xc)]. The C source line that corresponds to the code
appears as comments in the assemble list.
However, the code line and source line may not correspond if optimization has been forced.

3.1.2 Output example

An assemble list output example is shown below.
An example of the assemble list that is output by compiling the C source in the example and then assembling the

output assembler source file.

- C source file

void main(void)

{

int a;

}

CHAPTER 3 BUILD OUTPUT LISTS

98 User’s Manual U19386EJ1V0UM

- Output assemble list

(1) (2) (3) (4) (5)

 :

A-X- 00000000 41 .file “c:\work\src\a.c“

A-X- 00000000 42 .align 4

A-X- 00000000 43 #@BF

A-X- 00000000 44 .frame _main, .s2

A-X- 00000000 45 .globl _main

A-X- 00000000 46 _main:

A-X- 00000000 47 #@B_PROLOGUE

A-X- 00000000 D505 48 jbr .L15

A-X- 00000002 49 .L16:

A-X- 00000002 50 .G17:

A-X- 00000002 51 .G18:

A-X- 00000002 52 .G9:

A-X- 00000002 53 .G11:

A-X- 00000002 54 .G19:

A-X- 00000002 55 #@B_EPILOGUE

A-X- 00000002 23FF0100 56 ld.w -4+.F2[sp], lp

A-X- 00000006 441A 57 add .S2, sp

A-X- 00000008 7F00 58 jmp [lp] --0

A-X- 0000000A 59 #@E_EPILOGUE

A-X- 0000000A 60 .L15:

A-X- 0000000A 5C1A 61 add -.S2, sp

A-X- 0000000C 63FF0100 62 st.w lp, -4+.F2[sp]

A-X- 00000010 63 #@E_EPILOGUE

A-X- 00000010 95F0 64 jbr .L16

A-X- 00000012 65 #@FUNC_ARG

A-X- 00000012 66 .G5:

A-X- 00000012 67 .set .S2, 0x4

A-X- 00000012 68 .set .F2, 0x4

A-X- 00000012 69 .set .A2, 0x0

A-X- 00000012 70 .set .T2, 0x0

A-X- 00000012 71 .set .P2, 0x0

A-X- 00000012 72 .set .R2, 0x0

A-X- 00000012 73 .set .X2, 0x0

 :

Item
Number

Description

(1) Section attribute

These are section attributes for sections stored in the corresponding line.

Section attributes and their meanings are as follows.

A: Section occupying memory

W: Section that can be written

X: Executable section

G: Section allocated to memory area that can be referenced by using global pointer (gp) and 16-bit displace-
ment

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 99

3.2 Linker

This section describes the link map output by the linker.
A link map is where link result-related information is written. It can be referenced for information such as a section's

allocation addresses.

3.2.1 Output method

The link map can be output as follows.

(1) Command input
Specify the -m option to display the link map in standard output when linking ends. If the -mo option is specified,
display in the old format of CA850 Ver. 2.60 or earlier. A file name is specified as the -m=file option or the -
mo=file option to output to a file.

(2) CubeSuite
On the Project Tree panel, select the Build tool node, and then select the [Link Options] tab on the Property
panel. To output the link map, in the [Link Map] category, set the [Output link map file] property to [Yes(-m)].
The output destination is the folder set in the [Output folder for link map file] property and the [link map file
name] property . It is also shown on the Project Tree panel, under the Build tool generated files node.

3.2.2 Link map output example

A link map output example is shown below.
An example of the link map that is output when object files have been linked.

- Objects
crtN.o
main.o
func.o
libc.a (standard library)

(2) Location counter value

This is the location counter value for the beginning of the line of code.

(3) Code

This is the code, expressed as a hexadecimal number.

(4) Line number

This is the line number, expressed as a decimal number.

(5) Source program

This is the assembly language source program on the line. If instruction expansion is executed for the
instruction on that line, the instruction string resulting from the instruction expansion is indicated following --.
The C source program corresponding to that line's assembly source program is also displayed in this area.

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

100 User’s Manual U19386EJ1V0UM

- Link map output example

 ********** MEMORY ALLOCATION MAP **********

(1)OUTPUT (2)SEGMENT (3)VIRTUAL (4)SIZE(16) (5)SIZE(10)

 SEGMENT ATTRIBUTE ADDRESS

 TEXT RX 0x00000000 0x00000082 130

 DATA RW 0x00000088 0x00000018 24

 ********** LINK EDITOR ALLOCATION MAP **********

(6)OUTPUT (7)INPUT (8)VIRTUAL (9)SIZE (10)INPUT

 SECTION SECTION ADDRESS FILE

 .text 0x00000000 0x00000082

 .text 0x00000000 0x0000001a crtN.o

 .text 0x0000001c 0x0000002c main.o

 .text 0x00000048 0x00000018 func.o

 .text 0x00000060 0x00000022 strcmp.o(..\lib850\

 .sdata 0x00000088 0x0000000e

 .sdata 0x00000088 0x0000000e main.o

 .sbss 0x00000098 0x00000008

 .sbss 0x00000098 0x00000004 func.o

 .sbss 0x0000009c 0x00000004 *(GpCommon)*

Item
Number

Description

(1) Output segment

Names of output segments configuring the object file to be generated (names of the output segments are not
stored in the generated object file)

(2) Segment attribute

R: Read

W: Write

X: Executable

(3) Address

Start address of the output segment

(4) Size (hexadecimal)

Size of the memory including the alignment conditions between sections and the align hole (hexadecimal)

(5) Size (decimal)

Size of the memory including the alignment conditions between sections and the align hole (decimal)

(6) Output section

Section name output to the load module (displayed up to 12 characters)

(7) Input section

Name of input section configuring output section (displayed up to 12 characters)

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 101

If an area is allocated by using the .comm quasi directive, the area is common to all the files, and its section is dis-
played as "*(Common)*" or "*(GpCommon)*". If the object file to which the input section belongs is an object file in an
archive file (library), the archive file is displayed in the following format.

- Object file name (archive file name)
If display in the old format of CA850 Ver. 2.60 or earlier is specified by using the -mo option, *(nil)* is displayed for

the section created with the linker, and sections created with the assembler such as .symtab, .strtab, and.shstrtab.

Remark *(nil)*
(nil) may appear in the data areas of the .sbss and .sdata sections. This indicates that a globally
declared variable without an initial value has been allocated. Even if a variable with the same name is
used for a different file, it is still inevitably part of the load module, so the file name containing the variable
becomes undefined and therefore appears as *(nil)* in the link map.
However, if data without an initial value was declared using the #pragma section "data" instruction, the
file name appears instead of *(nil)* since the file's allocation is identified.

3.3 Hex Converter

This section describes the hx850 output file formats.

To configure the hex file output in CubeSuite, on the Project Tree panel, select the Build tool node, then on the Prop-
erty panel, make the settings from the [Hex Convert Options] tab.

In the [Output File] category, set the [Output hex file] property to [Yes]. The output destination is the folder set in the
[Output folder for hex file] property and the [Hex file name] property . The setting for the output file format is performed
in the [Hex file format] property in the [Hex Format] category. The Hex file is also shown on the Project Tree panel,
under the Build tool generated files node.

Remark See "B.5.1 I/O files" for details about input and output files of the hex converter.

3.3.1 Intel expanded

Intel expanded hex format files, which consist of four recordsNote: the start address record, expanded address
record, data record, and end record

Note Each record is output in ASCII code.

The following figure shows a file configuration in Intel expanded hex format.

(8) Address

The start address of output section or input section

(9) Size

Size of output section or input section

(10) Input file

Object file names belonging to an input section

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

102 User’s Manual U19386EJ1V0UM

Figure 3-1. File Configuration in Intel Expanded Hex Format

Note The expanded address record and data record are repeated.

Each record consists of the following fields.

- Start address record
This record indicates an entry point address.

: CC AAAA TT [field]... SS NL

(1) (2) (3) (4) (5) (6)

Item
Number

Description

(1) Record mark

(2) Number of bytes

number of bytes expressed as 2-digit hexadecimal numbers of [field]...

(3) Location address

(4) Record type

03: Start address record, 02: Expanded address record, 00: Data record, 01: End record

(5) Checksum

The value expressed as 2-digit hexadecimal number in records (other than :, SS, and NL) sequentially subtracted
from initial value 0 and that lower 1 byte expressed as a 2-digit hexadecimal number

(6) New line (\n)

: 04 0000 03 PPPP OOOO SS NL

 (1) (2) (3) (4) (5)

Item
Number

Description

(1) Number of bytes

Fixed at 04

(2) Fixed at 0000

(3) Record type

03

:

:

Start address record

Expanded address recordNote

Data recordNote

Data record

Expanded address record

Data record

Data record

End record

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 103

Note The address is calculated by (paragraph value << 4) + offset value.

- Expanded address record
This record indicates the paragraph value of a load addressNote.

Note The value is output if the segment is renewed at the beginning of a segment (when the data record is out-
put) or when the offset value of the data record's load address exceeds the maximum value of 0xffff.

- Data record
This record indicates the value of a code.

Note This is limited to the range of 0x1 to 0xff (the minimum value for the number of bytes of code indicated by
one data record is 1 and the maximum value is 255).

Example

(4) Paragraph value of entry point addressNote

(5) Offset value of entry point address

: 02 0000 02 PPPP SS NL

 (1) (2) (3) (4)

Item
Number

Description

(1) Number of bytes

Fixed at 02

(2) Fixed at 0000

(3) Record type

02

(4) Paragraph value of segment

: CC AAAA 00 DD...DD SS NL

 (1) (2) (3) (4)

Item
Number

Description

(1) Number of bytesNote

(2) Location address

(3) Record type

00

(4) Code

Each byte of code expressed as 2-digit hexadecimal number

: 04 0100 00 3C58E01B 6C NL

 (1) (2) (3) (4) (5)

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

104 User’s Manual U19386EJ1V0UM

- End record
This record indicates the end of a code.

Remark Intel hex
An allocation address in the Intel hex format is 2 bytes (16 bits). Therefore, only a 64 KB space can be
directly specified. To extend this area, the Intel extended hex format adds an extension address of 16
bits so that a space up to 1 M byte (20 bits) can be used.
Specifically, a record type that specifies a 16-bit extension address is added. This extension address is
shifted 4 bits and added to the allocation address to express a 20-bit address.
To indicate FFFFFH, for example, F000H is set as the extension address, and FFFFH is specified as the
location address.
In the Intel extended hex format, only 0 to FFFFFH can be addressed. To express 100000H, another
object format must be used.
The hex converter outputs a message if the rule of this format is violated with this address and size used.
In the Intel extended hex format, a value that can be expressed is 20 bits, or 1 M byte (0x100000).

If the message "W8737" is output, the start address of the area to be converted into the hex format
exceeds 1 M byte.

Item
Number

Description

(1) Number of bytes of 3C58E01B expressed as 2-digit hexadecimal number

(2) Location address

(3) Record type

00

(4) Code

Each byte of code expressed as 2-digit hexadecimal number

(5) Checksum

The lower 1 byte of two's complement E6C of 04 + 01 + 00 + 00 + 3C + 58 + E0 + 1B = 194 is
expressed as a 2-digit hexadecimal number.

: 00 0000 01 FF NL

 (1) (2) (3) (4)

Item
Number

Description

(1) Number of bytes

Fixed at 00

(2) Fixed at 0000

(3) Record type

01

(4) Checksum

Fixed at FF

W8737 : The start address of convert area exceeds the maximum value of the
address that can be expressed in the Intel expanded hex format

W8735: The address of convert area exceeds the maximum value of the address that
can be expressed in the Intel expanded hex format

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 105

If the message "W8735" is output, the address to be converted into the hex format exceeds 1 M byte
(20 bits).
The above error occurs in the following cases even if 1 M byte is not exceeded.

Examples 1. An offset that starts from the address specified by the -d option is not used
-> The absolute address is stored in the hex format.

2. A section is allocated in the vicinity of the upper limit of the address that can be
expressed by 20 bits
-> The start address fits in 20 bits, but 20 bits are exceeded in the middle of the sec-
tion.

If these two patterns are satisfied, the message "W8735" is output even if the area to be converted is
as small as 4 bytes.

3.3.2 Motorola S type

A file in the Motorola S type hex format consists of five recordsNote 1: S0 record as a header record, S2/S3 records
as data records, and S8/S7 records as end recordsNote 2.

The following figure shows the file configuration of the Motorola S type hex format.

Notes 1. Each record is output in ASCII code.
2. The Motorola S type hex formats are divided into two types: (24-bit) standard address and 32-bit address

types. The format of the standard address type consists of S0, S2, and S8 records, and the format of the
32-bit address type consists of S0, S3, and S7 records.

Figure 3-2. File Configuration of Motorola S Type Hex Format

Each record consists of the following fields.

ST LL field [field]... SS NL

(1) (2) (3) (4)

Item
Number

Description

(1) Record type

(2) Record length

field (number of bytes expressed as 2-digit hexadecimal numbers of [field]...) + number of bytes expressed by
SSNote

(3) Checksum

Lower 1 byte expressed as 2-digit hexadecimal number of one's complement of total of number of bytes in
records (other than ST, SS, and NL) expressed as 2-digit hexadecimal number

(4) New line (\)

:

S0 record

S2/S3 record

S2/S3 record

S8/S7 record

CHAPTER 3 BUILD OUTPUT LISTS

106 User’s Manual U19386EJ1V0UM

Note This is 1.

- S0 record
This record indicates a file name.

- S2 record
This record indicates the value of a code.

Note The range is 0x0 to 0xffffff.

- S3 record
This record indicates the value of a code.

Note The range is 0x0 to 0xffffffff.

S0 LL FF...FF SS NL

(1) (2)

Item
Number

Description

(1) Record type

S0

(2) File name

Specified file name indicated in ASCII code

S2 LL AAAAAA DD...DD SS NL

(1) (2) (3)

Item
Number

Description

(1) Record type

S2

(2) Load address

24 bitsNote

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

S3 LL AAAAAAAA DD...DD SS NL

(1) (2) (3)

Item
Number

Description

(1) Record type

S3

(2) Load address

32 bitsNote

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 107

- S7 record
This record indicates an entry point address.

Note The range is 0x0 to 0xffffffff.

- S8 record
This record indicates an entry point address.

Note The range is 0x0 to 0xffffff.

3.3.3 Expanded tektronix

A file in the expanded tektronix hex format consists of three types of blocks: a data block, symbol block, and termina-
tion block.

The following figure shows the file configuration of the expanded Tek hex format.

Figure 3-3. File Configuration of Expanded Tek Hex Format

Each block consists of the following fields.

S7 LL AAAAAAAA SS NL

(1) (2)

Item
Number

Description

(1) Record type

S7

(2) Entry point address

32 bitsNote

S8 LL AAAAAA SS NL

(1) (2)

Item
Number

Description

(1) Record type

S8

(2) Entry point address

24 bitsNote

:

:

Data block

Data block

Symbol block

Symbol block

Termination block

CHAPTER 3 BUILD OUTPUT LISTS

108 User’s Manual U19386EJ1V0UM

Notes 1. 6: data block, 3: symbol block, 8: termination block
2. The value for each character is determined as follows: 0 to 9: 0 to 9, A to Z: 10 to 35, $: 36, %: 37, .: 38,

-: 39, a to z: 40 to 65

- Data block
This record indicates the value of a code.

Example

% LL T SS field [field]... NL

(1) (2) (3) (4) (5)

Item
Number

Description

(1) Header character

(2) Block length

Number of characters in blocks other than % and NL

(3) Type of blockNote 1

(4) Checksum

Remainder expressed as 2-digit hexadecimal number that results from dividing total valueNote 2 of characters in
blocks other than %, SS, and NL, by 256

(5) New line (\)

% LL T SS L A...A D...D NL

 (1) (2) (3)

Item
Number

Description

(1) Block type

(2) Number of digits in load address and the load address

(3) Code

Each byte of code expressed as 2-digit hexadecimal number

% 15 6 1C 3 100 020202020202 NL

 (1) (2) (3) (4) (5)

Item
Number

Description

(1) Block length

(2) Block type

(3) Checksum

Remainder expressed as 2-digit hexadecimal number that results from dividing 1 + 5 + 6 + 3 + 1 + 0 +
0 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 + 0 + 2 = 28 by 256

(4) Number of digits in load address is 3, and load address is 100.

(5) Code

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 109

- Symbol block
This block indicates the value of a symbol.

Notes 1. One section definition field must exist in each section. A section definition field can be followed by or
can follow any of symbol definition fields.

2. Symbol definition field

Examples 1.

% LL T SS L N...N [SEDF] SYDF [SYDF] NL

 (1) (2) (3) (4)

Item
Number

Description

(1) Block type

(2) Number of characters of the section name and the section name

(3) Section definition field (SEDF)Note 1

(4) Symbol definition field (SYDF)Note 2

0 L B...B L L...L

(1) (2) (3)

Item
Number

Description

(1) Indicates that this field is a section definition field.

(2) Number of digits in the base address of a section and the base address of the section

(3) Number of digits in the length of a section and the length of the section

T L S...S L V...V

(1) (2) (3)

Item
Number

Description

(1) Type of symbol

1: global address (symbol having binding class GLOBAL and type other than ABS)

2: global scalar (symbol having binding class GLOBAL and type ABS)

5: local address (symbol having binding class LOCAL and type other than ABS)

6: local scalar (symbol having binding class LOCAL and type ABS)

(2) Number of characters of symbol and the symbol

(3) Number of digits in symbol value and value of symbol

% 37 3 60 8SVCSTUFF 02402C6 22CR1D14OPEN25014READ25815WRITE260 NL

 (1) (2) (3) (4) (5) (6)

CHAPTER 3 BUILD OUTPUT LISTS

110 User’s Manual U19386EJ1V0UM

2.

- Termination block
Indicates an entry point address.

Example

Item
Number

Description

(1) Block length

(2) Block type

(3) Checksum

(4) Number of characters of section name is 8 and the section name is SVCSTUFF.

(5) Section definition field

number of digits in the base address of the section is 2, the base address of the section is 40, the
number of digits in the length of the section is 2, and the length of the section is C6

(6) Symbol definition field

22CR1D/14OPEN250/14READ258/15WRITE260

% 37 3 C8 8SVCSTUFF 15CLOSE26814EXIT27029BUFLENGTH28013BUF278 NL

 (1) (2) (3) (4) (5)

Item
Number

Description

(1) Block length

(2) Block type

(3) Checksum

(4) Number of characters of section name is 8 and section name is SVCSTUFF.

(5) Symbol definition field

15CLOSE268/14EXIT270/29BUFLENGTH280/13BUF278

% LL T SS L A...A NL

 (1) (2)

Item
Number

Description

(1) Block type

(2) Number of digits in entry point address and the entry point address

% 08 8 1A 2 80 NL

 (1) (2) (3) (4)

Item
Number

Description

(1) Block length

(2) Block type

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 111

3.4 Section File Generator

Section files are text files that are input at compile time to revise the sections where variables are to be allocated.
They enable variable allocation settings to be changed without having to modify any C source files. Allocation specifi-
cations made via section files take priority over specifications made via #pragma section directives in C-language
source programs.

To configure the section file output in CubeSuite, on the Project Tree panel, select the Build tool node, and then
select the [Section File Generate Options] tab on the Property panel. To output the link map, in the [Output File] cate-
gory, set the [Use section file generator] property to [Yes]. The output destination is the folder set in the [Output folder
for section file] property and the [Section file name] property . It is also shown on the Project Tree panel, under the File
node.

The C compiler enables the user to specify the section files output by the section file generator at compile time. The
section file generator merges the information from several files that have been input and outputs a single section file as
specified via the C compiler’s options.

An example of a section file output by the section file generator is shown below.

In each file, all content that follows "//" is regarded as comments.
Variables are displayed in section files as shown below.

There are three ways to display variables, according to the type of variable. The variable types are listed below.

Table 3-1. Variable Types and Displays

(3) Checksum

(4) Number of digits in entry point address is 2, and entry point address is 80.

[tidata]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"main.c:val1" // data 4 10 10 0

"main.c:val2" // data 4 8 8 0

"main.c:func1:val3" // -4 5 5 0

"i" // -4 3 3 0

"j" // -2 1 1 0

[Section type]

file-name:function-name:variable-name" //comment

"file-name:variable-name" // comment

"variable-name" // comment

Display Meaning

file-name:function-name:variable-name Static variable declared in a function

The function name and file name are also displayed.

file-name:variable-name Static variable declared in a file

The file name is also displayed.

variable-name External variable

Only the variable name is displayed.

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

112 User’s Manual U19386EJ1V0UM

Comments are output in the following format.

The displayed variables and their meanings are listed below.

Table 3-2. Variable Displays and Their Meanings

The section file generator outputs a section file in which all variables are allocated to the .tidata section. Since the
.tidata section's memory capacity is 256 bytes, if the variables exceed that amount, they must be revised as deter-
mined on the user side.

However, if the -O option is specified, the file can be input to the C compiler as it is because the variables will be
sorted according to use frequency and only the more frequently used variables will be included up to the .tidata sec-
tion's capacity. Also, when specifying the -O option, the user can choose to have the output sent to "tidata_word" and
"tidata_byte" instead of just "tidata".

A section file example output when the "-O option" is specified is shown below.

A section file example output when the "-O2 option" is specified is shown below.

section size total_freq Byte_freq Word_freq

Display Meaning

section Section to which allocation of the variable is explicitly specified

If the variable is not explicitly specified, "-" is displayed.

size Size of variable (in bytes)

If the size is unknown, "0" is displayed.

total_freq Frequency of variable references

This indicates the number of load/store instructions that have appeared for a particular variable.

Byte_freq For the given variable reference frequency, this indicates the number of variable references in byte
units.

Word_freq For the given variable reference frequency, this indicates the number of variable references in word
units.

[tidata_byte]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"a.c:si1" // - 4 10 10 0

"a.c:si2" // - 4 8 8 0

"a.c:f1:sfil" // - 4 5 2 3

"j" // - 2 2 1 1

"i" // - 4 3 3 0

[tidata_word]

"a.c:si3" // - 4 10 0 10

"a.c:si4" // - 4 8 0 8

"a.c:f1:sfi2" // - 4 5 0 5

"1" // - 4 3 0 3

"m" // - 2 1 0 1

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 113

The specifiable types of output sections include other types besides tidata-attribute sections, tidata.word-attribute
sections, tidata.byte-attribute sections, sidata-attribute sections, sedata-attribute sections, and sdata-attribute sec-
tions.

The following character strings can be used to specify section types.

Table 3-3. Types of Sections Specifiable by C Compiler

[tidata_byte]

// [file:[func:]]variable // section size total_freq Byte_freq Word_freq

"a.c:si1" // - 4 10 10 0

"a.c:si2" // - 4 8 8 0

"a.c:f1:sfil" // - 4 5 2 3

"j" // - 2 2 1 1

"i" // - 4 3 3 0

[tidata_word]

"a.c:si3" // - 4 10 0 10

"a.c:si4" // - 4 8 0 8

"a.c:f1:sfi2" // - 4 5 0 5

"1" // - 4 3 0 3

"m" // - 2 1 0 1

[sidata]

"huge3" // - 30000 3 3 0

[sedata]

"huge1" // - 30000 2 2 0

[sdata]

"huge2" // - 30000 1 1 0

Type Specification
Character String

Target Section for Allocation

tidata Byte data for which a default value has been set is allocated to the .tidata.byte section and half-word
(or larger) data for which a default value has been set is allocated to the .tidata.word section.

Byte data for which a default value has not been set is allocated to the .tibss.byte section and half-
word (or larger) data for which a default value has not been set is allocated to the .tibss.word section.

data If a default value has been set, allocation is to the .data section. If a default value has not been set,
allocation is to the .bss section.

sdata If a default value has been set, allocation is to the .sdata section. If a default value has not been set,
allocation is to the .sbss section.

sedata If a default value has been set, allocation is to the .sedata section. If a default value has not been
set, allocation is to the .sebss section.

sidata If a default value has been set, allocation is to the .sidata section. If a default value has not been set,
allocation is to the .sibss section.

const Allocation is to the .const section.

sconst Allocation is to the .sconst section.

CHAPTER 3 BUILD OUTPUT LISTS

114 User’s Manual U19386EJ1V0UM

3.4.1 Cautions

- Do not insert blank spaces before or after a section name when specifying the section name in square brackets
([]).
For example, in the case of [tidata], blank spaces cannot be inserted before or after "tidata".

- Enclose a variable name in a section file with "(double quotate). (The format of CA850 Ver. 2.60 or earlier can
be used.)

- Only one variable can be used per line. Do not modify the code to specify two or more variables per line and do
not make one variable specification occupy more than one line.

- Do not insert blank spaces before or after ":".
- Do not specify the path when specifying file names.
- If a function or variable definition is included in a header file, the "file name" in the section file is not the header

file name; it is the C source file name that includes the header file.
- Comments in the form of "/* */" or "//" can be inserted.

However, a section name or variable name must not be delimited by a comment. A blank space is required
immediately after a variable name. ASCII code and EUC (Japanese) code can be used in comments.

- If a variable for which "data" has been specified as the section type in a section file is referenced by another
assembler source file, use the .option quasi directive to specify "data" so that the assembler will be notified of
the data/bss attribute. Also, if a variable for which "sdata" has been specified is referenced by another assem-
bler source file, use the .option quasi directive to specify "sdata" so that the assembler will be notified of the
sdata/sbss attribute.
A code example is shown below.

// Section file

[data]

"a.c:dat1" // With default value; allocation is to .data section.

"b.c:dat2" // Without default value; allocation is to .bss section.

[sdata]

"a.c:sdat1" // With default value; allocation is to .sdata section.

"b.c:sdat2" // Without default value; allocation is to .sbss section.

Assembler source file

 .option data _dat1

 .text

 ld.w $_dat1, r11

 -- Allocation to .data section is assumed; instruction is expanded.

 .option data _dat2

 .text

 ld.w $_dat2, r12

 -- Allocation to .bss section is assumed; instruction is expanded.

 .option sdata _sdat1

 .text

 ld.w $_sdat1, r13

 -- Allocation to .sdata section is assumed; instruction is not expanded.

 .option sdata _sdat2

 .text

 ld.w $_sdat2, r14

 -- Allocation to .sbss section is assumed; instruction is not expanded.

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 115

3.5 Dump Tool

This section describes the display format of the dump tool.

To configure the using the dump tool in CubeSuite, on the Project Tree panel, select the Build tool node, and then
select the [Dump Options] tab on the Property panel. In the [Dump Tool] category, set the [Use dump tool] property to
[Yes]. The output file name is “dump.txt”. It is also shown on the Project Tree panel, under the Build tool generated
files node.

3.5.1 Dump list display contents

(1) Archive header
Display the contents of the archive header.

(2) Archive symbol table
Display the contents of the archive symbol table.

(3) Archive string table
Display the contents of the archive string table.

 ARCHIVE HEADER

(1)Date (2)Uid (3)Gid (4)Mode (5)Size (6)Member Name

 0x3158DE73 0 0 0100664 0x2B8 atof.o

Item
Number

Description

(1) Member update date

(2) User ID

(3) Group ID

(4) Member permission

(5) Total number of bytes for members

(6) Member name

 ARCHIVE SYMBOL TABLE

 (1)Offset (2)Name

 0x1f3c _abs

Item
Number

Description

(1) Offset in file to member including symbol

(2) Symbol name

 ARCHIVE STRING TABLE

 (1)Offset (2)Name

 0x1100 foo.o

Item
Number

Description

(1) Offset

CHAPTER 3 BUILD OUTPUT LISTS

116 User’s Manual U19386EJ1V0UM

(4) ELF header
Display the contents of the ELF header.

(5) Program header table
Display the contents of the program header table.

(2) Member name

 ELF HEADER

(1) Class (2) Data (3) Type (4) Machine (5) Version

(6) Entry (7) Phoff (8) Shoff (9) Flags (10)Ehsize

(11)Phentsize (12)Phnum (13)Shentsz (14)Shnum (15)Shstrndx

 1 1 1 070377 1

 0x0 0x0 0x2A4 0x84 0x34

 0x20 0 0x28 6 5

Item
Number

Description

(1) Class

(2) Byte order

(3) Type

(4) Processor

(5) Version number

(6) Entry point address

(7) Offset in file of program header table

(8) Offset in file of section header table

(9) Flag

(10) Size of ELF header

(11) Entry size of program header table

(12) Number of entries in program header table

(13) Entry size of section header table

(14) Number of entries in section header table

(15) Section header table index of string table containing section name

 PROGRAM HEADER

(1)No. (2)Type (3)Offset (4)Vaddr (5)Paddr

 (6)Filesz (7)Memsz (8)Flags (9)Align

 1. 0 0x0 0x0 0x0

 0x0 0x0 0x0 0x0

Item
Number

Description

(1) Index

(2) Segment type

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 117

(6) Section header table
Display the contents of the section header table.

(7) String table
Display the contents of the string table.

(3) Offset in file

(4) Virtual address

(5) Physical address

(6) File size

(7) Memory size

(8) Segment attribute

(9) Alignment condition

 SECTION HEADER

(1)No. (2)Type (3)Flags (4) Addr (5) Offset (6)Size (7)Name

 (8)Link (9)Info (10)Adralgn (11)Entsize

 1. 0x1 0x6 0x0 0x1 0x7556 .text

 0x0 0x0 0x4 0x0

Item
Number

Description

(1) Index

(2) Section type

(3) Section attribute

(4) Start address

(5) Offset in file

(6) Size

(7) Section name

(8) Section header table index link

(9) Information

(10) Alignment condition

(11) Size of entry

 STRING TABLE INFORMATION

 (1)Index (2)String

 0x1 .text

Item
Number

Description

(1) Index

(2) Character string

Item
Number

Description

CHAPTER 3 BUILD OUTPUT LISTS

118 User’s Manual U19386EJ1V0UM

(8) Symbol table
Display the contents of the symbol table.

(9) Relocation information
Display the contents of the relocation information (array of relocation entries).

(10)Register mode information
Display the contents of the register mode information.

 SYMBOL TABLE INFORMATION

(1)No. (2)Value (3)Size (4)Bind (5)Type (6)Other (7)Shndx (8)Name

 1. 0x0 0x0 0 3 0 0x1 .text

Item
Number

Description

(1) Index

(2) Value

(3) Size

(4) Binding class

(5) Type

(6) Unused

(7) Section header table index

(8) Symbol name

 RELOCATION INFORMATION

 (1)Offset (2)Sym (3)Type (4)Addend

 0x20 6 0x23 0x0

Item
Number

Description

(1) Offset

(2) Symbol table index

(3) Relocation type

(4) Added constant

 REGISTER MODE INFORMATION

 (1)SymIdx (2)TmpReg (3)ParReg

 0x1 0x5 0x5

Item
Number

Description

(1) Symbol table index

(2) Number of working registers

(3) Number of registers for register variables

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 119

(11) Global pointer table
Display the contents of the global pointer table.

(12)Line number information
Display the contents of the line number information.

(13)Debug information
Display the contents of the debug information.

 GPTAB INFORMATION

 (1)Gnum (2)Gsize

 0x4 0xc

Item
Number

Description

(1) Value specified by -Gnumor maximum size of symbol

(2) 0 or size of section

 LINE NUMBER INFORMATION

(1)Bfunc (2)Maddr (3)Daddr (4)Pad (5)Function Name (6)Num (7)Snum (8)Offset (9)Flags

 0x0 0xA2 0xE28 0x0 _main 0x5 0x0 0x0 0x1

Item
Number

Description

(1) Start of subsection

(2) Address of function

(3) Address of debug information

(4) Padding

(5) Function name

(6) Line number

(7) Position of statement

(8) Offset

(9) Flag

 DEBUG INFORMATION

 (1)Tag (2)Attr (3)Aux

 0x0016

 size 0x00000026

 0x000c 0x00000E1C

Item
Number

Description

(1) Tag

(2) Attribute

(3) Auxiliary information

CHAPTER 3 BUILD OUTPUT LISTS

120 User’s Manual U19386EJ1V0UM

(14)PROGBITS data
Display the contents of the PROGBITS data.

Display the raw data contents of the section having section type PROGBITS in hexadecimal numbers.

3.5.2 Element values and meanings

When the -v option has been specified, the following information indicates that character strings are used instead of
numerical values to indicate the meanings of the values for some elements.

- ELF header
- Program header table
- Section header table
- Symbol table
- Relocation information
- Debug information

The values, the display when -v is specified, and the meanings of the elements that are displayed as character
strings when -v has been specified is shown below.

Note The value is displayed using the number base output by the dump tool.

(1) "Flags" in ELF headers

(2) "Type" in program header table

 PROGBITS DATA in HEX

0x00000000 : 40 0E 00 00 21 2E 00 00 ...

Value Display When -v Is
Specified

Meaning

0x1 L_ _ _ _ _ _ _ _ _ _ .vline section exists.

0x2 _D_ _ _ _ _ _ _ _ .vdebug section exists.

0x4 _ _ P_ _ _ _ _ _ _ Object is a PIC (Position Independent Code) object.

0x10 _ _ _R_ _ _ _ _ _ Register mode is 22-register mode or 26-register mode.

0x20 _ _ _ _ d_ _ _ _ _ Different register modes are mixed.

0x40 _ _ _ _ _r_ _ _ _ Object is output by ROMization processor.

0x80 _ _ _ _ _ _ N_ _ _ Default function call specification (call does not use old specification).

0x100 _ _ _ _ _ _ _M_ _ Uses mask register function.

0x200 _ _ _ _ _ _ _ _ U _ Code making a call using the prolog or epilog runtime callt convention may be
output.

0x400 _ _ _ _ _ _ _ _ _ S CTBP is configured to make calls using the prolog or epilog runtime callt con-
vention.

Value Display When -v Is
Specified

Meaning

1 Load Segment is loaded into memory.

4 Note Segment, including auxiliary information

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 121

(3) "Type" in section header table

(4) "Bind" in symbol table

(5) "Type" in symbol table

(6) "Shndx" in symbol table

Value Display When -v Is
Specified

Meaning

0x1 Progbits Section that corresponds to an entity that contains an actual value in an object
file (machine language instruction and data with an initial value)

0x2 Symtab Symbol table

0x3 Strtab String table

0x4 Rela Relocation information

0x8 Nobits Section that corresponds to an entity that does not contain an actual value in
an object file (data without an initial value)

0x9 Rel Relocation information

0x70000000 Gptab Global pointer table (in which the first entry contains num of -Gnum specified
for the C compiler or assembler, and 0, the 2nd and subsequent entries indi-
cate the size when aligned with data size and word)

0x70000001 Regmode Section that exists in a linkable object file created using the register mode
function (Information concerning the number of registers used internally by the
C compiler is stored)

Value Display When -v Is
Specified

Meaning

0 Local Symbol that is not used to resolve external reference

1 Global Symbol that is used to resolve external reference

Value Display When -v Is
Specified

Meaning

1 Object Ordinary object (label)

2 Func Function name

3 Section Section

4 File Ordinary file name

13 Devfile Device file name

Value Display When -v Is
Specified

Meaning

0x0 Undef Undefined symbol

0xFF00 GpCommon Undefined external symbol that is referenced by global pointer (gp) and 16-bit
displacement

0xFFF1 Abs Symbol indicating constant

0xFFF2 Common Undefined external symbol that is referenced by global pointer (gp) and 32-bit
displacement

CHAPTER 3 BUILD OUTPUT LISTS

122 User’s Manual U19386EJ1V0UM

See "3.9 Format of Object File" for further description of object file formats.

3.6 Disassembler

A disassembler output example is shown below.

Among the information in the file a.out, the disassembler displays addresses, offsets, codes (according to instruction
format), and titles, along with assembly language instructions. Registers are displayed using aliases.

3.7 Cross Reference Tool

This section describes details about each output format of the cross reference tool.

To configure the using the cross reference tool in CubeSuite, on the Project Tree panel, select the Build tool node,
and then select the [Cross Reference Options] tab on the Property panel. In the [Cross Reference Tool] category, set
the [Use cross reference tool] property to [Yes]. The output destination of the information files is the folder set from the
[Common Options] tab, in the [Output File Type And Path] category, in the [Intermediate file output folder] property. It
is also shown on the Project Tree panel, under the Build tool generated files node.

Remark See "B.10.1 Input/Output" for details about input and output of the cross reference tool.

C>dis850 -A a.out

 Address Offset Opecode

 _main:

0x00000000 : 0x00000000 : 45D5 br _main + 0x8a

0x00000002 : 0x00000002 : D800 mov zero, r27

0x00000004 : 0x00000004 : E6230000 movea 0, sp, r28

0x00000008 : 0x00000008 : 301C mov r28, r6

0x0000000A : 0x0000000A : FF800176 jarl _getToken[pc], lp

0x0000000E : 0x0000000E : 580A mov r10, r11

0x00000010 : 0x00000010 : 5A7F cmp -0x1, r11

0x00000012 : 0x00000012 : 1D92 bz _main + 0x44

0x00000014 : 0x00000014 : EE2300E8 movea 0x3e8, zero, r29

0x00000018 : 0x00000018 : D9FD cmp r29, r27

0x0000001A : 0x0000001A : 15DE bge _main + 0x44

0x0000001C : 0x0000001C : 301C mov r28, r6

0x0000001E : 0x0000001E : FF800000 jarl 0[pc], lp

0x00000022 : 0x00000022 : 580A mov r10, r11

0x00000024 : 0x00000024 : 501B mov r27, r10

0x00000026 : 0x00000026 : 52C2 shl 0x2, r10

0x00000028 : 0x00000028 : 66230020 movea 0x20, sp, r12

0x0000002C : 0x0000002C : 61CA add r10, r12

0x0000002E : 0x0000002E : 5F6C0001 st.w r11, 0[r12]

0x00000032 : 0x00000032 : DA41 add 0x1, r27

0x00000034 : 0x00000034 : 301C mov r28, r6

0x00000036 : 0x00000036 : FF80014A jarl _getToken[pc], lp

0x0000003A : 0x0000003A : 580A mov r10, r11

0x0000003C : 0x0000003C : 5A7F cmp -0x1, r11

0x0000003E : 0x0000003E : 05B2 bz _main + 0x44

 :

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 123

3.7.1 Cross reference

The cross reference tool outputs cross reference information of variables and functions that are used within the file,
for each file. The output destination is "standard output (default)" or a "text file." When information is output to a file,
the default output file name is "cxref."

- Cross reference output example

The information is output in alphabetical order of the identifiers. Four types of information are output sequentially
from left to right on each line.

(1) Linkage and storage class
The linkage and storage class are indicated by the following symbols.

(2) Type
The type is indicated by the following symbols.

(3) Identifier name
The identifier name is the function name or variable name itself.
However, since duplicate names may exist for variables that are defined within functions, identifier names are
indicated in the format "function-name:variable-name".

(4) Line number
The definition line number and reference line numbers are listed with the following symbols appended.

C>cxref -x apli.c

**** apli.c

 G V NULL 20 30 43 90 91 199 204 205 235

 G F combine #163 187 190

 G F delete #216 257

 G V deleted #22 203 220 222

 ...

 L V printtree:depth #232 236 242

 G F removeitem #118 178 209

 G F restore #182 208 212

 G V root #20 42 113 115 115 221 223 224 224 224 261

 ...

G Static external variable or function having external linkage

L Static variable, function, or static variable within a function, having internal linkage

? Unknown

F Function

V Variable

? Unknown

!line-number Declaration line

#line-number Definition line

CHAPTER 3 BUILD OUTPUT LISTS

124 User’s Manual U19386EJ1V0UM

3.7.2 Tag information

The cross reference tool outputs the definition file name and line number information (tag jump information) for vari-
ables and functions. The output destination is "standard output (default)" or a "text file." When information is output to
a file, the default output file name is "ctags."

- Tag information output example

The information is output in alphabetical order of the identifiers. Five types of information are output sequentially
from left to right on each line.

(1) File name
Indicates the name of the file in which the variable or function is defined.

(2) Line number
Indicates the location of the variable or function definition.

(3) Linkage and storage class
The linkage and storage class are indicated by the following symbols.

(4) Type
The type is indicated by the following symbols.

(5) Identifier name
The identifier name is the function name or variable name itself.

?line-number Whether it is a declaration or definition or a reference is unknown

No symbol Reference line

C>cxref -t apli.c

 apli.c 163 G F combine

 apli.c 216 G F delete

 apli.c 22 G V deleted

 apli.c 194 G F deletesub

 apli.c 22 G V done

 apli.c 108 G F insert

 apli.c 54 G F insertitem

 apli.c 86 G F insertsub

 apli.c 21 G V key

 ...

G Static external variable or function having external linkage

L Static variable, function, or static variable within a function, having internal linkage

? Unknown

F Function

V Variable

? Unknown

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 125

However, since duplicate names may exist for variables that are defined within functions, identifier names are
indicated in the format "function-name:variable-name".

3.7.3 Call tree

When a call tree information output option such as -c is specified for the cross reference tool, the functions called by
certain functions are output in tree format.

The output file format is text format or CSV format. To directly reference the main important information, output the
data in text format. To reference detailed information in tabular form, output the data in CSV format.

(1) Text-format output example
If the -c option is specified, the call tree is output in text format. The default output file name is "ccalltre.lst".
The text-format output is as follows.

- Call tree text-format output example

- The group of functions to be processed are output in tree format.
- An ampersand "@" is appended to the front of a function name that is the tree root.
- Functions of provided libraries are also included in the tree.
- The meanings of symbols that are displayed after function names are as follows.

(2) CSV-format output example
If the -cc option is specified, the call tree is output in CSV format. A CSV-format file can be read by spreadsheet
software such as Microsoft Excel®. The default output file name is "ccalltre.csv".
The CSV-format output is as follows.

C>cxref -c apli.c

1 @newpage

2 |---malloc?

3 |---printf?

4 +---exit?

5 @search

6 @insertitem

7 @split

8 |---newpage...(1)

9 |---insertitem...(6)

10 +---insertitem...(6)

11 @insertsub

12 |---insertsub*

13 |---insertitem...(6)

14 +---split...(7)

 ...

? Indicates a function that is not defined in the file to be processed.

... (numerical value) Indicates that subsequent outputs are omitted because it was output once. The
numerical value indicates the line number for the first output.

Indicates the defined source file.

* Indicates that subsequent outputs were suspended because a recursive function
was calling itself.

CHAPTER 3 BUILD OUTPUT LISTS

126 User’s Manual U19386EJ1V0UM

- Call tree CSV-format output example

(a) [SrcFileList]
The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]
All of the functions used by the program are output.

C>cxref -cc apli.c

[SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [Calltree]

 No,FuncNo,FuncAttr,TopFlg,ElimNo,ChildPtr,ChildCnt,RefFileNo,RefLine

 1,8,0,1,0,1,3,0,0

 2,7,0x21,0,0,0,0,1,30

 3,12,0x21,0,0,0,0,1,31

 4,9,0x21,0,0,0,0,1,32

 [ChildFuncs]

 No,CalltreeNo

 1,2

 2,3

 3,4

 4,8

 5,9

 6,10

 7,12

 8,13

 9,14

10,16

 ...

FileName Source file name

FilePath Source file path

This is output only when the path was specified for the file that was input.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 127

(c) [Calltree]
The call tree is output.

(d) [ChildFuncs]
The tree in which that child function exists is output as child function information.

3.7.4 Function metrics

When a function metrics information output option such as -m is specified for the cross reference tool, the informa-
tion is output in terms of individual functions. The output file format is text format or CSV format. To directly reference
the main important information, output the data in text format. To reference detailed information in tabular form, output
the data in CSV format.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

FuncNo Function number

Uses the "No" value in [Funcs] to indicate the function.

FuncAttr Function attribute

Indicates the tree attributes by using a combination of the following numerical values. If there is
no attribute, 0 is output.

0x0001: There is no program description.

0x0002: It is a recursive function.

0x0004: Omits subsequent tree output.

0x0008: Outputs source file name and description starting line.

0x0010: Outputs return values and arguments.

0x0020: Outputs reference information.

TopFlag Top flag

When the function is the tree root, 1 is output. When it is not the tree root, 0 is output.

ElimNo Tree number for previous output

When the function corresponds to "0x0004" for "FuncAttr," this uses "No" in [Calltree] to indicate
the tree in which that function was previously output.

If it does not correspond to "0x0004," 0 is output.

ChildPtr Starting position of child function display

Uses "No" in [ChildFuncs] to indicate the position at which the first child function of the function
is output.

ChildCnt Number of child functions

Indicates the number of child functions registered in [ChildFuncs]. If there is no child function, 0
is output.

CallTreeNo Tree number

Uses "No" in [Calltree] to indicate the tree in which that child function exists.

CHAPTER 3 BUILD OUTPUT LISTS

128 User’s Manual U19386EJ1V0UM

(1) Text-format output example
If the -m option is specified, the function metrics are output in text format. The default output file name is "cmea-
sure.lst".
The text-format output is as follows.

- Function metrics text-format output example

(a) File
File name
Indicates the name of the source file in which that function is defined.

(b) Line
Starting line
Indicates the line number in the source file at which that function is defined.

(c) Called
Call histogram
Indicates the frequency with which that function was called. The frequencies that are output are based on
the assumption that the function is called once for each function call description.

(2) CSV-format output example
If the -mc option is specified, the function metrics are output in CSV format. A CSV-format file can be read by
spreadsheet software such as Microsoft Excel. The default output file name is "cmeasure.csv".
The CSV-format output is as follows.

- Function metrics CSV-format output example

C>cxref -m apli.c

 File Line Called

 newpage apli.c 27 2

 search apli.c 38 1

 insertitem apli.c 55 3

 split apli.c 68 1

 insertsub apli.c 87 2

 insert apli.c 109 1

 removeitem apli.c 119 2

 moveright apli.c 128 1

 moveleft apli.c 146 1

 combin apli.c 164 2

 restore apli.c 183 2

 deletesub apli.c 195 3

 delete apli.c 217 1

 printtree apli.c 231 3

 main apli.c 248 0

 ...

C>cxref -mc apli.c

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 129

(a) [SrcFileList]
The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]
All of the functions used by the program are output.

(c) [Measure]
Function metrics information is output.

[SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [Measure]

No,FuncNo,FuncSz,Clk,TClk,Stk,TStk,CalledCnt,StkUp,StkUpPtr,StkUpCnt,ClkUp,ClkUpPtr,Clk
UpCnt,StkDw,StkDwPtr,StkDwCnt,ClkDw,ClkDwPtr,ClkDwCnt

 1,8,64,37,37,12,68,2,68,1,4,496,5,4,12,0,0,37,0,0

 2,5,208,118,118,12,24,1,24,9,1,237,10,1,12,0,0,118,0,0

 3,19,148,71,71,16,72,3,72,11,4,530,15,4,16,0,0,71,0,0

 ...

FileName Source file name

FilePath Source file path

This is output only when the path was specified for the file that was input.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

FuncNo Function number

Uses the "No" value in [Funcs] to indicate the function.

CHAPTER 3 BUILD OUTPUT LISTS

130 User’s Manual U19386EJ1V0UM

3.7.5 Call database

When a call database information output option such as -b is specified for the cross reference tool, the functions
called by a given function and the number of times each function is called by that function are output. The output file
format is text format or CSV format. To directly reference the main important information, output the data in text for-
mat. To reference detailed information in tabular form, output the data in CSV format.

(1) Text-format output example
If the -b option is specified, the call database is output in text format. The default output file name is "cpro-
file.dat".
The text-format output is as follows.

- Call database text-format output example

Five types of information are output sequentially from left to right on each line.

(a) Calling function name

(b) Name of source file in which calling function is defined
If no analysis can be performed, "???" is output.

(c) Called function name

(d) Name of source file in which called function is defined
Since the source file name is unknown for a function in a library, 0 is output.

(e) Number of times called function is called within calling function

(2) CSV-format output example
If the -bc option is specified, the call database is output in CSV format. A CSV-format file can be read by
spreadsheet software such as Microsoft Excel. The default output file name is "cprofile.csv".
The CSV-format output is as follows.

CalledCnt Call histogram

Indicates the frequency with which that function was called. The frequencies that are output are
based on the assumption that the function is called once for each function call description.

C>cxref -b apli.c

newpage,apli.c,malloc,0,1

newpage,apli.c,printf,0,1

newpage,apli.c,exit,0,1

split,apli.c,newpage,apli.c,1

split,apli.c,insertitem,apli.c,2

insertsub,apli.c,insertsub,apli.c,1

insertsub,apli.c,insertitem,apli.c,1

insertsub,apli.c,split,apli.c,1

insert,apli.c,insertsub,apli.c,1

insert,apli.c,newpage,apli.c,1

combine,apli.c,removeitem,apli.c,1

combine,apli.c,free,0,1

 ...

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 131

- Call database CSV-format output example

(a) [SrcFileList]
The name of the source file in which the functions used by the program are defined is output.

(b) [Funcs]
All of the functions used by the program are output.

(c) [CallDataBase]
Call database information is output.

C>cxref -bc apli.c

 [SrcFileList]

 No,SrcFileName,FilePath

 1,apli.c,

 [Funcs]

 No,FuncName,SrcFileNo,LineNo,Ret1,Arg1,Ret2,Arg2

 1,free,0,0,,,,

 2,main,1,248,int,(),,

 3,scanf,0,0,,,,

 4,delete,1,217,void,(void),,

 5,search,1,38,void,(void),,

 ...

 [CallDataBase]

 No,FuncNo,ChildFuncNo,CallCnt

 1,8,7,1

 2,8,12,1

 3,8,9,1

 4,11,8,1

 5,11,19,2

 ...

FileName Source file name

FilePath Source file path

This is output only when the -p option is specified.

FuncName Function name

SrcFileNo Source file number

Uses the "No" value in [SrcFileList] to indicate the source file in which that function is defined.

LineNo Line number

Indicates the line at which that function’s definition begins in the source file.

Ret1,Ret2 Return values of the function

When the analysis cannot be performed, nothing is output.

Arg1,Arg2 Arguments of the function

When the analysis cannot be performed, nothing is output.

CHAPTER 3 BUILD OUTPUT LISTS

132 User’s Manual U19386EJ1V0UM

3.8 Memory Layout Visualization Tool

This section describes details about each output format of the memory layout visualization tool.

To configure the using the memory layout visualization tool in CubeSuite, on the Project Tree panel, select the Build
tool node, and then select the [Memory Layout Visualization Options] tab on the Property panel. In the [Memory Lay-
out Visualization Tool] category, set the [Use memory layout visualization tool] property to [Yes]. The output destina-
tion of the information files is the folder set from the [Common Options] tab, in the [Output File Type And Path]
category, in the [Intermediate file output folder] property. It is also shown on the Project Tree panel, under the Build
tool generated files node.

Remark See "B.11.1 Input/Output" for details about input and output of the memory layout visualization tool.

3.8.1 Memory map table

The memory layout visualization tool outputs a memory map table that shows variable names, sizes, and the mem-
ory layout. The output destination is "standard output" or a "file." When information is output to a file, the output file
format is text format or CSV format. To directly reference the main important information, output the data in text for-
mat. To reference detailed information in tabular form, output the data in CSV format.

- The memory map table has 16 bytes per line.
- For a variable name, the name in the C source file is displayed in the following format (when the variable name

is assumed to be "name").

- The size is displayed in the format "(number of bytes in decimal notation)" following the variable name.

(1) Text-format output example
If the -m option is specified, the memory map table is output in text format. The default output file name is
"rammap.txt".
The text-format output is as follows.

- Memory map table text-format output example

FuncNo Calling function number

Uses the "No" value in [SrcFileList] to indicate the calling function number.

ChildFuncNo Called function number

Uses the "No" value in [SrcFileList] to indicate the called function number.

CalledCnt Number of times called

Number of times called function is called within calling function

External variable _name

Local variable within file file-name@_name

Static variable or string constant within function file-name@LLnumber

C>rammap -m a.out

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 133

- The variable name and size are displayed left-aligned at the start of the relevant address.
- A variable name that cannot fit in the memory layout frame is displayed as far as it fits.
- A colon (:) is output for a line that has no variable name, and the line is omitted. Unused area, the text

attribute section, and the interior of large variables correspond to these kinds of lines.

(2) CSV-format output example
If the -mc option is specified, the memory map table is output in CSV format. A CSV-format file can be read by
spreadsheet software such as Microsoft Excel. The default output file name is "rammap.csv".
The CSV-format output is as follows.

- Memory map table CSV-format output example

- A colon (:) is output for a line that has no variable name, and the line is omitted. Unused area, the text
attribute section, and the interior of large variables correspond to these kinds of lines.

Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

0x00000000 |

:

0x00FFE000 |crtN.s@__argc(>|crtN.s@__argv(>| |test.c@LL29(5)-

0x00FFE010 |-->| |test.c@_svar(4>|_var(4)------->|_gAppName(8)---

0x00FFE020 |-------------->|_c>| |_tmp(4)------->|_buf(100)------

:

0x00FFE080 |-->|

0x00FFE090 |_var2(4)------>|_c>| |crtN.s@__stack(512)------------

:

0x00FFE290 |------------------------------>|

:

0xFFFFFFF0 |

------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

:

C>rammap -mc a.out

Address,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

0x00000000,,,,,,,,,,,,,,,,

:

0x00FFE000,crtN.s@_ _ argc(4),,,,crtN.s@_ _ argv(4),,,,,,,,test.c@LL29(5),,,

0x00FFE010,,,,,test.c@_svar(4),,,,_var(4),,,,_gAppName(8),,,

0x00FFE020,,,,,_cInput(1),,,,_tmp(4),,,,_buf(100),,,

:

0x00FFE090,_var2(4),,,,_c(1),,,,crtN.s@_ _ stack(512),,,,,,,

:

0xFFFFFFF0,,,,,,,,,,,,,,,,

...

CHAPTER 3 BUILD OUTPUT LISTS

134 User’s Manual U19386EJ1V0UM

3.9 Format of Object File

This section describes the format of the object file used with the C compiler.

3.9.1 Structure of object file

The format of the object file used with the C compiler conforms to the ELF format, a standard object file format.
The structure of an object file in this format differs somewhat between relocatable object files and executable object

files (see the following figure). A relocatable object file contains the information that is needed to create an executable
object file, and an executable object file contains the information needed to execute the object file.

The following sections describe the ELF header, program header table, section header table, section, and segment,
which are constituent elements in ELF-format object files.

Figure 3-4. Object File Structures

3.9.2 ELF header

This section describes the ELF header, which is a constituent element in ELF-format object files.
The ELF header is at the start of the object file and contains the information needed to interpret the object file or to

access the other constituent elements in the object file (see “Figure 3-4. Object File Structures”).

Table 3-4. Constituent Elements of ELF Header and Their Meanings

Constituent Elements Meaning

ident[CLASS] Class of this object file

ident[DATA] Byte order of data in this object file (2MSB if big endian, or 2LSB if little endian)

type Type of this object file

machine Target processor of this object file

version Version number of this object file format

entry Entry point address

phoff Offset in file of program header table

shoff Offset in file of section header table

flags Unique flag for processor that this object file runs on

ehsize Byte size of this ELF header

phentsize Size of program header table entry

phnum Number of program header table entries

shentsize Size of section header table entries

shnum Number of section header table entries

shstrndx Section header table index of string table .shstrtab that contains the section name

Relocatable object file executable object file

ELF headerELF header

Section 1

...

...

...

...

...

Section n

Section header table

...

Program header table

Segment 1

Segment n

Other information

Section header table

(Start)

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 135

3.9.3 Program header table

This section describes the program header table, which is a constituent element in ELF-format object files.
The program header table is an array of program header table entries that contain information about all the seg-

ments included in the object file (see the following table).
An index (i.e. a subscript) to this array is called a program header table index, which is used to reference the pro-

gram header table entries.

Table 3-5. Constituent Elements of Program Header Table Entries and Their Meanings

Note If a section having section type NOBITS (section not having an actual value in the object file) is allocated to
the corresponding segment, a value other than the memsz value is set.

3.9.4 Section header table

This section describes the section header table that is a constituent element in ELF-format object files.
The section header table is an array of section header table entries that contain information about all of the sections

included in the object file. An index (subscript) to this array is called a section header table index, which is used to ref-
erence the section header table entries.

Table 3-6. Constituent Elements of Section Header Table Entries and Their Meanings

Constituent Elements Meaning

type Segment type of corresponding segment (type is LOAD if segment is loaded to memory, or NOTE
if segment has auxiliary information)

offset Offset in file of corresponding segment

vaddr Virtual address of corresponding segment

paddr Physical address of corresponding segment

filesz Size of corresponding segment in fileNote

memsz Size of corresponding segment in memory

flags Segment attribute of corresponding segment (attribute is R for segment that can be read, W for
segment that can be written, or X for executable segment)

align Alignment condition of corresponding segment

Constituent Elements Meaning

name Name of corresponding section (index to string table .shstrtab that contains the section name)

type Section type of corresponding section (see "(1) Section type")

flags Section attribute of corresponding section (attribute is A for a section occupying memory, W for a
section that can be written, X for an executable section, and G for a section that is allocated to a
memory range that can be referenced using global pointer (gp) with 16-bit displacement)

addr Start address of corresponding section

offset Offset in file of corresponding section

size Size of corresponding section

link Section header table index link of corresponding section (see "(2) Constituent elements (link/info)
dependent on section type")

info Information dependent on section type of corresponding section (see "(2) Constituent elements
(link/info) dependent on section type")

addralign Alignment condition of corresponding section

entsize Size of entries in corresponding section

CHAPTER 3 BUILD OUTPUT LISTS

136 User’s Manual U19386EJ1V0UM

(1) Section type
The section types indicated by the constituent element “type” in the section header table are shown with an
explanation of their meanings in the following table.

Table 3-7. Section Types and Their Meanings

Note See the explanation of the register mode specification option (-reg) of the C compiler.

(2) Constituent elements (link/info) dependent on section type
The meanings of the section header table's constituent elements “link” and “info”, which are dependent on sec-
tion type, are shown below.

Table 3-8. Meanings of Link and Info

3.9.5 Sections

The following describes the sections that are constituent elements in ELF-format object files.
A section is a main constituent element of object files. Its contents include machine language instructions, data,

symbol tables, string tables, debug information, and line number information.
A section must meet the following conditions.

- One section header table entry corresponding to the section header table must exist in each section.
- In some cases (such as a section having section type NOBITS), a section may have only a section header table

entry but no actual value exists in the object file.
- A section that has an actual value in the object file occupies a contiguous area in the object file.
- Sections do not share an area in the object file. In other words, there is no area that belongs to more than one

section.

Section Type Meaning

GPTAB Global pointer table (in which the first entry contains num of -Gnum specified for the C
compiler or assembler, and 0, the 2nd and subsequent entries indicate the size when
aligned with data size and word)

NOBITS Section for data that does not have an actual value in the object file (e.g., data for which
no initial value is specified)

PROGBITS Section for data that has an actual value in the object file (e.g., data for which a machine
language instruction or initial value has been specified)

REGMODE Section existing in relocatable object file created using the register mode functionNote
(stores information on the number of registers internally used by the C compiler)

REL (not supported) Relocation information

RELA Relocation information

SYMTAB Symbol table (see “(1) Symbol table”)

STRTAB String table (”(2) String table”)

Section Type Meaning of Link Meaning of Info

GPTAB --- Section header table index of section to
which corresponding data is allocated

REL

(not supported)

Section header table index of correspond-
ing symbol table

Section header table index of section to be
relocated

RELA Section header table index of correspond-
ing symbol table

Section header table index of section to be
relocated

SYMTAB Section header table index of correspond-
ing string table

Symbol table index of symbol that appears
first when table is not local

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 137

(1) Symbol table
The following describes the symbol table, a type of section.
The symbol table, a section of section type SYMTAB, is an array of symbol table entries containing information
about all of the symbols included in the object file.
An index (subscript) to this array is called a symbol table index, and the symbol table entries are referenced
using this symbol table indexNote.

Note An entry with symbol table index 0 is reserved, and each constituent element's value is 0.

Table 3-9. Constituent Elements of Symbol Table Entries and Their Meanings

(2) String table
The following describes the string table, a type of section.
The string table, a section of section type STRTAB, consists of a character string that ends with a null character
(\0). This character string is referenced using an index that is an offset from the beginning of the string tableNote.
An ELF-format object file uses this character string to hold the names of symbols and sections. For example, the
constituent element “name” in the section header table entry has an index to the string table .shstrtab which
holds a section name.

Note The rule is that the first byte expressed by index 0 is a null character.

Table 3-10. Relationship Between Indexes and Character Strings in String Table

Constituent
Elements

Meaning

name Name of corresponding symbol (index to string table .strtab)

value Value of corresponding symbol

size Size of corresponding symbol

BIND (info) Binding class of corresponding symbol (binding class is GLOBAL for a symbol used to resolve
an external reference, or LOCAL for a symbol not used to resolve an external reference)

TYPE (info) Type of corresponding symbol (type is FILE for a normal file name, FUNC for a function name,
NOTYPE for an undefined symbol, OBJECT for a symbol indicating a normal label, SECTION
for a section name, or DEVFILE for a device file name)

other ---

shndx Section header table index of section for corresponding symbol (which takes one of the following
values: ABS for a symbol indicating a constant, COMMON for an undefined external symbol that
is referenced using a global pointer (gp) with 32-bit displacement, GPCOMMON for an unde-
fined external symbol that is referenced using a global pointer (gp) with 16-bit displacement, or
UNDEF for an undefined symbol)

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e . \0 V a r

+10 i a b l e \0 a b l e

+20 \0 \0 x x \0

Index String

0 null string

+1 name

+7 Variable

+11 able

CHAPTER 3 BUILD OUTPUT LISTS

138 User’s Manual U19386EJ1V0UM

(3) Reserved sections
In ELF-format object files, several sections are reserved as reserved sections.
The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-11. Reserved Sections

+16 able

+24 null string

NameNote 1 Description Section Type Section Attribute

.bss .bss section NOBITS AW

.const .const section PROGBITS A

.data .data section PROGBITS AW

.ext_info

.ext_info_boot

Information section for flash/external ROM re-
link function

PROGBITS None

.ext_table Branch table section for flash/external ROM re-
link function

PROGBITS AX

.ext_tgsym Information section for flash/external ROM re-
link function

PROGBITS None

.gptabname Global pointer table Note 2 GPTAB None

.pro_epi_runtime Prologue/epilogue run-time call section PROGBITS AX

.regmode Register mode information REGMODE None

.relname Relocation information REL None

.relaname Relocation information RELA None

.sbss .sbss section NOBITS AWG

.sconst .sconst section PROGBITS A

.sdata .sdata section PROGBITS AWG

.sebss .sebss section NOBITS AW

.sedata .sedata section PROGBITS AW

.shstrtab String table containing section names STRTAB None

.sibss .sibss section NOBITS AW

.sidata .sidata section PROGBITS AW

.strtab String table STRTAB None

.symtab Symbol table SYMTAB None

.text .text section PROGBITS AX

.tibss .tibss section NOBITS AW

.tibss.byte .tibss.byte section NOBITS AW

.tibss.word .tibss.word section NOBITS AW

.tidata .tidata section PROGBITS AW

.tidata.byte .tidata.byte section PROGBITS AW

.tidata.word .tidata.word section PROGBITS AW

.vdbstrtab Symbol table for debug information STRTAB None

Index String

CHAPTER 3 BUILD OUTPUT LISTS

User’s Manual U19386EJ1V0UM 139

Notes 1. The name part of .gptabname, .relname, and .relaname indicates the name of the section corre-
sponding to each respective section.

2. This is information that is used when processing the linker's -A option.

.vdebug Debug information PROGBITS None

.version Version information section PROGBITS None

.vline Line number information PROGBITS None

NameNote 1 Description Section Type Section Attribute

APPENDIX A WINDOW REFERENCE

140 User’s Manual U19386EJ1V0UM

APPENDIX A WINDOW REFERENCE

This section explains windows/panels/dialog boxes used in build process.

A.1 Description

The following lists the windows/panels/dialog boxes used in build process.

Table A-1. List of Windows/Panels/Dialog Boxes

Window/Panel/Dialog Box Name Function Description

Main window This is the first window to be open when CubeSuite is launched.

Project Tree panel This panel is used to display the project components in tree view.

Property panel This panel is used to display the detailed information on the build tool,
file, or category that is selected on the Project Tree panel and change
the settings of the information.

Editor panel This panel is used to display/edit text files/source files.

Output panel This panel is used to display the message that is output from the build
tool or the result of the batch search with the Search And Replace dialog
box.

Add File dialog box This dialog box is used to create a new file and add it to the project.

Add Folder and File dialog box This dialog box is used to add existing files and folder hierarchies to the
project.

Character String Input dialog box This dialog box is used to input and edit characters in one line.

Text Edit dialog box This dialog box is used to input and edit texts in multiple lines.

Path Edit dialog box This dialog box is used to edit or add the path.

Link Directive File Generation dialog box This dialog box is used to generate a link directive file.

Object File Select dialog box This dialog box is used to select an object file and retrieve it for the
caller.

Segment Select dialog box This dialog box is used to select a segment and retrieve it for the caller.

Link Order dialog box This dialog box is used to display object module files and library files to
input to the linker and configure these link order.

Build Mode Settings dialog box This dialog box is used to add and delete build modes and configure the
current build mode in batch.

Batch Build dialog box This dialog box is used to do build, rebuild and clean process in batch
with the build mode that each project has.

Search and Replace dialog box This dialog box is used to search and replace the designated
characters.

Go to the Location dialog box This dialog box is used to move the caret to the designated location.

Progress Status dialog box This dialog box is used to show how the process has been progressed.

Option dialog box This dialog box is used to configure the CubeSuite environment.

User Setting dialog box This dialog box allows you to customize toolbars and menus displayed
in the Main window.

New Toolbar dialog box This dialog box is used to create a new toolbar to appear in the Main
window.

Rename Toolbar dialog box This dialog box is used to edit the name of a toolbar created by the user.

Customize Keyboard dialog box This dialog box is used to assign shortcut keys to the various
commands.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 141

Rearrange Commands dialog box This dialog box allows you to change the arrangement (including
addition and deletion) of menu items and buttons in the Main window.

Add Existing File dialog box This dialog box is used to select existing files to add to projects.

Browse For Folder dialog box This dialog box is used to select a folder and retrieve it for the caller.

Specify Boot Area Object File dialog box This dialog box is used to select the boot area object file to set in the
caller of the dialog box.

Specify Function Information File dialog box This dialog box is used to select the function information file to set in the
caller of the dialog box.

Specify Intermediate Language File for External
Variable Sorting dialog box

This dialog box is used to select the intermediate language file for
external variable sorting to set in the caller of the dialog box.

Specify Far Jump File dialog box This dialog box is used to select the Far Jump file to set in the caller of
the dialog box.

Specify ROMization Area Reservation Code File
dialog box

This dialog box is used to select the ROMization area reservation code
file and retrieve it for the caller.

Save As dialog box This dialog box is used to save the editing file or contents of each panel
to a file with a name.

Open with Program dialog box This dialog box is used to select the application to open the file.

Select Program dialog box This dialog box is used to select the executable file of an external tool.

Select External Text Editor dialog box This dialog box is used to select the executable file of an external text
editor.

Stack Usage Tracer window This is the first window to be open when the stack usage tracer is
launched.

Stack Size Unknown / Adjusted Function Lists
dialog box

This dialog box is used to display a list of functions for which the stack
usage tracer could not obtain stack information; functions for which
information was changed intentionally, and functions for which the stack
usage tracer forcibly set an additional margin.

Adjust Stack Size dialog box This dialog box is used to change the information for the selected
function.

Open dialog box This dialog box is used to open an existing stack size specification file.

Window/Panel/Dialog Box Name Function Description

APPENDIX A WINDOW REFERENCE

142 User’s Manual U19386EJ1V0UM

This is the first window to be open when CubeSuite is launched.
This window is used to control the user program execution and open panels for the build process.

Figure A-1. Main Window

The following items are explained here.
- [How to open]
- [Description of each area]

[How to open]

- Select Windows® [start] >> [All programs] >> [NEC Electronics CubeSuite] >> [CubeSuite]

Main window

(1)
(2)

(3)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 143

[Description of each area]

(1) Menu bar
Displays the menu relates to build.
Contents of each menu can be customized in the User Setting dialog box.

(a) [Project]
The [Project] menu shows menu items to operate the project and others.

Add New Subproject... Closes the current project and opens the Create Project dialog box to create a
new project.

If the currently open project or file has been modified but it has not been saved
yet, a confirmation message is displayed to ask you whether you want to save
it.

Open Project... Closes the current project and opens the Open Project dialog box to open the
existing project.

If the currently open project or file has been modified but it has not been saved
yet, a confirmation message is displayed to ask you whether you want to save
it.

Favorite Projects Displays a cascading menu to use to open or save your favorite project.

1 path [Opens your favorite project registered with [Favorite Projects] >> [1 Register to
Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

2 path [Opens your favorite project registered with [Favorite Projects] >> [2 Register to
Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

3 path [Opens your favorite project registered with [Favorite Projects] >> [3 Register to
Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

4 path [Opens your favorite project registered with [Favorite Projects] >> [4 Register to
Favorite Project].

If no project has been registered,"Favorite Project" is displayed.

1 Register to Favorite Project The current project path is added to [1 path] in [Favorite Projects].

2 Register to Favorite Project The current project path is added to [2 path] in [Favorite Projects].

3 Register to Favorite Project The current project path is added to [3 path] in [Favorite Projects].

4 Register to Favorite Project The current project path is added to [4 path] in [Favorite Projects].

Add Shows the cascading menu to add subprojects to the project.

APPENDIX A WINDOW REFERENCE

144 User’s Manual U19386EJ1V0UM

(b) [Build]
The [Build] menu shows menu items for the build process and others.

Add Subproject... Opens the Add Existing Subproject dialog box to add an existing subproject to
the project.

Add New Subproject... Opens the Create Project dialog box to add a new subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and
add to the file to the project.

The added file can be opened with the application corresponds to the file
extension.

Add New Category Adds a new category node to the root of the File node. This allows the cate-
gory name to be changed.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

Note that this menu is disabled when the build tool is in operation.

Sets selected project or sub-
project as Active Project.

Set the selected project or subproject as an active project.

Close Project Closes the current project.

If the currently open project or file has been modified but it has not been saved
yet, a confirmation message is displayed to ask you whether you want to save
it.

Save Project Saves the configuration information of the current project to the project file.

Save Project As... Opens the Save Project As dialog box to save the configuration information of
the current project to the project file with another name.

Remove from Project Removes the selected project or subproject from the project.

The subproject files or the file themselves are not deleted from the file system.

Save Project and CubeSuite as
Package...

Saves a set of the CubeSuite and the project by copying them in a folder.

Build Project Builds the project. The subproject is also built when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the project. The subproject is also rebuilt when it is added in the
project.

Note that this menu is disabled when the build tool is in operation.

Clean Project Cleans the project. The subproject is also cleaned when it is added in the
project.

Note that this menu is disabled when the build tool is in operation.

Rapid Build Toggles the rapid build function between enabled (default) and disabled.

Update Dependencies Updates the dependency of the file in the project to build. The dependency of
the file in the subproject to build is also updated when the subproject is added
to the project.

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 145

(2) Toolbar
Buttons used in build process are displayed.
Buttons on the toolbar can be customized in the User Setting dialog box. You can also create a new toolbar in
the same dialog.

(a) Build toolbar
Build toolbar shows buttons used in build process.

(3) Panel display area
The following panels are displayed in this area.

- Project Tree panel
- Property panel
- Editor panel
- Output panel

See the each panel section for details of the contents of the display.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Update Dependencies of active
project

Updates the dependency of the file in the active project to build.

Stop Build Cancels the build, rebuild, batch build and clean operation.

Build Mode Settings... Opens the Build Mode Settings dialog box to modify and add to the build mode.

Batch Build... Opens the Batch Build dialog box to batch build.

Build Option List Lists the currently set build option in the Output panel.

Builds projects. The subproject is also built when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Rebuilds projects. The subproject is also rebuilt when it is added in the project.

Note that this button is disabled when the build tool is in operation.

Cancels the build, rebuild, batch build and clean in operation.

APPENDIX A WINDOW REFERENCE

146 User’s Manual U19386EJ1V0UM

This panel is used to display the project components such as the build tool, source files, etc. in tree view.

Figure A-2. Project Tree Panel

The following items are explained here.
- [How to open]
- [Description of each area]
- [[Edit] menu (only available for the Project Tree panel)]
- [Context menu]

[How to open]

- From the [View] menu, select [Project Tree].

[Description of each area]

(1) Project tree area
Project components are displayed in tree view with the following given node.

Project Tree panel

Node Description

Project name (Project)

(hereafter referred to as “Project node”)

Project name.

(1)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 147

When each component (the node or file) is selected, the detailed information (property) is displayed in the Prop-
erty panel. You can change the settings.

Build tool name (Build tool)

(hereafter referred to as “Build tool node”)

The build tool (compiler, assembler, etc.) used in the project.

File

(hereafter referred to as “File node”)

The following files that are added to the project are displayed under the
root of this node.

- C source file (*.c)

- Assembler source file (*.s)

- Header file (*.h, *.inc)

- Object file (*.o)

- Library file (*.a)

- Link directive file (*.dr, *.dir)

- Section file (*.sf)

- Other file (doc, xml, etc.)

Build tool generated files

(hereafter referred to as “Build tool generated
files node”)

The following files generated by the build tool appear directly below the
node created during the build.

- For other than library projects

Load module file (*.out)

Link map file (*.map)

Hex file (*.hex)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Memory map table (rammap.csv)

- For library projects

Archive file (*.a)

Dump list (dump.txt)

Cross reference information (cxref)

Tag information (ctags)

Call tree information (ccalltre.csv, ccalltre.lst)

Function metrics information (cmeasure.csv, cmeasure.lst)

Call database information (cprofile.csv, cprofile.dat)

Files displayed under this node cannot be renamed, deleted, or moved.

This node is always placed lower than the File node.

This node will no longer appear if you reload the project after building.

Startup

(hereafter referred to as “Startup node”)

This is a node for adding other than standard startup files to the project.

This node is always placed lower than the File node.

Category name

(hereafter referred to as “category node”)

Categories that the user created to categorize files (see "2.3.6 Clas-
sify a file into a category").

This node is always placed lower than the File node.

Subproject name (Subproject)

(hereafter referred to as “Subproject node”)

Subprojects added to the project.

Node Description

APPENDIX A WINDOW REFERENCE

148 User’s Manual U19386EJ1V0UM

Remark When more than one components are selected, only the tab that is common to all the components is
displayed.
When multiple files are selected and the values of their common properties are different, then the
corresponding value fields are displayed blank.

This area has the following functions.

(a) Add files
You can add files by one of the following procedure.
The files are added under the File node.

<1> Add existing files
- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the [File] menu. The Add Existing File dialog box appears. Select files to add.
- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add File...] from the context menu. The Add Existing File dialog box appears. Select files to
add.

- Copy the file using windows explorer and the like and then point the mouse to this area. Select
[Paste] from the [Edit] menu.

- Drag files using windows explorer and the like and then drop them at the location in this area
where you want to add the files to.

Remark If the files are dragged from the windows explorer and the like and then dropped in the
blank space under the lower project tree, it is regarded as dropped in the Main project.

<2> When new files are added
- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>

[Add New File...] from the [File] menu. The Add File dialog box appears. Designate the file to
create.

- Select either one of the Project node, Subproject node, File node or a file. Then select [Add] >>
[Add New File...] from the context menu. The Add File dialog box appears. Designate the file to
create.

Remark A blank file is created at the location designated in the Add File dialog box.

(b) Remove the file from a project
You can remove files from the project by one of the following procedure.
The removed files are not deleted from the file system in this operation.

- Select the file you want to remove from the project. Then select [Remove from Project] from the
[Project] menu.

- Select the file you want to remove from the project. Then select [Remove from Project] from the con-
text menu.

(c) Move files
You can move files by the following procedure.
The file are moved under the File node.

- Drag the file you want to move and then drop it in the destination.

Remarks 1. Individual option is retained when the file is dropped in the main project or subproject.
2. The file is copied, not moved when the file is dropped between the different project, or in the

main project or subproject in same project. Note that this operation does not retain the indi-
vidual option set in each file.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 149

(d) Add categories
You can add the category node by one of the following procedure.
The category node are added under the File node.

- Select [Add New Category] from the [Project] menu.
- Select [Add New Category] from the context menu of either one of the Project node, Subproject node,

or File node.

Remarks 1. The default category name is "New category".
2. The new category name can be changed to the same name as the existing category node.

(e) Move categories
You can move the category node by the following procedure.
The category node are moved under the File node.

- Drag the category node you want to move and then drop it in the destination.

Remarks 1. Individual option set in the file in the category node is retained when the category node is
dropped in the main project or subproject.

2. The category node is copied, not moved when the it is dropped between the different
project, or in the main project or subproject in same project. Note that the individual option
set in each file contained in the category node is not retained.

(f) Add folders
You can add folders from Explorer or the like by the following procedure.
The folders are added under the File node.
The folders are added as categories.

- Drag the folder from Explorer or the like, and drop it over its destination. The Add Folder and File dia-
log box opens. Specify the file types and subdirectory levels in the folder to add.

Caution You cannot drag and drop folders and files into this area simultaneously.

(g) Modify the display order of the subprojects placed in order of build
The subproject is displayed in order of build from the top. Therefore, the order of build can be changed by
changing the display order of the subprojects.
The project must be built from the subproject then the main project.

(h) Configure the standard build option
When the standard build option is changed, the property is displayed in boldface in the Property panel.
You can change the standard build option to the current setting (cancel boldface) by the following proce-
dure.

- Select the Build tool node and then select [Set to Default Build Option for Project] in the context menu.

Remark The configuration of the standard build option takes effect to the whole project (main project and
subproject).

(i) Sort files and categories
You can sort files and category nodes in order of the file name, time stamp, or the user definition by the fol-
lowing procedure.

- Select one of the buttons in the toolbar.

The following table explains the buttons.
 is selected default by default.

APPENDIX A WINDOW REFERENCE

150 User’s Manual U19386EJ1V0UM

(j) Display the file while editing
When the file added to the project is edited in the Editor panel and the file is not saved once, the file name
is followed by "*". When the file is saved, "*" is deleted.

(k) Display the source file in boldface that the individual build option is set
The source file icon whose option is different from the project general option (individual compile option, indi-
vidual assemble option) is changed to a different one from the normal icon.

(l) Highlight the file with read-only attribute
The read-only file added to the project is displayed in italic.

(m) Highlight the file that does not exist
The file that is added to the project but does not exist is grayed out and its icon is dimmed.

(n) Highlight the build-target file

<1> The file which the error occurred during building (rapid building), rebuilding, compiling or
assembling is highlighted as the example below.

Button Description

Sorts files and category nodes in order of their names.

: Ascending order

: Descending order

: Ascending order

Sorts files and category nodes in order of their time stamp.

: Descending order

: Ascending order

: Descending order

Sorts files and category nodes in order of the user definition (default).

You can change the display order by dragging and dropping the file and category node.

The file that is saved

The file that is not saved after editing

The file with project general option

The file with individual build option

The file without read-only attribute

The file with read-only attribute

The file that exists

The file that does not exist

The file without errors or warnings

The file with error

The file with warning

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 151

Remarks 1. The file with both the error and the warning is highlighted in red.
2. The highlight is canceled when the build option (general option or individual option) or

the build mode is changed.

<2> The names of the following files are displayed in boldface.
- The source files that have not been compiled after edited
- The source files after cleaning has been executed
- The source files after build tool options have been changed
- The source files after any build mode has been changed

Remark The file names are all displayed in boldface right after the project is opened. The boldface
display is canceled after building is executed.

(o) Highlight non build-target file
The file that is set as non build-target is highlighted as shown in the example below.

(p) Highlight the project that has been changed
The file component that is added to the project and the property of the project component are changed, the
project name is followed by "*" and is displayed in boldface.
The boldface is canceled when the project is saved.

(q) Highlight the active project
The active projects is underlined.

(r) Run the editor
Open the file with the specific extension in the Editor panel. When an external editor is specified to use in
the Option dialog box, open the file with the external editor. Other files are opened with the application
associated with the OS.

Caution The files with the extensions that are not associated with the OS are not displayed.

You can open the editor by one of the following procedure.
- Double click the file.
- Select the file and then select [Open] from the context menu.
- Select the file and then press the [Enter] key.

The files that can be opened in the Editor panel are as follows.
- C source file (.c)
- Assembler source file (.s)
- Header file (.h, .inc)
- Link directive file (.dr, .dir)
- Section file (.sf)

Build-target file

Non build-target file

The project that has not been changed

The project that has been changed

Non-active project

Active project

APPENDIX A WINDOW REFERENCE

152 User’s Manual U19386EJ1V0UM

- Map file (.map)
- Hex file (.hex)
- Text file (.txt)

Remark You can use one of the methods below to open files other than those listed above in the Editor
panel.

- Drag the file and drop it into the Editor panel.
- Select the file and then select [Open with Internal Editor...] from the context menu.

[[Edit] menu (only available for the Project Tree panel)]

Copy Copies the selected file or category node to the clipboard.

While editing the file name or the category name, the characters of the selection are
copied to the clipboard.

Note that this menu is only enabled when the file or category node is selected.

Paste Inserts the contents of the clipboard at the same level as the node that is selected on
the Project Tree (if the category node is selected, insert at the lower level of it).

While editing the file name or the category name, insert the contents of the clipboard.

Note that this menu is only enabled when the file or category node exists. However,
the menu is disabled when multiple files and category nodes are selected and the
build tool is in operation.

Rename You can rename the selected project, subproject, file, and category node. Press the
[Enter] key to confirm the rename. Press the [ESC] key to cancel.

When the file is selected, the actual file name is also changed.

When the selected file is added to other project, those file names are also changed.

Note that this menu is only enabled when the project, subproject, file, and category
node is selected. Note that rename is disabled when the build tool is in operation.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 153

[Context menu]

(1) When the Project node is selected

Build active project Builds the active project.

If the active project is the main project, its subproject is not built.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

If the active project is the main project, its subproject is not rebuilt.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

If the active project is the main project, its subproject is not cleaned.

Note that this menu is disabled when the build tool is in operation.

Open Folder with Explorer Opens the folder that contains the project file of the selected project with Explorer.

Add Shows the cascading menu to add subprojects and files to the project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the
project.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category
name to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Set selected project as Active
Project

Sets the selected project to an active project.

Save Project and CubeSuite as
Package...

Saves a set of the CubeSuite and the project by copying them in a folder.

Paste This menu is always disabled.

Rename You can rename the selected project.

Property Displays the selected project's property on the Property panel.

APPENDIX A WINDOW REFERENCE

154 User’s Manual U19386EJ1V0UM

(2) When the Subproject node is selected

(3) When the Build tool node is selected

Build active project Builds the active project.

Note that this menu is disabled when the build tool is in operation.

Rebuild active project Rebuilds the active project.

Note that this menu is disabled when the build tool is in operation.

Clean active project Cleans the active project.

Note that this menu is disabled when the build tool is in operation.

Open Folder with Explorer Opens the folder that contains the subproject file of the selected subproject with
Explorer.

Add Shows the cascading menu to add subprojects, files, and category nodes to the
project.

Add Subproject... Opens the Add Existing Subproject dialog box to add the selected subproject to the
project.

The subproject cannot be added to another subproject.

Add New Subproject... Opens the Create Project dialog box to add the created subproject to the project.

The subproject cannot be added to another subproject.

Add File... Opens the Add Existing File dialog box to add the selected file to the project.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of the File node. This allows the category
name to be changed.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Set selected subproject as
Active Project

Sets the selected subproject to an active project.

Remove from Project Removes the selected subproject from the project.

The subproject file itself is not deleted from the file system with this operation.

When the selected subproject is the active project, it cannot be removed from the
project.

Note that this menu is disabled when the build tool is in operation.

Paste This menu is always disabled.

Rename You can rename the selected subproject.

Property Displays the selected subproject's property on the Property panel.

Build Project Builds the selected project (main project or subproject). The subproject is also built
when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Rebuild Project Rebuilds the selected project (main project or subproject). The subproject is also
rebuilt when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 155

(4) When the File node is selected

(5) When a file is selected

Clean Project Cleans the selected project (main project or subproject). The subproject is also
cleaned when it is added in the project.

Note that this menu is disabled when the build tool is in operation.

Set to Default Build Option for
Project

Sets the current build option to the standard option for the selected project. When
the subproject is added, it is not set.

When the build option that is different from the standard option is set, its property is
displayed in boldface.

Set Link Order... Opens the Link Order dialog box to display object module files and library files and
to setup their link order.

Note that this menu is disabled when the build tool is in operation.

Create Link Directive File... Opens the Link Directive File Generation dialog box ot create the link directive file.

Property Displays the selected build tool's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The
file is added directly below this node.

The added file can be opened with the application corresponds to the file exten-
sion.The file is added directly below this node.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Remove from Project This menu is always disabled.

Copy This menu is always disabled.

Paste Insert the contents of the clipboard at the same level as the File node.

Rename This menu is always disabled.

Property Displays the selected category node's property on the Property panel.

Compile Compiles the selected C source file.

Note that this menu is only displayed when a C source file (except for non build-tar-
get file) is selected.

Note that this menu is disabled when the build tool is in operation.

Assemble Assembles the selected assembler source file.

Note that this menu is only displayed when an assembler source file (except for non
build-target file) is selected.

Note that this menu is disabled when the build tool is in operation.

Open Opens the selected file with the application corresponds to the file extension (see
"(r) Run the editor").

Note that this menu is disabled when multiple files are selected.

APPENDIX A WINDOW REFERENCE

156 User’s Manual U19386EJ1V0UM

(6) When the Build tool generated files node is selected

(7) When the Startup node is selected

Open with Internal Editor... Opens the selected file with the Editor panel.

Note that this menu is disabled when multiple files are selected.

Open with Selected Applica-
tion...

Opens the Open with Program dialog box to open the selected file with the desig-
nated application.

Note that this menu is disabled when multiple files are selected.

Open Folder with Explorer Opens the folder that contains the selected file with Explorer.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The
file is added to the same level as the selected file.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project. The file is added to the same level as the selected file.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node at the same level as the selected file. You can rename
the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Remove from Project Removes the selected file from the project.

The removed file is not deleted from the file system in this operation.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected file to the clipboard.

When the file name is in editing, the characters of the selection are copied to the
clipboard.

Paste This menu is always disabled.

Rename You can rename the selected file.

The actual file is also renamed.

When the selected file is added to another projects, it is also renamed.

Property Displays the selected file's property on the Property panel.

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 157

(8) When a category node is selected

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The
file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Remove from Project This menu is always disabled.

Copy This menu is always disabled.

Paste Insert the contents of the clipboard at the same level as the File node.

Rename This menu is always disabled.

Property Displays this node 's property on the Property panel.

Add Shows the cascading menu to add files and category nodes to the project.

Add File... Opens the Add Existing File dialog box to add the selected file to the project. The
file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New File... Opens the Add File dialog box to create a file with the selected file type and add to
the project. The file is added directly below this node.

The added file can be opened with the application corresponds to the file extension.

Add New Category Adds a new category node to the root of this node. You can rename the category.

Up to 200 characters can be specified.

The default category name is "New category". The new category name can be
changed to the same name as the existing category node.

This menu is disabled while the build tool is running, and if categories are nested 20
levels.

Remove from Project Removes the selected category node from the project.

Note that this menu is disabled when the build tool is in operation.

Copy Copies the selected category node to the clipboard.

When the category name is in editing, the characters of the selection are copied to
the clipboard.

Paste Insert the contents of the clipboard to the lower level of the selected category node.

When the category name is in editing, insert the contents of the clipboard.

Rename You can rename the selected category node.

Property Displays the selected category node's property on the Property panel.

APPENDIX A WINDOW REFERENCE

158 User’s Manual U19386EJ1V0UM

This panel is used to display the detailed information on the Build tool node, file, or category node that is selected on
the Project Tree panel by every category and change the settings of the information.

Figure A-3. Property Panel

The following items are explained here.
- [How to open]
- [Description of each area]
- [[Edit] menu (only available for the Project Tree panel)]
- [Context menu]

 Property panel

(2)

(3)

(4)

(1)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 159

[How to open]

- On the Project Tree panel, select the Build tool node, file, or category node, and then select [Property] from the
[View] menu or [Property] from the context menu.

Remark When either one of the Build tool node, file, or category node on the Project Tree panel while the Prop-
erty panel is opened, the detailed information of the selected node is displayed.

[Description of each area]

(1) Selected node area
Display the name of the selected node on the Project Tree panel.
When multiple nodes are selected, this area is blank.

(2) Detailed information display/change area
In this area, the detailed information on the Build tool node, file, or category node that is selected on the Project
Tree panel is displayed by every category in the list. And the settings of the information can be changed directly.
Mark indicates that all the items in the category are expanded. Mark indicates that all the items are col-
lapsed. You can expand/collapse the items by clicking these marks or double clicking the category name.
Mark indicates that only the hex number is allowed to input in the text box.
See the section on each tab for the details of the display/setting in the category and its contents.

(3) Property description area
Display the brief description of the categories and their contents selected in the detailed information display/
change area.

(4) Tab selection area
Categories for the display of the detailed information are changed by selecting a tab.
In this panel, the following tabs are contained (see the section on each tab for the details of the display/setting
on the tab).

(a) When the Build tool node is selected on the Project Tree panel
- [Common Options] tab
- [Compile Options] tab
- [Assemble Options] tab
- [Link Options] tab
- [ROMization Process Options] tab
- [Hex Convert Options] tab
- [Archive Options] tab
- [Section File Generate Options] tab
- [Dump Options] tab
- [Cross Reference Options] tab
- [Memory Layout Visualization Options] tab

(b) When a file is selected on the Project Tree panel
- [Build Settings] tab(for C source file, assembler source file, link directive file, section file, object file, and

library file)
- [Individual Compile Options] tab (for C source file)
- [Individual Assemble Options] tab (for assembler source file)
- [File Information] tab

(c) When the category node, File node, Build tool generated files node, or Startup node is selected on
the Project Tree panel

APPENDIX A WINDOW REFERENCE

160 User’s Manual U19386EJ1V0UM

- [Category Information] tab

Remark When multiple components are selected on the Project Tree panel, only the tab that is common to all
the components is displayed. If the value of the property is modified, that is taken effect to the
selected components all of which are common to all.

[[Edit] menu (only available for the Project Tree panel)]

[Context menu]

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to
the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, Selects all the characters of the selected prop-
erty.

Undo Cancels the previous edit operation of the value of the property.

Cut While editing the value of the property, cuts the selected characters and copies them to
the clip board.

Copy Copies the selected characters of the property to the clip board.

Paste While editing the value of the property, inserts the contents of the clip board.

Delete While editing the value of the property, deletes the selected character string.

Select All While editing the value of the property, selects all the characters of the selected prop-
erty.

Reset to Default Restores the configuration of the selected item to the default configuration of the
project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab,
restores to the configuration of the general option.

Reset All to Default Restores all the configuration of the current tab to the default configuration of the
project.

For the [Individual Compile Options] tab and [Individual Assemble Options] tab,
restores to the configuration of the general option.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 161

[Common Options] tab

This tab shows the detailed information on the build tool categorized by the following and the configuration can be
changed.

(1) [Build Mode]
(2) [Output File Type and Path]
(3) [Frequently Used Options(for Compile)]
(4) [Frequently Used Options(for Assemble)]
(5) [Frequently Used Options(for Link)]
(6) [Frequently Used Options(for ROMization)]
(7) [Frequently Used Options(for Hex Convert)]
(8) [Frequently Used Options(for Section File Generate)]
(9) [Register Mode]
(10) [Flash]
(11) [Device]
(12) [Version Select]
(13) [Notes]
(14) [Others]

Remark If the property in the [Frequently Used Options] category is changed, the value of the property having the
same name contained in the corresponding tab will be changed accordingly.

Category from [Common Options] Tab Corresponding Tab

[Frequently Used Options(for Compile)] category [Compile Options] tab

[Frequently Used Options(for Assemble)] category [Assemble Options] tab

[Frequently Used Options(for Link)] category [Link Options] tab

[Frequently Used Options(for ROMization)] category [ROMization Process Options] tab

[Frequently Used Options(for Hex Convert)] category [Hex Convert Options] tab

[Frequently Used Options(for Section File Generate)] category [Section File Generate Options] tab

APPENDIX A WINDOW REFERENCE

162 User’s Manual U19386EJ1V0UM

Figure A-4. Property Panel: [Common options] Tab

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 163

[Description of each category]

(1) [Build Mode]
The detailed information on the build mode is displayed and the configuration can be changed.

(2) [Output File Type and Path]
The detailed information on output file types and paths are displayed and the configuration can be changed.

Build mode Select the build mode to be used during build.

Default DefaultBuild

How to change Select from the drop-down list.

Restriction DefaultBuild Builds with the default build mode that is set
when a new project is created.

Build mode that is added
to the project (other than
DefaultBuild)

Builds with the build mode that is added to
the project (other than DefaultBuild).

Output file type Select the type of the file to be generated during build.

The file type set here is subject to debugging.

For other than library projects, only [Execute Module(ROMization Module)], [Execute
Module(Load Module File)], and [Execute Module(Hex File)] are displayed. However, only
[Execute Module(ROMization Module)] and [Execute Module(Load Module File)] is
displayed when [Yes] is selected in the [Output hex file] property in the [Output File]
category from the [Hex Convert Options] tab. Only [Execute Module(Load Module File)] and
[Execute Module(Hex File)] is displayed when [No] is selected in the [Output ROMized
object file] property in the [Output File] category from the [ROMization Process Options] tab.

For library projects, only [Library] is displayed.

Default - For other than library projects

Execute Module(Load Module File)

- For library projects

Library

How to change Select from the drop-down list.

Restriction Execute
Module(ROMization
Module)

The file to be generated during build is
regarded as the executable format
(ROMization module file).

Execute Module(Load
Module File)

The file to be generated during build is
regarded as the executable format (load
module file).

Execute Module(Hex
File)

The file to be generated during build is
regarded as the executable format (hex file).

Library The file to be generated during build is
regarded as the library format (library file).

APPENDIX A WINDOW REFERENCE

164 User’s Manual U19386EJ1V0UM

(3) [Frequently Used Options(for Compile)]
The detailed information on frequently used options for compilation are displayed and the configuration can be
changed.

Output common object
file for various devices

Select whether to output the objects common to the various devices.

This corresponds to the -cn, -cnv850e and -cnv850e2 options of the compiler and
assembler.

This property is displayed only for library projects.

Default No(specific device)(None)

How to change Select from the drop-down list.

Restriction Yes(V850 core
common)(-cn)

Outputs an object that can be used commonly
in the V850 core.

The resultant object can be linked with the
V850/V850ES/V850E1/V850E2 core object.

Yes(V850E/ES core
common)(-cnv850e)

Outputs an object that can be used commonly
in the V850E/ES core.

The resultant object can be linked with the
V850ES/V850E1/V850E2 core object.

Yes(V850E2 core
common)(-cnv850e2)

Outputs an object that can be used commonly
in the V850E2 core.

The resultant object can be linked with the
V850E2 core object.

No(specific
device)(None)

The object having information specific to the
specified device is output.

It is possible to use SFR names and
interrupts in the description contained in the
library.

Intermediate file output
folder

Specify the path to the folder to which intermediate files are to be output.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 165

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Default Optimization(None)

How to change Select from the drop-down list.

Restriction Optimize for
Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,
without putting stress on the ROM capacity and
execution speed.

Default
Optimization(None)

Generates codes emphasizing source debugging.
Performs optimization within a range where source
debugging is not affected.

Standard
Optimization(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the
C source in most cases.

Level 1 Advanced
Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM
capacity.

Level 2 Advanced
Opt.(Code size
precedence)(-Os)

Performs more advanced optimization (object size
precedence).

Performs the maximum optimization placing the
utmost emphasis on the ROM capacity.

Level 2 Advanced
Opt.(Speed
precedence)(-Ot)

Performs more advanced optimization (execution
speed precedence).

Performs the maximum optimization placing the
utmost emphasis on the execution speed.

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

166 User’s Manual U19386EJ1V0UM

(4) [Frequently Used Options(for Assemble)]
The detailed information on frequently used options for assembling are displayed and the configuration can be
changed.

(5) [Frequently Used Options(for Link)]
The detailed information on frequently used options for linking are displayed and the configuration can be
changed.
This category is not displayed for library projects.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The
"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of
paths used by linked tools.

Macro definition Specifies the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The
"=def" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 167

Using libraries Specify the library file name (libstring.a) to be used other than the standard libraries.

Specify only the "string" part (example: if you specify "abc", "libabc.a" is assumed to be
specified).

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -l option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 63 characters

Up to 256 items can be specified.

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The library files are searched from the library path. If a relative path is specified, the
reference point of the path is the project folder.

This corresponds to the -L option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 256 items can be specified.

Output folder Specify the folder for saving the module that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

APPENDIX A WINDOW REFERENCE

168 User’s Manual U19386EJ1V0UM

(6) [Frequently Used Options(for ROMization)]
The detailed information on frequently used options for ROMization are displayed and the configuration can be
changed.
This category is not displayed for library projects.

Output file name Specify the load module file name to be generated.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is
automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output ROMized object
file

Select whether to output the ROMized object file.

This corresponds to the -Xr option of the compiler and the -lr option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xr -lr) Outputs the ROMized object file.

No Does not output the ROMized object file.

Output folder for
ROMized object file

Specify the folder for saving the ROMized object file.

This corresponds to the -o option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file]
property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

ROMized object file
name

Specify the ROMized object file name.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is
automatically added.

This corresponds to the -o option of the ROMization processor.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file]
property is selected.

Default romp.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 169

(7) [Frequently Used Options(for Hex Convert)]
The detailed information on frequently used options for hex conversion are displayed and the configuration can
be changed.
This category is not displayed for library projects.

Output hex file Select whether to output the hex file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No Does not output the hex file.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the hex converter.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the hex converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

170 User’s Manual U19386EJ1V0UM

(8) [Frequently Used Options(for Section File Generate)]
The detailed information on frequently used options for section file generation are displayed and the
configuration can be changed.

Hex file format Select the format of the hex file to be generated.

This corresponds to the -f option of the hex converter.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default Intel expanded hex format(-fI)

How to change Select from the drop-down list.

Restriction Intel expanded hex format(-
fI)

Specifies the Intel expanded hex format as
the format of the hex file to be generated.

Motorola S type
format(standard address)(-
fS)

Specifies the Motorola S type format
(standard address) as the format of the hex
file to be generated.

Motorola S type format(32-
bit address)(-fs)

Specifies the Motorola S type format (32-
bit address) as the format of the hex file to
be generated.

Expanded Tektronix hex
format(-fT)

Specifies the expanded Tektronix hex
format as the format of the hex file to be
generated.

Use section file
generator

Select whether to use the section file generator.

Default No

How to change Select from the drop-down list.

Restriction Yes Uses the section file generator.

No Does not use the section file generator.

Output folder for section
file

Specify the folder for saving the section file.

This corresponds to the -o option of the section file generator.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Use section file generator] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 171

(9) [Register Mode]
The detailed information on register modes are displayed and the configuration can be changed.

Note Register modes provided by the C compiler are shown below.

(10) [Flash]
The detailed information on the flash are displayed and the configuration can be changed.

Section file name Specify the section file name.

The extension other than ".sf" cannot be specified. If the extension is omitted, ".sf" is
automatically added.

This corresponds to the -o option of the section file generator.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Use section file generator] property is
selected.

Default %ProjectName%.sf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Select register mode Selects the register mode (number of registers used by the C compiler)Note of the software
register bank function.

This corresponds to the -reg option of the compiler and linker.

Default 32-register mode(None)

How to change Select from the drop-down list.

Restriction 32-register mode(None) Sets the register mode to 32.

26-register mode(-reg26) Sets the register mode to 26.

22-register mode(-reg22) Sets the register mode to 22.

Use mask registers Select whether to use the r20 register and the r21 register as mask registers.

This corresponds to the -Xmask_reg option of the compiler, the -m option of the assembler,
and the -mask_reg option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xmask_reg,-m, -
mask_reg)

Outputs codes, assuming that an 8-bit mask
value, 0xff, is set to r20 and a 16-bit mask
value, 0xffff, is set to r21.

No Does not use the mask register function.

Register Mode Working Registers Registers for Register Variables

22-register mode r10 to r14 r25 to r29

26-register mode r10 to r16 r23 to r29

32-register mode r10 to r19 r20 to r29

APPENDIX A WINDOW REFERENCE

172 User’s Manual U19386EJ1V0UM

(11) [Device]
The detailed information on the device is displayed and the configuration can be changed.

Output flash object file Selects whether to generate the object file for flash.

This must be specified for both the flash area and the boot area.

Default No

How to change Select from the drop-down list.

Restriction Yes Generates the object file for flash.

No Does not generate the object file for flash.

Branch table address Specify the start address of the branch table.

Specify the same address for both the flash area and the boot area.

This corresponds to the -ext_table option of the linker.

This property is displayed only when [Yes] in the [Output flash object file] property is
selected.

Default 0x0

How to change Directly enter to the text box.

Restriction 0x0 to 0xffffffff (hexadecimal number)

Object file type Select the type of the object file to be generated.

This corresponds to the -Wa, -zf option of the compiler, the -zf option of the assembler, and
the -zf option of the linker.

This property is displayed only when [Yes] in the [Output flash object file] property is
selected.

Default Boot area object file (None)

How to change Select from the drop-down list.

Restriction Boot area object file (None) Generates a boot area object file.

Flash area object file(-Wa, -zf) Generates a flash area object file.

Boot area object file
name

Specifies the name of the boot area object file.

This corresponds to the -zf option of the linker.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

If this field is blank, a link error occurs. Be sure to specify the boot area load module file
name.

This property is displayed only when [Flash area object file(-Wa, -zf)] in the [Object file type]
property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify Boot Area Object File
dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 173

(12)[Version Select]
The detailed information on the build tool version is displayed and the configuration can be changed.

(13) [Notes]
The detailed information on notes is displayed and the configuration can be changed.

256 MB mode In the case of a device with 256 MB of physical address space, select whether to create a
program that uses an address space of more than 64 MB and up to 256 MB.

This corresponds to the -256M option of the compiler, assembler, and linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-X256M) Treats the memory space as having 256 MB.

No Treats the memory space as having 64 MB.

Programmable I/O area
start address

Specify the use of the programmable I/O area and the start address.

The address is aligned with 16 KB.

This corresponds to the -Xbpc option of the compiler and the -bpc option of the assembler.

Default 0x0

How to change Directly enter to the text box.

Restriction 0x0 to 0xffffffff (hexadecimal number)

Security ID Specify the security ID of an on-chip flash memory device.

This corresponds to the -Xsid option of the linker.

Default 0xffffffffffffffffffff

How to change Directly enter to the text box.

Restriction 0x00000000000000000000 to 0xffffffffffffffffffff

(20-digit (10-byte) hexadecimal number)

Using compiler package
install folder

Display the folder in which the compiler package to be used is installed.

Default Install folder name

How to change Changes not allowed

Using compiler package
version

Select the version of the compiler package to be used.

This setting is common to all the build modes.

Default Always latest version which was installed

How to change Select from the drop-down list.

Restriction Always latest version
which was installed

Uses the latest version in the installed compiler
packages.

Versions of the
installed compiler
packages

Uses the selected version in the compiler
package.

Latest compiler package
version which was
installed

Display the version of the compiler package to be used when [Always latest version which
was installed] is selected in the [Using compiler package version] property.

This setting is common to all the build modes.

This property is displayed only when [Always latest version which was installed] in the
[Using compiler package version] property is selected.

Default The latest version of the installed compiler packages

How to change Changes not allowed

APPENDIX A WINDOW REFERENCE

174 User’s Manual U19386EJ1V0UM

(14)[Others]
Other detailed information on the build tool are displayed and the configuration can be changed.

Memo Add memos to the build tool.

Add one item in one line.

This setting is common to all the build modes.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Output message format Specify the format of the message being built.

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

If this is blank, it is assumed that "%Program% %Options%" has been specified.

Default %FileName%

How to change Directly enter to the text box (up to 256 characters) or select from the
drop-down list.

Restriction %FileName% Displays the file name in the output
message.

%FileName%: %Options% Displays the file name and command line
options in the output message.

%Program% %Options% Displays the program name and command
line options in the output message.

Format of build option list Specify the display format of the build option list (see "2.17.3 Display a list of build
options").

The following macro names are available as embedded macros.

%Program%: Replaces with the program name under execution.

%Options%: Replaces with the command line option under build execution.

%FileName%: Replaces with the file name being built.

Default %FileName% : %Program% %Options%

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 256 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 175

Temporary folder Specify the folder to which the temporary files generated by each command included in the
build tool during execution are saved.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

If this is blank, it is treated as if the project folder is specified.

Default Blank

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 200 characters

Commands executed
before build processing

Specify the command to be executed before build processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed before build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after build processing

Specify the command to be executed after build processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

The specified command is displayed as the subproperty.

Default Commands executed after build processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

176 User’s Manual U19386EJ1V0UM

[Compile Options] tab

This tab shows the detailed information on the compiler categorized by the following and the configuration can be
changed.

(1) [Debug Information]
(2) [Optimization]
(3) [Optimization(Details)]
(4) [Preprocess]
(5) [Message]
(6) [Kanji Code]
(7) [C Language]
(8) [Output Code]
(9) [Output File]
(10) [Input File]
(11) [External Register]
(12) [Others]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 177

Figure A-5. Property Panel: [Compile Options] Tab

[Description of each category]

(1) [Debug Information]
The detailed information on debug information is displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by outputting symbol information for the
source debugger.

This corresponds to the -g option of the compiler.

Default Yes(-g)

How to change Select from the drop-down list.

Restriction Yes(-g) Outputs symbol information for the source debugger.

No Does not output symbol information for the source
debugger.

APPENDIX A WINDOW REFERENCE

178 User’s Manual U19386EJ1V0UM

(2) [Optimization]
The detailed information on the optimization are displayed and the configuration can be changed.

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Default Optimization(None)

How to change Select from the drop-down list.

Restriction Optimize for
Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,
without putting stress on the ROM capacity and
execution speed.

Default
Optimization(None)

Generates codes emphasizing source debugging.
Performs optimization within a range where source
debugging is not affected.

Standard
Optimization(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the
C source in most cases.

Level 1 Advanced
Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM
capacity.

Level 2 Advanced
Opt.(Code size
precedence)(-Os)

Performs more advanced optimization (object size
precedence).

Performs the maximum optimization placing the
utmost emphasis on the ROM capacity.

Level 2 Advanced
Opt.(Speed
precedence)(-Ot)

Performs more advanced optimization (execution
speed precedence).

Performs the maximum optimization placing the
utmost emphasis on the execution speed.

Save memory of
preoptimizer

Select whether to save the memory usage amount of the preoptimizer during compiling.

Specify this option when the memory of the machine is insufficient and compile processing
cannot be completed normally.

This corresponds to the -Wp,-D option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-D) Saves the memory usage amount of the preoptimizer
during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of
the preoptimizer during compiling.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 179

(3) [Optimization(Details)]
The detailed information on the optimization are displayed and the configuration can be changed.

Save memory of
machine-dependent
optimization module

Select whether to save the memory usage amount of the machine-dependent optimization
module during compiling.

Specify this option when the memory of the machine is insufficient and compile processing
cannot be completed normally.

This corresponds to the -Wi,-D option of the compiler.

This property is not displayed when any of [Optimize for Debugging(-Od)], [Default
Optimization(None)], or [Standard Optimization(-Og)] in the [Type of the optimization]
property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-D) Saves the memory usage amount of the machine-
dependent optimization module during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of
the machine-dependent optimization module during
compiling.

Perform inline expansion Select whether to perform inline expansion.

This corresponds to the -Wp,-inline option of the compiler.

Default Expansion(None)

How to change Select from the drop-down list.

Restriction Expansion(None) Performs inline expansion.

Expansion only
‘inline’ function(-
Wp,-inline)

Performs inline expansion of only a function for
which #pragma inline is specified.

No Expansion(-
Wp,-no_inline)

Does not specify inline expansion of all functions,
including the function for which #pragma inline is
specified.

Maximum code size for
performing inline
expansion

Specify the maximum size in the intermediate language of the function for performing inline
expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-N option of the compiler.

As to a guide value for the size, see the function information file output by specifying the
[Output function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default - When [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the [Type of
the optimization] property is selected

128

- When other than [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in
the [Type of the optimization] property is selected

24

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

APPENDIX A WINDOW REFERENCE

180 User’s Manual U19386EJ1V0UM

Maximum stack size for
performing inline
expansion

Specify the maximum value (bytes) of the stack size in the intermediate language of the
function for performing inline expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-G option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the
[Output function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default 32

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

Expand static function Specify whether to perform inline expansion against the static function that has been
referenced only once.

This corresponds to the -Wp,-S option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-S) Performs inline expansion against the static function
that has been referenced only once.

No Does not specify inline expansion against the static
function that has been referenced only once.

Output function
information

Specify whether to output the code size and stack size in the intermediate language of each
function to a file.

Information that is output will serve as a yardstick when specifying values in the [Maximum
code size for performing inline expansion] property and [Maximum stack size for performing
inline expansion] property.

This corresponds to the -Wp,-l option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wp,-l) Outputs the code size and stack size in the intermediate
language of each function to a file.

No Does not specify the output of the code size and stack
size in the intermediate language of each function to a
file.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 181

Function information file
name

Specify the file name for outputting the code size and stack size in the intermediate
language of each function.

This corresponds to the -Wp,-l option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

This property is not displayed when [No] in the [Output function information] property is
selected.

Default %BuildModeName%\FunctionData.txt

How to change Directly enter to the text box or edit by the Specify Function Information
File dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

Loop expansion Specify whether to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol,-Xlo option of the compiler.

This property is displayed only when [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in
the [Type of the optimization] property is selected.

Default Yes(Adjust automatically unrolling number)(-Wo,-Ol)

How to change Select from the drop-down list.

Restriction Yes(Adjust
automatically
unrolling number)(-
Wo,-Ol)

Performs loop expansions so that the code size is
minimized while keeping the number of times to
expand below the value specified in the [Maximum
number of loop expansions] property.

Yes(Constant
unrolling number)(-
Wo,-Ol,-Xlo)

Performs loop expansions for a number of times
specified in the [Maximum number of loop
expansions] property.

No(-Wo,-Ol0) Does not specify loop expansion.

Maximum number of
loop expansions

Specify the maximum number of times to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol option of the compiler.

This property is not displayed when [No(-Wo,-Ol0)] in the [Loop expansion] property is
selected.

Default 4

How to change Directly enter to the text box.

Restriction 0 to 999 (decimal number)

Sort external variables Select whether to rearrange external variables allocated to a section other than const/
sconst sequentially, starting from the largest alignment size.

This corresponds to the -Wo,-Op option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wo,-Op) Rearranges external variables allocated to a section
other than const/sconst sequentially, starting from the
largest alignment size.

No Does not specify the rearrangement of external
variables starting from the largest alignment size.

APPENDIX A WINDOW REFERENCE

182 User’s Manual U19386EJ1V0UM

Intermediate language
file name for external
variable sorting

Specify the name of the intermediate language file (.ic) created after sorting external
variables.

Specify this property when sorting all external variables included in the project instead of
sorting external variables within each source file.

This corresponds to the -Wo,-Op option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

This property is not displayed when [No] in the [Sort external variables] property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify Intermediate Language
File for External Variable Sorting dialog box which appears when clicking
the [...] button.

Restriction Up to 259 characters

Output branch
instructions with code
size priority

Select whether to arrange and output branch instructions, giving precedence to the code
size.

This corresponds to the -Wo,-XFo option of the compiler.

This property is not displayed when [Optimize for Debugging(-Od)] or [Default
Optimization(None)] in the [Type of the optimization] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wo,-XFo) Arranges and outputs branch instructions, giving
precedence to the code size.

No Outputs a code that the debug information is given
priority for branch instructions.

Pack alignment Specify whether to inhibit the optimization that aligns branch destination labels.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2
Advanced Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed
precedence)(-Ot)] in the [Type of the optimization] property is selected.

However, when [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced Opt.(Code size
precedence)(-Os)] is selected, this function is included. Therefore, [Yes(-Wi,-P)] is always
selected.

This corresponds to the -Wi,-P option of the compiler.

Default - When [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced
Opt.(Code size precedence)(-Os)] in the [Type of the optimization]
property is selected

[Yes(-Wi,-P)]

- When [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in the [Type of
the optimization] property is selected

No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-P) Inhibits the optimization that aligns branch destination
labels.

The size of the execution code can be reduced.

No Does not specify the inhibition of the optimization that
aligns branch destination labels.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 183

(4) [Preprocess]
The detailed information on the preprocess are displayed and the configuration can be changed.

Perform advanced
optimization

Specify whether to execute the strongest optimization through strict data flow analysis.

Specify this property to perform the stronger optimization when performing the advanced
optimization.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2
Advanced Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed
precedence)(-Ot)] in the [Type of the optimization] property is selected.

This corresponds to the -Wi,-O4 option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Wi,-O4) Executes the strongest optimization through strict data
flow analysis.

However, the compiling speed significantly decreases.

No Does not specify advanced optimization.

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of
paths used by linked tools.

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The
"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

APPENDIX A WINDOW REFERENCE

184 User’s Manual U19386EJ1V0UM

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -U option of the compiler.

The specified macro is displayed as the subproperty.

Default Macro undefinition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Limit of number of macro Specify the upper limit for the number of macro identifiers.

This corresponds to the -Xm option of the compiler.

Default 2047

How to change Directly enter to the text box.

Restriction 1 to 32767 (decimal number)

Use C++ style comment Specify whether to enable C++ comment style (from "//" to the end of the line), in addition to
regular comments.

This corresponds to the -Xcxxcom option of the compiler.

Default Yes(-Xcxxcom)

How to change Select from the drop-down list.

Restriction Yes(-Xcxxcom) Enables C++ comment style (from "//" to the end of
the line), in addition to regular comments.

No Disables C++ comment style (from "//" to the end of
the line).

Include comments in
preprocessor output file

Specify whether to include the comments of the source program in the output of the C
language source program's preprocessing.

This corresponds to the -C option of the compiler.

This property is not displayed when [No] in the [Output preprocessed source file] property in
the [Output File] category is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-C) Includes the comments of the source program in the
output of the C language source program's
preprocessing.

No Does not include the comments of the source program
in the output of the C language source program's
preprocessing.

Use trigraph Specify whether to replace trigraph sequences.

A trigraph is a sequence of 3 characters replaced with a single character, defined in the
ANSI standard.

This corresponds to the -t option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-t) Replaces trigraph sequences.

No Does not replace trigraph sequences.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 185

(5) [Message]
The detailed information on messages are displayed and the configuration can be changed.

Verbose mode Select whether to display the execution status of the compiler to the Output panel during
build.

This corresponds to the -v option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during
build.

No Does not display the execution status of the compiler
during build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Level 1(None)

How to change Select from the drop-down list.

Restriction No Output(-w) Does not output warning messages.

Level 1(None) Outputs normal warning messages.

Level 2(-w2) Outputs detailed warning messages.

Limit of number of error Specify the maximum number of error messages to be output.

This corresponds to the -err_limit option of the compiler.

Default 15

How to change Directly enter to the text box.

Restriction 15 to 50 (decimal number)

Displayed warning
message

Specify the warning message number to be displayed regardless of the warning level.

If specifying multiple warning messages, delimit the message numbers with "," (comma)
(example: 2042,2107). Also, the range can be set using "-" (hyphen) (example: 2222-
2554,2699-2782).

If the same number is specified in the [Undisplayed warning message] property and this
property, the number specified in this property takes precedence.

This corresponds to the -won option of the compiler.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 2048 characters

Undisplayed warning
message

Specify the warning message number to not be displayed regardless of the warning level.

If specifying multiple warning messages, delimit the message numbers with "," (comma)
(example: 2042,2107). Also, the range can be set using "-" (hyphen) (example: 2222-
2554,2699-2782).

If the same number is specified in the [Displayed warning message] property and this
property, the number specified in the [Displayed warning message] property takes
precedence.

This corresponds to the -woff option of the compiler.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 2048 characters

APPENDIX A WINDOW REFERENCE

186 User’s Manual U19386EJ1V0UM

(6) [Kanji Code]
The detailed information on kanji codes are displayed and the configuration can be changed.

(7) [C Language]
The detailed information on C language are displayed and the configuration can be changed.

Kanji character code of
source

Specify the kanji code to be used for Japanese comments and character strings in the input
file.

This corresponds to the -Xk option of the compiler.

Default Shift_JIS(None)

How to change Select from the drop-down list.

Restriction Shift_JIS(None) Interprets the kanji code of the source as Shift_JIS.

None(-Xk=none) Interprets the source as not containing kanji codes.

The code is not guaranteed.

EUC-JP(-Xk=euc) Interprets the kanji code of the source as EUC-JP.

Kanji character code for
target

Specify the kanji code to be converted into for Japanese character strings.

Set this property if you want to change the kanji code used during application development
in the target.

This corresponds to the -Xkt option of the compiler.

Default None(None)

How to change Select from the drop-down list.

Restriction None(None) Does not convert the kanji code of the target.

The code is not guaranteed.

Shift_JIS(-Xkt=sjis) Converts the kanji code of the target into Shift_JIS.

EUC-JP(-Xkt=euc) Converts the kanji code of the target into EUC-JP.

Sign of bit field Select whether int type bit fields without a type specifier (signed or unsigned) are handled as
signed or unsigned.

This corresponds to the -Xbitfield option of the compiler.

Default signed

How to change Select from the drop-down list.

Restriction signed Handles int type bit fields without a type
specifier as signed.

unsigned(-
Xbitfield=unsigned)

Handles int type bit fields without a type
specifier as unsigned.

Sign of char Select whether char type bit fields without a type specifier (signed or unsigned) are handled
as signed or unsigned.

This corresponds to the -Xchar option of the compiler.

Default signed

How to change Select from the drop-down list.

Restriction signed Handles char type without a type specifier as
signed.

unsigned(-
Xchar=unsigned)

Handles char type without a type specifier as
unsigned.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 187

Enumeration type Specify which integer type matches with the enumeration type.

This corresponds to the -Xenum_type option of the compiler.

Default int(None)

How to change Select from the drop-down list.

Restriction int(None) Matches int type with the enumeration type.

signed char(-
Xenum_type=char)

Matches signed char type with the enumeration
type.

unsigned char(-
Xenum_type=uchar)

Matches unsigned char type with the
enumeration type.

short(-
Xenum_type=short)

Matches short type with the enumeration type.

unsigned short(-
Xenum_type=ushort)

Matches unsigned short type with the
enumeration type.

Compile strictly
according to ANSI
standards

Specify whether to apply the ANSI standard to the compiler processing strictly and display
error and warning messages for descriptions that violate the standard.

This corresponds to the -ansi option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-ansi) Applies the ANSI standard to the compiler processing
strictly and displays error and warning messages for
descriptions that violate the standard.

No Confers compatibility with the conventional C language
specifications and continues the compiler processing
after warning message is output.

Use expansion of CC78K Select whether to enable the expansion functions compatible with the 78K microcontrollers
C compiler CC78K.

This corresponds to the -cc78k option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-cc78k) Enables the expansion functions compatible with the
CC78K.

No Disables the expansion functions compatible with the
CC78K.

Perform strictly integer
operation

Specify whether to use runtime libraries ___mul/___mulu, ___div/___divu or mul, mulu, div,
divu instructions without using the mulh and divh instructions, for integers of 16-bit data or
less, in order to execute multiply and divide instructions strictly according to the ANSI
standard.

This corresponds to the -Xe option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xe) Uses runtime libraries ___mul/___mulu or ___div/
___divu for integers of 16-bit data or less.

No Uses runtime libraries mulh or divh instructions for
integers of 16-bit data or less.

APPENDIX A WINDOW REFERENCE

188 User’s Manual U19386EJ1V0UM

(8) [Output Code]
The detailed information on output codes are displayed and the configuration can be changed.

Treat tentative definition
as definition

Specify whether to treat tentative definitions of variables as definitions.

This corresponds to the -Xdefvar option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xdefvar) Treats tentative definition of variables as definition.

No Does not treat tentative definition of variables as
definition.

Size threshold of sdata/
sbss section
allocation(Bytes)

Specify the upper limit size of the data length allocated to the .sdata/.sbss sections.

However, the data for which the .sdata/.sbss sections are specified with the #pragma
section directive or the section file is allocated to the .sdata/.sbss sections regardless of its
size.

This corresponds to the -G option of the compiler.

If this property is changed, the value of the [Size threshold of sdata/sbss section
allocation(Bytes)] property in the [Others] category from the [Assemble Options] tab will be
changed accordingly.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

Allocate data to sconst
section

Specify whether to allocate const attribute data and character string literals to the .sconst
section.

This corresponds to the -Xsconst option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xsconst) Allocates const attribute data and character string
literals to the .sconst section.

No Allocates const attribute data and character string
literals to the .const section.

Size threshold of sconst
section allocation(Bytes)

Specify the upper limit size (bytes) for allocating const attribute data and character string
literals to the .const section.

However, the data for which the .sconst sections are specified with the #pragma section
directive or the section file is allocated to the .sconst sections regardless of its size.

This corresponds to the -Xsconst option of the compiler.

This property is not displayed when [No] in the [Allocate data to sconst section] property is
selected.

Default 32767

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 189

Use prologue/epilogue
library

Specify whether to perform prologue/epilogue processing of functions through runtime
library calls.

This corresponds to the -Xpro_epi_runtime option of the compiler.

Default Auto(None)

How to change Select from the drop-down list.

Restriction Auto(None) In the [Type of the optimization] property in the
[Optimization], corresponds to [No(-
Xpro_epi_runtime=off)] when [Level 2 Advanced
Opt.(Speed precedence)(-Ot)] is selected, [Yes(-
Xpro_epi_runtime=on)] when any of other items
is selected.

No(-
Xpro_epi_runtime=off)

Does not perform prologue/epilogue processing
of functions through runtime library calls.

Yes(-
Xpro_epi_runtime=on)

Performs prologue/epilogue processing of
functions through runtime library calls.

Output code of switch
statement

Specify the code output mode for switch statements in programs.

This corresponds to the -Xcase option of the compiler.

Default Auto(None)

How to change Select from the drop-down list.

Restriction Auto(None) Automatically judges the format considered
optimum by the compiler.

if-else(-Xcase=ifelse) Outputs the code in the same format as the if-
else statement along a string of case statements
in programs.

Because the case statements are compared
starting from the top, unnecessary comparison
can be reduced and the execution speed can be
increased if the case statement that most often
matches is written first or if the number of labels
is few.

Binary search(-
Xcase=binary)

Outputs the code in the binary search format for
switch statements in programs.

Because a matching case statement is
searched by using a binary search algorithm,
when many labels are used, any case statement
can be found at almost the same speed.

Table jump(-
Xcase=table)

Outputs the code in the table jump format for
switch statements in programs.

References a table indexed on the values in the
case statements, and selects and processes
case labels from the switch statement values.
Code will branch to all the case statements with
about the same speed. If case values are not
used in succession, an unnecessary area is
created.

APPENDIX A WINDOW REFERENCE

190 User’s Manual U19386EJ1V0UM

Label size of switch table Specify the size per label of the branch table for the case labels in switch statements.

This corresponds to the -Xword_switch option of the compiler.

Default 2 bytes(None)

How to change Select from the drop-down list.

Restriction 2 bytes(None) Generates one 2-byte branch table per case
label in a switch statement.

4 bytes(-
Xword_switch)

Generates one 4-byte branch table per case
label in a switch statement.

Select this item when a compile error occurs
because the switch statement is long.

Structure packing Selects the value of the structure packing.

The specified alignment can be used without aligning structure members according to the
type of each member. The data size can be reduced but the code size increases.

This corresponds to the -Xpack option of the compiler.

Default 8 bytes(None)

How to change Select from the drop-down list.

Restriction 1 byte(-Xpack=1) Aligns structure members on a 1-byte boundary.

2 bytes(-Xpack=2) Aligns structure members on a 2-byte boundary.

4 bytes(-Xpack=4) Aligns structure members on a 4-byte boundary.

8 bytes(None) Aligns structure members on a 8-byte boundary.

Perform inline expansion
of strcpy/strcmp

Selsect whether to perform inline expansion of strcpy() or strcmp() function calls, with
regarding the alignment conditions of the array (including character strings) and the
structure as 4 bytes.

This improves the execution speed of the object but it also increases the code size.

This corresponds to the -Xi option of the compiler.

This property is displayed only when [8 bytes(None)] in the [Structure packing] property is
selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xi) Performs inline expansion of strcpy() or strcmp()
function calls, with regarding the alignment conditions of
the array (including character strings) and the structure
as 4 bytes.

No Does not perform inline expansion of strcpy() or
strcmp() function calls.

Perform pointer byte
access

Select whether to perform an indirect address access of structure in byte units.

Use this property if a limit is exceeded when the structure packing function is used.

This corresponds to the -Xbyte option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xbyte) Performs an indirect address access of structure in byte
units.

No Does not perform an indirect address access of
structure in byte units.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 191

(9) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Output comment to
assembly language
source file

Select whether to output a C source program as a comment to the assembler source file to
be output.

This corresponds to the -Xc option of the compiler.

This property is not displayed when [Yes(-Fs)] in the [Output assemble file] property or
[Yes(-Fv)] in the [Output an assemble list] property is selected in the [Output File] category.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xc) Outputs a C source program as a comment to the
assembler source file.

No Does not output a C source program as a comment to
the assembler source file.

Use jmp instruction for
branch instruction of
interruption

Select whether to use the jmp instruction for interrupt functions defined in C language.

This corresponds to the -Xj option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xj) Uses the jmp instruction for interrupt functions defined
in C language.

No Uses the jr instruction for interrupt functions defined in
C language.

Prohibit the operation
that replaces word with
bit instructions

Select whether to prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit
manipulation instructions (set1, clr1, tst1, and not1).

This corresponds to the -Xno_word_bitop option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xno_word_bitop) Prohibits replacing the ld.w/ld.h and st.w/st.h
instructions with 1-bit manipulation instructions
(set1, clr1, tst1, and not1).

No Replaces the ld.w/ld.h and st.w/st.h instructions
with 1-bit manipulation instructions (set1, clr1,
tst1, and not1).

Output assemble file Select whether to output the assembler source file of the compile result for a C source.

This corresponds to the -Fs option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Fs) Outputs the assembler source file.

No Does not output the assembler source file.

APPENDIX A WINDOW REFERENCE

192 User’s Manual U19386EJ1V0UM

Output folder for
assembly file

Specify the output destination folder of an assembler source file.

The assembler source file is saved under the source file name with the extension replaced
by ".s".

This corresponds to the -Fs option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fs)] in the [Output assemble file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Output assemble list file Select whether to output the assemble list of the compile result for a C source.

This corresponds to the -Fv option of the compiler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Fv) Outputs an assemble list.

No Does not output an assemble list.

Output folder for
assemble list file

Specify the output destination folder of an assemble list.

The assemble list is saved under the source file name with the extension replaced by ".v".

This corresponds to the -Fv option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fv)] in the [Output assemble list file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 193

(10) [Input File]
The detailed information on input files are displayed and the configuration can be changed.

Output frequency
information file

Select whether to output the frequency information file for the variables used by the section
file generator.

This corresponds to the -Xcre_sec_data option of the compiler.

This property is not displayed when [Yes] on the [Use section file generator] property in the
[Output File] category from the [Section File Generate Options] tab is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xcre_sec_data) Outputs the frequency information file for the
variables.

No Does not output the frequency information file
for the variables.

Output folder for
frequency information file

Specify the output destination folder of the frequency information file.

The frequency information file is saved under the source file name with the extension
replaced by ".sec".

This corresponds to the -Xcre_sec_data option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output frequency information file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Output preprocessed
source file

Select whether to execute the command that execute only preprocessing (preprocess
processing) for a C source program prior to compile processing.

The result is output under the source file name with the extension replaced by ".i".

The line numbers and file name of the source program are not output.

Default No

How to change Select from the drop-down list.

Restriction Yes(-P) Executes only preprocessing for a C source program
and outputs the result.

No Does not execute only preprocessing for a C source
program and does not output the result.

APPENDIX A WINDOW REFERENCE

194 User’s Manual U19386EJ1V0UM

(11) [External Register]
The detailed information on external registers are displayed and the configuration can be changed.
This category is not displayed when [32-register mode(None)] in the [Select register mode] property in the
[Register Mode] category from the [Common Options] tab is selected.

Section file names Display the name of the section file that is used to define section that allocates global
variable/static variable when the C compiler is activated.

An effective section file to be added to the project is retrieved, and used.

This corresponds to the -Xsec_file option of the compiler.

The specified section file name is displayed as the subproperty.

This property is not displayed when [Yes] on the [Use section file generator] property in the
[Output File] category from the [Section File Generate Options] tab is selected.

Default Section file name[The name of the effective section file that is added to
the project]

How to change Changes not allowed

Far Jump file names Specify the Far Jump file name.

The Far Jump file outputs the code that uses the jmp instruction for branch instructions of
functions described in the file. The linker outputs an error if the function is in a range that
cannot be branched to by the jarl or jr directive (±2MB or more), in which case this option is
used to recompile.

Use the extension ".fjp".

This corresponds to the -Xfar_jump option of the compiler.

The specified Far Jump file name is displayed as the subproperty.

Default Far Jump file names[number of set items]

How to change Edit by the Specify Far Jump File dialog box which appears when clicking
the [...] button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 5000 items can be specified.

External variable
assigned to the r15
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r15 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]
property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r16
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r16 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]
property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 195

External variable
assigned to the r17
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r17 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r18
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r18 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r19
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r19 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r20
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r20 option of the compiler.

This property is not displayed when [Yes(-Xmask_reg,-m, -mask_reg)] on the [Use mask
registers] property in the [Register Mode] category from the [Common Options] tab is
selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r21
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r20 option of the compiler.

This property is not displayed when [Yes(-Xmask_reg,-m, -mask_reg)] on the [Use mask
registers] property in the [Register Mode] category from the [Common Options] tab is
selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r22
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r22 option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

External variable
assigned to the r23
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r23 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]
property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

APPENDIX A WINDOW REFERENCE

196 User’s Manual U19386EJ1V0UM

(12)[Others]
Other detailed information on compilation are displayed and the configuration can be changed.

External variable
assigned to the r24
register

Specify the external variables (symbol name excluding "_") assigned to the register.

This corresponds to the -r24 option of the compiler.

This property is not displayed when [26-register mode(-reg26)] in the [Select register mode]
property in the [Register Mode] category from the [Common Options] tab is selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 1022 characters

Commands executed
before compile
processing

Specify the command to be executed before compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after compile processing

Specify the command to be executed after compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 197

[Assemble Options] tab

This tab shows the detailed information on the assembler categorized by the following and the configuration can be
changed.

(1) [Debug Information]
(2) [Preprocess]
(3) [Assemble List]
(4) [Message]
(5) [Others]

Figure A-6. Property Panel: [Assemble Options] Tab

[Description of each category]

(1) [Debug Information]
The detailed information on debug information is displayed and the configuration can be changed.

(2) [Preprocess]
The detailed information on the preprocess are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the object
file being generated.

This corresponds to the -g option of the assembler.

Default Yes(-g)

How to change Select from the drop-down list.

Restriction Yes(-g) Adds debug information to the object file being
generated.

No Does not add debug information to the object file being
generated.

APPENDIX A WINDOW REFERENCE

198 User’s Manual U19386EJ1V0UM

(3) [Assemble List]
The detailed information on the assemble list are displayed and the configuration can be changed.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of
paths used by linked tools.

Macro definition Specify the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The
"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -a -l option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-a -l) Outputs an assemble list file.

No Does not output an assemble list file.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 199

(4) [Message]
The detailed information on messages are displayed and the configuration can be changed.

Output folder for
assemble list file

Specify the output destination folder of an assemble list file.

The assemble list file is saved under the assembler source file name with the extension ".s"
replaced by ".v".

This corresponds to the -l option of the assembler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-a -l)] in the [Output assemble list file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

Verbose mode Select whether to display the execution status of the assembler to the Output panel during
build.

This corresponds to the -v option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the assembler during
build.

No Does not display the execution status of the assembler
during build.

Warn of using r0 register
as destination register

Select whether to display warnings when the r0 register is specified as the destination
register.

This corresponds to the -wr0- and -wr0+ options of the assembler.

Default No(-wr0-)

How to change Select from the drop-down list.

Restriction Yes(-wr0+) Displays warnings when the r0 register is specified as
the destination register.

No(-wr0-) Does not display warnings when the r0 register is
specified as the destination register.

Warn of using r1 register Select whether to display warnings when the r1 register is specified as the source register or
destination register.

This corresponds to the -wr1- and -wr1+ options of the assembler.

Default No(-wr1-)

How to change Select from the drop-down list.

Restriction Yes(-wr1+) Displays warnings when the r1 register is specified as
the source register or destination register.

No(-wr1-) Does not display warnings when the r1 register is
specified as the source register or destination register.

APPENDIX A WINDOW REFERENCE

200 User’s Manual U19386EJ1V0UM

(5) [Others]
Other detailed information on assembly are displayed and the configuration can be changed.

Warn of using mask
registers as destination
register

Select whether to display warnings when the r1 register is specified as the source register or
destination register, when the r0 register is specified as the destination register, or when the
r20 or r21 register is specified as the destination register while using the mask register
function.

This corresponds to the -w option of the assembler.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays warnings when the r1 register is specified as
the source register or destination register, when the r0
register is specified as the destination register, or when
the r20 or r21 register is specified as the destination
register while using the mask register function.

No(-w) Does not display warnings when the r1 register is
specified as the source register or destination register,
when the r0 register is specified as the destination
register, or when the r20 or r21 register is specified as
the destination register while using the mask register
function.

Size threshold of sdata/
sbss section
allocation(Bytes)

Specify the upper limit of the data length allocated to the .sdata/.sbss sections.

This corresponds to the -G option of the assembler.

If this property is changed, the value of the [Size threshold of sdata/sbss section
allocation(Bytes)] property in the [Output Code] category from the [Compile Options] tab will
be changed accordingly.

Default Blank

How to change Directly enter to the text box.

Restriction 0 to 32767 (decimal number)

Perform optimization Select whether to perform optimization that rearranges instructions to avoid register/flag
hazards.

This corresponds to the -O option of the assembler.

Default No

How to change Select from the drop-down list.

Restriction Yes(-O) Performs optimization that avoid register/flag hazards.

No Does not perform optimization that avoid register/flag
hazards.

Use 32-bit branch
instruction

Select whether to specify far jump for branch instructions (jarl, jr) where 22/32 is not
described in the instruction.

This corresponds to the -Xfar_jump option of the assembler.

This property is displayed only when the V850E2 core device is specified as a device type.

Default Yes(-Xfar_jump)

How to change Select from the drop-down list.

Restriction Yes(-Xfar_jump) Specifies far jump for branch instructions (jarl, jr)
where 22/32 is not described in the instruction.

No The branch instructions (jarl, jr) where 22/32 is not
described in the instruction is the ordinary branch
instruction.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 201

Commands executed
before assemble
processing

Specify the command to be executed before assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed before assemble processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after assemble
processing

Specify the command to be executed after assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

The specified command is displayed as the subproperty.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

202 User’s Manual U19386EJ1V0UM

[Link Options] tab

This tab shows the detailed information on the linker categorized by the following and the configuration can be
changed.

(1) [Debug Information]
(2) [Input File]
(3) [Output File]
(4) [Library]
(5) [Message]
(6) [Link Map]
(7) [Others]

Caution This tab is not displayed for library projects.

Figure A-7. Property Panel: [Link Options] Tab

[Description of each category]

(1) [Debug Information]
The detailed information on debug information is displayed and the configuration can be changed.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 203

(2) [Input File]
The detailed information on input files are displayed and the configuration can be changed.

(3) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Delete debug information Select whether to remove debug information, line number information, and global pointer
tables when generating an object file.

This corresponds to the -s option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-s) Removes debug information, line number information,
and global pointer tables when generating an object file.

No Does not remove debug information, line number
information, and global pointer tables when generating
an object file.

Using link directive file Display the link directive file to be used for linking.

This corresponds to the -D option of the linker.

Default The name of the link directive file that is added to the project

How to change Changes not allowed

Output folder Specify the folder for saving the module file that is generated.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Output file name Specify the load module file name to be generated.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is
automatically added.

This corresponds to the -o option of the linker.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

204 User’s Manual U19386EJ1V0UM

(4) [Library]
The detailed information on the library creation are displayed and the configuration can be changed.

Output relocatable object
file

Select whether to generate a relocatable object file.

This corresponds to the -r option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-r) Generates a relocatable object file.

No Does not generate a relocatable object file.

Using libraries Specify the library file name (libstring.a) to be used other than the standard libraries.

Specify only the "string" part (example: if you specify "user", "libuser.a" is assumed to be
specified).

Add one file in one line.

The library files are searched from the library path.

This corresponds to the -l option of the linker.

The specified library file name is displayed as the subproperty.

Default Using libraries[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 63 characters

Up to 256 items can be specified.

Additional library paths Specify the search folder to be used other than the standard libraries.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

The library files are searched from the library path. If a relative path is specified, the
reference point of the path is the project folder.

This corresponds to the -L option of the linker.

The specified library path name is displayed as the subproperty.

Default Additional library paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 256 items can be specified.

Link standard library Select whether to link the standard library (libc.a).

This corresponds to the -lc option of the linker.

Default Yes(-lc)

How to change Select from the drop-down list.

Restriction Yes(-lc) Links the standard library.

No Does not link the standard library.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 205

(5) [Message]
The detailed information on messages are displayed and the configuration can be changed.

(6) [Link Map]
The detailed information on the link map are displayed and the configuration can be changed.

Link mathematical library Select whether to link the mathematical library (libm.a).

This corresponds to the -lm option of the linker.

This property is displayed only when [Yes(-lc)] in the [Link standard library] property is
selected.

Default Yes(-lm)

How to change Select from the drop-down list.

Restriction Yes(-lm) Links the mathematical library.

No Does not link the mathematical library.

Verbose mode Select whether to display the execution status of the linker to the Output panel during build.

This corresponds to the -v option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the linker during build.

No Does not display the execution status of the linker
during build.

Display warning
message

Select whether to display the warning messages on the Output panel.

This corresponds to the -w option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays warning messages.

No(-w) Does not display warning messages.

Output link map file Select whether to output the link map file.

This corresponds to the -m option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-m) Outputs a link map file.

No Does not output the link map file.

APPENDIX A WINDOW REFERENCE

206 User’s Manual U19386EJ1V0UM

(7) [Others]
Other detailed information on linking are displayed and the configuration can be changed.

Output folder for link map
file

Specify the output destination folder of a link map file.

This corresponds to the -m option of the linker.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-m)] in the [Output link map file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Link map file name Specify the name of a link map file.

This corresponds to the -m option of the linker.

Use the extension ".map". If the extension is omitted, ".map" is automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.map

How to change Directly enter to the text box.

Restriction Up to 259 characters

Entry symbol Specify the symbol to be set as the entry point address of the object file.

If this is blank, the entry point address is determined in the following sequence.

(1) If symbol "__start" exists, it is used.

(2) If the text attribute section exists, the start address of the text attribute section that is
allocated to the lowest address area in the generated object file is used.

(3) Address 0

This corresponds to the -e option of the linker.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Specify filling value of
holes

Select whether to specify the filling value for align holes between sections of the generated
object.

This corresponds to the -f option of the linker.

This property is displayed only when [Yes(-B)] in the [Link in 2-pass mode] property is
selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-f) Specifies the filling value of holes.

No Does not specify the filling value of holes.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 207

Filling value of holes Specify the filling value for align holes between sections of the generated object.

This corresponds to the -f option of the linker.

This property is displayed only when [Yes(-f)] in the [Specify filling value of holes] property is
selected.

Default 0x0000

How to change Directly enter to the text box.

Restriction 0x0000 to 0xffff (hexadecimal number)

Display GP information Select whether to display on the Output panel the information used as a yardstick in the
value setting on [Size threshold of sdata/sbss section allocation(Bytes)] property in the
[Others] category from the [Assemble Options] tab.

This corresponds to the -A option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-A) Displays the information used as a yardstick in the
value setting on [Size threshold of sdata/sbss section
allocation(Bytes)] property.

No Does not display the information used as a yardstick in
the value setting on [Size threshold of sdata/sbss
section allocation(Bytes)] property.

Link in 2-pass mode Select whether to perform linking in the 2-pass mode.

The 2-pass mode is slower than the 1-pass mode, but it is able to process larger sized files.

This corresponds to the -B option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-B) Performs linking in the 2-pass mode.

No Performs linking in the 1-pass mode.

Ignore illegal relocation Select whether to continue linking outputting warning messages instead of errors if the
following illegalities is found during relocation processing.

- The result of address calculation of an unresolved external reference is illegal

- The relationship with the section to be allocated is illegal

This corresponds to the -E option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-E) Continues linking outputting warning messages if an
illegalities is found during relocation processing.

No Stops linking outputting warning messages if an
illegalities is found during relocation processing.

Check all multi-defined
symbols

Select whether to output a message for all multi-defined external symbols and stop link
processing.

This corresponds to the -M option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-M) Outputs a message for all multi-defined external
symbols and stops link processing.

No Outputs a message for the first multi-defined external
symbol and stops link processing.

APPENDIX A WINDOW REFERENCE

208 User’s Manual U19386EJ1V0UM

Check illegality of
undefined external
symbol

Select whether to check if the size and alignment conditions of an undefined external
symbol are invalid when linking it.

This corresponds to the -t option of the linker.

This property is displayed only when [Yes] on the [Display warning message] property in the
[Message] category is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks if the size and alignment conditions of an
undefined external symbol are invalid when linking it.

No(-t) Does not check if the size and alignment conditions of
an undefined external symbol are invalid when linking it.

Check illegality of
external symbol

Select whether to check if the size and alignment conditions of an external symbol are
invalid when linking it.

This corresponds to the -T option of the linker.

This property is displayed only when [Yes] on the [Display warning message] property in the
[Message] category is selected.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks if the size and alignment conditions of an
external symbol are invalid when linking it.

No(-T) Does not check if the size and alignment conditions of
an external symbol are invalid when linking it.

Check mask register
function

Select whether to check if the file that uses the mask register function and the file that does
not use that function are mixed when linking the object files generated from the C source
files.

This corresponds to the -mc option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-mc) Checks if the file that uses the mask register function
and the file that does not use that function are mixed.

No Does not check if the file that uses the mask register
function and the file that does not use that function are
mixed.

Check register mode Select whether to display detailed information when register modes are mixed for all input
object files.

This corresponds to the -rc option of the linker.

Default Yes(-rc)

How to change Select from the drop-down list.

Restriction Yes(-rc) Displays detailed information when register modes are
mixed for all input object files.

No Does not display detailed information when register
modes are mixed for all input object files.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 209

Rescan library files Select whether to re-references the library file specified on the [Using libraries] property in
the [Library] category.

When this property is specified, symbols that are unresolved through the link sequence of
the library can be prevented.

This corresponds to the -rescan option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-rescan) Re-references the library file to be used.

No Does not re-reference the library file to be used.

Check allocation for
internal ROM area

Select whether to check for the allocation to the internal ROM area.

Select [No(-rom_less)] when using the ROM-less mode.

This corresponds to the -rom_less option of the linker.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the allocation to the internal ROM area.

No(-rom_less) Does not check for the allocation to the internal ROM
area.

Behavior on internal
memory overflow

Select whether to continue the processing by displaying a warning message or stop the
processing by displaying an error message if an overflow occurs during the allocation to the
internal ROM/RAM area.

This corresponds to the -Ximem_overflow=warning option of the linker.

Default Error(None)

How to change Select from the drop-down list.

Restriction Error(None) Stops the processing by displaying an error message
if an overflow occurs during the allocation to the
internal ROM/RAM area.

Warning(-
Ximem_overflow
=warning)

Continues the processing by displaying a warning
message if an overflow occurs during the allocation
to the internal ROM/RAM area.

Commands executed
before link processing

Specify the command to be executed before link processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed before link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

210 User’s Manual U19386EJ1V0UM

Commands executed
after link processing

Specify the command to be executed after link processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%LinkedFile%: Replaces with the absolute path of the output file under link processing.

The specified command is displayed as the subproperty.

Default Commands executed after link processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the link options to be added additionally.

The options set here are added at the end of the link options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 211

[ROMization Process Options] tab

This tab shows the detailed information on the ROMization processor categorized by the following and the
configuration can be changed.

(1) [Output File]
(2) [Input File]
(3) [Section List]
(4) [Memory Map]
(5) [Others]

Caution This tab is not displayed for library projects.

Figure A-8. Property Panel: [ROMization Process Options] Tab

[Description of each category]

(1) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Output ROMized object
file

Select whether to output the ROMized object file.

This corresponds to the -Xr option of the compiler and the -lr option of the linker.

Default No

How to change Select from the drop-down list.

Restriction Yes(-Xr -lr) Outputs the ROMized object file.

No Does not output the ROMized object file.

APPENDIX A WINDOW REFERENCE

212 User’s Manual U19386EJ1V0UM

(2) [Input File]
The detailed information on input files are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File]
category is selected.

Output folder for
ROMized object file

Specify the folder for saving the ROMized object file.

This corresponds to the -o option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file]
property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

ROMized object file
name

Specify the ROMized object file name.

The extension other than ".out" cannot be specified. If the extension is omitted, ".out" is
automatically added.

This corresponds to the -o option of the ROMization processor.

This property is displayed only when [Yes(-Xr -lr)] in the [Output ROMized object file]
property is selected.

Default romp.out

How to change Directly enter to the text box.

Restriction Up to 259 characters

Use standard
ROMization area
reservation code file

Select whether to use the standard ROMization area reservation code file (rompcrt.o) that
conforms to the register mode selected on the [Select register mode] property in the
[Register Mode] category from the [Common Options] tab.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Uses the standard ROMization area reservation code
file.

No Does not use the standard ROMization area reservation
code file.

Make the ROMization area reservation code file, and
specify the file for the [ROMization area reservation
code file name] property.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 213

(3) [Section List]
The detailed information on the section list are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File]
category is selected.

ROMization area
reservation code file
name

Specify the name of the ROMization area reservation code file.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

If this field is blank, a link error occurs. Be sure to specify the boot area load module file
name.

This property is displayed only when [No] in the [Use standard ROMization area reservation
code file] property is selected.

Default Blank

How to change Directly enter to the text box or edit by the Specify ROMization Area
Reservation Code File dialog box which appears when clicking the [...]
button.

Restriction Up to 259 characters

Order of storing to the
rompsec section

Specify the section name to be ROMized and the order of storing to the rompsec section.

Specify in the format of "section name option attribute", with one section name per line.

If [Yes] is selected in the [Output ROMization section file] property, a ROMization section file
is output when editing this property is finalized.

Formats of the option attribute are as described below.

- -p

Specify this option when the section to be added has the data attribute or sdata attribute.
If this option attribute is omitted, all sections that have the data attribute or sdata attribute
and sections allocated to the internal instruction RAM are assumed to be specified.

- -t

Specify this option when the section to be added has the text attribute or const attribute.

If this option attribute is omitted, sections allocated to the internal instruction RAM are
assumed to be specified.

If this option attribute specifies a particular section of an input file linked specifying a
device file with internal instruction RAM, sections allocated to unspecified internal
instruction RAM will not be stored in the rompsec section, and will also be deleted from
the output file.

This corresponds to the -t and -p options of the ROMization processor.

The specified section name is displayed as the subproperty.

Default Order of storing to the rompsec section[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

APPENDIX A WINDOW REFERENCE

214 User’s Manual U19386EJ1V0UM

(4) [Memory Map]
The detailed information on memory map are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File]
category is selected.

Output ROMization
section file

Select whether to output the ROMized section file.

Default No

How to change Select from the drop-down list.

Restriction Yes Outputs a ROMization section file when editing the
[Order of storing to the rompsec section] property is
finalized.

No Does not output the ROMized section file.

Output folder for
ROMized section file

Specify the folder for saving the ROMized section file.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output ROMization section file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

ROMized section file
name

Specify the ROMized section file name.

The extension can be freely specified.

This property is displayed only when [Yes] in the [Output ROMization section file] property is
selected.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output memory map file Select whether to output the memory map file.

This corresponds to the -m option of the ROMization processor.

Default No

How to change Select from the drop-down list.

Restriction Yes(-m) Outputs a memory map file.

No Does not output a memory map file.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 215

(5) [Others]
Other detailed information on ROMization process are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output ROMized object file] property in the [Output File]
category is selected.

Output folder for memory
map file

Specify the folder for saving a memory map file.

This corresponds to the -m option of the ROMization processor.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-m)] in the [Output memory map file] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Memory map file name Specify the memory map file name.

The extension other than ".map" cannot be specified. If the extension is omitted, ".map" is
automatically added.

This corresponds to the -m option of the ROMization processor.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes(-m)] in the [Output memory map file] property is
selected.

Default romp.map

How to change Directly enter to the text box.

Restriction Up to 259 characters

Entry label Specify the entry label to be used as the start address of the rompsec section to be
generated.

This corresponds to the -b option of the ROMization processor.

Default __S_romp

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Include a text attribute
section into the
ROMization object file

Select whether to include a text attribute section into the ROMization object file to be
generated.

This corresponds to the -d option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Includes a text attribute section into the ROMization
object file.

No(-d) Does not include a text attribute section into the
ROMization object file.

APPENDIX A WINDOW REFERENCE

216 User’s Manual U19386EJ1V0UM

Check address
duplication

Select whether to check for the duplicate address of the input file (executable object file)
and output file (ROMization object file).

This corresponds to the -i option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the duplicate address of the input file
(executable object file) and output file (ROMization
object file).

No(-i) Does not check for the duplicate addresses of the input
file and output file.

Check allocation for
internal ROM area

Select whether to check for the allocation to the internal ROM area.

Select [No(-rom_less)] when using the ROM-less mode.

This corresponds to the -rom_less option of the ROMization processor.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Checks for the allocation to the internal ROM area.

No(-rom_less) Does not check for the allocation to the internal ROM
area.

Behavior on internal
memory overflow

Select whether to continue the processing by displaying a warning message or stop the
processing by displaying an error message if an overflow occurs during the allocation to the
internal ROM/RAM area.

Default Error(None)

How to change Select from the drop-down list.

Restriction Error(None) Stops the processing by displaying an error message
if an overflow occurs during the allocation to the
internal ROM/RAM area.

Warning(-
Ximem_overflow
=warning)

Continues the processing by displaying a warning
message if an overflow occurs during the allocation
to the internal ROM/RAM area.

Commands executed
before ROMization
processing

Specify the command to be executed before ROMization processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%RomizedFile%: Replaces with the absolute path of the output file under ROMization
processing.

The specified command is displayed as the subproperty.

Default Commands executed before ROMization processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 217

Commands executed
after ROMization
processing

Specify the command to be executed after ROMization processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%RomizedFile%: Replaces with the absolute path of the output file under ROMization
processing.

The specified command is displayed as the subproperty.

Default Commands executed after ROMization processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the ROMization process options to be added additionally.

The options set here are added at the end of the ROMization process options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

218 User’s Manual U19386EJ1V0UM

[Hex Convert Options] tab

This tab shows the detailed information on the hex converter categorized by the following and the configuration can
be changed.

(1) [Output File]
(2) [Hex Format]
(3) [Symbol Table]
(4) [Others]

Caution This tab is not displayed for library projects.

Figure A-9. Property Panel: [Hex Convert Options] Tab

[Description of each category]

(1) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Output hex file Select whether to output the hex file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Outputs the hex file.

No Does not output the hex file.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 219

(2) [Hex Format]
The detailed information on the hex format are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is
selected.

Output folder for hex file Specify the folder for saving the hex file.

This corresponds to the -o option of the hex converter.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Hex file name Specify the hex file name.

This corresponds to the -o option of the hex converter.

The extension can be freely specified.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Output hex file] property is selected.

Default %ProjectName%.hex

How to change Directly enter to the text box.

Restriction Up to 259 characters

Hex file format Select the format of the hex file to be generated.

This corresponds to the -f option of the hex converter.

Default Intel expanded hex format(-fI)

How to change Select from the drop-down list.

Restriction Intel expanded hex format(-
fI)

Specifies the Intel expanded hex format as
the format of the hex file to be generated.

Motorola S type
format(standard address)(-
fS)

Specifies the Motorola S type format
(standard address) as the format of the hex
file to be generated.

Motorola S type format(32-
bit address)(-fs)

Specifies the Motorola S type format (32-
bit address) as the format of the hex file to
be generated.

Expanded Tektronix hex
format(-fT)

Specifies the expanded Tektronix hex
format as the format of the hex file to be
generated.

APPENDIX A WINDOW REFERENCE

220 User’s Manual U19386EJ1V0UM

Specify converted
address range

Select whether to specify the address range to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is not displayed when [Expanded Tektronix hex format(-fT)] in the [Hex file
format] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-U) Specifies the address range to be converted to a hex
file.

No Does not specify the address range to be converted to a
hex file.

Filling value Specify the filling value of the unused areas under the case of converting to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]
property is selected.

Default 0xFF

How to change Directly enter to the text box.

Restriction 0x0000 to 0xFFFF (2- or 4-digit hexadecimal number)

Start address Specify the start address of the area to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]
property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to the maximum value of the address that can be handled by the
device (hexadecimal)

Size Specify the size of the area to be converted to a hex file.

This corresponds to the -U option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]
property is selected.

Default Blank

How to change Directly enter to the text box.

Restriction 0x1 to the maximum value of the address that can be handled by the
device (hexadecimal)

Converted sections Specify the section to be converted to a hex file.

Add one section in one line.

When this property is omitted, all the sections with the section type other than NOBITS and
section attribute A are converted to hex files.

This corresponds to the -H option of the hex converter.

The specified section name is displayed as the subproperty.

This property is displayed only when [No] in the [Specify converted address range] property
is selected.

Default Converted sections[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 221

Specify maximum length
of block/record

Select whether to specify the maximum length of block/record of a hex file.

This corresponds to the -b option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(-b) Specifies the maximum length of block/record.

No Does not specify the maximum length of block/record.

Maximum length of
block/record

Specify the maximum length of block/record of a hex file.

This corresponds to the -b option of the hex converter.

This property is displayed only when [Yes(-b)] in the [Specify maximum length of block/
record] property is selected.

Default - When [Intel expanded hex format(-fI)] on the [Hex file format] property is
selected and [Reset to Default] from the context menu of this property

0x1f

- When [Motorola S type format(standard address)(-fS)] on the [Hex file
format] property is selected and [Reset to Default] from the context
menu of this property

0x50

- When [Motorola S type format(32-bit address)(-fs)] on the [Hex file
format] property is selected and [Reset to Default] from the context
menu of this property

0x50

- When [Expanded Tektronix hex format(-fT)] on the [Hex file format]
property is selected and [Reset to Default] from the context menu of this
property

0xff

How to change Directly enter to the text box.

Restriction - When [Intel expanded hex format(-fI)] on the [Hex file format] property is
selected

1 to 255 (decimal number), or 0x01 to 0xff (hexadecimal number)

- When [Motorola S type format(standard address)(-fS)] on the [Hex file
format] property is selected

1 to 251 (decimal number), or 0x01 to 0xfb (hexadecimal number)

- When [Motorola S type format(32-bit address)(-fs)] on the [Hex file
format] property is selected

1 to 250 (decimal number), or 0x01 to 0xfa (hexadecimal number)

- When [Expanded Tektronix hex format(-fT)] on the [Hex file format]
property is selected

16 to 255 (decimal number), or 0x10 to 0xff (hexadecimal number)

Specify offset of output
address

Select whether to specify the offset of an output address when converting to a hex file.

This corresponds to the -d option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(-d) Specifies the offset of an output address.

No Does not specify the offset of an output address.

APPENDIX A WINDOW REFERENCE

222 User’s Manual U19386EJ1V0UM

(3) [Symbol Table]
The detailed information on the symbol table is displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is selected
and [Expanded Tektronix hex format(-fT)] in the [Output hex file] property in the [Hex Format] category is
selected.

(4) [Others]
Other detailed information on hex conversion are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Output hex file] property in the [Output File] category is
selected.

Offset of output address Specify the offset of an output address when converting to a hex file.

This corresponds to the -d option of the hex converter.

This property is displayed only when [Yes(-d)] in the [Specify offset of output address]
property is selected.

Default 0x0

How to change Directly enter to the text box.

Restriction 0x0 to 0xfffffffe (hexadecimal number)

Initialize section of data
without initial value to
zero

Select whether to initialize the section of the data without an initial value to zero during the
conversion to a hex file.

This corresponds to the -z option of the hex converter.

This property is displayed only when [Yes(-U)] in the [Specify converted address range]
property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-z) Initializes the section of the data without initial value to
zero.

No Does not initialize the section of the data without initial
value to zero.

Convert symbol table Select whether to convert a symbol table during the conversion to a hex file.

This corresponds to the -S -x option of the hex converter.

Default No

How to change Select from the drop-down list.

Restriction Yes(Convert global and local
symbols)(-S -x)

Converts global symbols and local
symbols.

Yes(Convert global symbols)(-S) Converts global symbols.

No Does not convert a symbol table.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 223

Warn internal ROM
overflow

Select whether to display a warning message when the area to be converted to a hex file
overflows from the internal ROM area.

This corresponds to the -rom_less option of the hex converter.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Displays a warning message when the area to be
converted to a hex file overflows from the internal ROM
area.

No(-rom_less) Does not display a warning message when the area to
be converted to a hex file overflows from the internal
ROM area.

Commands executed
before hex convert
processing

Specify the command to be executed before hex convert processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the output file under hex convert
processing.

%HexConvertedFile%: Replaces with the absolute path of the output file under hex convert
processing.

The specified command is displayed as the subproperty.

Default Commands executed before hex convert processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after hex convert
processing

Specify the command to be executed after hex convert processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the output file under hex convert
processing.

%HexConvertedFile%: Replaces with the absolute path of the output file under hex convert
processing.

The specified command is displayed as the subproperty.

Default Commands executed after hex convert processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

224 User’s Manual U19386EJ1V0UM

Other additional options Input the hex convert options to be added additionally.

The options set here are added at the end of the hex convert options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 225

[Archive Options] tab

This tab shows the detailed information on the archiver categorized by the following and the configuration can be
changed.

(1) [Output File]
(2) [Message]
(3) [Others]

Caution This tab is displayed only for library projects.

Figure A-10. Property Panel: [Archive Options] Tab

[Description of each category]

(1) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Output folder Specify the folder for saving the archive file that is generated.

This corresponds to the -q key of the archiver.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 247 characters

APPENDIX A WINDOW REFERENCE

226 User’s Manual U19386EJ1V0UM

(2) [Message]
The detailed information on messages is displayed and the configuration can be changed.

Note The meanings of the output of execution status are shown below.

(3) [Others]
Other detailed information on archiving are displayed and the configuration can be changed.

Output file name Specify the archive file name to be generated.

This corresponds to the -q key of the archiver.

The extension other than ".a" cannot be specified. If the extension is omitted, ".a" is
automatically added.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

Default %ProjectName%.a

How to change Directly enter to the text box.

Restriction Up to 259 characters

Verbose mode Select whether to display the execution status of the archiverNote to the Output panel during
build.

This corresponds to the v option of the archiver.

Default No

How to change Select from the drop-down list.

Restriction Yes(v) Displays the execution status of the archiver during
build.

No Does not display the execution status of the archiver
during build.

Output Format Meaning

q - file-name Create a new archive file, or add a member

Commands executed
before archive
processing

Specify the command to be executed before archive processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%ArchivedFile%: Replaces with the absolute path of the output file under archive
processing.

The specified command is displayed as the subproperty.

Default Commands executed before archive processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 227

Commands executed
after archive processing

Specify the command to be executed after archive processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%ArchivedFile%: Replaces with the absolute path of the output file under archive
processing.

The specified command is displayed as the subproperty.

Default Commands executed after archive processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the archive options to be added additionally.

The options set here are added at the end of the archive options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

228 User’s Manual U19386EJ1V0UM

[Section File Generate Options] tab

This tab shows the detailed information on the section file generator categorized by the following and the
configuration can be changed.

(1) [Output File]
(2) [Message]
(3) [Allocation of Variables]
(4) [Others]

Figure A-11. Property Panel: [Section File Generate Options] Tab

[Description of each category]

(1) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Use section file
generator

Select whether to use the section file generator during build.

Default No

How to change Select from the drop-down list.

Restriction Yes Generates a section file after a frequency information
file has been created, and performs compilation using
that section file.

No Does not create a frequency information file and use the
section file generator during build.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 229

(2) [Message]
The detailed information on messages is displayed and the configuration can be changed.
This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category
is selected.

(3) [Allocation of Variables]
The detailed information on the allocation of variables are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category
is selected.

Output folder for section
file

Specify the folder for saving the section file.

This corresponds to the -o option of the section file generator.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes] in the [Use section file generator] property is
selected.

Default %BuildModeName%

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Section file name Specify the section file name.

The extension other than ".sf" cannot be specified. If the extension is omitted, ".sf" is
automatically added.

This corresponds to the -o option of the section file generator.

The following macro name is available as an embedded macro.

%ProjectName%: Replaces with the project name.

This property is displayed only when [Yes] in the [Use section file generator] property is
selected.

Default %ProjectName%.sf

How to change Directly enter to the text box.

Restriction Up to 259 characters

Verbose mode Select whether to display the execution status of the section file generator to the Output
panel during build.

This corresponds to the -v option of the section file generator.

Default No

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the section file
generator during build.

No Does not display the execution status of the section file
generator during build.

APPENDIX A WINDOW REFERENCE

230 User’s Manual U19386EJ1V0UM

Sort key of variables Select the sort key of the variables to be output into the section file.

This corresponds to the -ns, -sname, -ssection, -ssize, -O, and -O2 options of the section
file generator.

Default Intel expanded hex format(-fI)

How to change Select from the drop-down list.

Restriction Do not sort(-ns) Does not sort variables to be output to the
section file.

Frequency of
use(None)

Sorts variables to be output to the section file in
decreasing order of frequency in which they are
used.

Variable name(-
sname)

Sorts variables to be output to the section file
according to the dictionary order of variable
names.

Section name(-
ssection)

Sorts variables to be output to the section file
according to the dictionary order of section
names.

Variable size(-ssize) Sorts variables to be output to the section file in
increasing order of their size.

Optimized location(-O) Sorts variables to be output to the section file in
decreasing order of frequency in which they are
used and outputs only a part of them which are
possible to be allocated to the .tidata section.

All section optimized
location(-O2)

Selects variables to the section file for each
variable size that can be allocated to .tidata,
sidata, .sedata, and .sdata sections in the order
starting from highest use frequency and
determines that only the number of variables
that can be allocated will be selected and
outputs.

Specification of sections
excluded in optimization

Select the section not subject to optimization during the section file generation.

This corresponds to the -Xcs option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized
location(-O2)] in the [Sort key of variables] property is selected.

Default Optimize all sections(None)

How to change Select from the drop-down list.

Restriction Optimize all
sections(None)

Includes all sections in optimization during the
section file generation.

Exclude all sections in
optimization(-Xcs)

Excludes all sections from optimization during
the section file generation.

Specify sections
excluded in
optimization(-Xcs)

Specifies the section not subject to optimization
during the section file generation.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 231

Sections excluded in
optimization

Specify the section not subject to optimization during the section file generation.

Add one section in one line.

When this property is omitted, any sections are not subjected to optimization.

This corresponds to the -Xcs option of the section file generator.

The specified section name is displayed as the subproperty.

This property is displayed only when [Specify sections excluded in optimization(-Xcs)] in the
[Specification of sections excluded in optimization] property is selected.

Default Sections excluded in optimization[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

Specify allocatable size
of tidata section

Select whether to specify the allocatable size for the tidata.word/tidata.byte sections.

This corresponds to the -size_tidata option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized
location(-O2)] in the [Sort key of variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_tidata) Specifies the allocatable size for the tidata.word/
tidata.byte sections.

No Does not specify the allocatable size for the
tidata.word/tidata.byte sections.

Allocatable size of tidata
section

Specify the allocatable size for the tidata.word/tidata.byte sections.

This corresponds to the -size_tidata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of tidata section]
property is selected.

Default 256

How to change Directly enter to the text box.

Restriction 0 to 256 (decimal number)

Specify allocatable size
of tidata.byte section

Select whether to specify the allocatable size for the tidata.byte section.

This corresponds to the -size_tidata_byte option of the section file generator.

This property is displayed only when [Optimized location(-O)] or [All section optimized
location(-O2)] in the [Sort key of variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_tidata_byte) Specifies the allocatable size for the tidata.byte
section.

No Does not specify the allocatable size for the
tidata.byte section.

Allocatable size of
tidata.byte section

Specify the allocatable size for the tidata.byte section.

This corresponds to the -size_tidata_byte option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of tidata.byte
section] property is selected.

Default 128

How to change Directly enter to the text box.

Restriction 0 to 128 (decimal number)

APPENDIX A WINDOW REFERENCE

232 User’s Manual U19386EJ1V0UM

Specify allocatable size
of sidata section

Select whether to specify the allocatable size for the sidata section.

This corresponds to the -size_sidata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of
variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sidata) Specifies the allocatable size for the sidata
section.

No Does not specify the allocatable size for the
sidata section.

Allocatable size of sidata
section

Specify the allocatable size for the sidata section.

This corresponds to the -size_sidata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sidata section]
property is selected.

Default 32768

How to change Directly enter to the text box.

Restriction 0 to 32768 (decimal number)

Specify allocatable size
of sedata section

Select whether to specify the allocatable size for the sedata section.

This corresponds to the -size_sedata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of
variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sedata) Specifies the allocatable size for the sedata
section.

No Does not specify the allocatable size for the
sedata section.

Allocatable size of
sedata section

Specify the allocatable size for the sedata section.

This corresponds to the -size_sedata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sedata section]
property is selected.

Default 32768

How to change Directly enter to the text box.

Restriction 0 to 32768 (decimal number)

Specify allocatable size
of sdata section

Select whether to specify the allocatable size for the sdata section.

This corresponds to the -size_sdata option of the section file generator.

This property is displayed only when [All section optimized location(-O2)] in the [Sort key of
variables] property is selected.

Default No

How to change Select from the drop-down list.

Restriction Yes(-size_sdata) Specifies the allocatable size for the sdata
section.

No Does not specify the allocatable size for the
sdata section.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 233

(4) [Others]
Other detailed information on section file generation are displayed and the configuration can be changed.
This category is not displayed when [No] in the [Use section file generator] property in the [Output File] category
is selected.

Allocatable size of sdata
section

Specify the allocatable size for the sdata section.

This corresponds to the -size_sdata option of the section file generator.

This property is not displayed when [No] in the [Specify allocatable size of sdata section]
property is selected.

Default 65536

How to change Directly enter to the text box.

Restriction 0 to 65536 (decimal number)

Variables excluded in
optimization

Specify the variable not subject to optimization during the section file generation.

Add one variable in one line.

This corresponds to the -Xcv option of the section file generator.

The specified variable name is displayed as the subproperty.

This property is displayed only when [Optimized location(-O)] or [All section optimized
location(-O2)] in the [Sort key of variables] property is selected.

Default Variables excluded in optimization[number of set items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1022 characters

Up to 1024 items can be specified.

Comment level Select the level of the comments to be output into the section file.

This corresponds to the -cl option of the section file generator.

Default Level 1(None)

How to change Select from the drop-down list.

Restriction No Output(-cl 0) Does not output comments into the section file.

Level 1(None) Outputs a comment (file generation information
such as time and date, variable information and
the description) into the section file. Variable
information consists of a section name, size and
frequency of usage.

Level 2(-cl 2) Outputs a format guide in addition to level 1.

Other additional options Input the section file generate options to be added additionally.

The options set here are added at the end of the section file generator options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

234 User’s Manual U19386EJ1V0UM

[Dump Options] tab

This tab shows the detailed information on the dump tool categorized by the following and the configuration can be
changed.

(1) [Dump Tool]

Figure A-12. Property Panel: [Dump Options] Tab

[Description of each category]

(1) [Dump Tool]
The detailed information on the dump tool are displayed and the configuration can be changed.

Use dump tool Select whether to start the dump tool after build processing ends.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the dump tool for the load module file after build
processing ends.

No Does not start the dump tool after build processing
ends.

Additional options for
dump tool

Input the dump tool options to be added.

The options set here are added at the end of the dump options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 235

[Cross Reference Options] tab

This tab shows the detailed information on the cross reference tool categorized by the following and the
configuration can be changed.

(1) [Cross Reference Tool]

Figure A-13. Property Panel: [Cross Reference Options] Tab

[Description of each category]

(1) [Cross Reference Tool]
The detailed information on the cross reference tool are displayed and the configuration can be changed.

Use cross reference tool Select whether to start the cross reference tool after build processing ends.

If the cross reference tool is started, all the C source files registered to the project are taken
as an input and all information (cross reference information, tag jump information, call tree,
function metrics and call database) is output to the files in text format and CSV format.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the cross reference tool after build processing
ends.

No Does not start the cross reference tool after build
processing ends.

Additional options for
cross reference tool

Input the cross reference tool options to be added.

The options set here are added at the end of the cross reference options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

236 User’s Manual U19386EJ1V0UM

[Memory Layout Visualization Options] tab

This tab shows the detailed information on the memory layout visualization tool categorized by the following and the
configuration can be changed.

(1) [Memory Layout Visualization Tool]

Caution This tab is not displayed for library projects.

Figure A-14. Property Panel: [Memory Layout Visualization Options] Tab

[Description of each category]

(1) [Memory Layout Visualization Tool]
The detailed information on the memory layout visualization tool are displayed and the configuration can be
changed.

Use memory layout
visualization tool

Select whether to start the memory layout visualization tool after build processing ends.

If the memory layout visualization is started, an object file (*.out) is taken as an input and a
memory map table is output to the files in text format and CSV format.

The object file (*.out) output by the linker is taken as an input.

Default No

How to change Select from the drop-down list.

Restriction Yes Starts the memory layout visualization tool after build
processing ends.

No Does not start the memory layout visualization tool after
build processing ends.

Additional options for
memory layout
visualization tool

Input the memory layout visualization tool options to be added.

The options set here are added at the end of the memory layout visualization options group.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 237

[Build Settings] tab

This tab shows the detailed information on each C source file, assembler source file, link directive file, section file,
object file, and archive file categorized by the following and the configuration can be changed.

(1) [Build]

Figure A-15. Property Panel: [Build Settings] Tab (When Selecting C Source File)

Figure A-16. Property Panel: [Build Settings] Tab (When Selecting Assembler Source File)

Figure A-17. Property Panel: [Build Settings] Tab (When Selecting Link Directive File)

APPENDIX A WINDOW REFERENCE

238 User’s Manual U19386EJ1V0UM

Figure A-18. Property Panel: [Build Settings] Tab (When Selecting Section File)

Figure A-19. Property Panel: [Build Settings] Tab (When Selecting Object File)

Figure A-20. Property Panel: [Build Settings] Tab (When Selecting Archive File)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 239

[Description of each category]

(1) [Build]
The detailed information on the build are displayed and the configuration can be changed.

Set as build-target Select whether to build the selected file.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Builds the selected file.

No Does not build the selected file.

Set individual compile
option

Select whether to set a compile option that differs from the project settings to the selected C
source file.

This property is displayed only when a C source file is selected on the Project Tree panel
and [Yes] is selected in the [Set as build-target] property in the [Build] category.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project set-
tings to the selected C source file.

No Does not set a compile option that differs from the
project settings to the selected C source file.

Set individual assemble
option

Select whether to set an assemble option that differs from the project settings to the
selected assembler source file.

This property is displayed only when an assembler source file is selected on the Project
Tree panel and [Yes] is selected in the [Set as build-target] property in the [Build] category.

Default No

How to change Select from the drop-down list.

Restriction Yes Sets a compile option that differs from the project set-
tings to the selected assembler source file.

No Does not set a compile option that differs from the
project settings to the selected assembler source file.

File type Display the type of the selected file.

Default C source (when C source file is selected)

Assembly source (when assembler source file is selected)

Link directive (when link directive file is selected)

Section file (when section file is selected)

Object (when object file is selected)

Library (when archive file is selected)

How to change Changes not allowed

APPENDIX A WINDOW REFERENCE

240 User’s Manual U19386EJ1V0UM

[Individual Compile Options] tab

This tab shows the detailed information on a C source file categorized by the following and the configuration can be
changed.

Note that this tab takes over the settings of the [Compile Options] tab. If the settings are changed from the [Compile
Options] tab, the properties are displayed in boldface.

(1) [Debug Information]
(2) [Optimization]
(3) [Optimization(Details)]
(4) [Preprocess]
(5) [Message]
(6) [Kanji Code]
(7) [C Language]
(8) [Output Code]
(9) [Output File]
(10) [Others]

Remark This tab is displayed only when [Yes] in the [Set individual compile option] property in the [Build] category
from the [Build Settings] tab is selected.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 241

Figure A-21. Property Panel: [Individual Compile Options] Tab

[Description of each category]

(1) [Debug Information]
The detailed information on debug information is displayed and the configuration can be changed.

(2) [Optimization]
The detailed information on the optimization are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by outputting symbol information for the
source debugger.

This corresponds to the -g option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-g) Outputs symbol information for the source debugger.

No Does not output symbol information for the source
debugger.

APPENDIX A WINDOW REFERENCE

242 User’s Manual U19386EJ1V0UM

Type of the optimization Select the type of the optimization for compiling.

This corresponds to the -O* option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Optimize for
Debugging(-Od)

Performs optimization with the debug precedence.

Generates codes emphasizing source debugging,
without putting stress on the ROM capacity and
execution speed.

Default
Optimization(None)

Generates codes emphasizing source debugging.
Performs optimization within a range where source
debugging is not affected.

Standard
Optimization(-Og)

Performs appropriate optimization.

Performs optimization that allows debugging of the
C source in most cases.

Level 1 Advanced
Optimization(-O)

Performs advanced optimization.

Performs optimization emphasizing the ROM
capacity.

Level 2 Advanced
Opt.(Code size
precedence)(-Os)

Performs more advanced optimization (object size
precedence).

Performs the maximum optimization placing the
utmost emphasis on the ROM capacity.

Level 2 Advanced
Opt.(Speed
precedence)(-Ot)

Performs more advanced optimization (execution
speed precedence).

Performs the maximum optimization placing the
utmost emphasis on the execution speed.

Save memory of
machine-dependent
optimization module

Select whether to save the memory usage amount of the machine-dependent optimization
module during compiling.

Specify this option when the memory of the machine is insufficient and compile processing
cannot be completed normally.

This corresponds to the -Wi,-D option of the compiler.

This property is not displayed when any of [Optimize for Debugging(-Od)], [Default
Optimization(None)], or [Standard Optimization(-Og)] in the [Type of the optimization]
property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-D) Saves the memory usage amount of the machine-
dependent optimization module during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of
the machine-dependent optimization module during
compiling.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 243

(3) [Optimization(Details)]
The detailed information on the optimization are displayed and the configuration can be changed.

Save memory of
preoptimizer

Select whether to save the memory usage amount of the preoptimizer during compiling.

Specify this option when the memory of the machine is insufficient and compile processing
cannot be completed normally.

This corresponds to the -Wp,-D option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-D) Saves the memory usage amount of the preoptimizer
during compiling.

However, the compiling speed decreases.

No Does not specify saving the memory usage amount of
the preoptimizer during compiling.

Perform inline expansion Select whether to perform inline expansion.

This corresponds to the -Wp,-N option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Expansion(None) Performs inline expansion.

Expansion only
'inline' function(-
Wp,-inline)

Performs inline expansion of only a function for
which #pragma inline is specified.

No Expansion(-
Wp,-no_inline)

Does not specify inline expansion of all functions,
including the function for which #pragma inline is
specified.

Maximum code size for
performing inline
expansion

Specify the maximum size in the intermediate language of the function for performing inline
expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-N option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the
[Output function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

Maximum stack size for
performing inline
expansion

Specify the maximum value (bytes) of the stack size in the intermediate language of the
function for performing inline expansion.

For the function greater than the specified size, inline expansion is not performed.

This corresponds to the -Wp,-G option of the compiler.

As to a yardstick for the size, see the function information file output by specifying the
[Output function information] property.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 9999 (decimal number)

APPENDIX A WINDOW REFERENCE

244 User’s Manual U19386EJ1V0UM

Expand static function Specify whether to perform inline expansion against the static function that has been
referenced only once.

This corresponds to the -Wp,-S option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-S) Performs inline expansion against the static function
that has been referenced only once.

No Does not specify inline expansion against the static
function that has been referenced only once.

Output function
information

Specify whether to output the code size and stack size in the intermediate language of each
function to a file.

Information that is output will serve as a yardstick when specifying values in the [Maximum
code size for performing inline expansion] property and [Maximum stack size for performing
inline expansion] property.

This corresponds to the -Wp,-l option of the compiler.

This property is not displayed when [No Expansion(-Wp,-no_inline)] in the [Perform inline
expansion] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wp,-l) Outputs the code size and stack size in the intermediate
language of each function to a file.

No Does not specify the output of the code size and stack
size in the intermediate language of each function to a
file.

Function information file
name

Specify the file name for outputting the code size and stack size in the intermediate
language of each function.

This corresponds to the -Wp,-l option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

This property is not displayed when [No] in the [Output function information] property is
selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Specify Function Information
File dialog box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 245

Loop expansion Specify whether to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol,-Xlo option of the compiler.

This property is displayed only when [Level 2 Advanced Opt.(Speed precedence)(-Ot)] in
the [Type of the optimization] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(Adjust
automatically
unrolling number)(-
Wo,-Ol)

Performs loop expansions so that the code size is
minimized while keeping the number of times to
expand below the value specified in the [Maximum
number of loop expansions] property.

Yes(Constant
unrolling number)(-
Wo,-Ol,-Xlo)

Performs loop expansions for a number of times
specified in the [Maximum number of loop
expansions] property.

No(-Wo,-Ol0) Does not specify loop expansion.

Maximum number of
loop expansions

Specify the maximum number of times to expand the loops such as "for" and "while".

This corresponds to the -Wo,-Ol option of the compiler.

This property is not displayed when [No(-Wo,-Ol0)] in the [Loop expansion] property is
selected.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 0 to 999 (decimal number)

Output branch
instructions with code
size priority

Select whether to arrange and output branch instructions, giving precedence to the code
size.

This corresponds to the -Wo,-XFo option of the compiler.

This property is not displayed when [Optimize for Debugging(-Od)] or [Default
Optimization(None)] in the [Type of the optimization] property is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wo,-XFo) Arranges and outputs branch instructions, giving
precedence to the code size.

No Outputs a code that the debug information is given
priority for branch instructions.

Pack alignment Specify whether to inhibit the optimization that aligns branch destination labels.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2
Advanced Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed
precedence)(-Ot)] in the [Type of the optimization] property is selected.

However, when [Level 1 Advanced Optimization(-O)] or [Level 2 Advanced Opt.(Code size
precedence)(-Os)] is selected, this function is included. Therefore, [Yes(-Wi,-P)] is always
selected.

This corresponds to the -Wi,-P option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-P) Prevents optimization that allows branch destination
labels to be aligned.

The size of the execution code can be reduced.

No Does not specify the inhibition of the optimization that
aligns branch destination labels.

APPENDIX A WINDOW REFERENCE

246 User’s Manual U19386EJ1V0UM

(4) [Preprocess]
The detailed information on the preprocess are displayed and the configuration can be changed.

Perform advanced
optimization

Specify whether to execute the strongest optimization through strict data flow analysis.

Specify this property to perform the stronger optimization when performing the advanced
optimization.

This property is displayed only when [Level 1 Advanced Optimization(-O)], [Level 2
Advanced Opt.(Code size precedence)(-Os)], or [Level 2 Advanced Opt.(Speed
precedence)(-Ot)] in the [Type of the optimization] property is selected.

This corresponds to the -Wi,-O4 option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Wi,-O4) Executes the strongest optimization through strict data
flow analysis.

However, the compiling speed significantly decreases.

No Does not specify advanced optimization.

Additional include paths Specify the additional include paths during compiling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the compiler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the compiler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.

Use whole include paths
specified for build tool

Select whether to compile using the include path specified in the [Additional include paths]
property in the [Preprocess] category from the [Compile Options] tab of the build tool to be
used.

This corresponds to the -I option of the compiler.

Default Yes

How to change Select from the drop-down list.

Restriction Yes Compiles using the include path specified in the
property of the build tool to be used.

No Does not use the include path specified in the property
of the build tool to be used.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 247

Macro definition Specify the macro name to be defined.

Specify in the format of "macro name=defined value", with one macro name per line. The
"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the compiler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Macro undefinition Specify the macro name to be undefined.

Specify in the format of "macro name", with one macro name per line.

This corresponds to the -U option of the compiler.

The specified macro is displayed as the subproperty.

Default Configuration of the general option

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Limit of number of macro Specify the upper limit for the number of macro identifiers.

This corresponds to the -Xm option of the compiler.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 1 to 32767 (decimal number)

Use C++ style comment Specify whether to enable C++ comment style (from "//" to the end of the line), in addition to
regular comments.

This corresponds to the -Xcxxcom option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xcxxcom) Enables C++ comment style (from "//" to the end of
the line), in addition to regular comments.

No Disables C++ comment style (from "//" to the end of
the line).

APPENDIX A WINDOW REFERENCE

248 User’s Manual U19386EJ1V0UM

(5) [Message]
The detailed information on messages are displayed and the configuration can be changed.

Include comments in
preprocessor output file

Specify whether to include the comments of the source program in the output of the C
language source program's preprocessing.

This corresponds to the -C option of the compiler.

This property is not displayed when [No] in the [Output preprocessed source file] property in
the [Output File] category is selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-C) Includes the comments of the source program in the
output of the C language source program's
preprocessing.

No Does not include the comments of the source program
in the output of the C language source program's
preprocessing.

Use trigraph Specify whether to replace trigraph sequences.

A trigraph is a sequence of 3 characters replaced with a single character, defined in the
ANSI standard.

This corresponds to the -t option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-t) Replaces trigraph sequences.

No Does not replace trigraph sequences.

Verbose mode Select whether to display the execution status of the compiler to the Output panel during
build.

This corresponds to the -v option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the compiler during
build.

No Does not display the execution status of the compiler
during build.

Warning level Select the warning display level under compiling.

This corresponds to the -w option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction No Output(-w) Does not output warning messages.

Level 1(None) Outputs normal warning messages.

Level 2(-w2) Outputs detailed warning messages.

Limit of number of error Specify the maximum number of error messages to be output.

This corresponds to the -err_limit option of the compiler.

Default Configuration of the general option

How to change Directly enter to the text box.

Restriction 15 to 50 (decimal number)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 249

(6) [Kanji Code]
The detailed information on kanji codes are displayed and the configuration can be changed.

(7) [C Language]
The detailed information on C language are displayed and the configuration can be changed.

Kanji character code of
source

Specify the kanji code to be used for Japanese comments and character strings in the input
file.

This corresponds to the -Xk option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Shift_JIS(None) Interprets the kanji code of the source as Shift_JIS.

None(-Xk=none) Interprets the source as not containing kanji codes.

The code is not guaranteed.

EUC-JP(-Xk=euc) Interprets the kanji code of the source as EUC-JP.

Kanji character code for
target

Specify the kanji code to be converted into for Japanese character strings.

Set this property if you want to change the kanji code used during application development
in the target.

This corresponds to the -Xkt option of the compiler.

Default None(None)

How to change Select from the drop-down list.

Restriction None(None) Does not convert the kanji code of the target.

The code is not guaranteed.

Shift_JIS(-Xkt=sjis) Converts the kanji code of the target into Shift_JIS.

EUC-JP(-Xkt=euc) Converts the kanji code of the target into EUC-JP.

Sign of bit field Select whether int type bit fields without a type specifier (signed or unsigned) are handled as
signed or unsigned.

This corresponds to the -Xbitfield option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction signed Handles int type bit fields without a type
specifier as signed.

unsigned(-
Xbitfield=unsigned)

Handles int type bit fields without a type
specifier as unsigned.

Sign of char Select whether char type bit fields without a type specifier (signed or unsigned) are handled
as signed or unsigned.

This corresponds to the -Xchar option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction signed Handles char type without a type specifier as
signed.

unsigned(-
Xchar=unsigned)

Handles char type without a type specifier as
unsigned.

APPENDIX A WINDOW REFERENCE

250 User’s Manual U19386EJ1V0UM

(8) [Output Code]
The detailed information on output codes are displayed and the configuration can be changed.

Enumeration type Specify which integer type matches with the enumeration type.

This corresponds to the -Xenum_type option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction int(None) Matches int type with the enumeration type.

signed char(-
Xenum_type=char)

Matches signed char type with the enumeration
type.

unsigned char(-
Xenum_type=uchar)

Matches unsigned char type with the
enumeration type.

short(-
Xenum_type=short)

Matches short type with the enumeration type.

unsigned short(-
Xenum_type=ushort)

Matches unsigned short type with the
enumeration type.

Compile strictly
according to ANSI
standards

Specify whether to apply the ANSI standard to the compiler processing strictly and display
error and warning messages for descriptions that violate the standard.

This corresponds to the -ansi option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-ansi) Applies the ANSI standard to the compiler processing
strictly and displays error and warning messages for
descriptions that violate the standard.

No Confers compatibility with the conventional C language
specifications and continues the compiler processing
after warning message is output.

Use expansion of CC78K Select whether to enable the expansion functions compatible with the 78K microcontrollers
C compiler CC78K.

This corresponds to the -cc78k option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-cc78k) Enables the expansion functions compatible with the
CC78K.

No Disables the expansion functions compatible with the
CC78K.

Perform strictly integer
operation

Specify whether to use runtime libraries ___mul/___mulu, ___div/___divu or mul, mulu, div,
divu instructions without using the mulh and divh instructions, for integers of 16-bit data or
less, in order to execute multiply and divide instructions strictly according to the ANSI
standard.

This corresponds to the -Xe option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xe) Uses runtime libraries ___mul/___mulu or ___div/
___divu for integers of 16-bit data or less.

No Uses runtime libraries mulh or divh instructions for
integers of 16-bit data or less.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 251

Use prologue/epilogue
library

Specify whether to perform prologue/epilogue processing of functions through runtime
library calls.

This corresponds to the -Xpro_epi_runtime option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Auto(None) In the [Type of the optimization] property in the
[Optimization], corresponds to [No(-
Xpro_epi_runtime=off)] when [Level 2 Advanced
Opt.(Speed precedence)(-Ot)] is selected, [Yes(-
Xpro_epi_runtime=on)] when any of other items
is selected.

No(-
Xpro_epi_runtime=off)

Does not perform prologue/epilogue processing
of functions through runtime library calls.

Yes(-
Xpro_epi_runtime=on)

Performs prologue/epilogue processing of
functions through runtime library calls.

Output code of switch
statement

Specify the code output mode for switch statements in programs.

This corresponds to the -Xcase option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Auto(None) Automatically judges the format considered
optimum by the compiler.

if-else(-Xcase=ifelse) Outputs the code in the same format as the if-
else statement along a string of case statements
in programs.

Because the case statements are compared
starting from the top, unnecessary comparison
can be reduced and the execution speed can be
increased if the case statement that most often
matches is written first or if the number of labels
is few.

Binary search(-
Xcase=binary)

Outputs the code in the binary search format for
switch statements in programs.

Because a matching case statement is
searched by using a binary search algorithm,
when many labels are used, any case statement
can be found at almost the same speed.

Table jump(-
Xcase=table)

Outputs the code in the table jump format for
switch statements in programs.

References a table indexed on the values in the
case statements, and selects and processes
case labels from the switch statement values.
Code will branch to all the case statements with
about the same speed. If case values are not
used in succession, an unnecessary area is
created.

APPENDIX A WINDOW REFERENCE

252 User’s Manual U19386EJ1V0UM

Label size of switch table Specify the size per label of the branch table for the case labels in switch statements.

This corresponds to the -Xword_switch option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction 2 bytes(None) Generates one 2-byte branch table per case
label in a switch statement.

4 bytes(-
Xword_switch)

Generates one 4-byte branch table per case
label in a switch statement.

Select this item when a compile error occurs
because the switch statement is long.

Structure packing Selects the value of the structure packing.

The specified alignment can be used without aligning structure members according to the
type of each member. The data size can be reduced but the code size increases.

This corresponds to the -Xpack option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction 1 byte(-Xpack=1) Aligns structure members on a 1-byte boundary.

2 bytes(-Xpack=2) Aligns structure members on a 2-byte boundary.

4 bytes(-Xpack=4) Aligns structure members on a 4-byte boundary.

8 bytes(None) Aligns structure members on a 8-byte boundary.

Perform inline expansion
of strcpy/strcmp

Selsect whether to perform inline expansion of strcpy() or strcmp() function calls, with
regarding the alignment conditions of the array (including character strings) and the
structure as 4 bytes.

This improves the execution speed of the object but it also increases the code size.

This corresponds to the -Xi option of the compiler.

This property is displayed only when [8 bytes(None)] in the [Structure packing] property is
selected.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xi) Performs inline expansion of strcpy() or strcmp()
function calls, with regarding the alignment conditions of
the array (including character strings) and the structure
as 4 bytes.

No Does not perform inline expansion of strcpy() or
strcmp() function calls.

Perform pointer byte
access

Select whether to perform an indirect address access of structure in byte units.

Use this property if a limit is exceeded when the structure packing function is used.

This corresponds to the -Xbyte option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xbyte) Specifies indirect address access to a structure in byte
units.

No Does not perform an indirect address access of
structure in byte units.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 253

(9) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

Output comment to
assembly language
source file

Select whether to output a C source program as a comment to the assembler source file to
be output.

This corresponds to the -Xc option of the compiler.

This property is not displayed when [Yes(-Fs)] in the [Output assemble file] property or
[Yes(-Fv)] in the [Output an assemble list] property is selected in the [Output File] category.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xc) Outputs a C source program as a comment to the
assembler source file.

No Does not output a C source program as a comment to
the assembler source file.

Use jmp instruction for
branch instruction of
interruption

Select whether to use the jmp instruction for interrupt functions defined in C language.

This corresponds to the -Xj option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xj) Uses the jmp instruction for interrupt functions defined
in C language.

No Uses the jr instruction for interrupt functions defined in
C language.

Prohibit the operation
that replaces word with
bit instructions

Select whether to prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit
manipulation instructions (set1, clr1, tst1, and not1).

This corresponds to the -Xno_word_bitop option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xno_word_bitop) Prohibits replacing the ld.w/ld.h and st.w/st.h
instructions with 1-bit manipulation instructions
(set1, clr1, tst1, and not1).

No Replaces the ld.w/ld.h and st.w/st.h instructions
with 1-bit manipulation instructions (set1, clr1,
tst1, and not1).

Object file name Specify the name of the object file generated after compilation.

The extension other than ".o" cannot be specified. If the extension is omitted, ".o" is
automatically added.

If this field is blank, the file is saved under the file name with extension .c replaced by .o.

This corresponds to the -o option of the compiler.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

254 User’s Manual U19386EJ1V0UM

Output assemble file Select whether to output the assembler source file of the compile result for a C source.

This corresponds to the -Fs option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Fs) Outputs the assembler source file.

No Does not output the assembler source file.

Output folder for
assembly file

Specify the output destination folder of an assembler source file.

The assembler source file is saved under the source file name with the extension replaced
by ".s".

This corresponds to the -Fs option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fs)] in the [Output assemble file] property is
selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Output assemble list file Select whether to output the assemble list of the compile result for a C source.

This corresponds to the -Fv option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Fv) Outputs an assemble list.

No Does not output an assemble list.

Output folder for
assemble list file

Specify the output destination folder of an assemble list.

The assemble list is saved under the source file name with the extension replaced by ".v".

This corresponds to the -Fv option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-Fv)] in the [Output assemble list file] property is
selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 255

(10)[Others]
Other detailed information on compilation are displayed and the configuration can be changed.

Output frequency
information file

Select whether to output the frequency information file for the variables used by the section
file generator.

This corresponds to the -Xcre_sec_data option of the compiler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-Xcre_sec_data) Outputs the frequency information file for the
variables.

No Does not output the frequency information file
for the variables.

Output folder for
frequency information file

Specify the output destination folder of the frequency information file.

The frequency information file is saved under the source file name with the extension
replaced by ".sec".

This corresponds to the -Xcre_sec_data option of the compiler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

The following macro name is available as an embedded macro.

%BuildModeName%: Replaces with the build mode name.

If this is blank, it is treated as if the project folder is specified.

This property is not displayed when [No] in the [Output frequency information file] property is
selected.

Default Blank

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Output preprocessed
source file

Select whether to execute the command that execute only preprocessing (preprocess
processing) for a C source program prior to compile processing.

The result is output under the source file name with the extension replaced by ".i".

The line numbers and file name of the source program are not output.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-P) Executes only preprocessing for a C source program
and outputs the result.

No Does not execute only preprocessing for a C source
program and does not output the result.

APPENDIX A WINDOW REFERENCE

256 User’s Manual U19386EJ1V0UM

Commands executed
before compile
processing

Specify the command to be executed before compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed before compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after compile processing

Specify the command to be executed after compile processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be compiled.

%CompiledFile%: Replaces with the absolute path of the output file under compiling.

The specified command is displayed as the subproperty.

Default Commands executed after compile processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the compile options to be added additionally.

The options set here are added at the end of the compile options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 257

[Individual Assemble Options] tab

This tab shows the detailed information on an assemble source file categorized by the following and the
configuration can be changed.

Note that this tab takes over the settings of the [Assemble Options] tab. If the settings are changed from the
[Assemble Options] tab, the properties are displayed in boldface.

(1) [Debug Information]
(2) [Preprocess]
(3) [Output File]
(4) [Assemble List]
(5) [Message]
(6) [Others]

Remarks 1. This tab is displayed when [Yes] in the [Set individual assemble option] property in the [Build]
category from the [Build Settings] tab is selected.

2. This tab is also displayed when a C source file is selected and [Yes(-Fs)] is selected in the [Output
assemble file] property in the [Output File] category from the [Individual Compile Options] tab.

Figure A-22. Property Panel: [Individual Assemble Options] Tab

APPENDIX A WINDOW REFERENCE

258 User’s Manual U19386EJ1V0UM

[Description of each category]

(1) [Debug Information]
The detailed information on debug information is displayed and the configuration can be changed.

(2) [Preprocess]
The detailed information on the preprocess are displayed and the configuration can be changed.

Add debug information Select whether to enable source level debugging by adding debug information to the object
file being generated.

This corresponds to the -g option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-g) Adds debug information to the object file being
generated.

No Does not add debug information to the object file being
generated.

Additional include paths Specify the additional include paths during assembling.

The following macro names are available as embedded macros.

%BuildModeName%: Replaces with the build mode name.

%ProjectName%: Replaces with the project name.

%CubeSuitePath%: Replaces with the absolute path of the CubeSuite install folder.

When this option is omitted, only the standard folder of the assembler is searched. The
reference point of the path is the project folder.

This corresponds to the -I option of the assembler.

The specified include path is displayed as the subproperty.

Default Additional include paths[number of defined items]

How to change Edit by the Path Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 259 characters

Up to 64 items can be specified.However, this also includes the number of
paths used by linked tools.

Use whole include paths
specified for build tool

Select whether to assemble using the include path specified in the [Additional include paths]
property in the [Preprocess] category from the [Assemble Options] tab of the build tool to
be used.
This corresponds to the -I option of the assembler.

Default Yes

How to change Select from the drop-down list.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 259

(3) [Output File]
The detailed information on output files are displayed and the configuration can be changed.

(4) [Assemble List]
The detailed information on the assemble list are displayed and the configuration can be changed.

Macro definition Specify the macro name to be defined.

Specify in the format "macro name=defined value", with one macro name per line. The
"=defined value" part can be omitted, and in this case, "1" is used as the defined value.

This corresponds to the -D option of the assembler.

The specified macro is displayed as the subproperty.

Default Macro definition[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 items can be specified.

Object file name Specify the name of the object file generated after assembling.

The extension other than ".o" cannot be specified. If the extension is omitted, ".o" is
automatically added.

If this field is blank, the file is saved under the file name with extension .s replaced by .o.

This corresponds to the -o option of the assembler.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in
the [Output assemble file] property in the [Output File] category from the [Individual Compile
Options] tab.

Default Blank

How to change Directly enter to the text box.

Restriction Up to 259 characters

Output assemble list file Select whether to output the assemble list file.

This corresponds to the -a -l option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-a -l) Outputs an assemble list file.

No Does not output an assemble list file.

APPENDIX A WINDOW REFERENCE

260 User’s Manual U19386EJ1V0UM

(5) [Message]
The detailed information on messages are displayed and the configuration can be changed.

Output folder for
assemble list file

Specify the output destination folder of an assemble list file.

The assemble list file is saved under the assembler source file name with the extension ".s"
replaced by ".v".

This corresponds to the -l option of the assembler.

If a relative path is specified, the reference point of the path is the main project or subproject
folder.

If an absolute path is specified, the reference point of the path is the main project or
subproject folder (unless the drives are different).

If this is blank, it is treated as if the project folder is specified.

This property is displayed only when [Yes(-a -l)] in the [Output assemble list file] property is
selected.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Browse For Folder dialog box
which appears when clicking the [...] button.

Restriction Up to 259 characters

Verbose mode Select whether to display the execution status of the assembler to the Output panel during
build.

This corresponds to the -v option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-v) Displays the execution status of the assembler during
build.

No Does not display the execution status of the assembler
during build.

Warn of using r0 register
as destination register

Select whether to display warnings when the r0 register is specified as the destination
register.

This corresponds to the -wr0- and -wr0+ options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-wr0+) Displays warnings when the r0 register is specified as
the destination register.

No(-wr0-) Does not display warnings when the r0 register is
specified as the destination register.

Warn of using r1 register Select whether to display warnings when the r1 register is specified as the source register or
destination register.

This corresponds to the -wr1- and -wr1+ options of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-wr1+) Displays warnings when the r1 register is specified as
the source register or destination register.

No(-wr1-) Does not display warnings when the r1 register is
specified as the source register or destination register.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 261

(6) [Others]
Other detailed information on assembly are displayed and the configuration can be changed.

Warn of using mask
registers as destination
register

Select whether to display warnings when the r1 register is specified as the source register or
destination register, when the r0 register is specified as the destination register, or when the
r20 or r21 register is specified as the destination register while using the mask register
function.

This corresponds to the -w option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes Displays warnings when the r1 register is specified as
the source register or destination register, when the r0
register is specified as the destination register, or when
the r20 or r21 register is specified as the destination
register while using the mask register function.

No(-w) Does not display warnings when the r1 register is
specified as the source register or destination register,
when the r0 register is specified as the destination
register, or when the r20 or r21 register is specified as
the destination register while using the mask register
function.

Perform optimization Select whether to perform optimization that rearranges instructions to avoid register/flag
hazards.

This corresponds to the -O option of the assembler.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-O) Performs optimization that avoid register/flag hazards.

No Does not perform optimization that avoid register/flag
hazards.

Use 32-bit branch
instruction

Select whether to specify far jump for branch instructions (jarl, jr) where 22/32 is not
described in the instruction.

This corresponds to the -Xfar_jump option of the assembler.

This property is displayed only when the V850E2 core device is specified as a device type.

Default Configuration of the general option

How to change Select from the drop-down list.

Restriction Yes(-
Xfar_jump)

Specifies far jump for branch instructions (jarl, jr) where
22/32 is not described in the instruction.

No The branch instructions (jarl, jr) where 22/32 is not
described in the instruction is the ordinary branch
instruction.

APPENDIX A WINDOW REFERENCE

262 User’s Manual U19386EJ1V0UM

Commands executed
before assemble
processing

Specify the command to be executed before assemble processing.

The following macro name is available as an embedded macro.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in
the [Output assemble file] property in the [Output File] category from the [Individual Compile
Options] tab.

Default Commands executed before assemble processing[number of defined
items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Commands executed
after assemble
processing

Specify the command to be executed after assemble processing.

The following macro names are available as embedded macros.

%ProjectFolder%: Replaces with the absolute path of the project folder.

%OutputFolder%: Replaces with the absolute path of the output folder.

%OutputFile%: Replaces with the absolute path of the output file.

%InputFile%: Replaces with the absolute path of the file to be assembled.

%AssembledFile%: Replaces with the absolute path of the output file under assembling.

This property is not displayed when a C source file is selected and [Yes(-Fs)] is selected in
the [Output assemble file] property in the [Output File] category from the [Individual Compile
Options] tab.

Default Commands executed after assemble processing[number of defined items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...]
button.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 1023 characters

Up to 64 items can be specified.

Other additional options Input the assemble options to be added additionally.

The options set here are added at the end of the assemble options group.

Default Configuration of the general option

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 259 characters

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 263

[File Information] tab

This tab shows the detailed information on each file categorized by the following and the configuration can be
changed.

(1) [File Information]
(2) [Notes]

Figure A-23. Property Panel: [File Information] Tab

[Description of each category]

(1) [File Information]
The detailed information on the file are displayed and the configuration can be changed.

File name Display the file name.

Change the file name on the Project Tree panel.

Default File name

How to change Changes not allowed

Ｒelative path Display the relative path of the file from the project folder.

Default The relative path of the file from the project folder

How to change Changes not allowed

Absolute path Display the absolute path of the file.

Default The absolute path of the file

How to change Changes not allowed

Save with absolute path Select whether to save the file location with the absolute path.

Default No

How to change Select from the drop-down list.

Restriction Yes Saves the file location with the absolute path.

No Saves the file location with the relative path.

APPENDIX A WINDOW REFERENCE

264 User’s Manual U19386EJ1V0UM

(2) [Notes]
The detailed information on notes is displayed and the configuration can be changed.

Last update Display the time and date on which this file was changed last.

Default File updated time and date

How to change Changes not allowed

Writable Select whether to enable writing to the file.

If you do not have the authority to change the file attribute, this property is displayed in gray
and you cannot change the attribute.

Default Yes (when the file is write enabled)

No (when the file is not write enabled)

How to change Select from the drop-down list.

Restriction Yes Enables the file to write.

No Does not enable the file to write.

Memo Add memos to the file.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-
ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 265

[Category Information] tab

This tab shows the detailed information on the category that the user added, File node, Build tool generated files
node, and Startup node categorized by the following and the configuration can be changed.

(1) [Category Information]
(2) [Notes]

Figure A-24. Property Panel: [Category Information] Tab

[Description of each category]

(1) [Category Information]
The detailed information on the category is displayed and the configuration can be changed.

(2) [Notes]
The detailed information on notes is displayed and the configuration can be changed.
This category of the File node, Build tool generated files node, and Startup node is not displayed.

Category name Specify the category name to categorize files.

This property of the File node, Build tool generated files node, and Startup node is displayed
in gray and you cannot change the attribute.

Default Category name of files

How to change Directly enter to the text box.

Restriction 1 to 200 characters

Memo Add memos to the category of files.

Add one item in one line.

The added memos are displayed as the subproperty.

Default Memo[number-of-items]

How to change Edit by the Text Edit dialog box which appears when clicking the [...] but-
ton.

For the subproperty, you can use the text box directly enter the text.

Restriction Up to 256 characters

Up to 256 memos can be specified.

APPENDIX A WINDOW REFERENCE

266 User’s Manual U19386EJ1V0UM

This panel is used to display/edit text files/source files.
This panel can be multiply opened (max:100 panels).

Remark A message is shown when the downloaded lode module file is older than the source file to open.

Figure A-25. Editor Panel

The following items are explained here.
- [How to open]
- [Description of each area]
- [[File] menu (only available for the Editor panel)]
- [[Edit] menu] (only available for the Editor panel)]
- [Context menu]

[How to open]

- On the Project Tree panel, double click the file.
- On the Project Tree panel, select a source file, and then select [Open] from the context menu.
- On the Project Tree panel, select a file, and then select [Open with Internal Editor...] from the context menu.
- On the Project Tree panel, select [Add] >> [Add New File...] from the context menu, and then create a text file/

source file.

[Description of each area]

(1) Title bar
Show the opened text file/source file name.
Marks that are shown at the end of each file are explained as follows.

Editor panel

(1)

(2) (3)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 267

(2) Line number area
Show the opened text file/source file's line number.

(3) Characters area
Display/edit the characters of the text files/source files.
This area has the following functions.

(a) Character editing
Characters can be entered from the keyboard.
Various shortcut keys can be used to enhance the edit function.

(b) File Monitor
The following function for monitoring is provided to manage source files.

- If the contents of the currently displayed file are changed not with CubeSuite, show a message to indi-
cate whether to save the file. You can either select yes or no.

Remark The following items can be customized by setting the Option dialog box.

- Display fonts
- Tab Interval
- Display/hide/colors of control Characters (control codes including a blank symbol)
- Colors of reserved words/comments

[[File] menu (only available for the Editor panel)]

The following items are exclusive for the [File] menu in the Editor panel (other items are common to all the panels).

[[Edit] menu] (only available for the Editor panel)]

The following items are exclusive for the [Edit] menu in the Editor panel (other items are all invalid).

Mark Description

* The contents of the editing file is changed.

(Uneditable) The opened text file is write disabled.

ID number The same text file is multiply opened.

Close file name Closes the currently editing the Editor panel.

When the contents of the panel have not been saved, a confirmation message is shown.

Save file name Overwrites the contents of the currently editing the Editor panel.

Note that when the file has never been saved or the file is write disabled, the same oper-
ation is applied as the selection in [Save file name As...].

Save file name As... Opens the Save As dialog box to newly save the contents of the currently editing the Edi-
tor panel.

Page Setup... Opens the Page Setup dialog box of Windows.

Print... Opens the Print dialog box of Windows for printing the contents of the currently editing
the Editor panel.

Undo Cancels the previous operation on the Editor panel and restores the characters and the
caret position (max 100 times).

Redo Cancels the previous [Undo] operation on the Editor panel and restores the characters
and the caret position.

APPENDIX A WINDOW REFERENCE

268 User’s Manual U19386EJ1V0UM

[Context menu]

[Characters area/Line number area]

Cut Cut the selected characters and copies them to the clip board.

Copy Copies the selected characters to the clip board.

Paste Insert (insert mode) or overwrite (overwrite mode) the characters that are copied on the
clip board into the caret position.

When the contents of the clipboard are not recognized as characters, the operation is
invalid.

Delete Deletes one character at the caret position.

When there is a selection area, all the characters in the area are deleted.

Select All Selects all the characters from the beginning to the end in the currently editing text file.

Find... Opens the Search and Replace dialog box with the [Quick Search] tab target.

When there is a selection area, search is only taken place in the selection area.

Replace... Opens the Search and Replace dialog box with the [Quick Replace] tab target.

When there is a selection area, replace is only taken place in the selection area.

Move To... Opens the Go to the Location dialog box to move the caret to the designated line.

Jump To Function This menu is always disabled.

Back To Last Cusor Position Goes back to the position before the cusor is jumped.

Forward To Next Cusor Position Jump to the position before operating [Back To Last Cusor Position].

Cut Cut the selected characters and paste to the clipboard.

Copy Copies the selected characters to the clipboard.

Paste Inserts the contents of the clipboard into the caret position.

Open in New Panel Opens a new Editor panel with the same contents as the current Editor panel (the title
bar of the newly opened Editor panel shows the file name and ID number).

The Editor panel can be opened up to 100 panels.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 269

This panel is used to display the message that is output from the build tool or the result of the batch search with the
Search and Replace dialog box.

Messages are shown individually on the tab categorized by the output tool.

Figure A-26. Output Panel

The following items are explained here.
- [How to open]
- [Description of each area]
- [[File] menu (only available for the Output panel)]
- [[Edit] menu (only available for the Output panel)]
- [Context menu]

[How to open]

- From the [View] menu, select [Output].

[Description of each area]

(1) Message area
Display messages and the search results output from each tool.
In build result/search result (batch search) display, a new message is displayed deleting the previous message
every time build/search is done (but not the [All Messages] tab).

Remark Up to 500000 lines of messages can be displayed. If 500001 lines or more of messages are output,
then the excess lines are deleted, oldest first.

The message colors differ as follows depends on the type of the output message (the character color/back-
ground color is set in [General - Font and Color] category in the Option dialog box).

Output panel

Message Type Example (Default) Description

Normal message Character color Black Information on something.

Background color White

Warning Character color Blue Warning for the operation.

Background color Normal color

Error message Character color Red Fatal error or operation disabled because
of an error in operation.

Background color Light gray

(1)

(2)

APPENDIX A WINDOW REFERENCE

270 User’s Manual U19386EJ1V0UM

This area has the following functions.

(a) Tag jump
When the output message is double-clicked, or the [Enter] key is pressed with the caret over the message,
the Editor panel appears and the destination line number of the file is displayed.
You can jump to the line of the source file that generated the error from the error message output when
building.

(b) Display online help
Online help with regard to the message in the line is shown by selecting [Help for Message] in the context
menu or pressing the [F1] key while the caret is in the line where the warning message or the error mes-
sage is displayed.

(c) Save log
The contents displayed on the currently selected tab can be saved in a text file (*.txt) by selecting [Save
Output - tab name As...] from the [File] menu and opens the Save As dialog box (messages on the tab that
is not selected will not be saved).

(2) Tab selection area
Select tabs that messages are output from.
Tabs that are displayed are as follows.

Caution Tab is not automatically switched when a new message is output on the non-selected tab.
If this is the case, is added to the tab informing a new message is output.

[[File] menu (only available for the Output panel)]

The following items are exclusive for the [File] menu in the Output panel (other items are common to all the panels).

[[Edit] menu (only available for the Output panel)]

The following items are exclusive to the [Edit] menu in the Output panel (other items are all invalid).

Tab Name Description

All Messages Shows all the messages by order of output. (Except while executing a rapid
build)

Rapid Build Shows the message output from the build tool by running a rapid build.

Build Tool Shows the message output from the build tool by running build/rebuild/clean.

Search And Replace Displays the batch result with the Search and Replace dialog box.

Save Output - tab name Saves the contents on the currently selecting tab in the previously saved text file (*.txt)
(see "(c) Save log").

When this item is selected for the first time after launching the program, the operation is
equivalent to when selecting [Save Output - tab name As...].

Save Output - tab name As... Opens the Save As dialog box to save the contents on the currently selecting tab in the
designated text file (*.txt) (see "(c) Save log").

Copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

Find... Opens the Search and Replace dialog box with the [Quick Search] tab target.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 271

[Context menu]

Replace... Opens the Search and Replace dialog box with the [Whole Replace] tab target.

copy Copies the selected characters to the clipboard.

Select All Selects all the messages displayed on this panel.

Clear Deletes all the messages displayed on this panel.

Stop Searching Cancels the current search operation.

This command is invalid when search is not taken place.

Help for Message Shows online help with regard to the message at the current caret.

Note that the online help is only for warning/error messages.

APPENDIX A WINDOW REFERENCE

272 User’s Manual U19386EJ1V0UM

This dialog box is used to create a new file and add it to the project.

Figure A-27. Add File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add New File...].
- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or category node,

and then select [Add] >> [Add New File...] from the context menu.

[Description of each area]

(1) [File type] area
Select file types to create.
The description is shown at the lower box when a file type is selected.
File types to be shown are as follows.

- C source file (*.c)
- Header file (*.h; *.inc)
- Assemble file (*.s)
- Link directive file (*.dir; *.dr)
- Section file (*.sf)
- Text file (*.txt)

Add File dialog box

(1)

[Function buttons]

(2)

(3)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 273

(2) [File name] area
Directly enter the name of the file to create.
The default file extension is "txt".

Remark If extensions are not designated, the one selected in the [File type] area are is added. Also that if
extensions different from the one selected in the [File type] area are designated, the one selected in
the [File type] area is added as an extension (for example, if you designate "aaa.txt" as a file name
and select "C source file (*.c)" as file type, the file is named as "aaa.txt.c").

(3) [File location] area
Designate the location to create a file by directly entering its path or selecting from [Refer...] button.
The default file location is the project folder path.

(a) Button

Remarks 1. When the text box is left blank, the project folder is regarded to be designated.
2. When the relative path is used, the path is regarded to be from the project folder.

Remark The number of characters that can be entered in the [File name] area and the [File location] area is up to
259 both for the path name and file name together. When the input violates any restriction, the following
messages are shown in the tooltip in the [File name] area.

[Function buttons]

Refer... Opens the Browse For Folder dialog box.

When a folder is selected, a path is added in the text box.

Message Description

The file name including the path is too long. Make it
within 259 characters.

The file name with the path is more than 259 characters.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following
characters cannot be used: •, /, :, *, ?, “, <, >, |

The file name with the invalid path is designated. The char-
acters, \, /, :, *, ", <, >, |, cannot be used for the file name
and folder name.

Button Function

OK Creates the file with the entered file name, adds it to the project, and opens with the Edi-
tor panel. Then closes this dialog box.

Cancel Does not create a file and closes this dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

274 User’s Manual U19386EJ1V0UM

This dialog box is used to add existing files and folder hierarchies to the project.
The folder is added as a category.

Figure A-28. Add Folder and File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- Drag the folder from Explorer or the like, and drop it on the Project Tree panel.

[Description of each area]

(1) [File type] area
Select the file types to add to the project.
You can select multiple types by left clicking while holding down the [Ctrl] or [Shift] key.
If nothing is selected, it is assumed that all types are selected.
The file types displayed are shown below.

- C source file (*.c)
- Header file (*.h; *.inc)
- Assemble file (*.s)
- Link directive file (*.dir; *.dr)
- Section file (*.sf)
- Archive file (*.a)
- Object file (*.o)
- Text file (*.txt)

Add Folder and File dialog box

[Function buttons]

(2)

(1)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 275

(2) [Subfolder level to search] area
Directly enter the number of subfolder levels to add to the project.
The default number is "1".

Remark Decimal numbers of up to 10 are allowed. When the input violates any restriction, the following mes-
sages are shown in the tooltip.

[Function buttons]

Message Description

Fewer than 0 or more than 10 values cannot be
specified.

More than 10 subfolder levels have been specified.

Specify in decimal. A number in other than base-10 format or a string has
been specified.

Button Function

OK The folder that was dragged and dropped and the files in that folder are added to the
project.And then close the dialog box.

Cancel Do not add a folder and files, and then closes this dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

276 User’s Manual U19386EJ1V0UM

This dialog box is used to input and edit characters in one line.

Figure A-29. Character String Input Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Common Options] tab, [Format of build option list] in the [Others] category.
- From the [Compile Options] tab, [Displayed warning message] and [undisplayed warning message] in the

[Message] category, [Other additional options] in the [Others] category.
- From the [Assemble Options] tab, [Other additional options] in the [Others]category.
- From the [Link Options] tab, [Entry symbol] and [Other additional options] in the [Others] category.
- From the [ROMization Process Options] tab, [Entry label] and [Other additional options] in the [Others] cat-

egory.
- From the [Hex Convert Options] tab, [Other additional options] in the [Others] category.
- From the [Archive Options] tab, [Other additional options] in the [Others] category.
- From the [Section File Generate Options] tab, [Other additional options] in the [Others] category.
- From the [Dump Options] tab, [Additional options for dump tool] in the [Dump Tool] category.
- From the [Cross Reference Options] tab, [Additional options for cross reference tool] in the [Cross Refer-

ence Tool] category.
- From the [Memory Layout Visualization Options] tab, [Additional options for memory layout visualization

tool] in the [Memory Layout Visualization Tool] category.
- From the [Individual Compile Options] tab, [Other additional options] in the [Others] category.
- From the [Individual Assemble Options] tab, [Other additional options] in the [Others] category.

- In the Link Directive File Generation dialog box , select a segment or section in the [Segment / Section list] area,
and then click the [...] button in the [Segment / Section detail] area.

- In the Link Directive File Generation dialog box , select a section in the [Segment / Section list] area, and then
click the [...] button on [Input section name] in the [Segment / Section detail] area.

- In the Link Directive File Generation dialog box , select a symbol in the [Symbol list] area, and then click the [...]
button on [Name] in the [Symbol detail] area.

- In the Link Directive File Generation dialog box , select a symbol in the [Symbol list] area, and then click the [...]
button on [Base symbol name] in the [Symbol detail] area.

- In the [General - External Tools] category of the Option dialog box, check [Require options at start-up] in the
New registration area. Then the dialog box automatically opens when an external tool is launched from [Tool]
menu.

[Description of each area]

Character String Input dialog box

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 277

(1) [String] area
Input characters in one line.
By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the
dialog box.
Line break is not allowed.

Remark Up to 32767 characters can be entered. When the input violates any restriction, the following mes-
sages are shown in the toolchip.

[Function buttons]

Message Description

More than maximum number of restriction in the prop-
erty that called this dialog box characters cannot be
specified.

The characters exceeds the maximum number of
restriction in the property that called this dialog
box.

Button Function

OK Reflects the entered characters to the property that called this dialog box then closes the
dialog box.

Cancel Does not reflect the entered characters to the property that called this dialog box then
closes the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

278 User’s Manual U19386EJ1V0UM

This dialog box is used to input and edit texts in multiple lines.

Figure A-30. Text Edit Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Common Options] tab, [Macro definition] in the [Frequently Used Options(for Compile)] category,

[Macro definition] in the [Frequently Used Options(for Assemble)] category, [Using libraries] in the [Fre-
quently Used Options(for Link)] category, [Memo] in the [Notes] category, and [Commands executed before
build processing], [Commands executed after build processing] in the [Others] category.

- From the [Compile Options] tab, [Macro definition] and [Macro undefinition] in the [Preprocess] category,
[Commands executed before compile processing] and [Commands executed after compile processing] in
the [Others] category.

- From the [Assemble Options] tab, [[Macro definition] in the [Preprocess] category, [Commands executed
before assemble processing] and [Commands executed after assemble processing] in the [Others] cate-
gory.

- From the [Link Options] tab, [Using libraries] in the [Library] category, [Commands executed before link pro-
cessing] and [Commands executed after link processing] in the [Others] category.

- From the [ROMization Process Options] tab, [Order of storing to the rompsec section] in the [Section List]
category, [Commands executed before ROMization processing] and [Commands executed after
ROMization processing] in the [Others] category.

- From the [Hex Convert Options] tab, [Converted sections] in the [Hex Format] category, [Commands exe-
cuted before hex convert processing] and [Commands executed after hex convert processing] in the [Oth-
ers] category.

- From the [Archive Options] tab, [Commands executed before archive processing] and [Commands exe-
cuted after archive processing] in the [Others] category.

- From the [Section File Generate Options] tab, [Sections excluded in optimization] and [Variables excluded
in optimization] in the [Allocation of Variables] category.

- From the [Individual Compile Options] tab, [Macro definition] and [Macro undefinition] in the [Preprocess]
category, [Commands executed before compile processing] and [Commands executed after compile pro-
cessing] in the [Others] category.

Text Edit dialog box

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 279

- From the [Individual Assemble Options] tab, [Macro definition] in the [Preprocess] category, [Commands
executed before assemble processing] and [Commands executed after assemble processing] in the [Oth-
ers] category.

[Description of each area]

(1) [Text] area
Input and edit texts in multiple lines.
By default, this dialog box opens with its edit box reflecting the current value of the property selected to call the
dialog box.

Remark Up to 65535 lines and 65535 characters are allowed. When the input violates any restriction, the fol-
lowing messages are shown in the tooltip.

[Function buttons]

Message Description

More than maximum number of restriction in the prop-
erty that called this dialog box characters cannot be
specified. The current number of characters is dis-
played between brackets at the beginning of the line in
excess of the limit.

The characters exceeds the maximum number of
restriction in the property that called this dialog
box.

Button Function

OK Reflects the entered text to the text box that opened this dialog box and closed the dia-
log box.

Cancel Does not reflect the entered text to the text box that opened this dialog box and closed
the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

280 User’s Manual U19386EJ1V0UM

This dialog box is used to edit or add the path or the file name including path.

Figure A-31. Path Edit Dialog Box (When Editing Path)

Figure A-32. Path Edit Dialog Box (When Editing File Name Including Path)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Common Options] tab, [Additional include paths] in the [Frequently Used Options(for Compile)]

category, [Additional include paths] in the [Frequently Used Options(for Assemble)] category, and [Addi-
tional library paths] in the [Frequently Used Options(for Link)] category.

- From [Compile Options] tab, [Additional include paths] in the [Preprocess] category, [Far jump file names] in
the [Input File] category.

Path Edit dialog box

(1)

[Function buttons]

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 281

- From [Assemble Options] tab, [Additional include paths] in the [Preprocess] category.
- From [Link Options] tab, [Additional library paths] in the [Library] category.
- From [Individual Compile Options] tab, [Additional include paths] in the [Preprocess] category.
- From [Individual Assemble Options] tab, [Additional include paths] in the [Preprocess] category.

[Description of each area]

(1) Path edit area
Edit or add the path or the file name including path .

(a) [Path(One path per one line)]
Edit or adds the path or the file name including path by directly entering the path or the file name including
path .
Path or the file name including path can be designated in multiple lines. Designate a path or the file name
including path at a line.
By default, the contents of the text box that opened this dialog box are reflected in this area.

Path can be added by one of the following method.
- Click the [Browse...] button, and then select folders in the Browse For Folder dialog box.
- Drag and drop the folder using such as Explorer.

File names including path can be added by one of the following method.
- Select the file in the Specify Far Jump File dialog box which opens by clicking the [Browse...] button.

- Drag and drop the file using such as Explorer.

Remark Up to 10000 lines are allowed. Up to the maximum characters that are limited by the Windows OS
are allowed. When the input violates any restriction, the following messages are shown in the
tooltip.

(b) Button

Message Description

Specify a path. The field is empty.

The path is too long. Specify a path with a number of
characters equal to or fewer than maximum number of
restriction in the property that called this dialog box.

The file name including the path is exceeding the

character limit defined in the original path.

The specified path contains a folder that does not exist. The path includes the folder that does not exist.

The file name or path name is invalid. The following
characters cannot be used: •, /, :, *, ?, “, <, >, |

The file name with the invalid path is designated.
The characters, \, /, :, *, ", <, >, |, cannot be used
for the file name and folder name.

More than maximum number of paths or files specified
by the caller lines cannot be specified.

The number of paths or files which have been
input exceeds the maximum number of paths or
files specified by the caller.

Browse... - When adding the path

Opens the Browse For Folder dialog box.

When a folder is selected, the path is added to [Path(One path per one line)].

- When adding the file name including path

Opens the Specify Far Jump File dialog box.

When a file is selected, the file name is added to [Path(One path per one line)].

APPENDIX A WINDOW REFERENCE

282 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

OK Reflects the entered path to the property that called this dialog box then closes the dia-
log box.

Cancel Does not reflect the entered path to the property that called this dialog box then closes
the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 283

This dialog box is used to generate a link directive file based on the specified memory, segments, sections, and
symbol allocation information.

Figure A-33. Link Directive File Generation Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Project Tree panel, select the Build tool node, and then select [Create Link Directive File...] from the
context menu.

Link Directive File Generation dialog box

(1)

[Function buttons]

(3)

(2)

(4)

APPENDIX A WINDOW REFERENCE

284 User’s Manual U19386EJ1V0UM

[Description of each area]

(1) [Segment / Section list] area
Display the device memory allocation information, and a list of the currently configured segments and sections.

(a) [Memory / Name]
Display the names of the memory area, segments, and sections.
For the memory area, the name of the corresponding memory area as shown below is displayed.

- Internal ROM
- Non Mapping
- Internal RAM

This item can be edited directly for the segments and sections.If a segment name and section name is
changed, the value of [Name] in the [Segment / Section detail] area is also changed.

Caution Some segment and section names in reserved sections cannot be edited.See the remark
of the [Segment / Section detail] area for details.

(b) [Start Address]
Display the start addresses of the memory area, segments, and sections.
This item can be edited directly for the segments and sections.If the start address is changed, the value of
[Start Address] in the [Segment / Section detail] area is also changed.

(c) [End Address]
Display the end addresses of the memory area.
A dash (-) appears in segment and section rows.

(d) Button

This area has the following functions.

- Expand/collapse a row view
You can expand/collapse each low view by double clicking the row or clicking or at the beginning of
the row.

- Move a segment or section row
You can move segment or section rows by dragging and dropping them.

Add segment Adds a new segment directly below the row selected in the list.

The segment name is "NewSegment_XXX" by default (XXX: 0 to 255 in decimal
numbers).

Make detailed segment settings in the [Segment / Section detail] area.

This button is invalid when a section row is selected, or when 256 segments have been
registered to the list.

Add section Adds a new section directly below the row selected in the list.

The section name is "NewSection_XXX" by default (XXX: 0 to 255 in decimal
numbers).

Make detailed section settings in the [Segment / Section detail] area.

This button is invalid when 256 sections are registered in the list.

Delete Deletes the segment or section that is selected in the list.

If a segment is deleted, the section included in the segment is also deleted.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 285

Remark If a segment is moved, the section included in the segment is also moved.

- Copy a segment or section
After selecting a segment or section, press the [Ctrl] + [C] key to copy it, then the [Ctrl] + [V] key to paste it.
The copy of the row is pasted immediately below the row that is selected when the [Ctrl] + [V] key is
pressed.
"Copy_" is added to the head of the name of the copy of the segment or section.

Remarks 1. If a segment is copied, the section included in the segment is also copied.
2. The start address of the copy of the segment or section is blank.
3. If the copy cannot be performed due to the attributes of the segment being copied to, an

error will occur.

(2) [Segment / Section detail] area
Display and edit detailed information on the segment or section selected in the [Segment / Section list] area.

(a) Detailed information of segments

Name Specify the segment name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSegment_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input
dialog box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Attribute Select the attribute of the segment.

If a segment contains a reserved section, then this is only available if the segment
attributes can also be set according to the section attributes. In this case, the
attributes that cannot be set are not appear in the drop-down list.

Default - When adding the segment to the internal ROM area or non
mapping area

Executable(RX)

- When adding the segment to the internal ROM

Read/Write(RW)

How to change Select from the drop-down list.

Restriction Executable(RX) Makes the segment readable and executable.

Read only(R) Makes the segment readable.

Read/Write(RW) Makes the segment readable and writable.

All enable (RWX) Makes the segment readable, writable, and
executable.

Start address Specify the start address to allocate the segment.

If this field is blank, the segment is allocated in the behind of the previous segment by
the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

APPENDIX A WINDOW REFERENCE

286 User’s Manual U19386EJ1V0UM

(b) Detailed information of sections

Maximum memory size Specify the maximum memory size of the segment.

If this field is blank, the size is considered as 0x100000 bytes by the linker.

An error occurs if the specified maximum memory size is exceeded.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Hole size Specify the hole size between segments.

If this field is blank, the size is considered as 0x0 (byte) by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Filling value Specify the filling value for a hole between segments.

If this field is blank, the value is considered as 0x0000 by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0000 to 0xFFFF (hexadecimal number)

Alignment value Specify the alignment conditions of the segment.

When the odd number value is specified, it changes to the even number value by
automatically adding one.

If this field is blank, the value is considered as 0x8 by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

Name Specify the section name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSection_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input
dialog box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Type Select the type of the section.

Select [Exist data(PROGBITS)] when a object file contains sections with actual values
(.text, .data, etc.). Select [No data(NOBITS)] when a object file contains sections
without actual values (.bss, .sbss, etc.).

Default Exist data (PROGBITS)

How to change Select from the drop-down list.

Restriction Exist data
(PROGBITS)

Sets the section with a default value.

No data
(NOBITS)

Sets the section without a default value.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 287

Attribute Select the attribute of the section.

Default - When the attribute of the parent segment is [Executable(AX)]

Executable(AX)

- When the attribute of the parent segment is [Read only(A)]

Read only(A)

- When the attribute of the parent segment is [Read/Write(AW)]

Read/Write(AW)

- When the attribute of the parent segment is [All enable (AWX)]

All enable (AWX)

How to change Select from the drop-down list.

Restriction Executable(AX) Sets a section that occupies a memory and
enables to execute.

This item is not displayed when the attribute of
the parent segment is [Read only(R)].

Read only(A) Sets a section that occupies a memory.

Read/Write(AW) Sets a section that occupies a memory and
enables to write.

This item is displayed only when the attribute of
the parent segment is [Read/Write(RW)] or [All
enable (RWX)].

GP with 1
instruction(AWG)

Sets a section assigned within a memory range
that enables it to occupy a memory, write to it,
and reference it using a global pointer (gp) and
16-bit displacement.

This item is displayed only when the attribute of
the parent segment is [Read/Write(RW)] or [All
enable (RWX)].

All enable (AWX) Sets a section that occupies a memory and
enables to write and execute.

This item is displayed only when the attribute of
the parent segment is [All enable (RWX)].

Start address Specify the start address to allocate the section.

If this field is blank, the section is allocated in the behind of the previous section by the
linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Hole size Specify the hole size between sections.

If this field is blank, the size is considered as 0x0 (byte) by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

APPENDIX A WINDOW REFERENCE

288 User’s Manual U19386EJ1V0UM

Remark Reserved sections are handled as follows.

- If a section defined in the C compiler as a reserved section is specified by [Name] or [Input section
name], then the [Types] and [Attribute] cannot be edited, and their values are set automatically.
The combinations of reserved section names and values set automatically are shown below.

Alignment value Specify the alignment conditions of the section.

When the odd number value is specified, it changes to the even number value by
automatically adding one.

If this field is blank, the value is considered as 0x4 by the linker.

However, if the section name is ".tidata.byte" or ".tibss.byte", the odd number value can
be specified. If this field is blank, the value is considered as 0x1 by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

Input section name Specify the input section name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input
dialog box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Object file name Specify the name of the object file including the input section.

The specified object file name is displayed as the subproperty.

Default Object file name[number of set items]

How to change Edit by the Object File Select dialog box which appears when
clicking the [...] button.

Reserved Section Name Type Attribute

.pro_epi_runtime Exist data (PROGBITS) Executable(AX)

.text Exist data (PROGBITS) Executable(AX)

.data Exist data (PROGBITS) Read/Write(AW)

.sedata Exist data (PROGBITS) Read/Write(AW)

.sidata Exist data (PROGBITS) Read/Write(AW)

.tidata Exist data (PROGBITS) Read/Write(AW)

.tidata.byte Exist data (PROGBITS) Read/Write(AW)

.tidata.word Exist data (PROGBITS) Read/Write(AW)

.bss No data (NOBITS) Read/Write(AW)

.sebss No data (NOBITS) Read/Write(AW)

.sibss No data (NOBITS) Read/Write(AW)

.tibss No data (NOBITS) Read/Write(AW)

.tibss.byte No data (NOBITS) Read/Write(AW)

.tibss.word No data (NOBITS) Read/Write(AW)

.sdata Exist data (PROGBITS) GP with 1 instruction(AWG)

.sbss Exist data (PROGBITS) GP with 1 instruction(AWG)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 289

- The linker limits the reserved sections below to the names of segments where they can be assigned.

If one of these section names is specified for [Name], then the name of the parent segment is
referenced.
Although these sections cannot be moved within a segment, they can be moved to other segments.

- For the following reserved sections, the linker creates a fixed correspondence between the output and
input section names. For this reason, even if the input section name is omitted, the linker will assign it
automatically.
.pro_epi_runtime, .tidata, .tibss, .tidata.byte, .tibss.byte, .tidata.word, .sidata, .sibss, .sedata, .sebss

(3) [Symbol list] area
Display the list of currently configured symbols.

(a) [Name]
Display the symbol name.
This item can be edited directly. If the symbol name is changed, the value of [Name] in the [Symbol detail]
area is also changed.

(b) [Type]
Display the type of the symbol.
This item can be edited directly. If the type is changed, the value of [Type] in the [Symbol detail] area is also
changed.

(c) [Address]
Specify the start address to allocate the symbol.
This item can be edited directly. If the address is changed, the value of [Address] in the [Symbol detail] area
is also changed.

(d) Button

.const Exist data (PROGBITS) Read only(A)

.sconst Exist data (PROGBITS) Read only(A)

Section Name Segment Name

.sidata, .sibss, .tidata, .tibss, .tidata byte, .tibss.byte, .tidata.word, .tibss.word SIDATA

.sedata, .sebss SEDATA

.sconst SCONST

Add symbol Adds a new symbol directly below the row selected in the list.

The symbol name is "NewSymbol_XXX" by default. (XXX: 0 to 255 in decimal
numbers)

Make detailed symbol settings in [Symbol detail] area.

This button is invalid when 256 symbols are registered in the list.

Delete symbol Deletes the section that is selected in the list.

Reserved Section Name Type Attribute

APPENDIX A WINDOW REFERENCE

290 User’s Manual U19386EJ1V0UM

This area has the following functions.

- Move a symbol row
You can move symbol rows by dragging and dropping them.

(4) [Symbol detail] area
Display and edit detailed information on the symbol selected in the [Symbol list] area.

Name Specify the symbol name.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

Default NewSymbol_XXX (XXX: 0 to 255 in decimal numbers)

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Type Select the type of the symbol.

Default TP symbol(%TP_SYMBOL)

How to change Select from the drop-down list.

Restriction TP
symbol(%TP_SYMBOL)

Sets the TP symbol as the type of the symbol.

GP
symbol(%GP_SYMBOL)

Sets the GP symbol as the type of the
symbol.

EP
symbol(%EP_SYMBOL)

Sets the EP symbol as the type of the symbol.

Base symbol name Specify the base symbol (TP symbol that is used when the GP symbol value is defined)
from among the TP symbol that already exists.

If a base symbol name is specified, the offset value from the TP symbol value will be the GP
symbol value.

The following characters can be used only: 0-9, A-Z, a-z, _, ., /, \.

This property is displayed only when [GP symbol(%GP_SYMBOL)] in the [Type] property is
selected.

Default Blank

How to change Directly enter to the text box or edit by the Character String Input dialog
box which appears when clicking the [...] button.

Restriction Up to 1022 characters

Address Specify the symbol to allocate the section.

If this field is blank, the address is considered automatically by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFFFFFFFF (hexadecimal number)

Alignment value Specify the alignment conditions of the symbol.

When the odd number value is specified, it changes to the even number value by
automatically adding one.

If this field is blank, the value is considered as 0x4 by the linker.

Default Blank

How to change Directly enter to the text box.

Restriction 0x0 to 0xFF (hexadecimal number)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 291

[Function buttons]

Segment name Specify the segment name that will be referenced by TP and GP symbol values.

The specified segment name is displayed as the subproperty.

This property is not displayed when [EP symbol(%EP_SYMBOL)] in the [Type] property is
selected.

Default Segment name[number of set items]

How to change Edit by the Segment Select dialog box which appears when clicking the
[...] button.

Button Function

Symbol Toggles the [Symbol list] area and [Symbol detail] area between visible and hidden.

Generate Generates a link directive file (named project-name.dir) based on the specified memory,
segments, sections, and symbol allocation information, and then adds to the project.

The link directive file is generated in the project folder. The link directive file that has
been generated is also shown on the project tree, under the File node.

The generated link directive file will be a build target. If a link directive file has already
been registered to the project, then the file will be removed from the build target.

Close Closes the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

292 User’s Manual U19386EJ1V0UM

This dialog box is used to select the object file to set in the caller of the dialog box from among object files and library
files added to the project.

Figure A-34. Object File Select Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the Link Directive File Generation dialog box, select a section in the [Segment / Section list] area, and then
click the [...] button on [Object file name] in the [Segment / Section detail] area.

[Description of each area]

(1) [Object file list] area
Display a list of object files and library files added to the project that opened the Link Directive File Generation
dialog box, and the sections that specify them in the Link Directive File Generation dialog box.

(a) [Object File]
Display the following file name list.
Select files to set to [Object file name] in the [Segment / Section detail] area in the Link Directive File
Generation dialog box that opened this dialog box, via check boxes.

- The object module files generated from the source files added to the project
- The object module files added directly to the project tree
- The library files added directly to the project tree

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that
file.

Object File Select dialog box

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 293

2. In the Link Directive File Generation dialog box that opened this dialog box, in the [Segment
/ Section detail] area, if an object file is already set in [Object file name], the check box for
that object file will be selected by default.

(b) [Section]
Display the section that specifies the corresponding object file in the Link Directive File Generation dialog
box.
If an object file is specified from multiple sections, they are displayed separated by commas.
If the section that specifies the object file does not exist, this field is blank.

[Function buttons]

Button Function

OK Closes this dialog box and sets the selected file to [Object file name] in the [Segment /
Section detail] area in the Link Directive File Generation dialog box.

Cancel Cancels the file selecting and closes the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

294 User’s Manual U19386EJ1V0UM

This dialog box is used to select the segment to set in the caller of the dialog box from the segments currently set in
the Link Directive File Generation dialog box.

Figure A-35. Segment Select Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the Link Directive File Generation dialog box, select a symbol in the [Symbol list] area, and then click the [...]
button on [Segment name] in the [Symbol detail] area.

[Description of each area]

(1) [Segment list] area
Display the list of currently set segments in the Link Directive File Generation dialog box and symbols that
specify them.

(a) [Segment]
Display a list of segment names currently set in the Link Directive File Generation dialog box.
Select segments to set to [Segment name] in the [Symbol detail] area in the Link Directive File Generation
dialog box that opened this dialog box, via check boxes.

Remarks 1. Move the mouse cursor over a file name to display a tooltip with the absolute path of that
file.

2. In the Link Directive File Generation dialog box that opened this dialog box, in the [Symbol
detail] area, if a segment is already set in [Segment name], the check box for that segment
will be selected by default.

3. The check box for the segment that specifies a symbol other than the one that opened this
dialog box will be disabled.

Segment Select dialog box

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 295

(b) [Symbol]
Specify the symbol specifying the displayed segment.
If the symbol that specifies the segment does not exist, this field is blank.

[Function buttons]

Button Function

OK Closes this dialog box and sets the selected segment to [Segment name] in the [Symbol
detail] area in the Link Directive File Generation dialog box.

Cancel Cancels the file selecting and closes the dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

296 User’s Manual U19386EJ1V0UM

This dialog box is used to display object module files and library files to input to the linker and configure these link
order.

Figure A-36. Link Order Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Project Tree panel, select the Build tool node, and then select [Set Link Order...] from the context menu.

[Description of each area]

(1) File list display area
Show the file list to input to linker.

(a) [File]
Display the following file name lists in input order to linker.

- Object module files that are generated from the source file registered in the selected main project or
subproject.

- Object module files that are directly added to the project tree in the selected main project or subproject.
- Library files that are directly added to the project tree in the selected main project or subproject.

By default, input order to linkers is the order registered in the project.
You can change the input order by changing the display order of files.
Use [Up] or [Down] buttons, or drag and drop the file name to change the display order.

Remarks 1. The absolute path of the file pops up when the mouse cursor is hovered over the file name.

Link Order dialog box

[Function buttons]

(1)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 297

2. The object module file that is generated from the newly added source file and newly added
object module file are added to the end of the module file list. The newly added library file is
added to the end of the list.

3. When the file is dragged and dropped, the multiple files that are next to each other can be
selected together.

(b) Button

Remark Note that above buttons are disabled when any file is not selected.

[Function buttons]

Up Moves the selected file to up.

Down Moves the selected file to down.

Button Function

OK Sets the file input order to linker as the display order of the File list display area and
closes this dialog box.

Cancel Cancels the link order settings and closes this dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

298 User’s Manual U19386EJ1V0UM

This dialog box is used to add and delete build modes and configure the current build mode in batch.

Figure A-37. Build Mode Settings Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Build] menu, select [Build Mode Settings...].

[Description of each area]

(1) [Selected build mode] area
Show the build mode selected in the [Build mode list] area.

(a) Button

(2) [Build mode list] area
Show all the build modes that exist in the currently opening project (main project and subproject) in a list.
Current build mode in the selected project is selected by default.
The build mode that exists only in part of the main project and subproject is shown with the mark "*".
Note that the "DefaultBuild" is the default build mode and is always shown at the top.

Build Mode Settings dialog box

Apply to All Sets the build mode of the main project and all subprojects of the currently opened
project to the currently displayed build mode.

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 299

(a) Button

Caution When duplicating or renaming the build mode, the existing build mode name cannot be
used.

Remarks 1. Up to 127 characters can be used as a build mode name. When the input violates any restric-
tion, the following messages are shown in the tooltip.

2. Up to 20 build modes can be added. When the input violates any restriction, the following mes-
sages are shown in the tooltip.

[Function buttons]

Duplicate... Duplicates the selected build mode.

The Character String Input dialog box opens and the build mode is duplicated with the

name entered and added to the main project and all the subprojects in the currently

opening project.

When the build mode with "*" mark does not exist in the main project or subproject and

duplicate the build mode, DefaultBuild is duplicated.

Up to 20 build modes can be added.

Delete Deletes the selected build mode.

Note that DefaultBuild cannot be deleted.

Rename... Renames the selected build mode.

Rename the build mode with entered name in the opening the Character String Input
dialog box.

Message Description

A build mode with the same name already exists. The entered build mode name already exists.

More than 127 characters cannot be specified. Build mode name is too long (more than 128
characters).

The build mode name is invalid. The following charac-
ters cannot be used: •, /, :, *, ?, “, <, >, |

Invalid build mode name is entered. The charac-
ters, (\, /, :, *, ?, ", <, >, |) cannot be used as the
name is used for the folder name.

Message Description

The maximum number of build modes that can be set
per project/subproject is 20.

The number of build modes exceed 20.

Button Function

Close Closes this dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

300 User’s Manual U19386EJ1V0UM

This dialog box is used to do build, rebuild and clean process in batch with the build mode that each project (main
project and subproject) has.

Remark Order of the batch build follows the build order of the project which the subproject comes before the main
project.
When more than one build mode is selected for a main project or a subproject, all the selected build
modes are built and then the next subproject or main project is built.

Figure A-38. Batch Build Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Build] menu, select [Batch Build...].

[Description of each area]

(1) [Build mode list] area
Show the combination list of the names of the main project and the subproject which the currently opening
project has and build modes and defined macros which they have.

(a) [Project]
Show the main project and the subproject which the currently opening project has.
Select the combination of the main project and subproject to build and the build modes.
When this dialog box is opened for the first time after the project is created, all the check boxes are
unchecked. From the second time, the previous setting is retained.

Batch Build dialog box

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 301

(b) [Build mode]
Show build modes which the main project and subproject have.

(c) [Defined macros]
Show defined macros separated with "|", configured for the combination of the main project and the sub-
project and their build modes in the [Compile Options] tab and the [Assemble Options] tab in the Property
panel.
Note that the defined macro in Compile Option comes before the one in Assemble Option and they are sep-
arated with ", ".

[Function buttons]

Button Function

Build Closes this dialog box and executes a batch build of the selected projects in the respec-
tive build modes. The execution result of the build are displayed on the Output panel.

After the batch build is complete, the build mode configuration restores to the one before
this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Rebuild Closes this dialog box and executes a batch rebuild of the selected projects in the
respective build modes. The execution result of the rebuild are displayed on the Output
panel.

After the batch rebuild is complete, the build mode configuration restores to the one
before this dialog box was opened.

Note that this buttons is disabled when any project is not selected.

Clean Closes this dialog box and deletes the files built in the respective build modes set for the
selected projects. The execution result of the clean are displayed on the Output panel.

After the clean is complete, the build mode configuration restores to the one before this
dialog was opened.

Note that this buttons is disabled when any project is not selected.

Close Closes this dialog box.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

302 User’s Manual U19386EJ1V0UM

This dialog box is used to search and replace the designated characters.

Figure A-39. Search and Replace Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Search...].
- From the [Edit] menu, select [Replace...].

[Description of each area]

(1) Tab selection area
Search/replace is switched when a tab is selected.
This dialog box has the following tabs.

- [Quick Search] tab
- [Whole Search] tab
- [Quick Replace] tab
- [Whole Replace] tab

(2) Search/replace criteria setting area
Detailed criteria for searching/replacing is set.
Please see the description of the relevant tabs for details of the contents/how to set.

[Function buttons]

Buttons for execute search/replace.
Please see the description of the relevant buttons for details.

Search and Replace dialog box

(2)

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 303

[Quick Search] tab

This tab searches the designated characters and moves the caret to the searched position with the position being
selected.

Note that this tab will be disabled if you call the Search and Replace dialog box from a panel other than the Output
panel / Editor Panel.

Figure A-40. Search and Replace Dialog Box: [Quick Search] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Search...].
- From the [Edit] menu, select [Replace...].

[Description of each area]

(1) [Search text]
Designate characters to search.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).
If this dialog box is opened from the panel with the character being selected, the selected characters are shown
by default.
If this dialog box is opened from the Editor panel, words (variable/function) at the caret position are shown by
default.

(2) [Replace with]
This item is disabled.

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

304 User’s Manual U19386EJ1V0UM

(3) [Search location]
Designate the location to search.
Select one of the following items from the drop-down list.

Remark Up to 10 items for the input history are recorded in the drop-down list.

(4) [Option] area
The following options can be designated as search criteria.
This area is shown when the [Option] button is clicked (not shown by default).

(a) [Search criteria]
Select one of the following items from the drop-down list.

(b) [File type]
This item is disabled.

(c) [Case-sensitive]

(d) [Word by word]

(e) [Open file before replacing]
This item is disabled.

[Function buttons]

Item Operation

Selection area Search the selection in the search enabled panel which was active the last time.

If there is no characters in selection in the panel which was last active, or the
panel cannot be searched, this item will be disabled.

Current panel (Panel Name) Search in the panel which was last active and can be searched.

If the panel which was lastly active cannot be searched or the panel does not
exist, this item will be disabled.

Item Operation

Plain text Search the characters designated in [Search text].

Wild-card Search using the following wildcard.

* Arbitrary characters.

? Arbitrary one character.

Search with the designated characters in case-sensitive.

Search with the designated characters in not case-sensitive (default).

Search with a designated exact word.

Search with at least one of the words (default).

Button Function

Option Switch between display/hide the [Option] area in this tab.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 305

Note If the designated characters cannot be searched, "Can not found Search text." is displayed on the status bar
of the Main window.

Search Backward Search from the current caret position to the top of the file with the designated criteria.
Selects the characters that are searched and moves the caretNote.

Search Forward Search from the current caret position to the end of the file with the designated criteria.
Selects the characters that are searched and moves the caretNote.

Cancel Ignore the setting and closes this dialog box.

Help Display the online help of this dialog box

Button Function

APPENDIX A WINDOW REFERENCE

306 User’s Manual U19386EJ1V0UM

[Whole Search] tab

In this tab, the designated characters are searched in batch and the search results are listed in the Output panel.
The Output panel is used to jump to the relevant location by double-clicking the search result.

Figure A-41. Search and Replace Dialog Box: [Whole Search] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Search...].
- From the [Edit] menu, select [Replace...].

[Description of each area]

(1) [Search text]
Designate characters to search.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).
If this dialog box is opened from the panel with the character being selected, the selected characters are shown
by default.
If this dialog box is opened from the Editor panel, words (variable/function) at the caret position are shown by
default.

(2) [Replace with]
This item is disabled.

[Function buttons]

(1)

(3)

(4)

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 307

(3) [Search location]
Designate the location to search.
Select either one of the following items from the drop-down list or directly enter the file location from the key-
board (maximum number: 10).

Remark Up to 10 items for the input history are recorded in the drop-down list.

(4) [Option] area
This area is shown when the [Option] button is clicked (not shown by default).
The following options can be designated as search criteria.

(a) [Search criteria]
Select one of the following items from the drop-down list.

(b) [File type]
Specify file types to search.
Select one of the following items from the drop-down list.

Note Show extensions of the source file added to the Project Tree panel.

Note that the searches can be operated by limiting the search criteria by directly entering the file name in
the text box (maximum characters: 1024).

Item Operation

Current opened files Search within all the opening the Editor panel.

If no file is opened in the Editor Panel, this item is disabled.

Active project Search within the text file included in the active project.

When [File type] is specified, searches only the specified type.

Note that is the current project does not exist, this item is disabled.

Main project and sub-projects Search within the text file included in the main project and subproject.

When [File type] is specified, searches only the specified type.

Note that is the current project does not exist, this item is disabled.

Folder Name Search within the text file in the folder specified by directly entering (the maximum
characters: 259) the path (relative path is from the project folder), or specified in
the Browse For Folder dialog box opened by clicking the [...] button in this area.
When folders are not specified, the project folder name is shown in "()" by default
folder (if the project does not exist, the current user document folder is shown).

When [File type] is specified, searches only the specified type.

Item Operation

Plain text Search the characters designated in [Search text].

Wild-card Search using the following wildcard.

* Arbitrary characters.

? Arbitrary one character.

Item Operation

Source files (ExtensionsNote) Files to search are limited to the source files.

*.txt Files to search are limited to the text files.

. Search all the files.

APPENDIX A WINDOW REFERENCE

308 User’s Manual U19386EJ1V0UM

If this is the case, the wildcard "*" can be used and multiple file names can be specified by separating them
with ";".

Remark Up to 10 items for the input history are recorded in the drop-down list.

(c) [Case-sensitive]

(d) [Word by word]

(e) [Open file before replacing]
This item is disabled.

[Function buttons]

Search with the designated characters in case-sensitive.

Search with the designated characters in not case-sensitive (default).

Search with a designated exact word.

Search with at least one of the words (default).

Button Function

Option Switch between display/hide the [Option] area in this tab.

Search Search characters with designated criteria in batch and shows the search results in list
in the Output panel.

Cancel Ignore the setting and closes this dialog box.

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 309

[Quick Replace] tab

In this tab, search is done with the designated characters and then they are replaced to the characters to be
replaced.

Note that this tab will be disabled if you call the Search and Replace dialog box from a panel other than the Editor
Panel.

Figure A-42. Search and Replace Dialog Box: [Quick Replace] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Search...].
- From the [Edit] menu, select [Replace...].

[Description of each area]

(1) [Search text]
Designate characters to search.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).
If this dialog box is opened from the panel with the character being selected, the selected characters are shown
by default.
If this dialog box is opened from the Editor panel, words (variable/function) at the caret position are shown by
default.

(2) [Replace with]
Designate characters to be replaced.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

310 User’s Manual U19386EJ1V0UM

(3) [Search location]
Designate the location to search.
Select one of the following items from the drop-down list.

Remark Up to 10 items for the input history are recorded in the drop-down list.

(4) [Option] area
This area is shown when the [Option] button is clicked (not shown by default).
The following options can be designated as search criteria.

(a) [Search criteria]
Select one of the following items from the drop-down list.

(b) [File type]
This item is disabled.

(c) [Case-sensitive]

(d) [Word by word]

(e) [Open file before replacing]
This item is disabled.

[Function buttons]

Item Operation

Selection area Search the selection in the search enabled panel which was active the last time.

If there is no characters in selection in the panel which was last active, or the
panel cannot be searched, this item will be disabled.

Current panel (Panel Name) Search in the panel which was last active and can be searched.

If the panel which was lastly active cannot be searched or the panel does not
exist, this item will be disabled.

Item Operation

Plain text Search the characters designated in [Search text].

Wild-card Search using the following wildcard.

* Arbitrary characters.

? Arbitrary one character.

Search with the designated characters in case-sensitive.

Search with the designated characters in not case-sensitive (default).

Search with a designated exact word.

Search with at least one of the words (default).

Button Function

Option Switch between display/hide the [Option] area in this tab.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 311

Note If the designated characters cannot be searched, "Can not found Search text." is displayed on the status bar
of the Main window.

Search Search from the current caret position to the top of the file with the designated criteria.
Selects the characters that are searched and moves the caretNote.

Search Forward Search from the current caret position to the end of the file with the designated criteria.
Selects the characters that are searched and moves the caretNote.

Replace and Forward Replace the selected characters to the characters to be replaced then searches the
next (backwards) candidate and selects themNote.

Cancel Ignore the setting and closes this dialog box.

Help Display the online help of this dialog box.

Button Function

APPENDIX A WINDOW REFERENCE

312 User’s Manual U19386EJ1V0UM

[Whole Replace] tab

In this tab, batch search is done with the designated characters and then they are replaced to the characters to be
replaced in batch.

Figure A-43. Search and Replace Dialog Box: [Whole Replace] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Search...].
- From the [Edit] menu, select [Replace...].

[Description of each area]

(1) [Search text]
Designate characters to search.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).
If this dialog box is opened from the panel with the character being selected, the selected characters are shown
by default.
If this dialog box is opened from the Editor, words (variable/function) at the caret position are shown by default.

(2) [Replace with]
Designate characters to be replaced.
You can directly enter the characters into the text box (maximum characters: 1024) or select from the input his-
tory in the drop-down list (maximum numbers of the history: 10).

(1)

(3)

(4)

(2)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 313

(3) [Search location]
Designate the location to search.
Select either one of the following items from the drop-down list or directly enter the file location from the key-
board (maximum number: 10).

Remark Up to 10 items for the input history are recorded in the drop-down list.

(4) [Option] area
This area is shown when the [Option] button is clicked (not shown by default).
The following options can be designated as search criteria.

(a) [Search criteria]
Select one of the following items from the drop-down list.

(b) [File type]
Specify File types to search.
Select one of the following items from the drop-down list.

Note Shows extensions of the source file added to the Project Tree panel.

Note that the searches can be operated by limiting the search criteria by directly entering the file name in
the text box (maximum characters: 1024).

Item Operation

Current opened files Search within all the opening the Editor panel.

If no file is opened in the Editor panel, this item is disabled.

Active project Search within the text file included in the active project.

When [File type] is specified, searches only the specified type.

Note that is the current project does not exist, this item is disabled.

Main project and sub-projects Search within the text file included in the main project and subproject.

When [File type] is specified, searches only the specified type.

Note that if the current project does not exist, this item is disabled.

Folder Name Search within the text file in the folder specified by directly entering (the maximum
characters: 259) the path (relative path is from the project folder), or specified in
the Browse For Folder dialog box opened by clicking the [...] button in this area.
When folders are not specified, the project folder name is shown in "()" by default
folder (if the project does not exist, the current user document folder is shown).

When [File type] is specified, searches only the specified type.

Item Operation

Plain text Search the characters designated in [Search text].

Wild-card Search using the following wildcard.

* Arbitrary characters.

? Arbitrary one character.

Item Operation

Source files (ExtensionsNote) Files to search are limited to the source files.

Text files (*.txt) Files to search are limited to the text files.

All files (*.*) Search all the files.

APPENDIX A WINDOW REFERENCE

314 User’s Manual U19386EJ1V0UM

If this is the case, the wildcard "*" can be used and multiple file names can be specified by separating them
with ";".

Remark Up to 10 items for the input history are recorded in the drop-down list.

(c) [Case-sensitive]

(d) [Word by word]

(e) [Open file before replacing]

[Function buttons]

Search with the designated characters in case-sensitive.

Search with the designated characters in not case-sensitive (default).

Search with a designated exact word.

Search with at least one of the words (default).

Replace is done after opening the file to search/replace characters in the Editor panel.

Replace is done without opening the file to search/replace characters (default).

Button Function

Option Switch between display/hide the [Option] area in this tab.

Replace Search characters with designated criteria in batch and replaces the searched charac-
ters to the one designated to be replaced.

Cancel Ignore the setting and closes this dialog box.

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 315

This dialog box is used to move the caret to the designated location.

Figure A-44. Go to the Location Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Edit] menu, select [Move To...].

[Description of each area]

(1) [Line number] area
Designate the location you want to move the caret to.
You can directly enter the characters into the text box or select from the input history in the drop down list (max-
imum numbers of the history: 10).
The designation differs up to the target panel as follows.

[Function buttons]

Go to the Location dialog box

Target Panel Designation

Editor panel Line number (in decimal number)

Button Function

OK Displays the designated location at the top of the target panel display and moves the
caret there.

Cancel Cancels the criteria and closes this dialog box.

Help Displays the online help of this dialog box.

(1)

[Function buttons]

APPENDIX A WINDOW REFERENCE

316 User’s Manual U19386EJ1V0UM

This dialog box is used to show how the process has been progressed when the time consuming process is taken
place.

This dialog box automatically closes when the process in progress is done.

Figure A-45. Progress Status Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- This dialog box automatically opens when a message is output while the time consuming process is in
progress.

[Description of each area]

(1) Message display area
Display the message output while process is in progress (edit not allowed).

(2) Progress bar
The progress bar shows the current progress of the process in progress with the bar length.
When the process is 100% done (the bar gets to the right end), this dialog box automatically closed.

[Function buttons]

Progress Status dialog box

Button Function

Cancel Cancels the process in progress and closes this dialog box.

Note that if the process termination is impossible, this button is disabled.

[Function buttons]

(1)

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 317

This dialog box is used to configure the CubeSuite environment.
All settings made via this dialog box are saved as preferences for the current user.

Figure A-46. Option Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) Category selection area
Select the items to configure from the following categories.

(2) Settings
This area is used to configure the various options for the selected category.
For details about configuration for a particular category, see the section for the category in question.

Option dialog box

Category Description

[General - Startup and Exit] category Configure startup and shutdown.

[General - Display] category Configure messages from the application.

[General - Text Editor] category Configure the text editor.

[General - Font and Color] category Configure the fonts and colors shown on each panel.

[General - External Tools] category Configure the startup of external tools.

[General - Build/Debug] category Configure building and debugging.

[General - Update] category Configure update.

[Other - User Information] category Configure user information.

(1)

(2)

[Function buttons]

APPENDIX A WINDOW REFERENCE

318 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Applied all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 319

[General - Startup and Exit] category

Use this category to configure general settings relating to startup and shutdown.

Figure A-47. Option Dialog Box ([General - Startup and Exit] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Open the One-point Advice dialog box at CubeSuite startup]

(2) [Open the Splash window at CubeSuite startup]

(3) [Load the last project at CubeSuite startup]

Show the FormOnePoint dialog box on startup (default).

Do not show the FormOnePoint dialog box on startup.

Show the Splash window on startup (default).

Do not show the Splash window on startup.

Automatically load the last project on startup (default).

Do not automatically load the last project on startup.

(1)

(2)

(3)

[Function buttons]

(4)

APPENDIX A WINDOW REFERENCE

320 User’s Manual U19386EJ1V0UM

(4) Buttons

[Function buttons]

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Applied all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 321

[General - Display] category

Use this category to configure general settings relating to program messages.

Figure A-48. Option Dialog Box ([General - Display] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Message dialog box display level]
Select the Message dialog box display level (verbosity) from the following drop-down list.
Regardless of this setting, all messages are displayed in the Output panel.

(2) [Toolbar display type]
Use this area to select the format in which to display toolbars on each panel, via the following drop-down list.

Information, warning and
error

Display all messages in a Message dialog box.

Warning and error Display warning and error messages in a Message dialog box (default).

Error only Only display error messages in a Message dialog box.

Fatal error only Only display fatal error messages in a Message dialog box.

(3)

(1)

(4)

[Function buttons]

(7)

(2)

(5)

(6)

APPENDIX A WINDOW REFERENCE

322 User’s Manual U19386EJ1V0UM

(3) [Show function key commands]

(4) [Show window contents while resizing]

(5) [Tab width]
Specify the number of tab columns.
Either enter a number between 1 and 16 directly via the keyboard, or specify a number via the buttons. The
default is 8.

(6) [Select the file opened with text editor in project tree]

(7) Buttons

[Function buttons]

Icon only Display icons only (default).

Icon and label Display both icons and labels (text).

Display the Function Key bar in the Main window (default).

Do not display the Function Key bar in the Main window.

Resize the window while displaying areas that were not visible before.

Resize the window without displaying areas that were not visible before (default).

When the Editor panel is activated, the file currently being opened is selected in the Project Tree panel
(default).

Even if the Editor panel is activated, the file currently being opened is not selected in the Project Tree
panel.

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 323

[General - Text Editor] category

Use this category to configure general settings relating to the text editor.

Figure A-49. Option Dialog Box ([General - Text Editor] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Show space marks]

(2) [Show control codes]

Show space characters in the text editor (default).

Do not show space characters in the text editor.

Show control codes (e.g. tab, newline, and EOF) in the text editor (default).

Do not show control codes (e.g. tab, newline, and EOF) in the text editor.

(5)

(3)

(4)

[Function buttons]

(1)

(2)

(6)

APPENDIX A WINDOW REFERENCE

324 User’s Manual U19386EJ1V0UM

(3) [Distinct display for CR+LF, CR and LF]
This item is only enabled if the [Show control codes] check box is selected.

(4) [Use external text editor]

(5) [External text editor] area
This area is only enabled if the [Use external text editor] check box is selected.
Use this area to specify the external text editor to use, and the startup options.

(a) [External text editor path]
Either type in the name of the executable file (including absolute path) for the external text editor directly via
the keyboard (up to 259 characters), or click the [Browse...] button, and in the Select External Text Editor
dialog box, specify the name of the executable file.

(b) [Startup options]
Specify the startup options for the external text editor (up to 256 characters).
The startup option variables that can be specified here are as follows.
If you wish to specify more than one option, separate them by spaces.

(6) Buttons

[Function buttons]

Visually distinguish line break types (CR+LF, CR, and LF) in the text editor (default).

Do not visually distinguish line break types (CR+LF, CR, and LF) in the text editor.

Use an external text editor.

The [External text editor] area is enabled. Use it to specify the external text editor to use.

Use the Editor panel as the text editor (default).

%File% Pass the name of the file to display (with absolute path) to the external text editor.

%Line% Pass the caret position (line number) to the external text editor.

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 325

[General - Font and Color] category

Use this category to configure general settings relating to fonts and colors on each panel.

Figure A-50. Option Dialog Box ([General - Font and Color] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) Color options area
Use this area to configure the colors.

(a) [Setting place] area
Select a location from the list for which the color will be specified.
The relationships between the list items and default color settings are as follows.

Item Example Description

DefaultNote Font color Black The standard display color in all
windows and panels.

Background color White

(1)

(2)

[Function buttons]

(3)
(4)

APPENDIX A WINDOW REFERENCE

326 User’s Manual U19386EJ1V0UM

Warning Font color Blue Warning messages are displayed
in this color in the Output panel,
and file names with warnings are
displayed in this color in the
Project Tree panel.

Background color Default color

Error Font color Red Error messages are displayed in
this color in the Output panel, and
file names with errors are dis-
played in this color in the Project
Tree panel.

Background color LightGray

Reserved word Font color Brown The reserved words of your com-
piler/assembler are displayed in
this color in the Editor panel.

Background color Default color

Comment Font color Green Comments (in the case of a C
source file, "/* ... */") are displayed
in this color in the Editor panel.

Background color Default color

Control code Font color Teal Control characters are displayed
in this color in the Editor panel.

Background color Default color

Highlight Font color White Highlighted areas in plug-in prod-
ucts and the like are displayed in
this color.

Background color Magenta

Changed value Font color Tan Values changed via the execution
of a user program are displayed in
this color in the Memory panel,
CPU Register panel, Local Vari-
ables panel, SFR panel, Watch
panel.

Background color Cream

Edit value Font color Blue Values forcibly modified by the
user are displayed in this color in
the Memory panel, CPU Register
panel, Local Variables panel, SFR
panel, Watch panel.

Background color Default color

Current PC Font color Black The row with the current PC posi-
tion is displayed in this color in the
Editor panel.

Background color LightOrange

Breakpoint Font color Black The line at which a break point is
set is displayed in this color in the
Editor panel.

Background color SalmonPink

Update periodic Font color Pink Areas configured for real-time dis-
play updates are shown in this
color in the Memory panel and
Watch panel.

Background color Default color

Read or fetch Font color Default color Locations that have been read or
fetched are displayed in this color
in the Trace panel [IECUBE] [Sim-
ulator].

Background color LightGreen

Write Font color Default color Locations that have been written
are displayed in this color in the
Trace panel [IECUBE] [Simulator].

Background color Orange

Item Example Description

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 327

Note The [Default] text and background colors depend on the Windows settings of the host computer.
Here, we use the Windows defaults, which are black text and white background.

(b) [Use default color]

(c) [Use default background color]

(d) Buttons

Read and write Font color Default color Locations that have been read and
written are displayed in this color
in the Trace panel [IECUBE] [Sim-
ulator].

Background color LightSkyBlue

Invalid Font color Gray Non memory-mapped areas in the
Memory panel and filenames in
the Project Tree panel that do not
actually exist are displayed in this
color.

Background color Default color

Display items selected via the [Setting place] area using the standard text color.

Display items selected via the [Setting place] area with a user-defined text color.

The [Font color...] button is enabled.

Display items selected via the [Setting place] area using the standard background color.

Display items selected via the [Setting place] area with a user-defined background color.

The [Background Color...] button is enabled.

Font Color... The Edit Colors Dialog Box opens. Specify the text color of the item selected
via the [Setting place] area.

Note, however, that this button will be disabled if the [Use default color] check
box is selected.

Background Color... The Edit Colors Dialog Box opens. Specify the background color of the item
selected via the [Setting place] area.

Note, however, that this button will be disabled if the [Use default background
color] check box is selected.

Reset Selected Item Colors Reset the color information for the item selected via the [Setting place] area to
the defaults.

Item Example Description

APPENDIX A WINDOW REFERENCE

328 User’s Manual U19386EJ1V0UM

Figure A-51. Edit Colors Dialog Box

(2) [Display example] area
Display sample text using the color and font settings from the Color options area and the [Font settings for text
editor] area.
By default the string "AaBbCc" is shown, but you can type an arbitrary string directly into the text box.

(3) [Font settings for text editor] area
Click the [Font...] button to open the Font Dialog Box and configure the fonts for your text editor.

Figure A-52. Font Dialog Box

(4) Buttons

Initialize Settings Returns all currently displayed setting to their default values.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 329

[Function buttons]

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

330 User’s Manual U19386EJ1V0UM

[General - External Tools] category

Use this category to register external tools that can be launched directly from CubeSuite, and configure these exter-
nal tools when they are so launched.

Registering an external tool here allows it to be launched directly via the [Tool] menu.

Figure A-53. Option Dialog Box ([General - External Tools] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) Registered external tools area

(a) [Menu list] area
This area displays a list of menu items (added to the [Tool] menu) for launching external tools that have
been added via this dialog box.
To add a new external tool, click the [New] button.
When you click the [New] button, the item “New External Tool” is added to the bottom of the list. In this state,
configure the details of the external tool to add in the New registration area.
Up to 8 external tools can be registered.

(1)

(2)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 331

To change the settings of an external tool that has already been registered, select the name of the external
tool to modify and edit the desired setting.
The order of the items on this list is the same as the order in the menu.

(b) Buttons

(2) New registration area
Use this area to configure the details of a newly added external tool.
Up to 8 external tools can be registered.

(a) [Menu name]
Specify the name to use in the menu for launching the external tool (up to 100 characters).
The name specified here will appear in the [Tool] menu, selecting that item will launch the external tool.
When you finish entering the menu name (the text box loses focus), the name automatically replaces the
“New External Tool” string in the list.

(b) [Command path]
Either type in the name of the executable file (including absolute path) for the new external tool directly via
the keyboard (up to 259 characters), or click the [...] button, and in the Select Program dialog box, specify
the name of the executable file ([Startup folder] is automatically set to the absolute path to the folder where
the executable file is located).

(c) [Startup options]
Specify the startup options for the new external tool (up to 256 characters).
The startup option variables that can be specified here are as follows.
If you wish to specify more than one option, separate them by spaces.

New Adds the item “New External Tool” to the bottom of the list for the registration of a new
external tool.

Note that this button will be disabled if 8 external tools have already been registered.

Delete Removes the external tool that is selected in the list.

Move Up Moves the external tool selected in the list up one row.

Move Down Moves the external tool selected in the list down one row.

%File% The name of the file currently selected in the Project Tree panel (with absolute path) is
passed to the external tool. If more than one file is selected, the information for the file in
which the cursor is located is passed).

%OutputFile% The program passes to the external tool the name of the module file (with absolute path)
that is output when the project for the item currently selected in the Project Tree panel is
built (if there is no selection, then nothing is passed).

%Line% If the file currently selected in the Project Tree panel is being edited in the Editor panel,
then the line on which the caret is located is passed (if the Editor panel does not have
focus, then "1" is passed).

APPENDIX A WINDOW REFERENCE

332 User’s Manual U19386EJ1V0UM

(d) [Startup folder]
Specify the absolute path to the folder for launching the external tool (up to 254 characters).
The start folder variables that can be specified here are as follows.
If you wish to specify more than one option, separate them by spaces.

(e) [Use Output panel]

(f) [Require options at startup]

(g) [Output unicode text]
This item is only enabled if the [Use Output panel] check box is selected.

(h) [Close window when command exit]
This item is disabled if the [Use Output panel] check box is selected.

[Function buttons]

%FileDir% The name of the folder for the file currently selected in the Project Tree panel (with abso-
lute path) is passed to the external tool. If more than one file is selected, the information
for the file in which the cursor is located is passed (if there is no selection, then nothing is
passed).

%OutputDir% The program passes the name of the folder (with absolute path) for the module that is
output when the project for the item currently selected in the Project Tree panel is built (if
there is no selection, then nothing is passed).

%ProjectDir% The program passes the name of the folder (with absolute path) of the project for the item
currently selected in the Project Tree panel (if there is no selection, then nothing is
passed).

Display messages that the new external tool outputs to stdout and stderr in the Output panel.

Messages will be output to the Output panel's [Tool Name] tab (“Tool Name” is the string specified in
[Menu name]).

Use the Windows command prompt for messages that the new external tool outputs to stdout and
stderr (default).

The Character String Input opens, enabling you to specify startup parameters for the new external
tool.

Do not specify startup parameters for the new external tool (default).

Display messages that the new external tool outputs to stdout and stderr in the Output panel using
the Unicode character set.

Display messages that the new external tool outputs to stdout and stderr in the Output panel using
the ASCII character set (default).

Close the Windows command prompt when the new external tool exits.

Leave the Windows command prompt open after the new external tool exits (default).

Button Function

Initialize All Settings Restores all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 333

OK Applies all setting and closes this dialog box.

Cancel Ignores the setting and closes this dialog box.

Apply Applies all setting (does not close this dialog box).

Help Displays the online help of this dialog box.

Button Function

APPENDIX A WINDOW REFERENCE

334 User’s Manual U19386EJ1V0UM

[General - Build/Debug] category

Use this category to configure general setting relating to building and debugging.

Figure A-54. Option Dialog Box ([General - Build/Debug] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Enable Rapid Build]

Note This feature automatically begins a build when the source file being edited is saved.
Enabling this feature makes it possible to perform builds while editing source files.
If this feature is used, we recommend saving frequently after editing source files.

(2) [Observe registered files changing]
This item is only enabled if the [Enable Rapid Build] check box is selected.

Enable the rapid build Note feature (default).

Do not use the rapid build feature.

Start a rapid build when a source file registered in the project is edited or saved by an external text editor

or the like.

(1)

(4)

[Function buttons]

(3)

(1)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 335

(3) [Enable Break Sound]

(4) Buttons

[Function buttons]

Do not start a rapid build when a source file registered in the project is edited or saved by an external text

editor or the like (default).

Beep when the execution of a user program is halted due to a break event (hardware or software break).

Do not beep when the execution of a user program is halted due to a break event (hardware or software
break) (default).

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

336 User’s Manual U19386EJ1V0UM

[General - Update] category

Use this category to configure general setting relating to update.

Figure A-55. Option Dialog Box ([General - Update] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) [Check for updates when opening project.]

(2) [Check at intervals of:]
Specify the interval at which to check for updates.
Either enter a number between 0 and 99 directly via the keyboard, or specify a number via the buttons.

(3) Buttons

Automatically check for updates when a project is opened.

Do not automatically check for updates when a project is opened.

Update Manager Option Display the Update Manager Options dialog box.

(1)

[Function buttons]

(2)

(3)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 337

[Function buttons]

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

338 User’s Manual U19386EJ1V0UM

[Other - User Information] category

Use this category to configure other setting relating to user information.

Figure A-56. Option Dialog Box ([Other - User Information] Category)

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [Option...].

[Description of each area]

(1) Information area

(a) [User information] area
This area displays a list of user information.
The content in the [Information] field can be edited. To edit the information, select one of the items from the
list, click the [Edit] button, and then type the information directly into the text box (up to 256 characters).

(b) Buttons

Edit Edit the content of the selected [Information] item by typing directly in the text box.

This button is disabled if nothing is selected in the list.

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 339

(2) Buttons

[Function buttons]

Initialize Settings Return all currently displayed setting to their default values.

Button Function

Initialize All Settings Restore all settings on this dialog box to their default values.

Note, however, that newly added items in the [General - External Tools] category will
not be removed.

OK Apply all setting and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

Apply Apply all setting (does not close this dialog box).

Help Display the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

340 User’s Manual U19386EJ1V0UM

This dialog box allows you to customize toolbars and menus displayed in the Main window.
When this dialog box is open, any button on a toolbar or any menu item in a menu bar currently displayed in the

Main window can be dragged and dropped to the desired position to change the sequence of buttons or menu items or
perform button/menu item deletion.

Caution While this dialog box is open, you cannot use functions of toolbars/menus.
You can use these functions as usual after you close this dialog box.

Figure A-57. User Setting Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [User Setting...].

[Description of each area]

(1) Tab selection area
Tab selection allows you to switch between the customization targets.
This dialog box has the following tabs:

- [Toolbars] tab
- [Commands] tab

(2) Customization area
You can set detailed customization conditions.
For details of displayed items/setting method, see the description of each tab.

User Setting dialog box

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 341

[Function buttons]

Button Function

Keyboard... Open the Customize Keyboard dialog box to assign customized items to keys on the
keyboard.

Close Cancel the toolbar/menu customization setting and closes this dialog box.

APPENDIX A WINDOW REFERENCE

342 User’s Manual U19386EJ1V0UM

[Toolbars] tab

You can set whether toolbars are displayed or not, change toolbar names, and make new toolbars.

Figure A-58. User Setting Dialog Box: [Toolbars] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [User Setting...].

[Description of each area]

(1) [Toolbars] area
Display a list of the names of registered toolbars.
A check mark appears in front of the name of the toolbar currently displayed in the Main window. By removing
the check mark, you make a setting so that the toolbar will not be displayed.

(2) Buttons

New... Open the New Toolbar dialog box to make a new toolbar.

The name of the new toolbar will be added to the list displayed in the [Tool-
bars] area with a check mark placed in front.

Note that there are no buttons on the newly created toolbar. The register but-
tons on it, use the [Commands] tab.

Rename... Open the Rename Toolbar dialog box to change the name of the currently
selected toolbar.

This function is disabled when a toolbar other than those created by the user
is selected.

Delete... Delete the selected toolbar.

This function is disabled when a toolbar other than those created by the user
is selected.

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 343

[Function buttons]

Reset... Discard all changes made to the selected toolbar and returns it to the default
state.

When a toolbar created by the user is selected, this button returns the
selected toolbar to the state with no buttons registered on it.

Button Function

Keyboard... Open the Customize Keyboard dialog box to assign customized items to keys on the
keyboard.

Close Cancel the toolbar/menu customization settings and closes this dialog box.

APPENDIX A WINDOW REFERENCE

344 User’s Manual U19386EJ1V0UM

[Commands] tab

You can customize items to include on a toolbar or a menu.

Figure A-59. User Setting Dialog Box: [Commands] Tab

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [Tool] menu, select [User Setting...].

[Description of each area]

(1) [Categories] area
Display a list of the categories of commands that CubeSuite provides.

(2) [Commands] area
Display a list of the names of commands belonging to the category selected in the [Categories] area, together
with their icons (if exist).
When “(All Commands)” is selected in the [Categories] area, the name of all commands that CubeSuite pro-
vides are displayed, together with their icons (if exist).
To add a command on a toolbar/menu, drag and drop the command name in this area onto the toolbar/menu
displayed in the actual Main window.

(3)

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 345

(3) Buttons

[Function buttons]

Modify Selection In order that the menu item or the button on a toolbar currently selected in
the Main window, displays the following menu items beneath this button:

Menu Item Description

Reset Reset the selected menu item/button.

Delete Delete the selected menu item/button.

Name Display the name of the selected menu item/button.

Default Style Checking this menu item returns the display style of
the selected menu item/button to the default state
(by default).

Text Only (Always) Checking this menu item displays the selected
menu item/button by text only (the icon will not be
displayed).

Text Only (in Menu) This is enabled only when a menu item is
selected.Checking this menu item displays the
selected menu item/button by text only (the icon will
not be displayed).

Image and Text Checking this menu item displays the selected
menu item/button by both text and icon.

Begin a Group Insert separator just before the selected menu item/
button.

Recently Used This item is not supported in this version.

Rearrange Commands... Open the Rearrange Commands dialog box for changing the arrangement
(including addition and deletion) of menu items and tool bar buttons in the
Main window.

Button Function

Keyboard... Open the Customize Keyboard dialog box to assign customized items to keys on the
keyboard.

Close Cancel the toolbar/menu customization setting and closes this dialog box.

APPENDIX A WINDOW REFERENCE

346 User’s Manual U19386EJ1V0UM

This dialog box is used to create a new toolbar to appear in the Main window.

Figure A-60. New Toolbar Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [Toolbars] tab of the User Setting dialog box, click the [New...] button.

[Description of each area]

(1) [Toolbar name]
Type in the name of the new toolbar directly via the keyboard.
“UltraToolbar1” is specified by default.

(2) [Location]
Select the location for the new toolbar from the following drop-down list.
The location specified here is the location where the new toolbar will appear immediately after it is created
(toolbars can be moved freely by dragging and dropping).

[Function buttons]

New Toolbar dialog box

Docked Top Display the toolbar at the top of the Main window (default).

Docked Bottom Display the toolbar at the bottom of the Main window.

Docked Left Display the toolbar on the leftedge of the Main window.

Docked Right Display the toolbar on the rightedge of the Main window.

Floating Display the toolbar above the Main window, without docking it.

Button Function

OK Create a new toolbar with the specified information, and closes this dialog box.

The new toolbar appears in the list on the User Setting dialog box’s [Toolbars] tab, with
its check box selected.

Cancel Ignore the setting and closes this dialog box.

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 347

This dialog box is used to edit the name of a toolbar created by the user.

Figure A-61. Rename Toolbar Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [Toolbars] tab of the User Setting dialog box, select the name of a user toolbar and then click the
[Rename...] button.

[Description of each area]

(1) [Toolbar name]
Edit the toolbar name directly via the keyboard.
By default, the name of the currently selected toolbar is shown.

[Function buttons]

Rename Toolbar dialog box

Button Function

OK Change the selected toolbar to the specified name, and closes this dialog box.

Cancel Ignore the setting and closes this dialog box.

[Function buttons]

(1)

APPENDIX A WINDOW REFERENCE

348 User’s Manual U19386EJ1V0UM

This dialog box is used to assign shortcut keys to the various commands.

Figure A-62. Customize Keyboard Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [Toolbars] tab of the User Setting dialog box, click the [Keyboard...] button.

[Description of each area]

(1) [Specify a Command] area

(a) [Categories]
Display a list of the categories of commands provided by CubeSuite.

(b) [Commands]
Display a list of the commands belonging to the category selected under [Categories] and their associated
icons (if any).
If “(All Commands)” is selected under [Categories], then all commands provided by CubeSuite appear, with
their associated icons (if any).

Customize Keyboard dialog box

(1)

(4)

(3)

(2)

[Function buttons]

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 349

(2) [Specify a Shortcut] area
This area displays the default shortcut key currently assigned to the command selected under [Commands] (if
no keys area assigned, then “None“ appears).
To change the assigned shortcut key, select a key from the following drop-down list, and then click the [Assign]
button.

(3) [Current assigned to]
This area displays the command currently assigned to the shortcut key specified in the [Specify a Shortcut] area
(if no commands are assigned to this key, then “None“ appears).

(4) [Description] area
This area displays a popup describing the function of the command selected under [Commands].

[Function buttons]

None Shift + F1 to F12 Ctrl + Shift + 0 to 9 Alt + Right

Insert Ctrl + Insert Ctrl + Shift + A to Z Alt + Down

Delete Ctrl + Delete Ctrl + Shift + F1 to F12 Alt + 0 to 9

F1 to F12 Ctrl + 0 to 9 Alt + Backspace Alt + F1 to F12

Shift + Insert Ctrl + A to Z Alt + Left

Shift + Delete Ctrl + F1 to F12 Alt + Up

Button Function

Assign Assign the shortcut key selected under [Commands] to the command selected under
the [Specify a Shortcut] area.

Note, however, that this button will be disabled if the key selected in the [Specify a
Shortcut] area is already assigned to another command.

Remove Remove the assignment of the shortcut key selected under the [Specify a Shortcut]
area to the command selected under [Commands] (“None“ will appear in the [Specify a
Shortcut] area drop-down list).

Note, however, that this button will be disabled if no keys have been assigned to the
command selected under [Commands].

Reset All Reset all shortcut key setting to their default values.

Close End the shortcut key assignment and closes this dialog box.

APPENDIX A WINDOW REFERENCE

350 User’s Manual U19386EJ1V0UM

This dialog box allows you to change the arrangement (including addition and deletion) of menu items and buttons in
the Main window.

Figure A-63. Rearrange Commands Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [Commands] tab of the User Setting dialog box, click the [Rearrange Commands...] button.

[Description of each area]

(1) [Choose a menu or toolbar to rearrange] area
This area allows you to specify the item whose position you want to change.
First select the [Menu Bar] if you want to change the menu item or [Toolbar] if you want to change the toolbar
button using the option button, and then select the category to be changed from the drop-down list.

Rearrange Commands dialog box

(1)

[Function buttons]

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 351

(2) [Commands] area
This area displays a list of commands belonging to the category selected in the [Choose a menu or toolbar to
rearrange] area which will be displayed in the Main window.
You can change the arrangement of these commands using the following buttons in this area.

Figure A-64. Add Command Dialog Box

Add... Open the Add Command Dialog Box for selecting a command to be added above the command
currently selected in this area.

In the Add Command Dialog Box, all commands that can be added are displayed, grouped by
their categories.

First select the category of command in the [Categories] area, then select the command you
want to add and press the [OK] button (pressing the [Cancel] button cancels the addition of the
command and closes this dialog box).

Delete Delete the command currently selected in this area.

Move Up Move the command currently selected in this area up one line.

Move Down Move the command currently selected in this area down one line.

Modify Selec-
tion

Display the following menu items for editing the arrangement of the menu item or button cur-
rently selected in this area.

Menu Item Description

Reset Reset the selected menu item/button.

Delete Delete the selected menu item/button.

Name Display the name of the selected menu item/button.

Default Style Checking this menu item returns the display style of the selected
menu item/button to the default state (by default).

Text Only (Always) Checking this menu item displays the selected menu item/button
by text only (the icon will not be displayed).

Text Only (in Menus) This is enabled only when a menu item is selected. Checking
this menu item displays the selected menu item/button by text
only (the icon will not be displayed).

Image and Text Checking this menu item displays the selected menu item/button
by both text and icon.

Begin a Group Insert separator just before the selected menu item/button.

Recently Used This item is not supported in this version.

APPENDIX A WINDOW REFERENCE

352 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Reset... Restores the arrangement of menu items or toolbar buttons belonging to the category
currently selected in the [Choose a menu or toolbar to rearrange] area to its default
state.

Close Finishes the arrangement of commands and closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 353

This dialog box is used to select existing files to add to projects.

Figure A-65. Add Existing File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- From the [File] menu, select [Add] >> [Add File...].
- On the Project Tree panel, select either one of the Project node, Subproject node, File node, or file, and then

select [Add] >> [Add File...] from the context menu.

[Description of each area]

(1) [Look in] area
Select the folder that the file to add to projects exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area
Designate the file name of the file to add to projects.

(4) [Files of type] area
Designate the file type of the file to add to projects.

Add Existing File dialog box

C source file(*.c) C language source file

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

354 User’s Manual U19386EJ1V0UM

[Function buttons]

Header file(*.h; *.inc) Header file

Assemble file(*.s) Assembly language source file

Link directive file(*.dir; *.dr) Link directive file

Section file (*.sf) Section file

Archive file(*.a) Archive file

Object file(*.o) Object file

Text file(*.txt) Text format

All Files(*.*) All the format (default)

Button Function

Open Adds the designated file to a project.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 355

This dialog box is used to select a folder and retrieve it for the caller.

Figure A-66. Browse For Folder dialog box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the Search and Replace dialog box, click the [...] button from the [Whole Search] tab, or click the [...] button
from the [Whole Replace] tab.

- In the Add File dialog box, click the [...] button in the [File location] area.
- In Path Edit dialog box, click [...] button in the path edit area.
- On the Property panel, select the following properties, and then click the [...] button.

- From the [Common Options] tab, [Intermediate file output folder] in the [Output File Type and Path] cate-
gory, [Output folder] in the[Frequently Used Options(for Compile)] category, [Output folder for ROMized
object file] in the [Frequently Used Options(for ROMization)] category, [Output folder for hex file] in the [Fre-
quently Used Options(for Hex Convert)] category, [Output folder for section file] in the [Frequently Used
Options(for Section File Generate)] category, and [Temporary folder] in the [Others] category.

- From the [Compile Options] tab, [Output folder for assembly file], [Output folder for assemble list], and [Out-
put folder for frequency information file] in the [Output File] category.

- From the [Assemble Options] tab, [Output folder for assemble list file] in the [Assemble List] category.
- From the [Link Options] tab, [Output folder] in the [Output File] category, [Output folder for link map file] in

the [Link Map] category.
- From the [ROMization Process Options] tab, [Output folder for ROMized object file] in the [Output File] cat-

egory, [Output folder for ROMization section file] in the [Section List] category, [Output folder for memory
map file] in the [Memory Map] category.

- From the [Hex Convert Options] tab, [Output folder for hex file] in the [Output File] category.

Browse For Folder dialog box

(2)

[Function buttons]

(1)

APPENDIX A WINDOW REFERENCE

356 User’s Manual U19386EJ1V0UM

- From the [Archive Options] tab, [Output folder] in the [Output File] category.
- From the [Section File Generate Options] tab, [Output folder for section file] in the [Output File] category.
- From the [Individual Compile Options] tab, [Output folder for assembly file], [Output folder for assemble list],

and [Output folder for frequency information file] in the [Output File] category.
- From the [Individual Assemble Options] tab, [Output folder for assemble list file] in the [Assemble List] cate-

gory.

[Description of each area]

(1) Message area
Show messages related to folders selected in this dialog box.

(2) Folder location area
Select a folder to set in the caller of the dialog box.
By default, the folder set in the caller is selected.

Remark When the area is blank or the path which does not exist is entered, "C:\Documents and Settings\user
name\My Documents" is selected instead.

[Function buttons]

Button Function

Make New Folder Creates a new folder in the root of the selected folder.

The default folder name is "New Folder".

OK The designated folder path is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 357

This dialog box is used to select the boot area object file to set in the caller of the dialog box.

Figure A-67. Specify Boot Area Object File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Common Options] tab, [Boot area object file name] in the [Flash] category.

[Description of each area]

(1) [Look in] area
Select the folder where the file to be set in the caller of this dialog box exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area
Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area
Specify the file type to set in the caller of the dialog box.

Specify Boot Area Object File dialog box

Boot area object file(*.out) Boot area object file (default)

All Files(*.*) All the format

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

358 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Open The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 359

This dialog box is used to select the function information file to set in the caller of the dialog box.

Figure A-68. Specify Function Information File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Compile Options] tab, [Function information file name] in the [Optimization(Details)] category.
- From the [Individual Compile Options] tab, [Function information file name] in the [Optimization(Details)]

category.

[Description of each area]

(1) [Save in] area
Select the folder where the file to be set in the caller of this dialog box exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in [Save in] and [Save as type] is shown.

(3) [File name] area
Specify the file name to set in the caller of the dialog box.

(4) [Save as type] area
Specify the file type to set in the caller of the dialog box.

Specify Function Information File dialog box

Function information file(*.txt) Function information file (default)

All Files(*.*) All the format

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

360 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Save The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 361

This dialog box is used to select the intermediate language file for external variable sorting to set in the caller of the
dialog box.

Figure A-69. Specify Intermediate Language File for External Variable Sorting Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [Compile Options] tab, [Intermediate language file name for external variable sorting] in the [Opti-

mization(Details)] category.

[Description of each area]

(1) [Save in] area
Select the folder where the file to be set in the caller of this dialog box exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in [Save in] and [Save as type] is shown.

(3) [File name] area
Specify the file name to set in the caller of the dialog box.

(4) [Save as type] area
Specify the file type to set in the caller of the dialog box.

Specify Intermediate Language File for External Variable Sorting dialog box

Intermediate language file for external variable sorting(*.ic) Intermediate language file for external variable sorting

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

362 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Save The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 363

This dialog box is used to select the Far Jump file to set in the caller of the dialog box.

Figure A-70. Specify Far Jump File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, from the [Compile Options] tab, in the [Input File] category, after selecting the [Far Jump

file name] property, open the して Path Edit dialog box by clicking the [...] button.
And then click the [...] button in the dialog box.

[Description of each area]

(1) [Look in] area
Select the folder where the file to be set in the caller of this dialog box exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area
Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area
Specify the file type to set in the caller of the dialog box.

Specify Far Jump File dialog box

Far Jump file(*.fjp) Far Jump file

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

364 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Open The designated file is set to the area that this dialog box is called from.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 365

This dialog box is used to select the ROMization area reservation code file to set in the caller of the dialog box.

Figure A-71. Specify ROMization Area Reservation Code File Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Property panel, select the following properties, and then click the [...] button.
- From the [ROMization Process Options] tab, [ROMization area reservation code file name] in the [Input File]

category.

[Description of each area]

(1) [Look in] area
Select the folder where the file to be set in the caller of this dialog box exists.
The project folder is selected by default.

(2) File list area
File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area
Specify the file name to set in the caller of the dialog box.

(4) [Files of type] area
Specify the file type to set in the caller of the dialog box.

Specify ROMization Area Reservation Code File dialog box

ROMization area reservation code file(*s; *.o) ROMization area reservation code file name (default)

All files(*.*) All the formats

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

366 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Open Sets the specified file in the caller of the dialog box.

Cancel Closes the dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 367

This dialog box is used to save the editing file or contents of each panel to a file with a name.

Figure A-72. Save As Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- Focus the Editor panel, and then select [Save file name As...] from the [File] menu.
- Focus the Output panel, and then select [Save tab name As...] from the [File] menu.

[Description of each area]

(1) [Save in] area
Select the folder to save the panel contents in the file.
The following folders are selected by default.

(a) In the Editor panel
The folder that currently editing file is saved.

(b) In the Output panel
The project folder is selected when the file is save for the first time. The previously selected file is selected
after the second time.

(2) File list area
File list that matches the selections in the [Save in] area and [Save as type] area is shown.

Save As dialog box

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

368 User’s Manual U19386EJ1V0UM

(3) [File name] area
Specify the file name to save.

(4) [Save as type] area

(a) In the Editor panel
The following file types are displayed depend on the file type of the currently editing file.

(b) In the Output panel
The following file types are displayed.

[Function buttons]

Text file(*.txt) Text format

C source file(*.c) C language source file

Header file(*.h; *.inc) Header file

Assemble file(*.s) Assembly language source file

Link directive file(*.dir; *.dr) Link directive file

Section file (*.sf) Section file

Map file(*.map) Map file

Hex file (.hex) Hex file

Text file(*.txt) Text format

Button Function

Save Saves the file as the designated file name.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 369

This dialog box is used to select the application to open the file selected in Project Tree.

Figure A-73. Open with Program Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Project Tree panel, select a file, and then select [Open with Selected Application...] from the context
menu.

[Description of each area]

(1) [Look in] area
Select the folder where the application to open the file is stored.
Program folder (for Windows XP, "C:\Program Files") is selected by default

(2) File list area
File list that matches to the selections in the [Look in] area and [File of type] area is shown.

(3) [File name] area
Specify the executable file name of the application to open the file.

(4) [Files of type] area
Specify the executable file type of the application to open the file.

Open with Program dialog box

Program(*.exe) Executable format (default)

All Files (*.*) All the formats

(1)

[Function buttons]

(2)

(3)

(4)

APPENDIX A WINDOW REFERENCE

370 User’s Manual U19386EJ1V0UM

[Function buttons]

Button Function

Open Opens the file with the specified application.

Cancel Closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 371

This dialog box is used to select the executable file of an external tool.

Figure A-74. Select Program Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [General - External Tools] category of the Option dialog box, click the [...] button in the new registration
area.

[Description of each area]

(1) [Look in]
Select the location (folder) of the executable for the external tool to register from the drop-down list.

(2) List of files
This area displays a list of files matching the conditions selected in [Look in] and [Files of type].

(3) [File name]
Specify the name of the executable file for the external tool to register.

Select Program dialog box

(1)

(2)

(3)

(4)

[Function buttons]

APPENDIX A WINDOW REFERENCE

372 User’s Manual U19386EJ1V0UM

(4) [Files of type]
Select the type of the executable file for the external tool to register from the following drop-down list.

[Function buttons]

Program files (*.exe) Executable format (default)

All files (*.*) All formats

Button Function

Open Specifies the selected file in the Option dialog box.

Cancel Ignores the setting and closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 373

This dialog box is used to select the executable file of an external text editor.

Figure A-75. Select External Text Editor Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- In the [General - Text Editor] category of the Option dialog box, click the [Browse...] button in the [External text
editor] area.

[Description of each area]

(1) [Look in]
Select the location (folder) of the executable file for the external text editor to register from the drop-down list.

(2) List of files
This area displays a list of files matching the conditions selected in [Look in] and [Files of type].

(3) [File name]
Specify the name of the executable file for the external text editor.

Select External Text Editor dialog box

(1)

(2)

(3)

(4)

[Function buttons]

APPENDIX A WINDOW REFERENCE

374 User’s Manual U19386EJ1V0UM

(4) [Files of type]
Select the type of the executable file for the external text editor to register from the following drop-down list.

[Function buttons]

Program files (*.exe) Executable format (default)

All files (*.*) All formats

Button Function

Open Specify the selected file in the Option dialog box.

Cancel Ignore the setting and closes this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 375

This is the first window to open when the stack usage tracer is launched.
Use this window to check or modify the amount of stack used on a per-function basis.

Figure A-76. Stack Usage Tracer Window

The following items are explained here.
- [How to open]
- [Description of each area]
- [Caution]

[How to open]

- From the [Tool] menu, select [Startup Stack Usage Tracer].

[Description of each area]

(1) Menu bar
This area consists of the following menu items.

(a) [File] menu

Stack Usage Tracer window

Save Call Chain with Maximum
Stack from Selected Function...

Opens the Save As dialog box for saving the call chain with the greatest total
stack size (including the stack size of callee functions) of the function
selected in the tree display area / list display area to an output result file.

Functions in the same manner as the button.

Save All Call Chains from Selected
Function...

Opens the Save As dialog box for saving all call chains of the function
selected in the tree display area / list display area to an output result file.

Save Call Chain with Maximum
Stack from Every Root...

Opens the Save As dialog box for saving the call chain of the function dis-
played in the tree display area with the largest total stack size to an output
result file.

(3)

(1)

(2)

(4)

(5)

APPENDIX A WINDOW REFERENCE

376 User’s Manual U19386EJ1V0UM

Remark The output result file can only be saved in text format (*.txt) or CSV format (*.csv).

(b) [View] menu

(c) [Option] menu

Save All Call Chains from Every
Root...

Opens the Save As dialog box for saving all call chains of all functions dis-
played in the tree display area to an output result file.

Load Stack Size Specification
File...

Opens the Open dialog box for loading a stack size specification file.

Save Stack Size Specification
File...

Opens the Save As dialog box for saving the results of the operations made
in the Adjust Stack Size dialog box (e.g. changes to function information) to
a stack size specification file.

Exit sk850 Closes this window.

Recalculate Stack Size Recalculates the total stack size.

Functions in the same manner as the button.

Stop Forcibly stop the action of the stack usage tracer (e.g. recalculating the total
stack size).

Functions in the same manner as the button.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:
).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

Stack Size Unknown / Adjusted
Function Lists...

Opens the Stack Size Unknown / Adjusted Function Lists dialog box to
display a list of functions with unknown frame size, functions for which
information (additional margin, recursion depth, or callee functions) has
been modified, and functions for which the stack usage tracer has forcibly
set an additional margin.

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional
margin, recursion depth, and callee functions) for the function selected in the
tree display area / list display area.

This dialog box is used to change the information (additional margin,
recursion depth, and callee functions) for the selected function.

Functions in the same manner as the button.

Reset Function Resets the information (additional margin, recursion depth, and callee func-
tions) for the selected function to the default values.

This button will be grayed out if all the information for the selected function
has the default values.

Reset All Functions Resets the information (additional margin, recursion depth, and callee func-
tions) for all functions to the default values.

This button will be grayed out if all the information for all functions has the
default values.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 377

(d) [Help] menu

(2) Toolbar
This area consists of the following buttons.

(3) Tree display area
The calling relationship of the functions is shown in tree format.
The table below shows the meaning of the icon displayed to the left of the string representing the function name.

Remark The display priority for icons is from High: to Low: .

(a) Context menu
Select a function in this area, and then right click with the mouse. The context menu described below
appears.

sk850 Help Displays the online help of this window.

Functions in the same manner as the button.

About sk850... Opens the Version Information dialog box of the stack usage tracer.

Opens the Save As dialog box for saving the call chain with the greatest total
stack size (including the stack size of callee functions) of the function selected in
the tree display area / list display area to an output result file.

Functions in the same manner as when [Save Call Chain with Maximum Stack
from Selected Function...] is selected from the [File] menu.

Recalculates the total stack size. Function in the same manner as when [Recal-
culate Stack Size] is selected from the [View] menu.

Forcibly stop the action of the stack usage tracer (e.g. recalculating the total
stack size).

Functions in the same manner as when [Stop] is selected from the [View] menu.

Opens the Adjust Stack Size dialog box to change the information (additional
margin, recursion depth, and callee functions) for the function selected in the tree
display area / list display area.

Functions in the same manner as when [Adjust Stack Size...] is selected from the
[Option] menu.

Displays the online help of this window.

Functions in the same manner as when [sk850 Help] is selected from the [Help]
menu.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been
modified via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional
margin, recursion depth, and callee functions) for the selected function.

APPENDIX A WINDOW REFERENCE

378 User’s Manual U19386EJ1V0UM

(4) List display area
Display the stack information for a single function (function name, total stack size, frame size, additional margin,
and file name) in list format.

The table below shows the meaning of the icon displayed to the left of the string representing the function name.

(a) Context menu
Select a function in this area, and then right click with the mouse. The context menu described below
appears.

(5) Message display area
Display operation logs of the stack usage tracer.

[Caution]

- Assembly files
The stack usage tracer calculates total stack size by collecting information from the assembly files output by the
C compiler as intermediate files, with debugging information added. As a consequence, in order to obtain stack
information at the function level using the stack usage tracer, it is necessary to configure the compiler options to
output "Assembly files with debugging information".

Function Displays the function name.

Note that this area will only display functions from level 1 (the selected function)
and level 2 (functions called directly by the selected function).

Total Stack Size Displays the total stack size (including the stack size of callee functions; in bytes).

Frame Size Displays the frame size (not including the stack size of callee functions; in bytes).

Additional Margin Displays the value to mandatorily added to frame size (in bytes).

File Displays the file name.

The function directly called by a given function with the largest total stack size

Information (additional margin, recursion depth, or callee functions) has been
modified via the Adjust Stack Size dialog box or a stack size specification file

Recursive function

The stack usage tracer has not acquired any stack information for this function

Other than the above

Adjust Stack Size... Opens the Adjust Stack Size dialog box to change the information (additional
margin, recursion depth, and callee functions) for the selected function.

Sort List by Changes the function display order in the list display area.

Function Name Sort by function name.

Icon Type Sort by icon display priority (High: to Low:
).

Stack Size Sort by total stack size.

Frame Size Sort by frame size.

Additional Margin Sort by additional margin.

File Name Sort by file name.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 379

- Timing of static analysis
The stack usage tracer performs static analysis upon startup, and displays the calling relationship between
functions and function-level stack information in its main window. Consequently, changes to the calling relation-
ship between functions or function-level stack information (e.g. adding files, changing compiler options, or mod-
ifying the source code) will not be reflected in this window.

- Functions analyzed
The stack usage tracer only analyzes functions contained in assembly files with debugging information output
by the C compiler as intermediate files, and in library files provided by the build tool. Consequently, functions in
assembly files written by the user and library files created by the user are not analyzed. For this reason, the
information for these files must be set using the Adjust Stack Size dialog box.

- Icon display colors
Display priorities (High: to Low:) are assigned to icons displayed in the tree display area/list display
area in the window. Consequently, you must be aware that even if the icon (function called directly by same
function with greatest total stack size) is displayed, information with relatively low priority, such as the icon
(frame size unknown) will be hidden by the GUI.

- Determining the maximum stack size
When the stack usage tracer searches for the path with the largest stack size, it assumes that functions that are
not analyzed have a stack size of zero. Consequently, when determining the maximum stack size, you must
make sure that there are no functions under [Unknown Functions] in the Stack Size Unknown / Adjusted Func-
tion Lists dialog box.

- Tree display for recursive functions
The window's tree display area only displays up to the second call of a recursive function. Consequently, the
third and subsequent calls are hidden.

- Library functions bsearch, exit, and qsort
The stack usage tracer treats bsearch, exit, and qsort as unknown functions, even if they are in a library file pro-
vided by the build tool. Consequently, if you are using these functions, you must set the relevant information
(e.g. recursion depth and callee functions) in the Adjust Stack Size dialog box.

- Callee functions
The stack usage tracer only allows the following types of "callee functions" to be added in the Adjust Stack Size
dialog box: functions contained in C source files, and functions that are explicitly called (not called using a
pointer). Consequently, the [All Functions] section of the Adjust Stack Size dialog box only displays functions
meeting the above conditions.

- Functions called by multiple functions
The stack usage tracer treats the stack information of functions called by multiple functions as unique. Conse-
quently, it is not possible to change the stack information for such functions depending on which function is call-
ing them.

Example If you select function sub called by func1 in the tree display area and open the Adjust Stack Size dia-
log box, the changes are reflected in sub called by func2 as well.

APPENDIX A WINDOW REFERENCE

380 User’s Manual U19386EJ1V0UM

- ASM statements in C source
If C source contains ASM statements, the stack usage tracer may output the following message: "W9432 : Ille-
gal format in file (path name : line number)". If this occurs, fix the problem by disabling the code in question
using #if declarations or the like, or commenting it out.

- Calls to indirectly recursive functions
If a recursion path consists of multiple functions, the stack size may be calculated incorrectly.

Example Assuming that the frame size of recursive functions "func_rec1/func_rec2" is 8 bytes, if the recursion
depth of "func_rec1/func_rec2" is set to 3 in the Adjust Stack Size dialog box, then although the
stack size of func1 will be calculated correctly as "(8 + 24) * 3", the stack size of func2 will be calcu-
lated as "8 * 3", ignoring calls to func_rec1.

int sub (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

int sub (int i) {

 i++;

 return (i);

}

void func1 (void) {

 int ret, i = 0;

 ret = sub (i);

}

void func2 (void) {

 int ret, i = 100;

 ret = sub (i);

}

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 381

void func_rec1 (int i);

void func_rec2 (int i);

void func1 (void);

void func2 (void);

void main (void) {

 func1 ();

 func2 ();

}

void func_rec1 (int i) {

 func_rec2 (i);

}

void func_rec2 (int i) {

 if (i) {

 func_rec1 (i - 1);

 }

}

void func1 (void) {

 func_rec1 (2);

}

void func2 (void) {

 func_rec2 (2);

}

APPENDIX A WINDOW REFERENCE

382 User’s Manual U19386EJ1V0UM

This dialog box is used to display a list of functions for which the stack usage tracer could not obtain stack
information; functions for which information (additional margin, recursion depth, and callee functions) was changed
intentionally, and functions for which the stack usage tracer forcibly set an additional margin.

Figure A-77. Stack Size Unknown / Adjusted Function Lists Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select the [Stack Size Unknown / Adjusted Function Lists...] from the
[Option] menu.

[Description of each area]

(1) [Unknown Functions]
Display a list of "unknown functions" -- functions for which the stack usage tracer could not obtain stack informa-
tion. This area generally displays unknown functions in the following format.

function name (total stack size : frame size)

Remarks 1. If the unknown function is written in assembly language, then the underscore (_) pre-appended
to the symbol name is deleted, and the name is surrounded by square brackets ([]); this is dis-
played as the function name.

2. If the unknown function is a recursive function, then an asterisk (*) is appended to the end of the
function name.

3. If the unknown function includes functions called indirectly using function pointers, then an
ampersand (&) is appended to the end of the function name.

Stack Size Unknown / Adjusted Function Lists dialog box

[Function buttons](1)

(3)

(2)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 383

4. If the unknown function is a static function, then "file name#" is appended to the end of the func-
tion name.

(2) [Adjusted Functions]
Display a list of functions for which information (additional margin, recursion depth, or callee functions) has been
modified intentionally via the Adjust Stack Size dialog box or a stack size specification file. This area generally
displays modified ("adjusted") functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the adjusted function is written in assembly language, then the underscore (_) pre-appended
to the symbol name is deleted, and the name is surrounded by square brackets ([]); this is dis-
played as the function name.

2. If the adjusted function is a recursive function, then an asterisk (*) is appended to the end of the
function name.

3. If the adjusted function includes functions called indirectly using function pointers, then an
ampersand (&) is appended to the end of the function name.

4. If the adjusted function is a static function, then "file name#" is appended to the end of the func-
tion name.

5. If the only action performed in the Adjust Stack Size dialog box was adding "callee functions",
then the display format of this area will be as follows.
 function name (total stack size : frame size)

(3) [System Library Functions]
Display a list of automatically configured system library functions for which the frame size is unknown, and the
stack usage tracer has forcibly set an additional margin. This area generally displays modified system library
functions in the following format.

function name (total stack size : ? : additional margin)

Remarks 1. The underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded
by square brackets ([]); this is displayed as the function name.

2. An appropriate frame size is added to corresponding system library functions in the stack usage
tracer's database as additional margin.

[Function buttons]

Button Function

Close Closes this dialog box.

Adjust Size... Opens the Adjust Stack Size dialog box to change the information (additional margin,
recursion depth, and callee functions) for the function selected in the [Unknown Func-
tions]/[Adjusted Functions]/[System Library Functions].

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

384 User’s Manual U19386EJ1V0UM

This dialog box is used to change the information (additional margin, recursion depth, and callee functions) for the
selected function.

Figure A-78. Adjust Stack Size Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select
[Adjust Stack Size...] from the [Option] menu.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then click the
 button from toolbar.

- On the tree display area/list display area of the Stack Usage Tracer window, select a function, and then select
[Adjust Stack Size...] from the context menu.

- On the [Unknown Functions]/[Adjusted Functions]/[System Library Functions] of the Stack Size Unknown /
Adjusted Function Lists dialog box, select a function, and then click the [Adjust Size...] button.

[Description of each area]

(1) [Function Name]
Display the function name of the selected function.

Adjust Stack Size dialog box

(1)

[Function buttons]
(2)

(3)

(4)

(5)

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 385

Remarks 1. If the selected function is written in assembly language or it is a system library function, then the
underscore (_) pre-appended to the symbol name is deleted, and the name is surrounded by
square brackets ([]); this is displayed as the function name.

2. If the selected function is a recursive function, then an asterisk (*) is appended to the end of the
function name.

3. If the selected function includes functions called indirectly using function pointers, then an
ampersand (&) is appended to the end of the function name.

4. If the selected function is a static function, then "file name#" is appended to the end of the func-
tion name.

(2) [Frame Size]
Display the frame size (not including the stack size of callee functions; in bytes) of the selected function.

Remark If the frame size is not known, then a question mark (?) is displayed; if it is over the maximum limit,
then "SIZEOVER" is displayed.

(3) [Additional Margin]
Specify the value to forcibly add to the selected function (in bytes), either as a decimal number, or as a hexadec-
imal number starting with "0x" or "0X".

(4) [Recursion Depth]
Specify the recursion depth, either as a decimal number, or as a hexadecimal number starting with "0x" or "0X".

Remark If the selected function is not a recursive function, then this item will be grayed out.

(5) [Callee Function List (for Indirect Call)] area

(a) [Callee Functions]
Display a list of "callee" functions called by the selected function (functions called indirectly using a function
pointer or the like).
This area generally displays callee functions in the following format.

function name (total stack size : frame size : additional margin)

Remarks 1. If the callee function is written in assembly language or it is a system library function, then
the underscore (_) pre-appended to the symbol name is deleted, and the name is sur-
rounded by square brackets ([]); this is displayed as the function name.

2. If the callee function is a recursive function, then an asterisk (*) is appended to the end of
the function name.

3. If the callee function includes functions called indirectly using function pointers, then an
ampersand (&) is appended to the end of the function name.

4. If the callee function is a static function, then "file name#" is appended to the end of the
function name.

5. Functions added intentionally from [All Functions] by clicking the [Add] button are shown
with a plus sign (+) appended to the end of the function name.

(b) [All Functions]
Display a list of functions that can be added as functions called by the selected function ("callee functions").
This area generally displays functions that can be added in the following format.

function name (total stack size : frame size : additional margin)

APPENDIX A WINDOW REFERENCE

386 User’s Manual U19386EJ1V0UM

Remarks 1. If the function that can be added is written in assembly language or it is a system library
function, then the underscore (_) pre-appended to the symbol name is deleted, and the
name is surrounded by square brackets ([]); this is displayed as the function name.

2. If the function that can be added is a recursive function, then an asterisk (*) is appended to
the end of the function name.

3. If the function that can be added includes functions called indirectly using function pointers,
then an ampersand (&) is appended to the end of the function name.

4. If the function that can be added is a static function, then "file name#" is appended to the
end of the function name.

(c) Button area

Remark Functions can only be deleted from [Callee Functions] if the function name ends with a plus sign
(+) (functions added from [All Functions] intentionally by clicking [Add]).

[Function buttons]

Add Adds the function selected in [All Functions] to [Callee Functions].

If no function is selected in [All Functions], then this button will be grayed out.

Delete Deletes the function selected in [Callee Functions] from [Callee Functions].

If no function is selected in [Callee Functions], then this button will be grayed
out.

Button Function

OK Reflects the settings in the Stack Usage Tracer window / save them to the project file
(*.prj), then close the dialog.

Cancel Ignores the setting and closes this dialog box.

Reset Resets the information (additional margin, recursion depth, and callee functions) for
the selected function to the default values.

This button will be grayed out if all the information for the selected function has the
default values.

Help Displays the online help of this dialog box.

APPENDIX A WINDOW REFERENCE

User’s Manual U19386EJ1V0UM 387

This dialog box is used to open an existing stack size specification file.

Figure A-79. Open Dialog Box

The following items are explained here.
- [How to open]
- [Description of each area]
- [Function buttons]

[How to open]

- On the Stack Usage Tracer window, select [Load Stack Size Specification File...] from the [File] menu.

[Description of each area]

(1) [Look in] area
Select the folder containing the stack size specification file you wish to open.

(2) List of files
This area displays a list of files matching the conditions selected in [Look in] area and [Files of type] area.

(3) [File name] area
Specify the file name of the stack size specification file to open.

(4) [Files of type] area
Select the type of file to open.

[Function buttons]

Open dialog box

Stack Size Specification File (*.txt) Text format

Button Function

Open Opens the specified file.

Cancel Ignores the setting and closes this dialog box.

(3)

(1)

(2)

(4)
[Function buttons]

APPENDIX B COMMAND REFERENCE

388 User’s Manual U19386EJ1V0UM

APPENDIX B COMMAND REFERENCE

This section describes the detailed specifications of each command included in the build tool.

B.1 C Compiler

The C compiler creates relocatable object files and object files executable on the target system from C language
source programs described in C source files.

The C compiler acts as the driver of the modules included in the package and performs operations such as macro
expansion, comment processing, merging of intermediate language files, optimization, creation/conversion from
assembler source programs to machine language instructions, and linking of object files.

The C compiler performs processing in the following sequence.
As is shown in “Figure B-1. Operation Flow of C Compiler”, the processing flow varies slightly depending on the

specified optimization level.

(1) Front end (cafe)
Performs macro expansion and comment processing of a C source program and then converts the program into
an intermediate language program.

(2) Pre-optimizer (popt)
Rearranges the functions in the intermediate language program.
If this command is activated from the command line, and if "File merging option (-Om)" is specified, two or more
intermediate language programs are merged into one.
If "Level 2 advanced option (Speed precedence)" is specified, inline expansion is performed for the functions in
the intermediate language program.

(3) Global optimization module (opt)
Optimizes the intermediate language program.

(4) Code generation module (cgen)
Converts the intermediate language program into an assembler source program.

(5) Machine-dependent optimization module (impr)
Optimizes the assembler source program.

(6) Assembler (as850)
Converts the assembler source program into machine language instructions and creates a relocatable object
file.

(7) Linker (ld850)
Links the relocatable object file, and creates an executable object file.
The global optimization module and machine-dependent optimization module are called only when the
optimization option is specified.
It is assumed that the modules of (1) through (5) are started from the C compiler. Consequently, operation is not
guaranteed if any of these modules is started alone.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 389

Figure B-1. Operation Flow of C Compiler

.c

Front end

.ic

-Om not specified
-Om specified

NO

YES

.ic

Pre-optimizer

Global optimization module

Input file processing

completed

.ic

Code generation module

.s

.s

.o

Assembler

-O/Os/Ot specified

-Od/-Og/Default (-Ob)

specified

-Om not specified
-Om specified

Input file processing

completed

NO

YES

Linker
.a

.out

Machine-dependent

optimization module

APPENDIX B COMMAND REFERENCE

390 User’s Manual U19386EJ1V0UM

B.1.1 I/O files

The C compiler can specify the following files as input files or output files.

- The .s file is passed to the assembler without modification (a source program directly coded in assemble
language does not go through the machine-dependent optimization module).

- All the files other than .c, .ic, and .s files, such as .a and .o files, are all passed as is to the linker.

The input file names supported by Windows can be specified, but "@" cannot be used at the head of a file name
because it is regarded as a command option.
If the kanji code of the file is EUC, a file name or folder name cannot be used in Japanese.

B.1.2 Executable object

The C compiler can read a C source file and create an executable object file at the same time since it starts both the
assembler and linker.

You can also use an option (-S) to stop the process just before launching the assembler and linker, and output
compiler code and generate relocatable object files (see "B.1.3 Method for manipulating" for details about the method
for manipulating).

Examples of starting commands from command line are shown below (see “B.1.4 Option” for details about
options).

(1) When executing everything from the C compiler

This specifies "-cpu 3201" (V850ES/SA2) as the device and reads file.c and obj.o to create an executable object
file a.out. At this time, crtE.o is linked as the startup module and the standard libraries libc.a and libm.a are
referenced.

This reads file.c and obj.o to create an executable object file a.out. At this time, org_crt.o is linked as the startup
module and the standard libraries libc.a and libm.a are referenced.

(2) When starting from the C compiler to the assembler, and starting the linker alone

This reads file.c and asm.o to create a relocatable object file file.o and asm.o.

This links org_crt.o, file.o, asm.o, and obj.o to create the executable object file a.out. At this time, libc.a is
referenced.

file.c C source file (called the .c file)

file.ic Intermediate language file (called the .ic file)

file.s Assembler source file (called the .s file)

file.o Object file (called the .o file)

file.a Archive file (called the .a file)

C>ca850 -cpu 3201 file.c obj.o

C>ca850 -cpu 3201 -R org_crt.o file.c obj.o

C>ca850 -cpu 3201 -c file.c asm.s

C>ld850 -cpu 3201 org_crt.o file.o asm.o obj.o -lc

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 391

(3) When starting the C compiler, assembler, and linker by themselves

This reads file.c to create a relocatable object file file.o.

This reads asm.s to create a relocatable object file asm.o.

This links org_crt.o, file.o, and asm.o to create the executable object file a.out. At this time, libc.a is referenced.

B.1.3 Method for manipulating

This section explains how to manipulate the C compiler.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set compile options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens .Next, select the [Compile Options] tab.
You can set the various compile options by setting the necessary properties in this tab.

C>ca850 -cpu 3201 -c file.c

C>as850 -cpu 3201 asm.s

C>ld850 org_crt.o file.o asm.o -lc

C>ca850 [option] ... file-name [file-name or option] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

APPENDIX B COMMAND REFERENCE

392 User’s Manual U19386EJ1V0UM

Figure B-2. Property Panel: [Compile Option] Tab

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 393

B.1.4 Option

This section explains compile options.

Caution When launching from the command line, if an option that is not listed in “Table B-1. Compile
Options“ is assigned, then these options are assumed to be for the linker and are passed to the
linker.

The types and explanations for compile options are shown below.

Table B-1. Compile Options

Classification Option Description

Version/help display/
operation status

-V Outputs the version information of the C compiler to the standard error
output.

-help Outputs option descriptions to the standard error output.

-v Outputs the execution status of the C compiler to the standard error
output in detail.

Output file
specification

-Fic Specifies where an intermediate language file is to be saved.

-Fo Specifies where an object file is to be saved.

-Fs Specifies where an assembly language file is to be saved.

-Fv Specifies where an assemble list file is to be saved.

-o Specifies the output file.

-temp Specifies the work folder.

Controlling source
debugger

-Xno_word_bitop Prohibits replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit
manipulation instructions.

-g Outputs symbol information for the source debugger.

Device specification -X256M Treats the memory space as having 256 MB.

-Xbpc Sets the higher address of the programmable peripheral I/O register.

-cn Embeds the magic number common to V850 core.

-cnv850e Embeds the magic number common to V850Ex core.

-cnv850e2 Embeds the magic number common to V850E2 core.

-cpu Specifies the target device.

-devpath Specifies the folder to search device files.

Compiler control
specification

-S Outputs the assembler source file without executing any modules after
the assembler.

-a Outputs an assemble list.

-c Outputs the object file without starting the linker.

-m Executes the only front end, generates an .ic file, and then terminates
processing.

ROMization control -Xr This option is necessary when creating a ROMization object.

APPENDIX B COMMAND REFERENCE

394 User’s Manual U19386EJ1V0UM

Preprocessor
processing setting

-C Includes source program comments in the preprocessing output.

-D Assumes that #define is entered before the C source program.

-E Executes preprocessing only for a C source program and outputs the
results to the standard output.

-I Specifies the folder to search the header file of the C source program.

-P Executes preprocessing only for a C source program and outputs the
results to a file.

-U Assumes that #undef is entered before the C source program.

-Wa,-D Assumes that .set is entered before the assembler source.

-Wa,-I, Specifies the folder to search the header file of the assembler source
file.

-Xcxxcom In addition to ordinary comments, interprets all characters that appear
after "//" and before the end of the line as comments.

-Xd Outputs a warning message in response to initialization of a pointer type
external variable which uses a variable address that is not an automatic
variable or which uses a function address.

-Xm Specifies the upper limit for the number of macro identifiers.

-t Replaces a trigraph sequence.

Memory saving during
compilation

-Wp,-D Reduces the memory capacity used in the pre-optimizer phase during
compiling.

-Wi,-D Reduce the memory capacity used in the machine dependent
optimization phase during compiling.

Error output
specification

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-err_limit Specifies the maximum number of error messages to be output.

Expansion function
specification

-cc78k Enables the expansion functions compatible with the 78K
microcontrollers C compiler CC78Kx.

Optimization -Od This is the optimize for debugging option.

-Ob This is the default optimization option.

-Og This is the standard optimization option.

-O This is the Level 1 advanced optimization.

-Os This is the Level 2 advanced optimization option (object size
precedence).

-Ot This is the Level 2 advanced optimization option (execution speed
precedence).

Target code
optimization

-Wi,-O4 Analyzes the data flow strictly and perform the most advanced
optimization.

-Wi,-P Prevents optimization that allows branch destination labels to be
aligned.

File merging -Om Merges the files when two or more files are specified at the same time.

Classification Option Description

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 395

Inline expansion
optimization control

-Wp,-G Restricts the stack size for a function subject to inline expansion in the
intermediate language so that inline expansion is not performed for the
large value.

-Wp,-N Restricts the intermediate language size for a function subject to inline
expansion so that inline expansion is not performed for the large value.

-Wp,-S Performs inline expansion of a static function that is referenced only
once unconditionally.

-Wp,-l Outputs function information to the standard output or additionally
outputs to the file.

-Wp,-inline Performs inline expansion of only a function for which #pragma inline is
specified.

-Wp,-no_inline Suppresses inline expansion of all functions, including the function for
which #pragma inline is specified.

-Wp,-r Deletes unnecessary functions from the functions called from an entry
function after inline expansion.

Loop expansion
optimization control

-Wo,-Ol Expands a loop the specified times using "for" and "while".

-Wo,-Xlo Expands a loop by fixing the number of times of expanding the loop.

strcpy, strcmp
expansion

-Xi Sets a 4-byte alignment condition for arrays and structures and
performs inline expansion of strcpy() or strcmp() function calls.

External variable sort -Wo,-Op Rearranges external variables starting from the largest alignment size.

Branch instruction
control

-Wo,-XFo Arranges and outputs branch instructions, giving precedence to the
code size.

Register use control -r Allocates the specified external variable to the specified register.

-reg Limits the number of registers used by the C compiler.

-Xmask_reg Uses the mask register function.

Prologue/epilogue
processing control

-Xpro_epi_runtime Specifies whether or not to perform prologue/epilogue processing of the
function based on runtime library function calls.

Variable placement
control

-G Allocates data of less than the specified bytes to the .sdata or .sbss
section.

-Xsconst Allocates const attribute data and character string literals to the .sconst
section.

-Xcre_sec_data Outputs the frequency information file for the variables used by the
section file generator.

-Xcre_sec_data_only

-Xsec_file Specifies the name of the section file that is used to specify section
allocation of data when the C compiler is activated.

signed/unsigned
control

-Xbitfield Specifies whether int type bit fields that do not indicate the type specifier
are handled as signed or unsigned.

-Xchar Specifies whether char type that do not indicate the type specifier are
handled as signed or unsigned.

-Xenum_type Specifies which integer type the enumeration type matches.

Switch-case
statement output code
control

-Xcase Specifies a mode in which the code of a switch statement is to be output.

-Xword_switch Generates one 4-byte branch table per case label in a switch statement.

Structure packing
control

-Xbyte Specifies indirect address access to a structure in byte units.

-Xpack Specifies alignment of structure members.

Classification Option Description

APPENDIX B COMMAND REFERENCE

396 User’s Manual U19386EJ1V0UM

Table B-2. Mark Used in Option Descriptions

Far jump output
control

-Xfar_jump Uses jmp directive to branch to the specified function.

-Xj Uses the jmp instruction for an ordinary interrupt function defined in C
language.

Comment output -Xc Outputs the C source program as a comment to the assembler source
file.

ANSI standard -Xe Uses runtime library, without using the mulh and divh directives for
integers corresponding to data that is 16 bits or less.

-Xdefvar Treats tentative definition of variables as definition.

-ansi Makes C compiler processing comply strictly with the ANSI standard
and outputs an error or warning for a specification that violates the
standard.

Library specification -L Specifies the folder to search libraries.

-R Specifies the startup module to be used when startup goes as far as the
linker.

-l Specifies the archive file that is referenced by the linker.

Warning message
control

-w Specifies the level, output, and suppression of a warning message.

-won Outputs a warning message of the specified number.

-woff Suppresses a warning message of the specified number.

Command file
specification

@ Handles the specified file as a command file.

CPU bug patch -Xv850patch Specifies the -p option for the assembler for an assembler source file
output by the C compiler to output a code corresponding to a CPU fault.

Each module -W Specifies options to each module.

Other +Oc Performs advanced optimization.

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

[78K-compatible] Option compatible with 78K microcontrollers C compiler CC78Kx

Classification Option Description

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 397

The version/help display/operation status options are as follows.
- -V
- -help
- -v

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the C compiler to the standard error output.

[Example of use]

- To output the version information of the C compiler to the standard error output, describe as:

Version/help display/operation status

-V

C>ca850 -V

APPENDIX B COMMAND REFERENCE

398 User’s Manual U19386EJ1V0UM

-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs option descriptions to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C>ca850 -help

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 399

-v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the execution status of the C compiler to the standard error output in detail.

[Example of use]

- To output the execution status of the C compiler to the standard error output in detail, describe as:

-v

C>ca850 -v prime.c

APPENDIX B COMMAND REFERENCE

400 User’s Manual U19386EJ1V0UM

The output file specification options are as follows.
- -Fic
- -Fo
- -Fs
- -Fv
- -o
- -temp

-Fic

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies where an intermediate language file generated during compilation is to be saved.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.
The extension of outfile is restricted to ".ic".

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c replaced by .ic to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c replaced by .ic to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c replaced by .ic.

[Example of use]

- To save the intermediate language file to folder "D:\sample" with "main.ic" as a file name, describe as:

Output file specification

-Fic[=outfile]

C>ca850 -cpu f3719 -Fic=D:\sample main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 401

-Fo

[Description format]

- Interpretation when omitted
Saves the file under the file name with extension .c or .s replaced by .o to the current folder.

[Function Description]

- This option specifies where an object file generated during compilation is to be saved.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c or .s or .ic replaced by .o to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c or .s or .ic replaced by .o to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c or .s or .ic
replaced by .ic.

[Example of use]

- To save the object file with "sample.o" as a file name, describe as:

-Fo[=outfile]

C>ca850 -cpu f3719 -Fo=sample.o main.c

APPENDIX B COMMAND REFERENCE

402 User’s Manual U19386EJ1V0UM

-Fs

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies where an assembly language file generated during compilation is to be saved.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c or .ic replaced by .s to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c or .ic replaced by .s to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced
by .s.

[Example of use]

- To save the assembly language file to folder "D:\sample" with "main.s" as a file name, describe as:

-Fs[=outfile]

C>ca850 -cpu f3719 -Fs=D:\sample main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 403

-Fv

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies where an assemble list generated during compilation is to be saved.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c or .s or .ic replaced by .v to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c or .s or .ic replaced by .v to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c or .s or .ic
replaced by .v.

- If this option and the -a option are not specified, an assemble list is not generated.

[Example of use]

- To save the assemble list with "sample.v" as a file name, describe as:

-Fv[=outfile]

C>ca850 -cpu f3719 -Fv=sample.v main.c

APPENDIX B COMMAND REFERENCE

404 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
The output file is saved to the current folder.

[Function Description]

- This option specifies an output file as outfile.

(1) If this option is specified with the -S option
An assembler file (.s) is specified.

(2) If this option is specified with the -c option
A relocatable object file (.o) is specified.

(3) If this option is specified with the -m option
A front-end output file (.ic) is specified.

(4) Other than above
An executable object file (.out) is specified. The default assumption is a.out.

(5) If two or more files are output
An error occurs.

- It is valid even if compiling is stopped midway by specifying the compiler control option -S, -c, or -m.

[Example of use]

- To save the executable object file with "sample.out" as a file name, describe as:

-o outfile

C>ca850 -cpu f3719 -o sample.out main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 405

-temp

[Description format]

- Interpretation when omitted
Temporary files are created in the folder specified by the environment variable TEMP or in the root folder of the
current drive.

[Function Description]

- This option specifies the work folder for generating temporary files that are used internally.
- If the capacity of the hard disk runs short and a temporary file cannot be generated, an error occurs. This error

can be avoided by using this option.

[Example of use]

- To use folder “D:\tmp” as a work folder for generating temporary files, describe as:

-temp=dir

C>ca850 -cpu f3719 -temp=D:\tmp main.c

APPENDIX B COMMAND REFERENCE

406 User’s Manual U19386EJ1V0UM

The controlling source debugger options are as follows.
- -Xno_word_bitop
- -g

-Xno_word_bitop

[Description format]

- Interpretation when omitted
This option replaces the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1, clr1, tst1,
and not1).

[Function Description]

- This option prohibits replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1,
clr1, tst1, and not1).

- If a read/write event of a variable is set during debugging, an event may not be occur if these instructions are
replaced by 1-bit manipulation instructions. If this option is specified in such a case, the ld.w/ld.h and st.w/st.h
instructions are not replaced by 1-bit manipulation instructions, it makes debugging easy.

[Example of use]

- To prohibit replacing the ld.w/ld.h and st.w/st.h instructions with 1-bit manipulation instructions (set1, clr1, tst1,
and not1), describe as:

Controlling source debugger

-Xno_word_bitop

C>ca850 -cpu f3719 -Xno_word_bitop main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 407

-g

[Description format]

- Interpretation when omitted
Symbol information for the source debugger is not output.

[Function Description]

- This option outputs symbol information for the source debugger.
In other words, performing debugging at the C source level is possible by specifying this option.

- When the assembler is started via the C compiler, specification of this option is regarded as the same as
specifying the -g option of the assembler. As a result, performing debugging at the assembler source level is
possible.

[Example of use]

- To output symbol information for the source debugger and make performing debugging at the C source level
possible, describe as:

-g

C>ca850 -cpu f3719 -g main.c

APPENDIX B COMMAND REFERENCE

408 User’s Manual U19386EJ1V0UM

The device specification options are as follows.
- -X256M
- -Xbpc
- -cn
- -cnv850e
- -cnv850e2
- -cpu
- -devpath

-X256M

[Description format]

- Interpretation when omitted
The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]
- This option treats the memory space as having 256 MB.
- Set this option in accordance with the chipset to be used. The physical address space of the V850Ex core has

256 MB in many cases. When creating an application that uses a space between 64 MB and 256 MB, specify
this option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device specification

-X256M

C>ca850 -cpu f3719 -X256M main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 409

-Xbpc

[Description format]

- Interpretation when omitted
The higher address of the programmable peripheral I/O register is treated as 0.

[Function Description]

- This option sets the higher address of the programmable peripheral I/O register.
- In num, specify only the part of address from which the highest bit of the BPC register is removed.
- If the target device has programmable peripheral I/O register functions (such as V850E/IA1) and you want to set

the variable address portion (= value set in BPC register), the value must be determined when compiling
(assembling) the application.

- If this option is specified, compilation (assembly) is performed using the specified value. When this option is
specified, be sure to specify a value.
A binary, octal, decimal, or hexadecimal number can be used for the value. If an invalid value is specified, or if
a value outside the range that can be set in the BPC register is specified, a warning message is output and this
option is ignored.

- One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make the
values the same between files.
However, this option is not needed to be specify for files that do not use the programmable peripheral I/O
register

- If this option is specified for a target device that does not have programmable peripheral I/O register functions or
when assembling as a common for V850 core/V850Ex core/V850E2 core, a warning message is output and this
option is ignored.

- This option is for determining the address of the programmable peripheral I/O register when compiling
(assembling) and does not actually reflect a value in the BPC register. For operation, it is necessary to set a
value in the BPC register separately using a startup module or the like.
See CubeSuite V850 Coding User's Manual about a sample of the startup routine. Also, a sample appears
(commented out) in the startup module included in the package.

- The assembler outputs the .bpc section which is a reserved section when the programmable peripheral I/O
register is referenced, regardless of whether this option is specified or omitted.
This section is used for checking when linking. The .bpc section is a special reserved section for information
and is never loaded into memory. Therefore, it need not be specified in a link directive like a normal section.

[Example of use]

- If the target device is V850E/IA1, the following option setting treats the start address of the programmable
peripheral I/O register area to be shifted 14 bits to the left, or "0x48d0000".

Specify the following descriptions in the startup module to make the variable portion of the start address of the
programmable peripheral I/O register "0x1234" and set the flag 0x8000 that enables the use of this function.

-Xbpc=num

C>ca850 -cpu 3116 -Xbpc=0x1234 main.c

mov 0x9234,r10 -- 0x1234 | 0x8000 = 0x9234

st.h r10, BPC

APPENDIX B COMMAND REFERENCE

410 User’s Manual U19386EJ1V0UM

-cn

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option embeds the magic number common to V850 core into the object to be generated.

[Example of use]

- To embed the magic number common to V850 core into the object, describe as:

-cn

C>ca850 -cn -c main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 411

-cnv850e

[Description format]

- Interpretation when omitted
None

[Function Description]

[V850E]
- This option embeds the magic number common to V850Ex core into the object to be generated.

[Example of use]

- To embed the magic number common to V850Ex core into the object, describe as:

-cnv850e

C>ca850 -cnv850e -c main.c

APPENDIX B COMMAND REFERENCE

412 User’s Manual U19386EJ1V0UM

-cnv850e2

[Description format]

- Interpretation when omitted
None

[Function Description]

[V850E2]
- This option embeds the magic number common to V850E2 core into the object to be generated.

[Example of use]

- To embed the magic number common to V850E2 core into the object, describe as:

-cnv850e2

C>ca850 -cnv850e2 -c main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 413

-cpu

[Description format]

- Interpretation when omitted
This option cannot be omitted (except when specifying -cn, -cnv850e, -cnv850e2 or #pragma cpu).

[Function Description]

- This option specifies the target deviceNote.

Note This option and "#pragma cpu device-name" are identical.
If specification by the -cpu option and specification by the #pragma directive are specified but have
different contents, this option takes priority.

- If this option is omitted and nothing has been specified by the -cn, -cnv850e, -cnv850e2 option, or #pragma
directive, compilation is stopped.

[Example of use]

- To specify V850E as the target device, describe as:

-cpu device-name

C>ca850 -cpu f3719 main.c

APPENDIX B COMMAND REFERENCE

414 User’s Manual U19386EJ1V0UM

-devpath

[Description format]

- Interpretation when omitted
The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder dir.

[Example of use]

- To search a device file from folder C:\NECTools32\dev, describe as:

-devpath=dir

C>ca850 -cpu f3719 -devpath=C:\NECTools32\dev main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 415

The compiler control specification options are as follows.
- -S
- -a
- -c
- -m

-S

[Description format]

- Interpretation when omitted
Phases after the assembler are also executed.

[Function Description]

- This option outputs the generated assembler source file without executing any modules after the assembler.
- The output file name uses .s as the extension instead of .c or .ic. Use the -o option to specify the output file

name (see the description of the -o option). Also, the output file name can be specified by the -Fs option.

[Example of use]

- To output the assembler source file (main.s) without executing any modules after the assembler, describe as:

Compiler control specification

-S

C>ca850 -cpu f3719 -S main.c

APPENDIX B COMMAND REFERENCE

416 User’s Manual U19386EJ1V0UM

-a

[Description format]

- Interpretation when omitted
No assemble list is output.

[Function Description]

- This option outputs an assemble list. The file name uses .v as the extension instead of .c or .s or .ic (see "3.1
Assembler").

- When the -Og, -O, -Os, or -Ot option is specified, a part of the assemble list may be incorrectly output due to
instruction rearrangement for optimization by the assembler.

[Example of use]

- To output the assemble list (main.v), describe as:

-a

C>ca850 -cpu f3719 -a main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 417

-c

[Description format]

- Interpretation when omitted
The procedure up to the point of starting the linker is performed.

[Function Description]

- This option outputs the object file without starting the linker.
- The file name uses .o as the extension instead of .c or .s or .ic.
- Use the -o option to specify the output file name (see the description of the -o option). Also, the output file name

can be specified by the -Fo option.

[Example of use]

- To output an object file (main.o), describe as:

-c

C>ca850 -cpu f3719 -c main.c

APPENDIX B COMMAND REFERENCE

418 User’s Manual U19386EJ1V0UM

-m

[Description format]

- Interpretation when omitted
Modules after the font end are also executed.

[Function Description]

- This option executes the only front end, generates an .ic file, and then terminates processing.

[Example of use]

- To execute the only front end and output the intermediate language file (main.c), describe as:

-m

C>ca850 -cpu f3719 -m main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 419

The ROMization control option is as follows.
- -Xr

-Xr

[Description format]

- Interpretation when omitted
An object that does not have ROMization information is created.

[Function Description]

- This option is necessary when creating a ROMization object.
- The compiler processing is as follows.

(1) The label for the first argument of a function beginning with "_ rcopy" has attempted to indicate the first
address (aligned on 4-byte boundaries) that exceeds the end of the .text section in the object.

(2) Consequently, this indicates the area reservation code for the rompsec section (default name:
rompcrt.o) and libr.a to be linked by the linker.

- See “B.4.3 Creating object for ROMization” for details about the method of creating the ROMization object.

[Example of use]

- To output the object file (a.out) that has ROMization information, describe as:

ROMization control

-Xr

C>ca850 -cpu f3719 -Xr main.c

APPENDIX B COMMAND REFERENCE

420 User’s Manual U19386EJ1V0UM

The preprocessor processing setting options are as follows.
- -C
- -D
- -E
- -I
- -P
- -U
- -Wa,-D
- -Wa,-I
- -Xcxxcom
- -Xd
- -Xm
- -t

-C

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option includes source program comments in a C source program's preprocessing output. This option is
valid only when the -E or -P option is specified.

[Example of use]

- To include source program comments in the preprocessing output and output the results to the standard output,
describe as:

Preprocessor processing setting

-C

C>ca850 -cpu f3719 -C -E main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 421

-D

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option assumes that #define name def is entered before the C source program.
- If def is omitted, it is regarded as 1. Up to 256 of this options can be specified.

[Example of use]

- To assume that "#define sample 256" is entered before the C source program, describe as:

-Dname[=def]

C>ca850 -cpu f3719 -Dsample=256 main.c

APPENDIX B COMMAND REFERENCE

422 User’s Manual U19386EJ1V0UM

-E

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option executes preprocessing only for a C source program and outputs the results to the standard output.
- The results include the line numbers and file name of the source program.

[Example of use]

- To execute preprocessing only and outputs the results to the standard output, describe as:

-E

C>ca850 -cpu f3719 -E main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 423

-I

[Description format]

- Interpretation when omitted
The header file of the C source program is searched from the standard folder.
The standard folder is "install folder\CA850\Vx.xxNote\inc850".

Note Vx.xx is the version of the C compiler.

[Function Description]

- The header file of the C source program is searched from folder dir, the standard folder in that order.
Up to 100 of this options can be specified.

- If #include "header file name" is specified in the #include statement, folders with source files are searched first.

[Example of use]

- To search the header file of the C source program from folder D:\head, the standard folder in that order,
describe as:

-Idir

C>ca850 -cpu f3719 -ID:\head main.c

APPENDIX B COMMAND REFERENCE

424 User’s Manual U19386EJ1V0UM

-P

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option executes preprocessing only for a C source program and outputs the results to the file under the file
name with extension .c replaced by .i.

- The line numbers and file name of the source program are not output.

[Example of use]

- To execute preprocessing only and outputs the results to the file (main.i), describe as:

-P

C>ca850 -cpu f3719 -P main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 425

-U

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option assumes that #undef name is entered before the C source program.
Up to 256 of this options can be specified.

[Example of use]

- To assume that "#undef test" is entered before the C source program, describe as:

-Uname

C>ca850 -cpu f3719 -Utest main.c

APPENDIX B COMMAND REFERENCE

426 User’s Manual U19386EJ1V0UM

-Wa,-D

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option assumes that ".set name, num" is entered before the assembler source.
- If num is omitted, it is regarded as 1.

[Example of use]

- To assume that ".set _sample, 256" is entered before the assembler source, describe as:

-Wa,-Dname[=num]

C>ca850 -cpu f3719 -Wa,-D_sample=256 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 427

-Wa,-I

[Description format]

- Interpretation when omitted
The header file of the assembler source file is searched from the standard folder.

[Function Description]

- The header file of the assembler source file is searched from folder dir, the standard folder in that order.
If the header file is not found in the standard folder, the folder where assembler source files are located and the
folder where C source files are located are searched in that order.

[Example of use]

- To search the header file of the assembler source file from folder D:\head, the standard folder in that order,
describe as:

-Wa,-I,dir

C>ca850 -cpu f3719 -Wa,-I,D:\head main.c

APPENDIX B COMMAND REFERENCE

428 User’s Manual U19386EJ1V0UM

-Xcxxcom

[Description format]

- Interpretation when omitted
None

[Function Description]

- In addition to ordinary comments, this option interprets all characters that appear after "//" and before the end of
the line as comments (C++ comment style).

[Example of use]

- To interpret all characters that appear after "//" and before the end of the line as comments, describe as:

-Xcxxcom

C>ca850 -cpu f3719 -Xcxxcom main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 429

-Xd

[Description format]

- Interpretation when omitted
This option does not output a warning message in response to initialization of a pointer type external variable
which uses a variable address that is not an automatic variable or which uses a function address.

[Function Description]

- This option outputs a warning message in response to initialization of a pointer type external variable which
uses a variable address that is not an automatic variable or which uses a function address.

[Example of use]

- To output a warning message in response to initialization of a pointer type external variable which uses a
variable address that is not an automatic variable or which uses a function address, describe as:

-Xd

C>ca850 -cpu f3719 -Xd main.c

APPENDIX B COMMAND REFERENCE

430 User’s Manual U19386EJ1V0UM

-Xm

[Description format]

- Interpretation when omitted
-Xm2047

[Function Description]

- This option specifies the upper limit for the number of macro identifiers. Specify decimal numbers up to 32767
as num.

- This option increases the size of the buffer used by the preprocessor.
It is not possible, however, to use this to calculate the specific length of the character buffer that can be
obtained.

[Example of use]

- To specify 32000 as the upper limit for the number of macro identifiers, describe as:

-Xmnum

C>ca850 -cpu f3719 -Xm32000 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 431

-t

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option replaces a trigraph sequence. This option specifies a three-character (trigraph) string to be
replaced by a single character defined by the ANSI standard.
See the documents related to the ANSI standard for details.

[Example of use]

- To replace a trigraph sequence, describe as:

-t

C>ca850 -cpu f3719 -t main.c

APPENDIX B COMMAND REFERENCE

432 User’s Manual U19386EJ1V0UM

The memory saving during compilation options are as follows.
- -Wp,-D
- -Wi,-D

-Wp,-D

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option reduces the memory capacity used in the pre-optimizer phase during compiling.
- Specify this option if compiling is not completed correctly because the memory of the machine runs short.

When this option is specified, the compilation speed slow down.

[Example of use]

- To reduce the memory capacity used in the pre-optimizer phase during compiling, describe as:

Memory saving during compilation

-Wp,-D

C>ca850 -cpu f3719 -Wp,-D main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 433

-Wi,-D

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option reduces the memory capacity used in the machine dependent optimization phase during compiling.
- Specify this option if compiling is not completed correctly because the memory of the machine runs short.
- When this option is specified, the compilation speed slow down.

[Example of use]

- To reduce the memory capacity used in the machine dependent optimization phase during compiling, describe
as:

-Wi,-D

C>ca850 -cpu f3719 -Wi,-D main.c

APPENDIX B COMMAND REFERENCE

434 User’s Manual U19386EJ1V0UM

The error output specification options are as follows.
- +err_file
- -err_file
- -err_limit

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Error output specification

+err_file=file

C>ca850 -cpu f3719 +err_file=err main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 435

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>ca850 -cpu f3719 -err_file=err main.c

APPENDIX B COMMAND REFERENCE

436 User’s Manual U19386EJ1V0UM

-err_limit

[Description format]

- Interpretation when omitted
The maximum number of error messages to be output is regarded as 15.

[Function Description]

- This option specifies the maximum number of error messages to be output, num.
- Specify 15 to 50 in decimal numbers as num.

[Example of use]

- To specify 50 as the maximum number of error messages to be output, describe as:

-err_limit=num

C>ca850 -cpu f3719 -err_limit=50 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 437

The expansion function specification option is as follows.
- -cc78k

-cc78k

[Description format]

- Interpretation when omitted
The expansion functions compatible with the 78K microcontrollers C compiler CC78Kx is invalid.

[Function Description]

[78K-compatible]
- This option enables the expansion functions compatible with the 78K microcontrollers C compiler CC78Kx.

[Example of use]

- To enable the expansion functions compatible with the 78K microcontrollers C compiler CC78Kx, describe as:

Expansion function specification

-cc78k

C>ca850 -cpu f3719 -cc78k main.c

APPENDIX B COMMAND REFERENCE

438 User’s Manual U19386EJ1V0UM

The optimization options are as follows.
- -Od
- -Ob
- -Og
- -O
- -Os
- -Ot

-Od

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the optimize for debugging option.
- This option generates codes emphasizing source debugging, without putting stress on the ROM capacity and

execution speed.
- Its function is equivalent to the default optimization of CA850 Ver. 2.41 or earlier.

[Example of use]

- To generate codes emphasizing source debugging, describe as:

Optimization

-Od

C>ca850 -cpu f3719 -Od main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 439

-Ob

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the default optimization option.
This option generates codes emphasizing source debugging.

- It performs optimization within a range where source debugging is not affected.

[Example of use]

- To generate codes emphasizing source debugging within a range where source debugging is not affected,
describe as:

-Ob

C>ca850 -cpu f3719 -Ob main.c

APPENDIX B COMMAND REFERENCE

440 User’s Manual U19386EJ1V0UM

-Og

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the standard optimization option.
This option performs appropriate optimization.

- It performs optimization that allows debugging of the C source in most cases.
- Both the execution speed and code size are improved from those of the default option because external

variables are assigned to registers.

[Example of use]

- To perform appropriate optimization, describe as:

-Og

C>ca850 -cpu f3719 -Og main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 441

-O

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the Level 1 advanced optimization.
This option performs optimization emphasizing the ROM capacity.

[Example of use]

- To perform optimization emphasizing the ROM capacity, describe as:

-O

C>ca850 -cpu f3719 -O main.c

APPENDIX B COMMAND REFERENCE

442 User’s Manual U19386EJ1V0UM

-Os

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the Level 2 advanced optimization option (object size precedence).
This option performs the maximum optimization placing the utmost emphasis on the ROM capacity.

[Example of use]

- To perform the maximum optimization placing the utmost emphasis on the ROM capacity, describe as:

-Os

C>ca850 -cpu f3719 -Os main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 443

-Ot

[Description format]

- Interpretation when omitted
-Ob

[Function Description]

- This is the Level 2 advanced optimization option (execution speed precedence).
This option performs the maximum optimization placing the utmost emphasis on the execution speed rather
than the ROM capacity.

[Example of use]

- To perform the maximum optimization placing the utmost emphasis on the execution speed, describe as:

-Ot

C>ca850 -cpu f3719 -Ot main.c

APPENDIX B COMMAND REFERENCE

444 User’s Manual U19386EJ1V0UM

The target code optimization options are as follows.
- -Wi,-O4
- -Wi,-P

-Wi,-O4

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option strictly analyzes the data flow and performs the most advanced optimization.
- Specify this option, in addition to the optimization option -O, -Os, or -Ot, to perform more advanced optimization.
- Specifically, this option executes optimization as follows.

- Optimization of registers extending over a branch instruction
- Optimization of absolute value operations
- Optimization of a cmp instruction extending over a branch instruction
- Optimization of a return instruction extending over a branch instruction

- Depending on the source, the result may be the same as that of -O, -Os, or -Ot. The compiling time is longer
than that of -Os or -Ot.

[Example of use]

- To analyze the data flow strictly and perform the most advanced optimization, describe as:

Target code optimization

-Wi,-O4

C>ca850 -cpu f3719 -Os -Wi,-O4 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 445

-Wi,-P

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option prevents optimization that allows branch destination labels to be aligned.
- This option can reduce the size of the execution code.
- This option is valid when Level 2 advanced option (execution speed precedence) -Ot is specified.

[Example of use]

- To prevent optimization that allows branch destination labels to be aligned during performing optimization giving
priority to the execution speed, describe as:

-Wi,-P

C>ca850 -cpu f3719 -Ot -Wi,-P main.c

APPENDIX B COMMAND REFERENCE

446 User’s Manual U19386EJ1V0UM

The file merging option is as follows.
- -Om

-Om

[Description format]

- Interpretation when omitted
None

[Function Description]

- When two or more files are specified at the same time, this option merges the files.
- Although it will slow down the compiler, you can widen the scope of inline expansion by specifying optimization

options -O, -Os, and -Ot at the same time. However, it makes source debugging difficult.

[Example of use]

- When two or more files are specified at the same time, to merges the files, describe as:

File merging

-Om

C>ca850 -cpu f3719 -Om -Os main.c sub.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 447

The inline expansion optimization control options are as follows.
- -Wp,-G
- -Wp,-N
- -Wp,-S
- -Wp,-l
- -Wp,-inline
- -Wp,-no_inline
- -Wp,-r

-Wp,-G

[Description format]

- Interpretation when omitted
-Wp,-G32

[Function Description]

- This option restricts the stack size for a function subject to inline expansion to num specification in the
intermediate language so that inline expansion is not performed for any value larger than num.

- See the -Wp,-l option for details about a yardstick of num.

[Example of use]

- To restrict the stack size for a function subject to inline expansion to 64 in intermediate language, describe as:

Inline expansion optimization control

-Wp,-Gnum

C>ca850 -cpu f3719 -Wp,-G64 main.c

APPENDIX B COMMAND REFERENCE

448 User’s Manual U19386EJ1V0UM

-Wp,-N

[Description format]

- Interpretation when omitted
When the Level 2 advanced option (execution speed precedence) is specified, it is assumed that -Wp,-N128
has been specified. Otherwise, it is assumed that -Wp,-N24 has been specified.

[Function Description]

- This option restricts the intermediate language size for a function subject to inline expansion to num
specification so that inline expansion is not performed for any value larger than num.

- See the -Wp,-l option for details about a yardstick of num.

[Example of use]

- To restrict the intermediate language size for a function subject to inline expansion to 64, describe as:

-Wp,-Nnum

C>ca850 -cpu f3719 -Wp,-N64 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 449

-Wp,-S

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option unconditionally performs inline expansion of a static function that is referenced only once.

[Example of use]

- To perform inline expansion of a static function that is referenced only once unconditionally, describe as:

-Wp,-S

C>ca850 -cpu f3719 -Wp,-S -Os main.c

APPENDIX B COMMAND REFERENCE

450 User’s Manual U19386EJ1V0UM

-Wp,-l

[Description format]

- Interpretation when omitted
Function information is not output.

[Function Description]

- This option outputs function information to the standard output or additionally outputs to file.
- The output information is a yardstick for the value to be specified by the -Wp,-G and -Wp,-N options. For

example, a function called is expanded inline if the function requires stack size equal to or less than the value
specified by -Wp,-N. Also, it is expanded inline if the function requires code size equal to or less than the value
specified by -Wp,-G.

- Note that the stack size output by this option is the size in intermediate language output by the pre-optimizer
and is different from the stack size actually used by the function.

[Example of use]

- To output function information to the standard output, describe as:

-Wp,-l[=file]

C>ca850 -cpu f3719 -Wp,-l main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 451

-Wp,-inline

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option performs inline expansion of only a function for which #pragma inline is specified.
- When -Ot is specified, the compiler automatically identifies the function and performs inline expansion.
- Specify this option to expand only the function specified by the user.

[Example of use]

- To perform inline expansion of only a function for which #pragma inline is specified, describe as:

-Wp,-inline

C>ca850 -cpu f3719 -Wp,-inline -Ot main.c

APPENDIX B COMMAND REFERENCE

452 User’s Manual U19386EJ1V0UM

-Wp,-no_inline

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option suppresses inline expansion of all functions, including the function for which #pragma inline is
specified.

- It is useful for suppressing all inline expansion functions when -Ot is specified.

[Example of use]

- To suppress inline expansion of all functions, describe as:

-Wp,-no_inline

C>ca850 -cpu f3719 -Wp,-no_inline -Ot main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 453

-Wp,-r

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option deletes unnecessary functions from the functions called from an entry function, funcname, after
inline expansion.

- Specify funcname by prefixing '_' to a function described in C language. If funcname is not specified, it is
assumed that "_main" has been specified.

- The function that is called only by an assembler source is deleted as an unnecessary function because the
calling is not recognized.
Interrupt functions and real-time OS tasks are not included as functions subject to deletion.

[Example of use]

- To delete unnecessary functions from the functions called from an entry function "func", after inline expansion.

-Wp,-r[funcname]

C>ca850 -cpu f3719 -Wp,-r_func -Om -Os main.c sub.c

APPENDIX B COMMAND REFERENCE

454 User’s Manual U19386EJ1V0UM

The loop expansion optimization control options are as follows.
- -Wo,-Ol
- -Wo,-Xlo

-Wo,-Ol

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option expands a loop num times using "for" and "while".
- This option can be specified only when performing optimization giving priority to the execution speed.
- The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a loop

that includes a code expanded num times.
If the code size after expansion is too great or if the number of times of execution of the loop is too few, the
number of times of expansion may decrease, or the loop may not be expanded at all. In addition, a loop having
a complicated structure, such as having inner loops, may not be expanded.

- If 0 or 1 is specified as num, expansion is suppressedNote. If num is not specified, it is assumed that 4 has been
specified. Specify num in decimal numbers.

Note This option is useful when loop expansion does not need to be performed with the Level 2 advanced
option (execution speed precedence) specified.

[Example of use]

- To expand a loop that is executed 10 times four times, describe as:

If the following source is compiled,

The following results are obtained.

Loop expansion optimization control

-Wo,-Ol[num]

C>ca850 -cpu f3719 -Wo,-Ol4 -Ot main.c

i = 0;

while(i < 10) {

 /* Processing */

 ++i;

}

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 455

i = 0;

/* Processing */

i =1;

/* Processing */

i = 2;

while(i < 10) {

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

}

APPENDIX B COMMAND REFERENCE

456 User’s Manual U19386EJ1V0UM

-Wo,-Xlo

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option expands a loop by fixing the number of times of expanding the loop to the value specified by -Wo,-
Olnum.

- This option can be specified only when performing optimization giving priority to the execution speed.

[Example of use]

- To expands a loop by fixing the number of times of expanding the loop to 4 times, describe as:

-Wo,-Xlo

C>ca850 -cpu f3719 -Wo,-Xlo -Ot main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 457

The strcpy, strcmp expansion option is as follows.
- -Xi

-Xi

[Description format]

- Interpretation when omitted
Inline expansion of strcpy() or strcmp() function calls does not performed.

[Function Description]

- This option sets a 4-byte alignment condition for arrays (including character strings) and structures and
performs inline expansion of strcpy() or strcmp() function calls.

- This improves the execution speed of the object but it also increases the code size.
- This option executes conversion only when the second argument of strcpy() is a character string or when

strcmp() is called. In addition, the program requires four-byte alignment of the arguments (the C compiler aligns
the second argument of strcpy() since it is a character string).

- This option can not be specified together with the -Xpack option.

[Example of use]

- To set a four-byte alignment condition for arrays (including character strings) and structures and performs inline
expansion of strcpy() or strcmp() function calls, describe as:

strcpy, strcmp expansion

-Xi

C>ca850 -cpu f3719 -Xi main.c

APPENDIX B COMMAND REFERENCE

458 User’s Manual U19386EJ1V0UM

The external variable sort option is as follows.
- -Wo,-Op

-Wo,-Op

[Description format]

- Interpretation when omitted
External variables are not rearranged sequentially, starting from the largest alignment size.

[Function Description]

- This option rearranges external variables allocated to a section other than const/sconst sequentially, starting
from the largest alignment size.

- If intermediate file file is specified, the definition and tentative definition of variables in the source file allocated to
a section other than const/sconst having external linkage are moved to file. After being moved, the definition
and tentative definition of variables in the source file are treated in the same manner as declaration. An error
will not occur even if file does not exist at the beginning.

[Example of use]

- To rearrange external variables allocated to a section other than const/sconst sequentially, starting from the
largest alignment size, describe as:

External variable sort

-Wo,-Op[=file]

C>ca850 -cpu f3719 -Wo,-Op main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 459

The branch instruction control option is as follows.
- -Wo,-XFo

-Wo,-XFo

[Description format]

- Interpretation when omitted
A code that the debug information is given priority for branch instructions is output.

[Function Description]

- This option arranges and outputs branch instructions, giving precedence to the code size.
However, it makes source debugging difficult.

- This option is valid when -Og, -O, -Os, or -Ot is specified.

[Example of use]

- To output a code with branch instructions arranged so that the code size is given priority and performs
appropriate optimization, describe as:

Branch instruction control

-Wo,-XFo

C>ca850 -cpu f3719 -Os -Wo,-XFo main.c

APPENDIX B COMMAND REFERENCE

460 User’s Manual U19386EJ1V0UM

The register use control options are as follows.
- -r
- -reg
- -Xmask_reg

-r

[Description format]

- Interpretation when omitted
External variables are not be statically allocated to a register.

[Function Description]

- This option allocates the specified external variable sym to register rnum.
- In num, specify a register other than the mask register that is vacated by specifying the -reg option.
- sym is an external variable name. A volatile variable, variable using address operator, aggregate, array,

variable having internal linkage, and peripheral I/O register cannot be specified.

[Example of use]

- To allocate external variable "arg" to register "r18" (when using the 22-register mode), describe as:

Register use control

-rnum=sym

C>ca850 -cpu f3719 -reg22 -r18=arg main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 461

-reg

[Description format]

- Interpretation when omitted
-reg32

[Function Description]

- This option limits the number of registers used by the C compiler as n registers (n = register mode).
The range of values that can be specified for n are as follows.

Table B-3. Register Mode

- This option cannot be set independently for each source file. It is always used for all files.
- Since the settings by this option are also recognized by the linker, a library of the appropriate mode is

referenced.
- By specifying this option, the register mode of the software register bank function can be changed.

[Example of use]

- To limit the number of registers used by the C compiler as 22 registers, describe as:

-regn

Register Mode (n) Working Registers Registers for Register Variables

22 r10 to r14 r25 to r29

26 r10 to r16 r23 to r29

32 r10 to r19 r20 to r29

C>ca850 -cpu f3719 -reg22 main.c

APPENDIX B COMMAND REFERENCE

462 User’s Manual U19386EJ1V0UM

-Xmask_reg

[Description format]

- Interpretation when omitted
The mask register function is invalid.

[Function Description]

- This option specifies use of the mask register function.
- When this function is used, the C compiler outputs codes, assuming that an 8-bit mask value, 0xff, is set to r20

and a 16-bit mask value, 0xffff, is set to r21. Mask values must be set to the mask registers (r20 and r21) by a
user program such as the startup routine.

- With the V850 microcontrollers, byte data and half-word data are sign-extended to word length, depending on
the value of the highest bit, when they are loaded from memory to registers. Consequently, the mask code of
the higher bits may be generated when an operation on unsigned char or unsigned short type data is
performed.
When the result of an operation is stored in a register variable, a mask code is generated for unsigned byte data
and unsigned half-word data to clear the higher bits.
In both the cases, generation of the mask code can be avoided if word data is used. If word data cannot be
used and a mask code is generated, the code size can be reduced by using the mask register function.

- To decide whether the mask register function is to be used or not, the following points must be thoroughly
considered.

- Is it a program that outputs many mask codes?
- Two registers for register variables are used as mask registers: Does this have any effect?

- If an object that uses a mask register and an object that does not use a mask register exist together when this
option is specified, the linker outputs an error.

- In the 32 register mode, -mask_reg is passed to the linker. As a result, the standard library is searched by the
linker first in the mask register folder (lib850\r32msk) and then the standard folder.

[Example of use]

- To use the mask register function, describe as:

-Xmask_reg

C>ca850 -cpu f3719 -Xmask_reg main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 463

The prologue/epilogue processing control option is as follows.
- -Xpro_epi_runtime

-Xpro_epi_runtime

[Description format]

- Interpretation when omitted
-Xpro_epi_runtime=off (when -Ot is specified)
-Xpro_epi_runtime=on (-Ot is not specified)

[Function Description]

- This option specifies whether or not to perform prologue/epilogue processing of the function based on runtime
library function calls.

- If “on” is specified, prologue/epilogue processing of the function is performed based on runtime library function
calls.

- If neither [=on] or [=off] is specified, it is assumed that [=on] has been specified. This option is set to "on" by
default, and is set to "off" if [=off] is specified or the -Ot option is specified.

[Example of use]

- Not to perform prologue/epilogue processing of the function based on runtime library function calls, describe as:

Prologue/epilogue processing control

-Xpro_epi_runtime[=on|=off]

C>ca850 -cpu f3719 -Xpro_epi_runtime=off main.c

APPENDIX B COMMAND REFERENCE

464 User’s Manual U19386EJ1V0UM

The variable placement control options are as follows.
- -G
- -Xsconst
- -Xcre_sec_data
- -Xcre_sec_data_only
- -Xsec_file

-G

[Description format]

- Interpretation when omitted
all data is allocated to the .sdata section or the .sbss section.

[Function Description]

- This option allocates data of less than num bytes to the .sdata or .sbss section.
- Data specified by the .sdata or .sbss section in the #pragma section directive or in "B.7.1 Section file" is

allocated to that section regardless of the size.
- Specify num in decimal numbers. A yardstick for the value to be set is output by the -A option of the linker.

[Example of use]

- To allocate data of less than 16 bytes to the .sdata or .sbss section, describe as:

Variable placement control

-Gnum

C>ca850 -cpu f3719 -G16 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 465

-Xsconst

[Description format]

- Interpretation when omitted
all the const attribute data and character string literals are allocated to the .const section.

[Function Description]

- This option allocates const attribute data and character string literals to the .sconst section.
- If num has been specified, data whose size is num bytes or less is allocated to the .sconst section and if num

has been omitted, allocation is performed regardless of the data size.
- Specify num in decimal numbers.
- If a different option is specified for each file, a code of a different method of placing and referencing variables

may be generated and an error or warning may be output during linking.

[Example of use]

- To allocates const attribute data and character string literals to the .sconst section, describe as:

-Xsconst[=num]

C>ca850 -cpu f3719 -Xsconst main.c

APPENDIX B COMMAND REFERENCE

466 User’s Manual U19386EJ1V0UM

-Xcre_sec_data

[Description format]

- Interpretation when omitted
The frequency information file for the variables is not output.

[Function Description]

- This option outputs the frequency information file for the variables used by the Section File Generator.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c or .ic replaced by .sec to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c or .ic replaced by .sec to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced
by .sec.

- If several C source files exist, and a frequency information file is to be created with a file name specified for
each file, specify this option with "=outfile" for each C source file from the command line. C source files are
specified one at a time.

- The frequency information file for the variables outputs information how often the ld or st instruction accesses
variables in the C source file. Nothing is performed on the assembler source file.

- If this option and the -Xcre_sec_data_only option are specified at the same time, the -Xcre_sec_data_only
option takes precedence.

[Example of use]

- To output the frequency information file for the variables (main.sec), describe as:

-Xcre_sec_data[=outfile]

C>ca850 -cpu f3719 -Xcre_sec_data main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 467

-Xcre_sec_data_only

[Description format]

- Interpretation when omitted
The frequency information file for the variables is not output.

[Function Description]

- This option outputs the frequency information file for the variables used by the Section File Generator.
However, unlike the -Xcre_sec_data, this option outputs only the frequency information file for the variables and
does not perform object generation.

- This option is used when outputting only the frequency information file.

(1) If the file name is specified as outfile
Saves outfile to the current folder under the specified file name.

(2) If the folder is specified as outfile
Saves the file under the file name with extension .c or .ic replaced by .sec to the specified folder.

(3) If =outfile is omitted
Saves the file under the file name with extension .c or .ic replaced by .sec to the current folder.

(4) If two or more files are output
Creates a folder specified for outfile, and saves the files under each file name with extension .c or .ic replaced
by .sec.

- If several C source files exist, and a frequency information file is to be created with a file name specified for
each file, specify this option with "=outfile" for each C source file from the command line. C source files are
specified one at a time (by specifying -c).

- The frequency information file for the variables outputs information how often the ld or st instruction accesses
variables in the C source file. Nothing is performed on the assembler source file.

[Example of use]

- To output only the frequency information file for the variables (main.sec) and not to perform object generation,
describe as:

-Xcre_sec_data_only[=outfile]

C>ca850 -cpu f3719 -Xcre_sec_data_only main.c

APPENDIX B COMMAND REFERENCE

468 User’s Manual U19386EJ1V0UM

-Xsec_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies the name of the section file (see "B.7.1 Section file") that is used to specify section

allocation of data when the C compiler is activated. Be sure to specify the file name.

- Two or more section files can be input by specifying this option two or more times.

[Example of use]

- To specify the name of the section file (section) that is used to specify section allocation of data when the C
compiler is activated, describe as:

-Xsec_file=file

C>ca850 -cpu f3719 -Xsec_file=section main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 469

The signed/unsigned control options are as follows.
- -Xbitfield
- -Xchar
- -Xenum_type

-Xbitfield

[Description format]

- Interpretation when omitted
int type bit fields that do not indicate the type specifier (signed or unsigned) are handled as signed.

[Function Description]

- This option specifies whether int type bit fields that do not indicate the type specifier (signed or unsigned) are
handled as signed or unsigned.

- The following can be specified as string.

- A warning message is output when the specification is handled as unsigned.

[Example of use]

- To handle int type bit fields that do not indicate the type specifier (signed or unsigned) as signed, describe as:

signed/unsigned control

-Xbitfield=string

s Handled as signed

signed Handled as signed

u Handled as unsigned

unsigned Handled as unsigned

C>ca850 -cpu f3719 -Xbitfield=s main.c

APPENDIX B COMMAND REFERENCE

470 User’s Manual U19386EJ1V0UM

-Xchar

[Description format]

- Interpretation when omitted
This option handles char type that do not indicate the type specifier (signed or unsigned) as signed.

[Function Description]

- This option specifies whether char type that do not indicate the type specifier (signed or unsigned) are handled
as signed or unsigned.

- The following can be specified as string.

[Example of use]

- To handle char type that do not indicate the type specifier (signed or unsigned) as signed, describe as:

-Xchar=string

s Handled as signed

signed Handled as signed

u Handled as unsigned

unsigned Handled as unsigned

C>ca850 -cpu f3719 -Xchar=s main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 471

-Xenum_type

[Description format]

- Interpretation when omitted
The enumeration type is handled as signed int.

[Function Description]

- This option specifies which integer type the enumeration type matches.
- The following can be specified as string.

[Example of use]

- To handle the enumeration type as signed char, describe as:

-Xenum_type=string

char Handled as signed char

uchar Handled as unsigned char

short Handled as short

ushort Handled as unsigned short

C>ca850 -cpu f3719 -Xenum_type=char main.c

APPENDIX B COMMAND REFERENCE

472 User’s Manual U19386EJ1V0UM

The switch-case statement output code control options are as follows.
- -Xcase
- -Xword_switch

-Xcase

[Description format]

- Interpretation when omitted
The code output format for switch statements that the compiler considers optimal is automatically determined.

[Function Description]

- This option specifies a mode in which the code of a switch statement is to be output.
- The following can be specified as string.

- A warning message is output when the specification is handled as unsigned.

[Example of use]

- To output a code for the switch statement in the binary search format, describe as:

Switch-case statement output code control

-Xcase=string

ifelse Outputs the code in the same format as the if-else statement along a string of case statements.
If the case statements are written in the order of frequency or if only a few labels are used, select this
option. Because the case statements are compared starting from the top, unnecessary comparison can be
reduced and the execution speed can be increased if the case statement that most often matches is written
first.

binary Outputs the code in the binary search format.
Searches for a matching case statement by using a binary search algorithm. If this option is selected when
many labels are used, any case statement can be found at almost the same speed.

table Outputs the code in a table jump format.

References a table indexed on the values in the case statements, and selects and processes case labels
from the switch statement values. Code will branch to all the case statements with about the same speed.If
case values are not used in succession, an unnecessary area is created.

C>ca850 -cpu f3719 -Xcase=binary main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 473

-Xword_switch

[Description format]

- Interpretation when omitted
2-byte branch tables are generated.

[Function Description]

- This option generates one 4-byte branch table per case label in a switch statement.
- Specify this option when a compile error occurs because the switch statement is long.

[Example of use]

- To generate 4-byte branch tables per case label, describe as:

-Xword_switch

C>ca850 -cpu f3719 -Xword_switch main.c

APPENDIX B COMMAND REFERENCE

474 User’s Manual U19386EJ1V0UM

The structure packing control options are as follows.
- -Xbyte
- -Xpack

-Xbyte

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies indirect address access to a structure in byte units.
- Use this option if a limit is exceeded when the structure packing function is used.

[Example of use]

- To specify indirect address access to a structure in byte units, describe as:

Structure packing control

-Xbyte

C>ca850 -cpu f3719 -Xbyte main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 475

-Xpack

[Description format]

- Interpretation when omitted
None

[Function Description]

- By using this option, the specified alignment can be used without aligning structure members in accordance
with the type of each member.

- The data size can be reduced but the code size increases. 1, 2, 4, or 8 can be specified as num. The default
value is 8Note.

- If this option is specified if structure packing is specified by the #pragma directive in the C source, the value
specified by this option is applied to all structures until the first #pragma directive appears. After that, the value
of the #pragma directive is applied.
Even after the #pragma directive has appeared, however, the value specified by the option is applied if the
default value is specified.

- This option can not be specified together with the -Xi option.
- This option has following restrictions, when using the V850/V850Ex/V850E2 core that is set to disable misalign

access. These restrictions are the same as for #pragma pack.
- The addresses of structure members cannot be correctly obtained.
- Accessing a bit field also accesses data area because the type of the member is read.

If the width of the bit field is less than the type of the member, the outside of the object is accessed because the
type of the member is read. Usually, no problem with execution occurs, but an illegal access may be made if I/
O is mapped.

Note With this version, the operation when the value of num is "4" is the same as that when it is "8".

[Example of use]

- To align structure members by using the specified alignment (1), describe as:

-Xpack=num

C>ca850 -cpu f3719 -Xpack=1 main.c

APPENDIX B COMMAND REFERENCE

476 User’s Manual U19386EJ1V0UM

The far jump output control options are as follows.
- -Xfar_jump
- -Xj

-Xfar_jump

[Description format]

- Interpretation when omitted
The jarl directive is used to branch to the function.

[Function Description]

- The jmp directive is used to branch to the function specified in file.
- The linker outputs an error if the function is in a range that cannot be branched to by the jarl or jr directive

(±2MB or more), in which case this option is used to recompile.
- A extension is necessary for a file name. The extension ".fjp" is recommended.
- This option cannot be specified to call a function at the flash side from the boot side by using the flash/external

ROM re-link function. See "B.3.3 Boot-flash relink function" for details.

[Example of use]

- To use jmp directive to branch to the function specified in func.fjp, describe as:

Far jump output control

-Xfar_jump=file

-Xfar_jump file

C>ca850 -cpu f3719 -Xfar_jump=func.fjp main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 477

-Xj

[Description format]

- Interpretation when omitted
The jr instruction is used for an ordinary interrupt function defined in C language.

[Function Description]

- This option uses the jmp instruction for an ordinary interrupt function defined in C language.
- The linker outputs an error if the function is in a range that cannot be branched to by the jr directive (1MB or

more), in which case this option is used to recompile. The jr instruction is used if this option is omitted.
- This option cannot be specified to call a function at the flash side from the boot side by using the flash/external

ROM re-link function. See "B.3.3 Boot-flash relink function" for details.

[Example of use]

- To use the jmp instruction for an ordinary interrupt function defined in C language, describe as:

-Xj

C>ca850 -cpu f3719 -Xj main.c

APPENDIX B COMMAND REFERENCE

478 User’s Manual U19386EJ1V0UM

The comment output option is as follows.
- -Xc

-Xc

[Description format]

- Interpretation when omitted
The C source program is not output as a comment to the assembler source file.

[Function Description]

- This option outputs the C source program as a comment to the assembler source file.
- However, the output comments are for reference only and may not correspond exactly to the code.

For example, comments concerning global variables, local variables, function declarations, etc., may be output
to incorrect positions. If the code is deleted by the optimization, only the extracted comment may remain.

- To use this option, one of -S, -a, -Fs, or -Fv must be specified.

[Example of use]

- To output the C source program as a comment to the assembler source file (main.s), describe as:

Comment output

-Xc

C>ca850 -cpu f3719 -Xc -S main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 479

The ANSI standard options are as follows.
- -Xe
- -Xdefvar
- -ansi

-Xe

[Description format]

- Interpretation when omitted
The mulh and divh directives are used for integers corresponding to data that is 16 bits or less.

[Function Description]

- This option specifies that runtime library ___mul/___mulu or ___div/___divu will be used when using the V850,
runtime library mul/mulu or div/divu will be used when using the V850E, without using the mulh and divh
directives for integers corresponding to data that is 16 bits or less.

- This option slows the processing speed but strictly performs with the multiplication and division processing
under the ANSI standard.

- The runtime library of the C compiler is prepared as the standard library of CA850 so that the instructions not
provided to the architecture of the V850 microcontrollers satisfy the ANSI standard.

[Example of use]

- To use runtime library ___mul/___mulu or ___div/___divu for integers corresponding to data that is 16 bits or
less, describe as:

ANSI standard

-Xe

C>ca850 -cpu f3719 -Xe main.c

APPENDIX B COMMAND REFERENCE

480 User’s Manual U19386EJ1V0UM

-Xdefvar

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option treats tentative definition of variables as definition.
- If this option is specified, then if there are tentative definitions with the same name in multiple files, it is possible

that they will not be linked into one definition during linking, and a multiple-definition error will occur.

[Example of use]

- To treat tentative definition of variables as definition, describe as:

-Xdefvar

C>ca850 -cpu f3719 -Xdefvar main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 481

-ansi

[Description format]

- Interpretation when omitted
Compatibility with the conventional C language specifications is conferred and processing continues after
warning message is output.

[Function Description]

- This option makes C compiler processing comply strictly with the ANSI standard and outputs an error or
warning for a specification that violates the standard.

- Extended description other than in _asm format is recognized.
- Specifying this option defines the macro name __STDC__.
- Processing when compiling in strict adherence to the language specification is as follows.

(1) Trigraph sequences
Replaces trigraphs. They are not replaced if this option is not specified.

(2) Bit fields
An error occurs if a type other than an int type is specified in a bit field. If this option is not specified, a warning
is output and the specification is permitted.

(3) Scope of arguments
If an automatic variable with the same name as a function argument is declared, a duplicate definition error
occurs. If this option is not specified, a warning is output and the automatic variable is valid.

(4) Pointer assignment

(a) An error occurs if a pointer type numeric value is assigned to a general integer type variable. If this
option is not specified, a warning is output and the pointer is assigned by casting.

(b) An error occurs if pointers that point to different types are assigned. If this option is not specified,
a warning is output and the specification is permitted.

(5) Type conversion
An error occurs if a non-left side value array is converted to a pointer. If this option is not specified, a warning is
output and the specification is permitted.

(6) Comparison operators
An error occurs if an arithmetic type variable and a pointer are compared. If this option is not specified, a
warning is output and the specification is permitted.

(7) Conditional operators
An error occurs if the second and third expressions are not both general integer types, the same structure, the
same union, or pointer types to the same type of assignment target. If this option is not specified, a warning is
output and the pointer is assigned by casting.

-ansi

APPENDIX B COMMAND REFERENCE

482 User’s Manual U19386EJ1V0UM

(8) #line-number
An error occurs. If this option is not specified, #line-number is treated the same way as "#line line-number".

(9) "#" character within a line
An error occurs. If this option is not specified, a warning is output and the specification is permitted.

(10)_asm
A warning is output and _asm is treated as a function call. However, __asm is valid. If this option is not
specified, __asm is treated as an assembler insert.

(11) _ _ STDC_ _
A macro with a value of 1 is defined. If this option is not specified, the macro name is not defined as a macro.

(12)Binary constant
Binary constant is unusable. If this option is not specified, a string that consists of "0b" or "0B" followed by one
or more "0" or "1" is treated as a binary constant.

[Example of use]

- To make C compiler processing comply strictly with the ANSI standard and outputs an error or warning for a
specification that violates the standard, describe as:

C>ca850 -cpu f3719 -ansi main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 483

The library specification options are as follows.
- -L
- -R
- -l

-L

[Description format]

- Interpretation when omitted
Only the standard folder is searched.

[Function Description]

- This option searches libraries from folder dir, the standard folder in that order.
- The standard folder is "install folder\CA850\Vx.xxNote\lib850" and "install folder\CA850\Vx.xxNote\lib850\r32". If

the register mode is specified, however, r22 or r26 folder is searched instead of r32 folder.

Note Vx.xx is the version of the C compiler.

- See the -L option of the linker.

[Example of use]

- To searche libraries from folder "dir", the standard folder in that order, describe as:

Library specification

-Ldir

C>ca850 -cpu f3719 -Llib main.c

APPENDIX B COMMAND REFERENCE

484 User’s Manual U19386EJ1V0UM

-R

[Description format]

- Interpretation when omitted
crtN.o or crtE.o in the standard folder is used as the startup module. The standard folder is "install
folder\CA850\Vx.xxNote\lib850\r32(r26, r22)".

Note Vx.xx is the version of the C compiler.

[Function Description]

- When startup goes as far as the linker, the startup module to be used is indicated to the linker as file.

[Example of use]

- To indicate to the linker that the startup module to be used is as start.o, describe as:

-R file

C>ca850 -cpu f3719 -R start.o main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 485

-l

[Description format]

- Interpretation when omitted
Nothing is referenced. When activating the linker from the C compiler, however, the C compiler automatically
passes the link specification of the standard library (-lc) and mathematical library (-lm) to the linker.

[Function Description]

- This option specifies the archive file that is referenced by the linker.
When activating the linker from the C compiler, however, the C compiler automatically passes the link
specification of the standard library (-lc) and mathematical library (-lm) to the linker.

- See the library specification option (-l) of the linker for how to specify an archive file.

[Example of use]

- To specify the archive file (libarc.a) that is referenced by the linker, describe as:

-lstring

C>ca850 -cpu f3719 -larc main.c

APPENDIX B COMMAND REFERENCE

486 User’s Manual U19386EJ1V0UM

The warning message control options are as follows.
- -w
- -won
- -woff

-w

[Description format]

- Interpretation when omitted
If -wnum is omitted, it is assumed that -w1 has been specified.
If -wstring+, -wstring- are omitted, the warning message output is according to the -wnum level.

[Function Description]

- -wnum specifies the level of warning messages.
- The following number can be specified as num.

- If num is omitted, it is assumed that 殆 0 has been specified.
- -wstring+ and -wstring- specify outputting or suppressing a warning message for each parameter regardless of

the level. A warning message is output when "+" has been specified or is suppressed when "-" has been
specified.

- The following character strings can be specified as string.

- An error occurs if neither "+" nor "-" has been specified.

Warning message control

-wnum

-wstring+

-wstring-

0 Suppresses messages

1 Outputs normal warning messages

2 Outputs detailed warning messages

bitfield_align When bit field members have exceeded the boundary set by the alignment condition and have been
allocated starting from the next boundary

bitfield_type When a type that cannot be specified in the ANSI specification is specified for the bit field

callnodecl When an undeclared function is called

cast_type When conversion to a type whose size is smaller than that of the original type is performed

comparison When the comparison expression is always true (or false)

nopic When a pointer type external variable is initialized by using a variable address that is not an automatic
variable or a function address

pragma When a non-executable #pragm+a description appears

sharp When a sharp symbol (#) appears in a source line

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 487

[Example of use]

- To output detailed warning messages, describe as:

- To output warning messages when a type that cannot be specified in the ANSI specification is specified for the
bit field, describe as:

C>ca850 -cpu f3719 -w2 main.c

C>ca850 -cpu f3719 -wbitfield_type+ main.c

APPENDIX B COMMAND REFERENCE

488 User’s Manual U19386EJ1V0UM

-won

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs a warning message of the number specified by num.
- A warning message in the 2000s can be specified as num.
- When the W2042 warning message is output, specify "-won=2042". If num1-num2 is specified, the warning

messages from num1 to num2 are specified. num cannot be omitted.
- If a warning number not provided in the C compiler is specified, a warning message is output.

[Example of use]

- To output the W2042 warning message, describe as:

-won=num[,num]...

-won=num1-num2[,num3-num4]...

C>ca850 -cpu f3719 -won=2042 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 489

-woff

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option suppresses a warning message of the number specified by num.
- A warning message in the 2000s can be specified as num.
- When the W2042 warning message is suppressed, specify "-woff=2042". If num1-num2 is specified, the

warning messages from num1 to num2 are specified. num cannot be omitted.
- If a warning number not provided in the C compiler is specified, a warning message is output.

[Example of use]

- To suppress the W2042 warning message, describe as:

-woff=num[,num]...

-woff=num1-num2[,num3-num4]...

C>ca850 -cpu f3719 -woff=2042 main.c

APPENDIX B COMMAND REFERENCE

490 User’s Manual U19386EJ1V0UM

The command file specification option is as follows.
- @

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file (see "(2) Command file"). As a result, there is no need to be aware
of the length limits of option character strings.

- In the command file, the arguments to be specified can be coded over several lines, but do not divide options,
file names, and the like across two lines.

[Example of use]

- To handle "command" as a command file, describe as:

Command file specification

@cfile

C>ca850 @command main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 491

The CPU bug patch option is as follows.
- -Xv850patch

-Xv850patch

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies the -p[num] option for the assembler according to the num specification for an assembler
source file output by the C compiler to output a code corresponding to a CPU fault (see "(2) Options for
avoiding CPU faults").

- 1, 2, 3, 4, 4a, 5, 6, 7, 8, 9, 10, or 11 can be specified as num. 5 to 10 are valid for the V850E/ES core only.
- If =num is omitted, it is assumed that "1, 2, 3, 4, 4a, 5, 6, 7, 8, 9, 10" has been specified as num.
- This option is to avoid faults of the CPU. To determine whether or not a fault that has occurred is from the CPU

being used, see the documents supplied with the CPU.
- Only the -Xv850patch=11 option is handled by the C compiler. If the -Xv850patch=11 option is specified, the

following instructions are not output.
- set1/clr1/not1
- Misalign access of V850E/ES core (during structure packing)

If these instructions are used in an asm statement and an assembler source file, they are output as is because
asm statements and assembly language source files are not checked.

- When specifying the -Xv850patch=11 option and describing bit access to the peripheral I/O register in the
program, access to the peripheral I/O register is in word (4-byte) units. Change descriptions to byte/half-word
unit operation, not bit access.

- The faults between CPU core and patch option is as follows (for the newest version μPD70(F)3xxx, not
including maintenance or obsolete products).
To determine whether or not the failure affects the CPU being used, see the CPU's documentation.

Table B-4. Faults Between CPU Core and -Xv850patch Option

Remark A: Affected
-: Not affected

CPU bug patch

-Xv850patch[=num]

CPU Core -Xv850patch=11

V850 core -

V850E/MS1 A

V850E1 core A

V850ES core A

V850E2 core -

APPENDIX B COMMAND REFERENCE

492 User’s Manual U19386EJ1V0UM

[Example of use]

- To specify the -p4a option for the assembler for an assembler source file output by the C compiler to output a
code corresponding to a CPU fault, describe as:

C>ca850 -cpu f3719 -Xv850patch=4a main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 493

The C compiler can pass options to each module.
- -W

-W

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option passes option as an option for module x. If option includes a comma, the option is assigned as
multiple options, each delimited by a comma.

- The following can be specified as module x.

(1) Pre-optimizer (popt)

(a) -Wp,-D
This option reduces the memory capacity used during compiling.

(b) -Wp,-Gnum
This option restricts the stack size for a function subject to inline expansion to num specification in
intermediate language so that inline expansion is not performed for any value larger than num.
See the -Wp,-l option for details about a yardstick of num.
If this option is not specified, it is assumed that -Wp,-G32 has been specified.

(c) -Wp,-Nnum
This option restricts the intermediate language size for a function subject to inline expansion to num
specification so that inline expansion is not performed for any value larger than num.
See the -Wp,-l option for details about a yardstick of num.
If this option is not specified and the Level 2 advanced option (execution speed precedence) is specified, it
is assumed that -Wp,-N128 has been specified. Otherwise, it is assumed that -Wp,-N24 has been
specified.

(d) -Wp,-S
This option performs inline expansion of a static function that is referenced only once unconditionally.

(e) -Wp,-l[=file]
This option outputs function information to the standard output or additionally outputs to file.

Each module

-Wx,option

p Pre-optimizer (popt)

o Global optimization module (opt)

i Machine-dependent optimization module (impr)

a Assembler (as850)

l Linker (ld850)

APPENDIX B COMMAND REFERENCE

494 User’s Manual U19386EJ1V0UM

The output information is a yardstick for the value to be specified by the -Wp,-G and -Wp,-N options. For
example, a function called is expanded inline if the function requires stack size equal to or less than the
value specified by -Wp,-N. Also, it is expanded inline if the function requires code size equal to or less than
the value specified by -Wp,-G.
Note that the stack size output by this option is the size in intermediate language output by the pre-optimizer
and is different from the stack size actually used by the function.

(f) -Wp,-r[_funcname]
This option deletes unnecessary functions from the functions called from an entry function, funcname, after
expansion.
Specify funcname by prefixing '_' to a function. If funcname is not specified, it is assumed that "_main" has
been specified.
The function that is called only by an assembler statement is deleted as an unnecessary function because
the calling is not recognized. Interrupt functions and real-time OS tasks are not included as functions
subject to deletion.

(g) -Wp,-inline
This option performs inline expansion of only a function for which #pragma inline is specified.

(h) -Wp,-no_inline
This option suppresses inline expansion of all functions, including the function for which #pragma inline is
specified.

(2) Global optimization module (opt)

(a) -Wo,-Ol[num]
This option expands a loop num times using "for" and "while".
This option can be specified only when performing optimization giving precedence to the execution speed.
The loop is converted into execution of a loop that is executed N times (N is a constant) and execution of a
loop that includes a code expanded num times. If the code size after expansion is too great or if the number
of times of execution of the loop is too few, the number of times of expansion may decrease, or the loop
may not be expanded at all. In addition, a loop having a complicated structure, such as having inner loops,
may not be expanded.
If 0 or 1 is specified as num, expansion is suppressedNote. If num is not specified, it is assumed that 4 has
been specified. Specify num in decimal numbers.

Note This option is useful when loop expansion does not need to be performed with the Level 2 advanced
option (execution speed precedence) specified.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 495

Example

(b) -Wo,-Op[=file]
This option rearranges external variables allocated to a section other than const/sconst sequentially,
starting from the largest alignment size.
If intermediate file file is specified, the definition and tentative definition of variables in the source file
allocated to a section other than const/sconst having external linkage are moved to file. After being moved,
the definition and tentative definition of variables in the source file are treated in the same manner as
declaration. An error will not occur even if file does not exist at the beginning.

(c) -Wo,-XFo
This option outputs code giving precedence to the code size for branch instructions.
However, the debug information will be affected. This option is valid when -Og, -O, -Os, or -Ot is specified.
If this option is omitted, this option outputs code giving precedence to debug information for branch
instructions.

(d) -Wo,-Xlo
This option expands a loop under the condition of the version CA850 Ver. 2.02 or earlier.

(3) Machine-dependent optimization module (impr)

(a) -Wi,-D
This option reduces the memory capacity used during compiling.
However, the compilation speed slow down. Specify this option if too much memory is used so that the
compiler is unable to operate normally.

(b) -Wi,-O4
This option analyzes the data flow strictly and performs the following optimization.

- Optimization of registers extending over a branch instruction
- Optimization of absolute value operations
- Optimization of a cmp instruction extending over a branch instruction
- Optimization of a return instruction extending over a branch instruction

When a loop that is executed 10 times expands four times

i = 0;

while(i < 10) {

 /* Processing */

 ++i;

}

i = 0;

/* Processing */

i =1;

/* Processing */

i = 2;

while(i < 10) {

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

 /* Processing */

 ++i;

}

APPENDIX B COMMAND REFERENCE

496 User’s Manual U19386EJ1V0UM

However, the compilation speed slow down. Specify this option, in addition to optimization option -O, -Os,
or -Ot, to analyze the data flown powerfully.

(c) -Wi,-P
This option suppresses optimization that aligns labels. As a result, the code size can be reduced.

(4) Assembler (as850)
See "B.2.3 Option".

(5) Linker (ld850)
See "B.3.2 Option".

[Example of use]

- To analyze the data flow strictly and perform the optimization, describe as:

C>ca850 -cpu f3719 -Wi,-O4 -Os main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 497

Other option is as follows.
- +Oc

+Oc

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option performs advanced optimization.
- This function is valid by default if the V850E2 core device is specified as a device type.

[Example of use]

- To perform advanced optimization, describe as:

Other

+Oc

C>ca850 +Oc -Ot -Wi,-O4 main.c

APPENDIX B COMMAND REFERENCE

498 User’s Manual U19386EJ1V0UM

B.1.5 Cautions

(1) Specifying multiple options
Some options become invalid if they are specified at the same time as certain other options. Of the following
options, those on the right of the ">" symbol become invalid if they are specified with the options shown on the
left of the ">" symbol.

- -E > -P
- -U > -D
- -E/-P > -G > -L > -O > -R > -S > -Wc > -a > -c > -l > -m > -o

Since execution is terminated during preprocessing, the options related to the modules following the front
end are invalid.

- -S > -L / -R / -W[a|l] / -a / -c / -l
Since execution is terminated at the code generation module or the machine-dependent optimization
module, the options related to the modules following the assembler are invalid.

- -V / -help
Any option that is specified after this is invalid.Moreover, this option is specified, all the other options
become invalid.

- -c > -L / -R / -Wl / -l
Since execution is terminated at the assembler, the options related to the modules following the linker are
invalid.

- -m > -G / -L / -O / -R / -S / -Wc / -a / -c / -l
Since execution is terminated at the front end, the options related to the modules following the pre-
optimizer are invalid.

- -Og / -O / -Os / -Ot > -a / -Fv
If -Og, -O, -Os, or -Ot has been specified, an incorrect display may result.

- -Od / -Ob / -Og / -O / -Os / -Ot
Any option that is specified after this is invalid.

- -w / -w[1|2]
Any option that is specified before this is invalid.

(2) Command file
Instead of specifying options and file names for commands as command-line arguments, they can be specified
in a command file. The C compiler treats the contents of a command file as if they were command-line
arguments. In the command file, the arguments to be specified can be coded over several lines. However,
options and file names must not be coded over more than one line. Command files cannot be nested.
In the command file, the following characters are treated as special characters.

The special characters themselves are not included in the command line of the C compiler for which a command
file is specified, but deleted.

Remark With the as850, ar850, hx850, dump850, dis850, and romp850, only " (double quotation mark) can
be used.

" (double quotation mark) The character string before the next " (double quotation mark) is treated as a
contiguous character string.

(sharp) If specified at the beginning of a line, characters on that line before the end of the line
are treated as a comment.

^ (circumflex) The character immediately following this is not treated as a special character.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 499

- Example of command file

- Example of command file specification

(3) Efficient use of optimization
"Optimization" is processing used to increase the execution speed of an application or to decrease the ROM
capacity to be used. How optimization is performed differs depending on the level of optimization. If a high level
of optimization is selected, the compilation speed may slow down and the probability of allocating C source lines
to be deleted or changed and variables to registers increases. In the latter case, phenomena such as being
unable to set breakpoints with the debugger may occur, and the debugging efficiency may be affected.
Below is an overview of the optimizations that can be specified with the -O option, and a guideline for efficient
use of optimization.

Figure B-3. Optimization Processing and Parameters

Table B-5. Optimization Processing and Items

-Dtest ... Describes #define test

-o object ... Specifies an object file name

a.c ... Specifies the file to be compiled

C>type cfile

 -cpu 3201 -c -Os file.c <-contents of command file

C>ca850 @cfile ... Same operation as ca850 -cpu 3201 -c -Os file.c

Option: Optimization Function Effect

Debug Code
Efficiency

Execution
Speed

Compilation
Time

-Od: Optimize for Debugging Level 4 Level 1 Level 1 Level 3

-Ob: Default Optimization Level 3 Level 2 Level 2 Level 3

-Og: Standard Optimization Level 3 Level 3 Level 3 Level 3

-O: Level 1 Advanced Optimization Level 2 Level 4 Level 4 Level 2

Optimization
Strong

Optimization
Weak

Default Optimization(-Ob)

Level 2 Advanced Opt.

(Speed precedence) (-Ot)

Level 2 Advanced Opt.

(Size precedence) (-Os)

Level 1 Advanced Optimization

(-O)

Standard Optimization (-Og)

Optimize for Debugging (-Od)

APPENDIX B COMMAND REFERENCE

500 User’s Manual U19386EJ1V0UM

The meanings of the expressions in this table are as follows.

(a) -Od: Optimize for Debugging
Optimization is executed within a basic blockNote. This is optimization using information that can be
grasped in a basic block.

- Calculation of constants, deformation of expressions
- Recognition of common parts in a basic block
- Propagation of copy in a basic block

This optimization includes the followings.
This optimization is executed by default when compilation is executed. For example, an operation
expression of only constants is replaced by the constants of the operation result during compilation.
The effect of this optimization is the weakest with the C compiler. This optimization is equivalent in level to
the default optimization of CA850 Ver. 2.4x.

Note The longest array of instructions whose first instruction is always executed first. A branch occurs
only from the last instruction of this array.

(b) -Ob: Default Optimization
Optimization in a basic block and allocation of automatic variables to coloring registers are performed.

- Automatic variables are allocated as registers.
This optimization does not affect debugging.

This is the default optimization of the CA850. It deletes more unnecessary codes than -Od because
register allocation is a high-level function.

-Os: Level 2 Advanced Option (Size
precedence)

Level 1 Level 5 Level 4 Level 2

-Ot: Level 2 Advanced Option (Speed
precedence)

Level 1 Level 4 Level 5 Level 1

Debug As the level of optimization increases, optimization that deletes C source lines and concentrates
the same processing on one location occurs, and there is a tendency that the places where
breakpoints can be set decrease. In addition, the probability of assigning a variable from the
memory to a register improves.

The level of optimization at which the tendency that many breakpoints can be set and the
probability of allocating variables to registers is small is called level 4, and the level at which the
tendency is the strongest is called level 1. Debugging can be executed even at level 1.

Code Efficiency The ROM size efficiency is classified into levels 1 to 5.

The option that minimizes the ROM size is -Os. This option takes a long compilation time. Use
the -Og or -O option if the ROM capacity has a relatively wide margin.

Execution Speed The execution speed is classified into levels 1 to 5.

To reduce the ROM capacity of the entire module and improve the effective speed of only critical
functions further, specify the -Ot option in file units.

Compilation Time The compilation time is classified into levels 1 to 3.

Options -O, -Os, and -Ot execute powerful optimization and therefore take a longer compilation
time than the other options.

Option: Optimization Function Effect

Debug Code
Efficiency

Execution
Speed

Compilation
Time

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 501

(c) -Og: Standard Optimization
In addition to optimization in a basic block and allocation of coloring registers, the following optimization is
performed by using the information that can be grasped in a function (only the representative operations are
described).

- An instruction string that finds common operations and processes them all at once is output.
- An assignment statement whose value does not change in a loop is moved out of the loop.

Step execution and breakpoints may not be set as intended by the user.
- Redundant assignment statements are deleted.

The breakpoint of a deleted line cannot be set.
- External variables are allocated to registers.

The read/write break to memory may not be correctly executed during debugging.
- Optimization that rearranges instructions by the C compiler to avoid register/flag hazards is performed.

This optimization does not affect debugging.

This optimization is higher in compilation speed than the advanced optimization, and its code efficiency/
execution speed is intermediate in the optimization of the C compiler. The setting this option is
recommended if the ROM capacity has a relatively wide margin.

(d) -O: Level 1 Advanced Optimization
In addition to the optimization performed by options up to -Og, the following optimization is performed (only
the representative operations are described).

- Only a loop that is executed only once is expand to avoid the overhead of end condition judgment.
This optimization does not affect debugging.

- Label alignment and 4-byte alignment at the beginning of a function are suppressed.
This optimization does not affect debugging.

- A label not referenced is deleted.
A breakpoint cannot be set to a label that is to be deleted.

- Unnecessary instructions are deleted.
Breakpoints and step execution may not be set as intended by the user.

- Peep hole optimization (rearrangement of five or less instructions to an efficient instruction string) is
performed.
Breakpoints and step execution may not be set as intended by the user.

This optimization is equivalent to the object size priority option -Os of the CA850 Ver. 2.4x.
This option does not perform inline expansion of a static function that is referenced only once, which is
performed with the CA850 Ver. 2.4x.

(e) -Os: Level 2 Advanced Option (Size precedence)
An optimization is executed until processing of -O can no longer be optimized. This option performs
optimization giving priority to object size and is the most powerful option. It performs all optimization to not
increase the code size of the optimization supported by the C compiler and reduces the size as much as
possible.
Depending on the contents of the application, further optimization may be able to be reinforced by using the
following options and functions, in addition to -Os.
Depending on the contents of the application, optimization may be able to be reinforced by using the
following options and functions, in addition to the above option.

- Specifying -Wi,-O4
The data flow is analyzed and optimization is reinforced. However, the compilation time tends to
increase considerably.

- Using mask register
 In the case of an application that often uses mask codes for operations of unsigned char and unsigned
short types, the mask register function can be used to reduce the code size.

APPENDIX B COMMAND REFERENCE

502 User’s Manual U19386EJ1V0UM

However, if the mask register function is used, there will be two less registers for register variables that
can be used when in 32 register mode and two less empty registers when in the mode other than 32
register mode.

- Using section file
If data is allocated to the internal memory or a section that is referenced by one instruction per gp/r0,
the code size can be reduced and the execution speed can be increased. If data is not allocated to a
section by program, it is allocated to [tidata.byte] / [tidata.word] / [sidata] / [sedata] / [sconst] / [sdata] by
a section file (see "B.7.1 Section file") during compilation.

Of the optimization of the C compiler giving emphasis to the code size, this optimization minimizes the size.
This optimization is equivalent to the object size priority option -Os and optional optimization option -Ol of
the CA850 Ver. 2.4x.
This option does not perform inline expansion of a static function that is referenced only once, which is
performed with the CA850 Ver. 2.4x.

(f) -Ot: Level 2 Advanced Option (Speed precedence)
This option performs optimization, giving priority to the execution speed. It is used to shorten the execution
time, even at the expense of the size, in applications such as data processing.
In addition to the optimization performed by options up to -O, this option executes the following optimization
of suppressing.

- 4-byte alignment of a label
- 4-byte alignment at the beginning of a function

In addition, it also executes the followings.
- Tail recursion optimization
- Inline expansion
- Loop expansion

If a return statement at the end of a function calls the function itself, tail recursion optimization converts that
function into a loop and reduces the stack used for function calling.
Inline expansion expands the body of a function at the part calling the function, increasing the possibility of
optimization, and preventing the overhead for the calling.
Loop expansion expands the loop body two or more times to increase the possibility of optimization and
prevent the overhead for conditional judgment and branch.
Inline expansion and loop expansion increase the object size and improve the execution speed.
When -Ot is specified and a function including an asm statement defining a label is used, the same label is
defined at the part of function definition and inline expansion. In this case, a label multiple definition error
occurs. The function specified by #pragma block_interrupt, #pragma interrupt, #pragma rtos_task, or
#pragma text is not subject to inline expansion. In this case, no message is output.
If a function including an asm statement on which inline expansion is not expected to be executed is used,
such as manipulation of a stack frame, an execution error may occur because an illegal function frame
manipulation takes place.

Caution If the size is increased too much by the Level 2 advanced option (speed precedence),
adjust inline expansion and loop expansion by using the options "-Wp,-G" and "-Wo,-Ol".
To execute inline expansion only on a specific function, regardless of the option, use
#pragma inline. This can give priority to the execution speed of only a specific function,
while "size priority" is specified.

Depending on the contents of the application, optimization may be able to be reinforced by using a mask
register in the same manner as when -Os is specified.
In addition, optimization speed can be reinforced by using the following function.

- Expanding strcpy(), strcmp()
If the option -Xi, which executes "expansion of strcpy/strcmp" for an application that often uses the

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 503

character string copy function strcpy(), is specified, the execution time is shortened. However, the size
increases.

- Specifying -Wp,-r
An unnecessary function may be generated as a result of inline expansion that has merged source
files. If the "-Wp,-r" option is specified in this case, the unnecessary functions may be deleted, and the
size may be reduced.

Of the optimization of the C compiler giving emphasis to the execution speed, the execution speed of this
option is the highest. This optimization is equivalent to the object speed priority option -Ot and optional
optimization option -Ol of the CA850 Ver. 2.4x.
As explained above, the C compiler has several levels and items of optimization. To specify optimization,
the following criteria must be noted.

- Giving priority to size
- Giving priority to the execution speed at the expense of size

Most optimization functions reduce the size and improve the execution speed at the same time. Whether
emphasis is given to the size or execution speed is determined depending on whether some functions are
used or not.

(4) Effects of optimization on debugging
Note with caution that optimization can have the following kinds of effects when using the source debugger.

- As a result of deformation of an expression by optimization (propagation of copy and recognition of
common part expression), "variable reference" does not take place where the read/write event of a variable
appears in the source program, and the event may not occur as expected by the user.

- When a statement has been made common, deleted, or rearranged, step execution and breakpoints may
not be set as intended by the user.

- The live range of a variable (range in which the variable can be referenced in the program) and position of
a variable (position on a register or memory) may be changed.

- Breakpoints cannot be set for statements that have been deleted.
- Transfer, splitting, or merging of statements may have rearranged the sequence of executable

instructionsNote, so that lines between the lines which have been rearranged may be handled as a single
line for which break points and step execution can no longer be set.

Note The address of an executable instruction within a line of source code may be smaller than the
address of an executable instruction in a previous line or may be greater than the address of an
executable instruction in a subsequent line.

- If the sequence of executable instructions for if-else statements has been rearranged or if loop expansion
has caused a sequence of executable instructions to be rearranged, step execution may no longer be
possible, as when a statement has been made common, deleted, or rearranged.

- The entire function is regarded as the valid range (scope) for all automatic variables. However, if the
variables have been allocated to registers, they can be deleted or otherwise rendered invisible by
optimization even when they are within the scope. This can occur when the variables are being used as
"local variables" within the scope or have been assigned as local variables as a result of optimization.

APPENDIX B COMMAND REFERENCE

504 User’s Manual U19386EJ1V0UM

Example

In the above example, the scope of "a" is the entire function f(). However, use of "a" is limited to
section between address 1 and address 2. In this case, if "a" is allocated to a register and optimization
causes it to be deleted from the stack frame, "a" will become invisible outside of the section between
address 1 and address 2. This phenomenon occurs in order to make more efficient use of registers by
making the register where "a" has been allocated (except for the section between address 1 and
address 2) available for the allocation of other variables.

- During compilation, the processing of debug information uses a large amount of memory and therefore can
cause an "out of memory" condition to occur.

- Sections that have been performed inline expansion are treated as a single unit, and cannot be stepped
into.

- When loop expansion has been performed, the loop body is treated as a single unit, and cannot be stepped
into. Additionally, the number of times the body unit is stopped is the number of loops after expansion, not
before.

- If a register is allocated to an external variable, optimization debugging cannot be executed because the
debug information of the specified external variable is deleted.

void f(void)

{

 int a; /* Valid within function */

 :

 /* address 1 */

 : /* "a" is used only within the range from address 1 to address 2. */

 /* address 2 */

 :

}

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 505

B.2 Assembler

The assembler (as850) assembles a specified assembly source file and creates a relocatable object file.

Figure B-4. Operation Flow of Assembler

B.2.1 I/O files

The assembler can specify the following files as input files.

The name of the relocatable object file generated by the assembler has extension .o instead of.s.
The file names supported by Windows can be specified, but "@" cannot be used at the head of a file name because

it is regarded as a command option. The name of a file or folder that includes a space cannot be used. If the kanji
code of the file is EUC, a file name or folder name in Japanese cannot be used.

If the relocatable object file created by the assembler includes an unresolved external reference, its relocation
remains unresolved.

An executable object file resolving all relocations (called the "execution format") is created by linking the relocatable
object file via the linker.

See “3.1 Assembler” for details about output lists.

B.2.2 Method for manipulating

This section explains how to manipulate the assembler.

(1) Command input method
The assembler is started from the ca850 under the default settings, but it can also be started in the following
format.
Enter the following from the command prompt.

file.s Assembler source file (called the .s file)

C>as850 [option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Assembler source file

Assembler

Relocatable object file

APPENDIX B COMMAND REFERENCE

506 User’s Manual U19386EJ1V0UM

(2) Set options in CubeSuite
This section describes how to set assemble options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Assemble Options] tab.
You can set the various assemble options by setting the necessary properties in this tab.

Figure B-5. Property Panel: [Assemble Option] Tab

B.2.3 Option

This section explains assemble options.

Caution To pass the assemble options from the ca850 to the assembler without modification, "-Wa" must
be specified with the ca850 (see "Each module").

The types and explanations for assemble options are shown below.

Table B-6. Assemble Options

Classification Option Description

File -a Generates an assemble list.

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-l If the -a option is specified, an assemble list generated is saved.

Assembler -D Specifies the macro name to be defined.

-G Generates a machine language instruction on the assumption that the data that is less than
the specified bytes is allocated to sections with the sdata or sbss attribute in response to
external label access.

-I Specifies the folder where the file specified by the file input quasi directive is given
precedence to searching.

-m Generates an object file that includes information noting use of the mask register function.

-O Performs optimization that rearranges instructions to avoid register/flag hazards.

-v Outputs the execution status of the assembler to the standard error output in detail.

-w Specifies the level, output, and suppression of a warning message.

-Xfar_jump Specifies far jump for branch instructions (jarl, jr) that do not include 22/32.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 507

Table B-7. Mark Used in Option Descriptions

Device -X256M Treats the memory space as having 256 MB.

-bpc Sets the higher address of the programmable peripheral I/O register.

Other -cn Embeds the magic number common to V850 core.

-cnv850e Embeds the magic number common to V850Ex core.

-cnv850e2 Embeds the magic number common to V850E2 core.

-cpu Specifies the target device.

-F Specifies the folder where device files are stored.

-g Outputs debug information.

-o Specifies the name of the object file to be assembled and output.

-p Outputs code that avoids CPU faults.

-V Outputs the version information of the assembler to the standard error output.

-zf Performs assembly processing on the flash/external ROM side.

@ Handles the specified file as a command file.

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

Classification Option Description

APPENDIX B COMMAND REFERENCE

508 User’s Manual U19386EJ1V0UM

The options of preprocessing for the assembler source file are as follows.
- -a
- +err_file
- -err_file
- -l

-a

[Description format]

- Interpretation when omitted
No assemble list is generated.

[Function Description]

- This option generates an assemble list.
- If the -l option is not specified, an assemble list generated is output to the standard output.
- When the -O option (optimization option) is specified, a part of the assemble list may be incorrectly output due

to instruction rearrangement.

[Example of use]

- To generate an assemble list, describe as:

File

-a

C>as850 -cpu f3719 -a main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 509

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

+err_file=file

C>as850 -cpu f3719 +err_file=err main.s

APPENDIX B COMMAND REFERENCE

510 User’s Manual U19386EJ1V0UM

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>as850 -cpu f3719 -err_file=err main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 511

-l

[Description format]

- Interpretation when omitted
If the -a option is specified, an assemble list generated is output to the standard output.

[Function Description]

- The assemble list generated when the -a option is specified is placed in a file with the name file.
- If the -a option is not specified, this option is invalid.

[Example of use]

- To save the assemble list in the file (asm), describe as:

-l file

C>as850 -cpu f3719 -a -l asm main.s

APPENDIX B COMMAND REFERENCE

512 User’s Manual U19386EJ1V0UM

The options of assembler for the assembler source file are as follows.
- -D
- -G
- -I
- -m
- -O
- -v
- -w
- -Xfar_jump

-D

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies the macro name to be defined.
- If =def is omitted, def is regarded as 1. This option assumes that ".set name, def" is entered before the

assembler source program.

[Example of use]

- To assume that ".set sample, 256" is entered before the assembler source program, describe as:

Assembler

-Dname[=def]

C>as850 -cpu f3719 -Dsample=256 main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 513

-G

[Description format]

- Interpretation when omitted
it is assumed that num = ∞.

[Function Description]

- This option generates a machine language instruction on the assumption that all data that is less than num
bytes is allocated to sections with the sdata or sbss attribute in response to external label access.

- The range that can be specified as num is 0 to 32767 in decimal numbers.
- This option generates an assembler instruction on the assumption that data which sdata is specified in quasi

directive ".option sdata" is allocated to sections with the sdata or sbss attribute, regardless of the size of the
data.

- When activating from the ca850, the -Gnum option specified in the ca850 activation is passed.

[Example of use]

- To generate a machine language instruction on the assumption that the data up to 16 bytes is allocated to the
sdata or sbss section, describe as:

-Gnum

C>as850 -cpu f3719 -G16 main.s

APPENDIX B COMMAND REFERENCE

514 User’s Manual U19386EJ1V0UM

-I

[Description format]

- Interpretation when omitted
The folder where the source file is placed, the folder where the C source file is placed, and the current folder are
searched in that order.

[Function Description]

- This option specifies the folder where the file specified by the file input quasi directive (.include/.binclude) is
searched prior to the folder where the source files are placed.

- If the file was not found in the specified folder or if this option is omitted, the folder where the source file is
placed, the folder where the C source file is placed, and the current folder are searched in that order.

[Example of use]

- To specify the folder where the file specified by the file input quasi directive (.include/.binclude) is searched from
the folder (D:\head), describe as:

-I dir

C>as850 -cpu f3719 -I D:\head main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 515

-m

[Description format]

- Interpretation when omitted
The mask register function is invalid.

[Function Description]

- This option generates an object file that includes information noting use of the mask register function.
- When this function is used, the assembler outputs codes, assuming that an 8-bit mask value, 0xff, is set to r20

and a 16-bit mask value, 0xffff, is set to r21.
- Mask values must be set to the mask registers (r20 and r21) by a user program such as the startup routine.
- To decide whether the mask register function is to be used or not, the following points must be thoroughly

considered.
- Is it a program that outputs many mask codes?
- When in 32-register mode, two registers for register variables are used as mask registers: Does this have

any effect?
- When in the mode other than 32-register mode, two empty registers are used as mask registers: Does this

have any effect?

[Example of use]

- To generate an object file that includes information noting use of the mask register function, describe as:

-m

C>as850 -cpu f3719 -m main.s

APPENDIX B COMMAND REFERENCE

516 User’s Manual U19386EJ1V0UM

-O

[Description format]

- Interpretation when omitted
The instruction rearranging optimization is invalid.

[Function Description]

- This option performs optimization that rearranges instructions to avoid register/flag hazards.
- If this option and -g option (debug information output) are specified at the same time, this option is ignored and

the -g option is valid.
- If the -p option (CPU faults avoidance option) is specified at the same time when the target device of the V850

core is specified or if a V850 core common object is created, this option is ignored and the -p option is valid.
- If the -p option is specified at the same time when the target device of the V850E/V850E1/V850ES core is

specified or if a V850E/V850E1/V850ES core common object is created, this option and the -p option are valid.

[Example of use]

- To perform optimization that rearranges instructions to avoid register/flag hazards, describe as:

-O

C>as850 -cpu f3719 -O main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 517

-v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the execution status of the assembler to the standard error output in detail.

[Example of use]

- To output the execution status of the assembler to the standard error output in detail, describe as:

-v

C>as850 -cpu f3719 -v main.s

APPENDIX B COMMAND REFERENCE

518 User’s Manual U19386EJ1V0UM

-w

[Description format]

- Interpretation when omitted
No warning messages are suppressed.

[Function Description]

- The -w option does not output a warning message in the following cases.
- If r1 has been specified as the source register or the destination register
- If r0 has been specified as the destination register
- If r20 or r21 has been specified as the destination register when using the mask register function

- -wstring+ and -wstring- specify outputting or suppressing a warning message for each parameter regardless of
whether the -w option is specified. A warning message is output when "+" has been specified or is suppressed
when "-" has been specified.

- The following character strings can be specified as string.

- An error occurs if neither "+" nor "-" has been specified.

[Example of use]

- To output a warning message of the specified number, describe as:

- To output a warning message when r0 has been specified as the destination register, describe as:

-w

-wstring+

-wstring-

r0 If r0 has been specified as the destination register

r1 If r1 has been specified as the source register or the destination register

C>as850 -cpu f3719 -w main.s

C>as850 -cpu f3719 -wr0+ main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 519

-Xfar_jump

[Description format]

- Interpretation when omitted
If 22/32 is not described in the branch instruction, it is the ordinary branch instruction (not a far jump).

[Function Description]

[V850E2]
- When a V850E2 core is specified as the device type for the assembler, this option specifies far jump for branch

instructions (jarl, jr) that do not include 22/32.
- To change the setting in instruction units, explicitly describe jarl22/jarl32 or jr22/jr32.
- The jmp instruction is not affected by the -Xfar_jump option.

[Example of use]

- To specify far jump for branch instructions (jarl, jr) that do not include 22/32, describe as:

-Xfar_jump

C>as850 -cpu 3500 -Xfar_jump main.s

APPENDIX B COMMAND REFERENCE

520 User’s Manual U19386EJ1V0UM

The options related to the device of assembler for the assembler source file are as follows.
- -X256M
- -bpc

-X256M

[Description format]

- Interpretation when omitted
The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]
- Treats the memory space as having 256 MB.
- Set this option in accordance with the chipset to be used.
- The physical address space of the V850Ex core has 256 MB in many cases. When creating an application that

uses a space between 64 MB and 256 MB, specify this option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device

-X256M

C>as850 -cpu f3719 -X256M main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 521

-bpc

[Description format]

- Interpretation when omitted
The higher address of the programmable peripheral I/O register is treated as 0.

[Function Description]

- This option sets the higher address of the programmable peripheral I/O register.
- In num, specify only the part of address from which the highest bit of the BPC register is removed.
- If the target device has programmable peripheral I/O register functions (such as V850E/IA1) and you want to set

the variable address portion (= value set in BPC register), the value must be determined when assembling the
application. If this option is specified, assembly is performed using the specified value.

- When this option is specified, be sure to specify a value. A binary, octal, decimal, or hexadecimal number can
be used for the value.

- If an invalid value is specified, or if a value outside the range that can be set in the BPC register is specified, a
warning message is output and this option is ignored.

- One value is set for an entire application. If you specify "-Xbpc" or "-bpc" when setting options by file, make the
values the same between files.

- This option is not needed to be specify for files that do not use the programmable peripheral I/O register.
- If this option is specified for a target device that does not have programmable peripheral I/O register functions or

when assembling as a common for V850 core and V850Ex core, a warning message is output and this option is
ignored.

- This option is for determining the address of the programmable peripheral I/O register when assembling and
does not actually reflect a value in the BPC register.
For operation, it is necessary to set a value in the BPC register separately using a startup module or the like.
See CubeSuite V850 Coding User's Manual about a sample of the startup routine. Also, a sample appears
(commented out) in the startup module included in the package.

- The assembler outputs the .bpc section which is the special reserved section when the programmable
peripheral I/O register is referenced, regardless of whether this option is specified or omitted.
This section is used for checking when linking. The .bpc section is a special reserved section for information
and is never loaded into memory. Therefore, it need not be specified in a link directive like a normal section.

[Example of use]

- If the target device is V850E/IA1, the following option setting treats the start address of the programmable
peripheral I/O register area to be shifted 14 bits to the left, or "0x48d0000".

Specify the following descriptions in the startup module to make the variable portion of the start address of the
programmable peripheral I/O register "0x1234" and set the flag 0x8000 that enables the use of this function.

-bpc=num

C>as850 -cpu 3116 -bpc=0x1234 main.s

mov 0x9234,r10 - - 0x1234 | 0x8000 = 0x9234

st.h r10, BPC

APPENDIX B COMMAND REFERENCE

522 User’s Manual U19386EJ1V0UM

Other option is as follows.
- -cn
- -cnv850e
- -cnv850e2
- -cpu
- -F
- -g
- -o
- -p
- -V
- -zf
- @

-cn

[Description format]

- Interpretation when omitted
The magic number defined by the specified target device is embedded.

[Function Description]

- This option embeds the common magic number common to V850 core into the object to be generated as the
magic number. This enables the object to be used as a common object within the V850 core.

[Example of use]

- To embed the magic number common to V850 core into the object, describe as:

Other

-cn

C>as850 -cn main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 523

-cnv850e

[Description format]

- Interpretation when omitted
The magic number defined by the specified target device is set.

[Function Description]

[V850E]
- This option sets the common magic number common to V850Ex core into the object to be generated as the

magic number. This enables the object to be used as a common object within the V850Ex core.

[Example of use]

- To embed the magic number common to V850Ex core into the object, describe as:

-cnv850e

C>as850 -cnv850e main.s

APPENDIX B COMMAND REFERENCE

524 User’s Manual U19386EJ1V0UM

-cnv850e2

[Description format]

- Interpretation when omitted
The magic number defined by the specified target device is set.

[Function Description]

[V850E2]
- This option sets the common magic number common to V850E2 core into the object to be generated as the

magic number. This enables the object to be used as a common object within the V850E2 core.

[Example of use]

- To embed the magic number common to V850E2 core into the object, describe as:

-cnv850e2

C>as850 -cnv850e2 main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 525

-cpu

[Description format]

- Interpretation when omitted
This option cannot be omitted (except when specifying -cn, -cnv850e, or -cnv850e2).

[Function Description]

- This option specifies the target device.
- This option takes precedence over quasi directive ".option cpu".
- If a target device is specified by this option or quasi directive ".option cpu" and then the -cn/-cnv850e/-cnv850e2

option is specified, a core common object including information peculiar to the target device can be created.
- If neither quasi directive ".option cpu" nor -cn/-cnv850e/-cnv850e2 option is specified, and if this option is

omitted, assemble is stopped.

[Example of use]

- To specify UPD70F3719 as the target device, describe as:

-cpu devicename

C>as850 -cpu f3719 main.s

APPENDIX B COMMAND REFERENCE

526 User’s Manual U19386EJ1V0UM

-F

[Description format]

- Interpretation when omitted
The folder where device files are stored is regarded as the standard folder.

[Function Description]

- This option specifies the folder where device files are stored.

[Example of use]

- To search the folder where device files are stored from folder C:\NECTools32\dev, describe as:

-F devpath

C>as850 -cpu f3719 -F C:\NECTools32\dev main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 527

-g

[Description format]

- Interpretation when omitted
Symbol information for the source debugger is not output.

[Function Description]

- This option outputs debug information.
- Specify this option to debug the program (e.g. to perform assembler source debugging using the debugger).
- When the optimization option (-O) is specified at the same time, this option is ignored if there are sections for

debug information in the source file. If sections for debug information do not exist, the optimization option (-O)
is ignored and this option is valid. In other words, this option takes precedence if there is no debug information.

[Example of use]

- To output debug information, describe as:

-g

C>as850 -cpu f3719 -g main.s

APPENDIX B COMMAND REFERENCE

528 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
The object file name will be the source file name with the extension ".s" replaced by ".o".

[Function Description]

- This option specifies ofile as the name of the object file to be assembled and output.

[Example of use]

- To specify test.o as the name of the object file to be assembled and output, describe as:

-o ofile

C>as850 -cpu f3719 -o test.o main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 529

-p

[Description format]

- Interpretation when omitted
This option does not output code that avoids CPU faults.

[Function Description]

- This option outputs code that avoids CPU faults.
- Specify the type of the code to be output (1 to 10 or 4a) as num. 1 to 4 and 4a are valid for the V850 core, and

5 to 10 are valid for the V850E/ES core.
- If num is omitted, the following codes are identified from the device file and output.
- If the target device is the V850E/ES core or if "V850E/ES core common" is specified as the magic number by

the assemble option (-cnv850e), code 5 to 10 is output.
If the target device is the V850, code 1 to 3 or 4a is output.

- If "V850 core common" is specified as the magic number by the assemble option (-cn), code 1 to 3 and 5 to 10
is output.
See "(2) Options for avoiding CPU faults" for details about the code output due to this option.

[Example of use]

- To output code 4a to avoid CPU faults, which inserts a nop instruction immediately after the first load instruction
in relation to the combination of "load instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/
sld.[b|h|w]/sst.[b|h|w]/st.[b|h|w])", describe as:

-p[num]

C>as850 -cpu f3719 -p4a main.s

APPENDIX B COMMAND REFERENCE

530 User’s Manual U19386EJ1V0UM

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the assembler to the standard error output and terminates
processing.

[Example of use]

- To output the version information of the assembler to the standard error output, describe as:

-V

C>as850 -cpu f3719 -V main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 531

-zf

[Description format]

- Interpretation when omitted
Assembly processing is performed on the boot/internal ROM side for assembler source files that use the flash/
external ROM relink function.

[Function Description]

- This options performs assembly processing on the flash/external ROM side when the flash/external ROM relink
function has been used for the assembler source file.

- This option is not needed to be specify for assembler source files that does not use the flash/external ROM
relink function. If this option is specified, the function will not be changed.No warning messages are output.

- See "B.3.3 Boot-flash relink function" for details about the flash/external ROM relink function.

[Example of use]

- To perform assembly processing on the flash/external ROM side when the flash/external ROM relink function
has been used for the assembler source file, describe as:

-zf

C>as850 -cpu f3719 -zf main.s

APPENDIX B COMMAND REFERENCE

532 User’s Manual U19386EJ1V0UM

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>as850 @command main.s

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 533

B.2.4 Cautions

(1) Magic number
Information indicating the target device for an object is automatically embedded into an object created by the
assembler. This information is called a "magic number". A device-specific magic number is embedded if only a
particular type of device is the target device; if an entire core can serve as target devices, a "common magic
number" is embedded.
An object that has been assembled by the assembler when the -cn option has been specified contains a
common magic number and therefore can be linked to other objects for which a different device type has been
specified as long as the specified device belongs to the same core (the linker does not output an error when
they are linked). As a result, any object that is created after the -cn option has been specified can be used as an
object common to any device in the specified device's core.

Figure B-6. Image of Creating Common Object with Assembler

(a) Cautions
- Magic numbers common to cores and device-specific magic numbers are defined for each device file to

establish associations among the device core. The assembler references the device files and embeds the
magic numbers.

- Object files that operate device-specific peripheral function registers, etc., should not be used as common
files among cores.

- If a target device is specified by the -cpu option or .option quasi directive and then the -cn/-cnv850e/-
cnv850e2 option is specified, a core common object including information peculiar to the target device can
be created.
However, an object having device-specific information different from that of the target device does not
operate correctly. Check in advance that the device-specific information can be used with the intended
target device.

- The V850Ex core is upwardly compatible with the V850 core. Source files that are used with the V850 core
can be used with the V850Ex core. In this cases, specify the "-cn" option or the "-cnv850e" option before
creating an object. The object common to V850 core that is created with "-cn" can be linked with a V850Ex
core object. By contrast, an object that is created with "-cnv850e" cannot be linked with a V850 core object.

as850 -cn

.o

.o

.o.o

Link

Link

Executable object file

 Device specification A

Common magic number: 0x70FF

 Device specification C

Device-specific magic number: 0x70D1

 Device specification B

Device-specific magic number: 0x70D0

APPENDIX B COMMAND REFERENCE

534 User’s Manual U19386EJ1V0UM

- The V850E2 core is upwardly compatible with the V850/V850Ex core. Source files that are used with the
V850/V850Ex core can be used with the V850E2 core. In this cases, specify the "-cn" option or the "-
cnv850e" option before creating an object. The object common to V850/V850Ex core that is created with "-
cn" can be linked with a V850E2 core object. By contrast, an object that is created with "-cnv850e" cannot
be linked with a V850/V850Ex core object.

Figure B-7. Example of Assembler CPU Core Compatibility (V850Ex Core and V850 Core)

(2) Options for avoiding CPU faults
The C compiler provides the -Xv850patch option for the ca850 and the -p option for the assembler to avoid
faults from the V850 core and V850E/ES core CPU. When starting the assembler from the ca850, if the -
Xv850patch option is specified in the ca850, the -p option having the same num value is automatically set by the
assembler to the assembler source file output by the ca850.
Specify the type of the code to be output (1 to 10 or 4a) as num. 1 to 4 and 4a are valid for the V850 core, and
5 to 10 are valid for the V850E/ES core only. If num is omitted, the following codes are identified from the device
file and output.

- If the target device is the V850E/ES core or if "V850E/ES core common" is specified as the magic number
by the assemble option (-cnv850e), code 5 to 10 is output.

- If the target device is the V850 core, code 1 to 4 or 4a is output.
- If "V850 core common" is specified as the magic number by the assemble option (-cn), code 1 to 10, or 4a

is output.

Cautions are shown below.
- To determine whether or not a fault that has occurred is from the CPU being used, see the CPU's

documentation.
- If the -p option and assembler optimization option (-O) are specified at the same time when the target

device of the V850 core is specified or if a V850 core common object is created, -p takes priority and -O is
ignored.

- If the -p option and assembler optimization option (-O) are specified at the same time when a target device
of the V850E/ES core is specified or if a V850Ex/ES core common object is created, both -p and -O are
valid.

- If a code pattern that generates a fault covers different sections, this option's function becomes invalid.
- Only the -Xv850patch=11 option is handled by the ca850.
- The faults between CPU core and the -p option is as follows (for the newest version μPD70(F)3xxx, not

including maintenance or obsolete products).
To determine whether or not the failure affects the CPU being used, see the CPU's documentation.

as850 -cnas850 -cnv850e

as850 -cpu 3101 as850 -cpu 3002

.o

.o .o

.o

V850Ex core common V850 core common

V850E device specification V852 device specification

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 535

Table B-8. Faults Between CPU Core and -p Option

Remark OK: Affected
A: Corrected (for the newest version μPD70(F)3xxx, not including maintenance or obsolete
products)
---: Not affected

The types and meanings of num are as follows.
See the user's manual of relevant device's architecture for the instructions and registers.

(a) 1 (-Xv850patch=1 -> -p1)
Inserts a nop instruction immediately after the first ld.w in relation to the combination of "ld.w instruction +
(st.[b|h|w]/sst.[b|h|w]/ld.[b|w]/sld.[b|w] instruction) + branch instruction".

Example

(b) 2 (-Xv850patch=2 -> -p2)
Inserts a nop instruction between the load/store instruction and branch instruction in relation to the
combination of "ld.w/sld.w/st.w/sst.w instruction + branch instruction".

Example

If the pattern of num=1 is processed at the same time, the pattern of num=2 is searched and processed
first. An unnecessary nop instruction does not need to be inserted.

(c) 3 (-Xv850patch=3 -> -p3)
Inserts the clr1 instruction in relation to the corresponding interrupt control register immediately before the
reti instruction.

Example

CPU Core -p1 -p2 -p3 -p4 -p4a -p5 -p6 -p7 -p8 -p9 -p10

V850 core OK OK OK OK OK --- --- --- --- --- ---

V850E/MS1 --- --- --- --- --- OK --- --- A --- A

V850E1 core --- --- --- --- --- --- OK OK --- OK ---

V850ES core --- --- --- --- --- --- --- --- --- --- ---

V850E2 core --- --- --- --- --- --- --- --- --- --- ---

ld.w

sst.w

jarl

ld.w

nop

sst.w

jarl

ld.w

jarl

ld.w

nop

jarl

reti clr15, P0IC0

reti

APPENDIX B COMMAND REFERENCE

536 User’s Manual U19386EJ1V0UM

(d) 4 (-Xv850patch=4 -> -p4)
Inserts a nop instruction immediately after the first load instruction in relation to the combination of "load
instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/sld.[b|h|w]/sst.[b|h|w]/st.[b|h|w])"
(inserted when the peripheral I/O register has been accessed in the input file).

Example

(e) 4a (-Xv850patch=4a -> -p4a)
Inserts a nop instruction immediately after the first load instruction in relation to the combination of "load
instruction (ld.[b|h|w]/sld.[b|h|w]) + load store instruction (ld.[b|h|w]/sld.[b|h|w]/sst.[b|h|w]/st.[b|h|w])"
(inserted regardless of whether the peripheral I/O register is accessed or not).

Example

-p4 sets patch 4 in cases where peripheral I/O access occurs in an input file.
-p4a sets patch 4 regardless of whether or not peripheral I/O access occurs.

(f) 5 (-Xv850patch=5 -> -p5)
Inserts a nop instruction in relation to the multiplication instruction immediately after it without any
conditions.

Example

(g) 6 (-Xv850patch=6 -> -p6)
Inserts a nop instruction immediately after the load instruction in relation to the combination of "load
instruction (ld.[b|h|w]/sld.[b|h|w]) + jr/jarl/jcond (bcond)".

Example

(h) 7 (-Xv850patch=7 -> -p7)
Inserts a nop instruction immediately after the callt instruction. It also inserts the "mov r31, r0" instruction
immediately before the switch instruction and reti instruction.

ld.w

ld.w

ld.w

nop

ld.w

ld.w

ld.w

ld.w

nop

ld.w

mulh

jarl

mulh

nop

jarl

sld.bu

jarl

sld.bu

nop

jarl

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 537

Example

(i) 8 (-Xv850patch=8 -> -p8)
Inserts a nop instruction between the consecutive sld instructions.

Example

(j) 9 (-Xv850patch=9 -> -p9)
Inserts a nop instruction immediately after the sld instruction, if instructions (A), (B), and (C) below exist in a
row.

Example

<1> (A)
Of 2-byte instructions mov, not, satsubr, satsub, satadd, zxb, zxh, sxh, or, xor, and, subr, sub, add, shr,
sar, and shl, instructions that write back to a register other than r0 and r30

Example

Including the instructions that describe a .set symbol with LABEL, expression, or definition after
reference, and that are expanded to the above instructions.
The example below is not a CPU bug pattern but is subject to patching.

Example

<2> (B)
The sld instruction that writes back to a register different from those to which the instructions in (A)
write back

Example

switch mov r31, r0

switch

sld.b

sld.b

sld.b

nop

sld.b

add
sld
and

add ... (A)

sld.b ... (B)

nop

and ... (C)

add 0x1, r10

addi SYM, r10, r10

.set SYM, 0x123

sld.b %LABEL, r11

APPENDIX B COMMAND REFERENCE

538 User’s Manual U19386EJ1V0UM

<3> (C)
An instruction that loads a value to the register to which the instructions (A) write back

Example

Including the instructions that describe a .set symbol with LABEL, expression, or definition after
reference, and that load a value to the register to which the instructions (A) write back.

Example

In this example, if the relative values of LABEL2 and LABEL1 exceed the range that can be expressed
by 16 bits, the instructions are expanded as follows:

Instruction (B) is immediately followed by the move instruction, and the value of r10 is not loaded. In
other words, this example is not of a CPU bug pattern but is subject to patching.

(k) 10 (-Xv850patch=10 -> -p10)
Inserts a nop instruction immediately after the store instruction in relation to the combination of "store
instruction (sst.[b|h|w]/st.[b|h|w]) + jcond(bcond)".

Example

(l) No num specification (-Xv850patch -> -p)
Outputs each code in the combination of 1 to 3 and 5 to 10, judged by the device file (see the descriptions
above).
If this option is specified when creating an object that does not require a corresponding patch, no patch is
set. The correspondence between created objects and options is shown below.

Table B-9. Correspondence between Created Objects and -p Options

add r11, r10

 addi LABEL2-LABEL1, r10, r12

LABEL1:

 -- (omitted)

LABEL2:

mov LABEL2-LABEL1, r12

and r10, r12

sst.b

br

sst.b

nop

br

Created Objects -p1 -p2 -p3 -p4 -p4a -p5 -p6 -p7 -p8 -p9 -p10

Specific to V850 device P P P P P N N N N N N

Specific to V850E/ES
device

N N N N N P P P P P P

Specific to V850E2
device

N N N N N N N N N N N

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 539

Remark P: Patched
N: No patched

V850 core common P P P P P P P P P P P

V850E/ES core
common

N N N N N P P P P P P

V850E2 core common N N N N N N N N N N N

Created Objects -p1 -p2 -p3 -p4 -p4a -p5 -p6 -p7 -p8 -p9 -p10

APPENDIX B COMMAND REFERENCE

540 User’s Manual U19386EJ1V0UM

B.3 Linker

Generally, an application program is divided into several source files and coded. Source files written in C language
activate the compiler (ca850) or assembler (as850) and source files written in an assembly language activate the
assembler (as850) to output object files.

The linker (ld850) resolves the addresses of these object files in accordance with the information of the link directive
and device files and generates one executable object file, i.e., a load module file.

If there is external reference that is not resolved when the linker links object files, the linker searches the specified
archive file (library file) to resolve the external reference. It then links only the object files necessary for resolving and
generates executable object files. The linker can also generate relocatable object files when the -r option is specified.

Figure B-8. Operation Flow of Linker

Figure B-9. Linker Operation Image (Example)

The ca850 internally activates the as850 and linker as drivers.
When the ca850 is activated, a load module can be generated. Therefore, there is no need to be aware of activating

the as850 and linker.

Object file

Object file
Object file

Archive file

Device fileDirective file

Linker

Directive file Device file

Linker

Establishes relations between

sections and segments and

references addresses

Section 1
Section 2

a.o

Section 1
Section 2

b.o

Section 1
Section 3

c.o

Section 1
Section 2

lib.a

Section 1 of lib.a
Section 1 of c.o

Segment 1

Section 1 of b.o
Section 1 of a.o

a.out

Section 2 of lib.a
Section 2 of b.o

Section 2

Section 2 of a.o

Section 3 of c.o

Section 3

Higher

Lower

Higher

Lower

C>ld850 a.o b.o c.o lib.a

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 541

Figure B-10. Batch Processing

Figure B-11. Modular Processing

(1) Link procedure
The link procedure is described below.

(a) The linker links a section (input section) that is included in a specified object file according to a link
directive and device file to create an output section consisting of output object files (see CubeSuite
V850 Coding User’s Manual for details).

Figure B-12. Creation of Output Section

(b) The linker links the output section created in the step (a) according to the link directive and creates
a segmentNote.

Note A segment is the minimum unit for loading a program to memory, and it is reflected in the program
header of the created object file.

ca850
as850

Linker
a.out

.c

.s

.o

.s .o

.c

.s

.o

ca850

as850

Linker

.o

a.out

.text section

.sdata section

.text section

.sbss section

.text section

.sbss section

.sdata section

file.o a.out
Input object file Output object file

func.o in lib.a

Input section

Output section

APPENDIX B COMMAND REFERENCE

542 User’s Manual U19386EJ1V0UM

(c) The linker allocates the segment created in the step (b) to the target machine's memory space
according to the link directive and device file.

Figure B-13. Allocation to Memory Space

(d) The linker resolves unresolved external references in the output section.

(e) The linker creates the following three types of symbols according to the symbol directive in the link
directiveNote.

- Text pointer symbol having the value set to the text pointer (tp)
- Global pointer symbol having the value set to the global pointer (gp)
- Element pointer symbol having the value set to the element pointer (ep)

Note These symbols are used to set appropriate values to the text pointer (tp), global pointer (gp), and
element pointer (ep) before executing the codes created by the C compiler (such as in the startup
module).
Although the user can specify a value for the element pointer, if it is omitted then the linker will read
the peculiar value for the target device (start address of internal RAM) from the specified device file,
and set it to the element pointer symbol.

(f) The linker creates reserved symbols. These reserved symbols include the following.
- Start address of each output section
- Start address (with 4-byte alignment) of segment exceeding each output section
- Start address (with 4-byte alignment) of segment exceeding the created executable object file

See “(3) Reserved symbols” for details about reserved symbols.

B.3.1 Method for manipulating

This section explains how to manipulate the linker.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set link options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Link Options] tab.

C>ld850 [option] ... file-name [file-name or option] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

.text section

.sbss section

.sdata section

a.out
Output object file

.text section

.sbss section

.sdata section

a.out

TEXT segment

DATA segment

0x100000

0xFF0000Output section

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 543

You can set the various link options by setting the necessary properties in this tab.

Figure B-14. Property Panel: [Link Option] Tab

B.3.2 Option

This section explains link options.
The types and explanations for link options are shown below.

Table B-10. Link Options

Classification Option Description

Input file -D Performs linking according to the specified link directive in link directive file.

-Xolddir Selects the compatibility of the format of the link directive file with old
versions.

Output file +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Specifies the name of the object file to be generated.

-m Outputs a link map that indicates allocation of the input and output sections
to the memory space.

-mo Outputs a link map that indicates allocation of the input and output sections
to the memory space in the format of products older than CA850 Ver. 2.60.

Library -L Searches the archive file (library file) specified by the -l option from the
specified folder, standard folder in that order.

-lc Links the standard library of the compiler (libc.a).

-lm Links the mathematical library of the compiler (libm.a).

-l References the specified archive file when resolving an unresolved external
symbol reference.

APPENDIX B COMMAND REFERENCE

544 User’s Manual U19386EJ1V0UM

Flash -ext_table Generates an object file for the flash/external ROM relink function using the
value specified as the start address value of the branch table.

-zf Generates the flash area object file from the specified object file as the boot
area object file.

Device -X256M Treats the memory space as having 256 MB.

-Xsid Sets the security ID of an on-chip flash memory device.

-Xob=none Suppress the option byte that is generated by default.

Linker -A Outputs as the standard output the information that can be used as a
yardstick for the sdata/sbss data allocation option that is specified for the
ca850 and as850.

-B Performs linking in the 2-pass mode.

-E Outputs a warning message, not an error message, and continues linking if
an illegalities is found during relocation processing.

-M Outputs a message for all multi-defined external symbols and stops link
processing.

-T Does not check the size and alignment condition when linking an external
symbol.

-Ximem_overflow=warning Controls checking when the internal ROM/RAM overflows.

-e Regards the specified symbol value as the entry point address value for the
object file to be generated.

-f Specifies the filling value for align holes between sections of the generated
object.

-mc Checks whether or not the files that use the mask register function are
mixed with files that do not use this function.

-rc Outputs detailed information when register modes are mixed for all input
object files.

-rescan Re-references the library file specified by the -l option.

-rom_less Does not check for the allocation to the internal ROM area.

-s Generates an object file in which the debug information, line number
information, and global pointer table have been removed.

-t Does not check the size and alignment condition of the symbol when linking
an undefined external symbol.

-v Outputs the execution status of the linker in detail.

-w Does not output a warning messages.

Classification Option Description

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 545

Table B-11. Mark Used in Option Descriptions

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error
output.

-cpu Reads the device file for the target device specified.

-fc Checks whether or not the old function calling and the calling specification
of the current version are mixed for all input object files.

-help Outputs option descriptions to the standard error output.

-mask_reg References the library for a mask register function.

-r Generates a relocatable object file.

-ro Generates a relocatable object file in the old mapping mode (CA850 Ver.
2.30 or earlier).

-reg References the corresponding register mode library.

@ Handles the specified file as a command file.

[V850E2] Option dedicated to V850E2 core

[V850E] Option dedicated to V850Ex core

Classification Option Description

APPENDIX B COMMAND REFERENCE

546 User’s Manual U19386EJ1V0UM

The options related to the input file are as follows.
- -D
- -Xolddir

-D

[Description format]

- Interpretation when omitted
The default link directive is used.

[Function Description]

- This option performs linking according to the link directive in link directive file dfile.
- The length of dfile must be no more than 127 characters including the path specification or no more than 14

characters when not including the path specification.
- The extension is necessary. The extension ".dir" is recommended.
- See CubeSuite V850 Coding User's Manual for details about the link directive file.

[Example of use]

- To perform linking according to the link directive in the link directive file (link.dir), describe as:

Input file

-D dfile

C>ld850 -D link.dir main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 547

-Xolddir

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option selects the compatibility of the format of the link directive file with old versions.
- "V240", "V250", or "V260" can be specified as version. If version is omitted, it is assumed that "V240" have

been specified.
- If this option is not specified, the latest link directive file format is supported.

[Example of use]

- To specify that the format of the link directive is equivalent to CA850 Ver. 2.40, describe as:

-Xolddir[=version]

When V240 is specified Section precedence layout function OFF, segment sort OFF (equivalent to CA850 Ver. 2.40)

When V250 is specified Section precedence layout function ON, segment sort OFF (equivalent to CA850 Ver. 2.50)

When V260 is specified Section precedence layout function ON, segment sort ON (equivalent to CA850 Ver. 2.60)

C>ld850 -Xolddir=V240 main.o

APPENDIX B COMMAND REFERENCE

548 User’s Manual U19386EJ1V0UM

The options related to the output file are as follows.
- +err_file
- -err_file
- -o
- -m
- -mo

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Output file

+err_file=file

C>ld850 +err_file=err main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 549

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>ld850 -err_file=err main.o

APPENDIX B COMMAND REFERENCE

550 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
It is assumed that a.out has been specified as the name of the object file to be generated.

[Function Description]

- This option specifies ofile as the name of the object file to be generated.

[Example of use]

- To specify test.out as the name of the object file to be generated, describe as:

-o ofile

C>ld850 -o test.out main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 551

-m

[Description format]

- Interpretation when omitted
No link map is output.

[Function Description]

- This option outputs a link map that indicates allocation of the input and output sections to the memory space to
mapfile.

- If mapfile is omitted, the link map is output to the standard output.
- See "3.2 Linker" for details about the link map.

[Example of use]

- To output a link map that indicates allocation of the input and output sections to the memory space to the
standard output, describe as:

-m[=mapfile]

C>ld850 -m main.o

APPENDIX B COMMAND REFERENCE

552 User’s Manual U19386EJ1V0UM

-mo

[Description format]

- Interpretation when omitted
No link map is output.

[Function Description]

- This option outputs a link map that indicates allocation of the input and output sections to the memory space to
mapfile in the format of products older than CA850 Ver. 2.60.

- If mapfile is omitted, the link map is output to the standard output.
- See "3.2 Linker" for details about the link map.

[Example of use]

- To output a link map that indicates allocation of the input and output sections to the memory space to the
standard output in the format of products older than CA850 Ver. 2.60, describe as:

-mo[=mapfile]

C>ld850 -mo main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 553

The options related to libraries are as follows.
- -L
- -lc
- -lm
- -l

-L

[Description format]

- Interpretation when omitted
The archive file (library file) specified by the -l option is searched from the standard folder.

[Function Description]

- If the -l option is specified with this option (or after this option in the case of the command line), the archive file
(also called library file) specified by the -l option is searched from folder "dir", the standard folder in that order.
The -I option specified after this option is subject to searching.

- The linker handles the folder where the CA850 is installed, the folder at the position of
CubeSuite\CA850\Vx.xxNote\lib850, and the folder at the position of lib850\rXY (XY=[32|26|22]) as the standard
folders of libraries.

Note Vx.xx is the version of the C compiler.

[Example of use]

- To search the standard library of the compiler (libc.a) to be linked from folder D:\lib, the standard folder in that
order, describe as:

Library

-Ldir

C>ld850 -LD:\lib main.o -lc

APPENDIX B COMMAND REFERENCE

554 User’s Manual U19386EJ1V0UM

-lc

[Description format]

- Interpretation when omitted
The standard library of the compiler (libc.a) is not linked.

[Function Description]

- This option links the standard library of the compiler (libc.a).

[Example of use]

- To link the standard library of the compiler (libc.a), describe as:

-lc

C>ld850 main.o -lc

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 555

-lm

[Description format]

- Interpretation when omitted
The mathematical library of the compiler (libm.a) is not linked.

[Function Description]

- This option links the mathematical library of the compiler (libm.a).
- This option set with the -lc option at the same time because the mathematical library also references the

functions in the standard library.
- The mathematical library supplied by the C compiler references standard library libc.a. Therefore, when

activating from the command line, specify standard library reference specification "-lc" after mathematical library
reference specification "-lm".

[Example of use]

- To link the mathematical library of the compiler (libm.a), describe as:

-lm

C>ld850 main.o -lm -lc

APPENDIX B COMMAND REFERENCE

556 User’s Manual U19386EJ1V0UM

-l

[Description format]

- Interpretation when omitted
No archive file is linked.

[Function Description]

- When resolving an unresolved external symbol reference, this option references archive file libstring.a.
- If two or more archive files are specified by this option, the files are searched in the order of their specification.
- Use no more than 64 characters to specify string.
- When this option has been specified, the linker references the specified archive files only about unresolved

external references at the time they are specified. Therefore, when activating from the command line, specify
this option after specifying the object file that will reference the specified archive files.

[Example of use]

- To reference the archive file (libtest.a) when resolving an unresolved external symbol reference, describe as:

-lstring

C>ld850 main.o -ltest

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 557

The options related to the flash ROM are as follows.
- -ext_table
- -zf

-ext_table

[Description format]

- Interpretation when omitted
An object file for the flash/external ROM relink function is not generated.

[Function Description]

- This option creates an object file for the flash/external ROM relink function using the value specified by 8-digit
hexadecimal number address as the start address value of the branch table (see "B.3.3 Boot-flash relink
function").

- When specifying the boot area, the branch to the flash area side is processed.
At this time, the process is the branch to the branch table and the address is specified by this option.

- When specifying the flash area, a branch table having the branch instruction to the previous branch destination
is created at the address specified by this option.

- The address value specified by this option must be the same as the value that is used when creating an object
file in the boot area/flash area. If a different value is specified, operation faults occur. No error checking is
done.

- The address value specified by this option must be within the ROM area used as the flash area. No error
checking is done because it is not possible to determine which area contains the specified address.

- When creating an object file in the flash area, this option automatically creates the .ext_table section having a
size of "(the maximum ID valueNote + 1) x (Entry size of branch table)" and starting with the specified address
value. Although this section does not require an allocation can specification in the directive file, you must leave
enough space for allocation.

Note This is the value specified by the .ext_func quasi directive in the assembler source file.

- This option can not be specified together with the -r option. Operation faults occur if a relocatable object file that
has been generated using the -r option is input.

- See "B.3.3 Boot-flash relink function" for details about the flash/external ROM relink function.

[Example of use]

- To generate the boot area object file with 0x10000 as the start address of the branch table, describe as:

Flash

-ext_table address

C>ld850 -ext_table 0x100000 boot.o

APPENDIX B COMMAND REFERENCE

558 User’s Manual U19386EJ1V0UM

-zf

[Description format]

- Interpretation when omitted
An object file for the flash/external ROM relink function is not generated.
However, the boot area object file is generated when -ext_table is specified.

[Function Description]

- This option generates the flash area object file from the specified object file as the boot area object file when
using the flash/external ROM relink function.

- Specify the object file that is specified via flash/external ROM relink function and created as the boot area object
file.

- Specify an object file output by the linker. Note that, if you specify an object that was output by the ROMization
processor, an invalid object will be generated.

- The -ext_table option must be specified in order to use this option.

[Example of use]

- Generate the flash area object file with 0x10000 as the start address of the branch table.
To specify boot.out as the name of the boot area object file, describe as:

-zf bootfile

C>ld850 -zf boot.out -ext_table 0x100000 flash.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 559

The options related to the device are as follows.
- -X256M
- -Xsid
- -Xob=none

-X256M

[Description format]

- Interpretation when omitted
The memory space is treated as having 64 MB and the addresses are resolved.

[Function Description]

[V850E]
- Treats the memory space as having 256 MB.
- Set this option in accordance with the chipset to be used.
- The physical address space of the V850Ex core has 256 MB in many cases. When creating an application that

uses a space between 64 MB and 256 MB, specify this option.

[Example of use]

- To treat the memory space as having 256 MB, describe as:

Device

-X256M

C>ld850 -X256M main.o

APPENDIX B COMMAND REFERENCE

560 User’s Manual U19386EJ1V0UM

-Xsid

[Description format]

- Interpretation when omitted
-Xsid=0xffffffffffffffffffff (when a device with a security ID is specified)

[Function Description]

- This option sets the security ID of an on-chip flash memory device.
- It cannot be used if a device not supporting the security ID function is used.
- Specify the ID in a hexadecimal number of 10 bytes or less (including the first 0x).

If the specified value less than 10 bytes, the higher bits are filled with 0. If the value exceeds 10 bytes, an error
is output.

- If specification of this option or the security ID written in assembly language (using .section "SECURIYI_ID") is
omitted for a device supporting the security ID function, it is assumed that "0xffffffffffffffffffff" has been specified.

- If the security ID is set using a method other than the above, the linker judges that the security ID is duplicated
with the security ID that is generated by the linker, and outputs the following error.

In such a case, specify the +Xsid option to suppress security ID generation by the linker.
- If an object for a device not supporting the security ID function is specified when the linker is executed, a

warning message is output and the specification is ignored.

[Example of use]

- To set security code "0x112233445566778899aa" (setting 0x11 to address 0x70, 0x22 to address 0x71, 0x33 to
address 0x72, 0x44 to address 0x73, 0x55 to address 0x74, 0x77 to address 0x76, 0x88 to address 0x77, 0x99
to address 0x78, and 0xaa to address 0x79), describe as:

-Xsid=id

F4264: start address(0x00000070) of section "SECURITY_ID" overlaps previous section
"section name" ended before address (0xXXXXXXXX).

C>ld850 -Xsid=0x112233445566778899aa main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 561

-Xob=none

[Description format]

- Interpretation when omitted
The option byte is generated (when a device with an option byte is specified).

[Function Description]

- This option suppresses the option byte that is generated by default.
- Only the default generation by the default value registered in the device file is suppressed.
- When the option byte is specified by using .section "OPTION_BYTES" in the assembler source file, the .section

"OPTION_BYTES" specification takes precedence, regardless of this option's specification.
- If this option is specified for a device that does not have a option byte function, this option is ignored without

outputting a message.

[Example of use]

- To suppress the option byte that is generated by default, describe as:

-Xob=none

C>ld850 -Xob=none main.o

APPENDIX B COMMAND REFERENCE

562 User’s Manual U19386EJ1V0UM

The linker options are as follows.
- -A
- -B
- -E
- -M
- -T
- -Ximem_overflow=warning
- -e
- -f
- -mc
- -rc
- -rescan
- -rom_less
- -s
- -t
- -v
- -w

Linker

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 563

-A

[Description format]

- Interpretation when omitted
Information that can serve as a yardstick for determining the value of num of the -Gnum option is not output.

[Function Description]

- This option outputs as the standard output the information that can be used as a yardstick for the sdata/sbss
data allocation option (num of the -Gnum option) that is specified for the ca850 and as850 when a source file is
compiled or assembled.

- When using the numerical value indicated by *OK*, data with a size less than that value is allocated to the
sdata/sbss area.

- When activating from the ca850, the -A option specified in the ca850 activation is passed.
- See “(1) Using -A option” for details.

[Example of use]

- To output as the standard output the information that can be used as a yardstick for the sdata/sbss data
allocation option (num of the -Gnum option) that is specified for the ca850 and as850, describe as:

-A

C>ld850 -A main.o

APPENDIX B COMMAND REFERENCE

564 User’s Manual U19386EJ1V0UM

-B

[Description format]

- Interpretation when omitted
Linking is performed in the 1-pass mode.

[Function Description]

- This option performs linking in the 2-pass mode.
- The 2-pass mode is slower than the 1-pass mode, but it is able to process larger sized files.

[Example of use]

- To perform linking in the 2-pass mode, describe as:

-B

C>ld850 -B main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 565

-E

[Description format]

- Interpretation when omitted
If an illegalities is found during relocation processing, the linker outputs the following message and stops linking.

[Function Description]

- If any of the following illegalities is found during relocation processing
- The result of address calculation of an unresolved external reference is illegal
- The relationship with the section to be allocated is illegal

This option outputs a warning message, not an error message, and continues linking.
- The value of address calculation judged as an illegality is not assigned to the unresolved external reference

judged as an error and the original value remains.

[Example of use]

- To output a warning message and continue linking when the result of address calculation of an unresolved
external reference is illegal during relocation processing, describe as:

-E

C>ld850 -E main.o

APPENDIX B COMMAND REFERENCE

566 User’s Manual U19386EJ1V0UM

-M

[Description format]

- Interpretation when omitted
A message is output for the first multi-defined external symbol and stops link processing.

[Function Description]

- This option outputs a message for all multi-defined external symbols and stops link processing.

[Example of use]

- To output a message for all multi-defined external symbols and stops link processing, describe as:

-M

C>ld850 -M main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 567

-T

[Description format]

- Interpretation when omitted
The size is checked, and if a size difference is detected, a warning message is output and link processing is
continued.
At this time, the symbol size of the file in which the symbol is defined is valid.

[Function Description]

- This option does not check the size and alignment condition when linking an external symbol.

[Example of use]

- Not to check the size and alignment condition when linking an external symbol, describe as:

-T

C>ld850 -T main.o sub.o

APPENDIX B COMMAND REFERENCE

568 User’s Manual U19386EJ1V0UM

-Ximem_overflow=warning

[Description format]

- Interpretation when omitted
A warning message is output when overflowing and linking is stopped.

[Function Description]

- This option controls checking when the internal ROM/RAM overflows.
- This option outputs a warning message when overflowing and continues linking.

[Example of use]

- To control checking when the internal ROM/RAM overflows, describe as:

-Ximem_overflow=warning

C>ld850 -Ximem_overflow=warning main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 569

-e

[Description format]

- Interpretation when omitted
The entry point address value is determined according to the following rules.

- If symbol "__start" exists, it is used.
- _ _ If "__start" does not exist, the start address of the text attribute section that is allocated to the lowest address

area in the generated object file is used.
- If the text attribute section does not exist, "0" is used.

[Function Description]

- This option regards symbol value symbol as the entry point address value for the object file to be generated.
- If the specified symbol cannot be found, the linker outputs a message and stops linking.
- The symbol name cannot include blank spaces.

[Example of use]

- To regard symbol value "_main" as the entry point address value, describe as:

-e symbol

C>ld850 -e _main main.o

APPENDIX B COMMAND REFERENCE

570 User’s Manual U19386EJ1V0UM

-f

[Description format]

- Interpretation when omitted
-f 0x0000

[Function Description]

- This option specifies the filling value for align holes between sections of the generated object, with 4-digit
hexadecimal numbers (2 bytes).

- When using this option, specify the -B option to perform linking in the 2-pass mode.
- The first 0x can be omitted.
- Specification by this option takes precedence over the filling value specification in the link directive.
- If the value does not occupy all 4 digits, it is assumed that 0 are used to fill the empty digit(s).
- If the hole size is less than 2 bytes, only the required number of digits are fetched and initialized from the

specified filling value (starting from the lowest value).

[Example of use]

- To specify 0xffff as the filling value for align holes between sections of the generated object, describe as:

-f num

C>ld850 -B -f 0xffff main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 571

-mc

[Description format]

- Interpretation when omitted
Whether or not the files that use the mask register function are mixed with files that do not use this function is
not checked.

[Function Description]

- This option checks whether or not the files that use the mask register function are mixed with files that do not
use this function when linking the object files generated from the C source files.

- Linking is stopped if they are mixed.

[Example of use]

- To check whether or not the files that use the mask register function are mixed with files that do not use this
function when linking the object files, describe as:

-mc

C>ld850 -mc main.o sub.o

APPENDIX B COMMAND REFERENCE

572 User’s Manual U19386EJ1V0UM

-rc

[Description format]

- Interpretation when omitted
Detailed information is not output when register modes are mixed for all input object files.

[Function Description]

- This option outputs detailed information when register modes are mixed for all input object files.
- If this option is specified with the -w option, this option is ignored.

[Example of use]

- To output detailed information when register modes are mixed for all input object files, describe as:

-rc

C>ld850 -rc main.o sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 573

-rescan

[Description format]

- Interpretation when omitted
The library file specified by the -l option is not re-referenced.

[Function Description]

- This option re-references the library file specified by the -l option.
- When this option is specified, symbols that are unresolved through the link sequence of the library can be

prevented.

[Example of use]

- To re-reference the archive files (libtest1.a, libtest2.a), describe as:

-rescan

C>ld850 -rescan main.o -ltest1 -ltest2

APPENDIX B COMMAND REFERENCE

574 User’s Manual U19386EJ1V0UM

-rom_less

[Description format]

- Interpretation when omitted
When the application allocation overlaps the addresses of the internal ROM area, a message is output and
linking is stopped.

[Function Description]

- This option does not check for the allocation to the internal ROM area.
When the application allocation overlaps the addresses of the internal ROM area, a warning message is not
output.

- Specify this option when the application is created in the ROM-less mode.

Caution Checking of the overflow of the internal ROM is not supported when the single-chip mode is
selected. Invalidate checking of the overflow of the internal ROM and check the overflow on
the link map.

[Example of use]

- Not to check for the allocation to the internal ROM area, describe as:

-rom_less

C>ld850 -rom_less main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 575

-s

[Description format]

- Interpretation when omitted
The input object includes the debug information, line number information, and global pointer table, the object file
that includes those information is generated.

[Function Description]

- This option generates an object file in which the debug information, line number information, and global pointer
table have been removed.

[Example of use]

- To generate an object file in which the debug information, line number information, and global pointer table have
been removed, describe as:

-s

C>ld850 -s main.o

APPENDIX B COMMAND REFERENCE

576 User’s Manual U19386EJ1V0UM

-t

[Description format]

- Interpretation when omitted
The symbol size and alignment condition are checked, and if a difference is detected, a warning message is
output and link processing is continued.

[Function Description]

- This option does not check the size and alignment condition of the symbol when linking an undefined external
symbol.

- The linker supports multiple definitions of undefined external symbols.
Multiple-defined undefined external symbols are allocated to the .sbss or .bss section after linking. In this case,
if the size of the linked symbol or alignment condition are different, then the size will be the largest size of the
linked symbols, and the alignment condition will be on the lowest common multiple of the alignment condition of
the linked symbols.

[Example of use]

- Not to check the size and alignment condition of the symbol when linking an undefined external symbol,
describe as:

-t

C>ld850 -t main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 577

-v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the execution status of the linker in detail. The list of objects to be linked, etc. is displayed.

[Example of use]

- To output the execution status of the linker in detail and display the list of objects to be linked, etc., describe as:

-v

C>ld850 -v main.o

APPENDIX B COMMAND REFERENCE

578 User’s Manual U19386EJ1V0UM

-w

[Description format]

- Interpretation when omitted
No warning messages are suppressed.

[Function Description]

- This option does not output a warning messages.
- Only messages for fatal errors are output.

[Example of use]

- To output only messages for fatal errors, describe as:

-w

C>ld850 -w main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 579

Other options are as follows.
- -F
- -V
- -cpu
- -fc
- -help
- -mask_reg
- -r
- -ro
- -reg
- @

-F

[Description format]

- Interpretation when omitted
The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath when the linker is started by itself.
- When activating from the ca850, use the ca850's -devpath option to specify the path of the device file.

[Example of use]

- To search a device file from folder "C:\NECTools32\dev" when the linker is started by itself, describe as:

Other

-F devpath

C>ld850 -F C:\NECTools32\dev main.o

APPENDIX B COMMAND REFERENCE

580 User’s Manual U19386EJ1V0UM

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the linker to the standard error output and terminates processing.

[Example of use]

- To output the version information of the linker to the standard error output, describe as:

-V

C>ld850 -V

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 581

-cpu

[Description format]

- Interpretation when omitted
The device file for the target device specified when the .o file is generated.

[Function Description]

- This option reads the device file for the target device specified by devicename.

[Example of use]

- To specify UPD70F3719 as the target device, describe as:

-cpu devicename

C>ld850 -cpu f3719 main.o

APPENDIX B COMMAND REFERENCE

582 User’s Manual U19386EJ1V0UM

-fc

[Description format]

- Interpretation when omitted
Only the object file generated from the C source file are checked.

[Function Description]

- This option checks whether or not the old function calling and the calling specification of the current version are
mixed for all input object files.

- The old function calling specification is not supported by the current version.

[Example of use]

- To check whether or not the old function calling and the calling specification of the current version are mixed for
all input object files, describe as:

-fc

C>ld850 -fc main.o sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 583

-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs option descriptions to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C>ld850 -help

APPENDIX B COMMAND REFERENCE

584 User’s Manual U19386EJ1V0UM

-mask_reg

[Description format]

- Interpretation when omitted
The library that does not use a mask register function referenced.

[Function Description]

- This option references the library for a mask register function.
- Use the -Xmask_reg option when activating from the ca850.
- The library for a mask register function is the library when in the 32-register mode. When the 22-register mode

or 26-register mode is specified, the following warning message is output and any subsequent specification is
ignored.

[Example of use]

- To reference the library for a mask register function, describe as:

-mask_reg

W4857: "-reg22" option is illegal when "-mask_reg" option is specified, ignored "-reg22"
option.

C>ld850 -mask_reg main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 585

-r

[Description format]

- Interpretation when omitted
If an unresolved external reference remains, the following message is output and linking is stopped. In this
case, an object file (load module file) is not generated.

[Function Description]

- This option generates a relocatable object file.
- If this option is specified with the -ro option, this option is ignored.
- If this option is specified, a message is not output and linking is completed normally even if an unresolved

external reference remains after completing linking.
- If an object file generated by the linker is specified as the target for relinking by the linker, specify this option

when generating the target object file for relinking.

[Cautions]

- If this option is specified, the link directive is valid only for the type and attribute in the mapping directive section
and is otherwise ignored.

- If this option is specified, any reserved symbol is not created.
- The specification of the -r option has changed from CA850 Ver.2.30 or earlier.

When using the mapping method of an old version, use the -ro option instead of the -r option.

[Example of use]

- To generate a relocatable object file, describe as:

-r

F4452: undefined symbol.

 symbol referenced in "file"

C>ld850 -r main.o

APPENDIX B COMMAND REFERENCE

586 User’s Manual U19386EJ1V0UM

-ro

[Description format]

- Interpretation when omitted
The relocatable object file is generated.

[Function Description]

- This option generates a relocatable object file in the old mapping mode (CA850 Ver. 2.30 or earlier).
- If this option is specified with the -r option, the -r option is ignored.

[Example of use]

- To generate a relocatable object file in the old mapping mode (CA850 Ver. 2.30 or earlier), describe as:

-ro

C>ld850 -ro main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 587

-reg

[Description format]

- Interpretation when omitted
-reg32

[Function Description]

- This option references the corresponding register mode library.
- 22, 26, or 32 can be specified as num.

A blank space cannot be entered after -reg.

[Example of use]

- To reference the 22-register mode library.

-regnum

C>ld850 -reg22 main.o

APPENDIX B COMMAND REFERENCE

588 User’s Manual U19386EJ1V0UM

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- On Windows, the length of a character string specified as options for commands is limited. If this option is

specified, you do not need to take string restrictions into account because the option string will be output to the
command file. If many options are set and some of the options cannot be recognized, create a command file
and specify this option.

- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>ld850 @command

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 589

B.3.3 Boot-flash relink function

(1) Relink function
Some systems are equipped with flash area or detachable ROM.
To upgrade the version of the program, the contents of the flash area may be rewritten or the detachable ROM
may be replaced with a new ROM.
When changing the program even partially, basically the project itself is reorganized or "rebuilt". However, it
would be convenient if the allocation to be upgraded was limited to the flash area or external ROM and if it was
not necessary to reorganize the project. The boot area is fixed to the internal ROM. If a function is called
between the flash area to be rewritten and the boot area, and if the start address of the function is changed as a
result of modifying the function in the flash area, the function cannot be called correctly.
The "boot-flash relink function" (hereafter referred to as the "relink function") is used to prevent this and enable
functions to be called correctly.
This function is realized as follows.

(a) A "branch table" where instructions to branch to the functions in the flash area are written is
prepared in the flash area.

(b) When a function in the flash area is called from the boot area, execution jumps to the branch table in
the flash area, and then the instruction used to branch to the intended function is executed and
jump occurs.

This mechanism can be realized by the user. If the "relink function" is used, this can be done relatively easily.
To use this function, however, the functions to be called in the flash area must be determined when the boot
area is created. This mechanism is used to call a function from the boot area even if the function is modified in
the flash area.

(2) Image of relink function
A function is called as shown below when the relink function is used.

(a) To call function in the boot area from the boot area
The function can be called without problem because addresses have been resolved before they are
programmed to the boot area.

APPENDIX B COMMAND REFERENCE

590 User’s Manual U19386EJ1V0UM

Figure B-15. In Boot Area

(b) To call function in the flash area from the flash area
The function can be called without problem because addresses have been resolved in the flash area.

Figure B-16. In Flash Area

(c) To call function in the flash area from the boot area
When a function in the flash area is called from the boot area, the address of the function cannot be known
from the boot area because the function size, etc., have been changed in the flash area. In other words, a
function in the flash area cannot be directly called. To solve this, execution jumps to the branch table in the
flash area.
Execute the jump instruction from that table to the relevant function and jump to the intended function.

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_rom1();

:

}

The function can be called without problem.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash1();

:

}

The function can be called without problem.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 591

Figure B-17. From Boot Area to Flash Area

In the same manner as functions, this is relevant to referencing external variables.
A global variable defined in the flash area cannot be referenced from the boot area. Therefore, an external
variable of the same name can be defined in both the boot area and flash area. Each of these external
variables is referenced only from the respective areas.

(d) To call function in the boot area from the flash area
When a function in the boot area is called from the flash area, the contents of the boot area are not
changed. Therefore, a function in the boot area can be directly called from the flash area.

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

 func_flash1();

:

}

Execution jumps to the branch table of

flash area.

void

func_flash1(void)

{

:

}

void

func_flash2(void)

{

:

 func_flash();

:

}

Branch table

In boot area In flash area

jr _func_flash1

jr _func_flash2

APPENDIX B COMMAND REFERENCE

592 User’s Manual U19386EJ1V0UM

Figure B-18. From Flash Area to Boot Area

In the same manner as functions, this is relevant to referencing external variables. A global variable
defined in the boot area cannot be referenced from the flash area.

(3) Realizing relink function
This section describes specifically how to realize the relink function.

(a) Project of CubeSuite
To realize the relink function, a boot area and flash area must be separately created. This means that only
the flash area is modified after the boot area has been created (after a program has been stored in ROM).
When creating a project with CubeSuite, therefore, divide the projects as follows.

- Project to be allocated to the boot area
- Project to be allocated to the flash area (project that may be modified in the future)

In addition, separately prepare a startup routine and link directive file for each project.

(b) .ext_func quasi directive
When calling a function in the flash area from the boot area, the name of the function to be called (label
name) and ID number are assigned to the boot area by using the .ext_func quasi directive. The format of
the .ext_func quasi directive is as follows.

Specify a positive number as the ID number. The different ID number must not be specified for the same
function name or the same ID number must not be specified for the different function names.
When a function name in the flash area is specified in the boot area by using the .ext_func quasi directive, a
branch table (ext_table) is created. The address of this ext_table is specified by the user.
Specify the address as follows, by using link option "-ext_table", when a load module of the boot area and a
load module of the flash area are created.

.ext_func function-name, ID-number

void

func_rom1(void)

{

:

}

void

func_rom2(void)

{

:

}

A function in boot area can be directly

called from flash area.

void

func_flash1(void)

{

:

 func_rom2();

:

}

void

func_flash2(void)

{

:

}

Branch table

In boot area In flash area

jr _func_flash1

jr _func_flash2

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 593

When execution branches to the body of a function, the actual function address is obtained by referencing
the offset of the ID number from the beginning of the created branch table, and then execution branches.

The example is shown below.

If the above three C functions are allocated to the flash area and they are called from the boot area,
describe as follows in the boot area using the assembler.

To make this description in a C source file, use the #pragma asm - #pragma endasm directives or __asm().
When the #pragma asm - #pragma endasm directives are used, the example is as follows.

It is recommended to describe these .ext_func quasi directives in one file and include this file in all source
files by using the .include quasi directive (or #include directive when describing in C language), in order to
prevent missing descriptions or the occurrence of contradictions, i.e., to prevent the error of specifying the
different ID numbers for the same function name or specifying the same ID number for the different function
names.
If a file using the #pragma asm - #pragma endasm directives is included as above, the compiler outputs the
following message but ignore this (or set by "Individual Warnings" not to output this message).

An image of relink function is shown below.

-ext_table address-to-be-specified

func_flash0()

func_flash1()

func_flash2()

.ext_func _func_flash0, 0

.ext_func _func_flash1, 1

.ext_func _func_flash2, 2

#pragma asm

 .ext_func _func_flash0, 0

 .ext_func _func_flash1, 1

 .ext_func _func_flash2, 2

#pragma endasm

W2244: '#pragma asm' used out of function is not supported completely.

Assembly Source Described by User Assembler Image after Linking

[ext_table.inc]

 .ext_func _func_flash0, 0

 .ext_func _func_flash1, 1

 .ext_func _func_flash2, 2

APPENDIX B COMMAND REFERENCE

594 User’s Manual U19386EJ1V0UM

If the .ext_func quasi directive is specified as shown above, a table is created with the symbol ext_table,
and the first symbol of this table is "__ext_table_head".
Code "jarl__flash0, lp" in the boot area is an offset from __ext_table_head, and obtains the address of
_func_flash0 and jumps to the function body by the jarl instruction.

(c) Startup routine
Separately prepare a startup routine for the boot area and a startup routine for the flash area. Each startup
routine must perform the following processing.

- Setting tp, gp, and ep values in the boot area
- Calling the _rcopy function to initialize the RAM area to be used for the boot area
- Branching from the boot area to the startup routine of the flash area
- Calling the _rcopy function to initialize the RAM area to be used for the flash area
- Moving to the processing of the flash area

[rom.s]

 .include "ext_table.inc"

 .extern _func_flash0

 .extern _func_flash1

 .extern _func_flash2

 jarl _func_flash0, lp

 jarl _func_flash1, lp

 jarl _func_flash2, lp

[rom.out]

 .extern __ext_table_head

 jarl __ext_table_head+0x4*0,lp

 jarl __ext_table_head+0x4*1,lp

 jarl __ext_table_head+0x4*2,lp

[flash.s]

 include "ext_table.inc"

 .globl _func_flash0

 .globl _func_flash2

_func_flash0:

 :

 jmp [lp]

 .globl _func_flash1

_func_flash1:

 :

 jmp [lp]

_func_flash2:

 :

 jmp [lp]

[flash.o]

#(branch table)

 .section ".ext_table", text

 .globl __ext_table_head

 .extern _func_flash0

 .extern _func_flash1

 .extern _func_flash2

__ext_table_head:

 jr _func_flash0

 jr _func_flash1

 jr _func_flash2

#(function body)

 .globl _func_flash0

_func_flash0:

 :

 jmp [lp]

 .globl _func_flash1

_func_flash1:

 :

 jmp [lp]

 .globl _func_flash2

_func_flash2:

 :

 jmp [lp]

Assembly Source Described by User Assembler Image after Linking

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 595

If tp, gp, and ep are not used in the boot area, the values may be set in the flash area. When the default
value data is copied by using the _rcopy function, the load module must be "ROMized" by the ROMization
processor. Prepare rompcrt.o having the first symbol of the rompsec section and execute linking by
specifying link option "-lr". By using the packing section created as a result, copy data with a default value
by using the _rcopy function (see "B.4 ROMization Processor").
It is recommended to use the same address values in the boot area and flash area for the tp, gp, and ep
values. These values may be different, but in this case the values must be set each time control has been
transferred between an instruction code in the boot area and one in the flash area.

(d) How to create the projects specifically

<1> Create the boot area project
Create a project for the boot area and add the build target files to the project.
Add the startup routine to the Startup node.

Boot Area Flash Area

__start:

 mov #__tp_TEXT, tp

 mov #__gp_DATA, gp

 mov #__ep_DATA, ep

 :

To main function in the boot area

It is not necessary to stick to the
name "main function"

 jarl _main, lp

 .ext_func _flash_start 3

 jr __flash_start

 .ext_func _flash_start 3

 jr __flash_start

__flash_start:

 :

To main function in the flash area

 jarl _main, lp

extern unsigned long _S_romp;

void main(void)

{

 _rcopy(&_S_romp, -1);

 :

}

extern unsigned long _S_romp;

void main(void)

{

 _rcopy(&_S_romp, -1);

 :

}

APPENDIX B COMMAND REFERENCE

596 User’s Manual U19386EJ1V0UM

Figure B-19. Boot Area Project

<2> Set the build options for the boot area project
Select the build tool node on the project tree and select the [Common Options] tab on the Property
panel. Set the build options in the [Flash] category.
If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and
[Object file type] property are displayed.

Figure B-20. [Flash] Category in Boot Area

Specifies the start address of the branch table (address in the flash area) in the [Branch table address]
property.The range that can be specified for the value is 0x0 to 0xffffffff (hexadecimal). "0x0" is set by
default.
Also, select [Boot area object file(None)] on the [Object file type] property.

<3> Run a build of the boot area project
When you run a build of the boot area project, a load module file is created.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 597

Figure B-21. Created Files for Boot Area

<4> Create the flash area project
Create a project for the boot area and add the build target files to the project.
Add the startup routine to the Startup node.

Figure B-22. Flash Area Project

<5> Set the build options for the flash area project
Select the build tool node on the project tree and select the [Common Options] tab on the Property
panel. Set the build options in the [Flash] category.
If you select [Yes] on the [Output flash object file] property, the [Branch table address] property and
[Object file type] property are displayed.

APPENDIX B COMMAND REFERENCE

598 User’s Manual U19386EJ1V0UM

Figure B-23. [Flash] Category in Flash Area

Specifies the start address of the branch table (same as the address specified in the boot area
project) in the [Branch table address] property.
If you select [Flash area object file(-Wa, -zf)] on the [Object file type] property, the [Boot area object
file name] property are displayed. Specify the boot area object file.

Caution Specify an object output by the linker. An error occurs if an object output by the
ROMization processor is specified.

<6> Run a build of the flash area project
When you run a build of the flash area project, a load module file which implements the relink function
is created.

Figure B-24. Created Files for Flash Area

(e) Describing a link directive file
Each of the boot area and flash area projects has a link directive file. The following points should be noted
when describing a link directive file.

- Even if the address of a section placed in the RAM area overlaps in the boot area and flash area, the
linker does not output an error because the projects are different. In other words, the addresses can
overlap. For the RAM area that must be referenced simultaneously in the boot area and flash area,
addresses must be specified so that they do not overlap.

- It is recommended to use the same address values in the boot area and flash area for the tp, gp, and
ep values. These values may be different, but in this case the values must be set each time control has
been transferred between an instruction code in the boot area and one in the flash area.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 599

- A link directive file related to the branch table (ext_table) does not have to be described. It is
automatically allocated to an address specified by the link option "-ext_table".
However, the following points must be noted.

- If a vacant area of the size of the branch table is at the address specified by -ext_table, the link
directive file is allocated as is. The other segments are not affected. This is the most ideal case.

- If a vacant area of the size of the branch table is not at the address specified by -ext_table, an
error occurs. This applies, for example, if a code has been already allocated to the address
specified by -ext_table in a TEXT segment for which an address is specified. The example is as
follows.

- If another segment is allocated to the address specified by -ext_table before the relink function is
used but the address of that segment is not specified in the link directive file, the branch table is
allocated to the address specified by -ext_table and the original segment is moved behind the
branch table.
However, If the segment overlaps a segment for which an address is specified as a result of
moving, an error occurs.

Address specification of the branch table

Link directive file (part)

(Size of TEXT segment is 0x100 bytes or more)

-ext_table 0x500

TEXT : !LOAD ?RX V0x400 {

 .text = $PROGBITS ?AX .text;

};

An error occurs during linking because the branch table cannot be

allocated to address 0x500. Change the value specified by -

ext_table.

Address specification of the branch table

Link directive file (part)

(It is assumed that the TEXT segment is allocated from address 0x500 as a

continuation from the segment ahead of the TEXT segment.)

-ext_table 0x500

TEXT : !LOAD ?RX {

 .text = $PROGBITS ?AX .text;

};

At this time, the branch table is allocated to address 0x500 because

no address is specified for the TEXT segment, and the TEXT

segment is allocated behind the branch table.

APPENDIX B COMMAND REFERENCE

600 User’s Manual U19386EJ1V0UM

(f) .ext_ent_size directive
When an actual function is called from the branch table in the flash memory, jr branch instructions are
output as follows by default.

However, the jr instruction can branch only within a 22-bit range (±1MB) because of a restriction of the
architecture. To branch in the entire 32-bit space, additionally specify the .ext_ent_size quasi directive. The
format of the .ext_ent_size quasi directive is as follows.

The value that can be specified as the entry size is "4", "8", or "10". "Entry size of table" above means
"instruction size necessary for one branch processing".
The default entry size is "4". In this case, a 4-byte instruction is allocated as follows.

If "8" is specified, a total of 8 bytes of instructions are allocated, as follows.

If "10" is specified, a total of 10 bytes of instructions are allocated, as follows.

Note that an 8-byte instruction can be used only when the V850Ex/V850E2 core is used (because only the
V850Ex/V850E2 core supports this instruction set).
Specify "10", when the V850 is used. When creating an object common to the V850/V850Ex/V850E2 core
(when using the -cn option), always specify "10".

(g) Library
If a library function is called from the boot area or flash area, the library is linked to the object on the calling
side. For example, even if a library is linked to the flash area, the same library is linked to the boot area if
the same library function is called from the boot area. When a library function is called, therefore, a function
does not have to be specified by the .ext_func quasi directive for the library function because branching
does not take place between the boot area and flash area.
However, in a special case where the library linked to the boot area branches to a function in the flash area,
a function must be specified by the .ext_func quasi directive.
For the "standard library" and "mathematical library" of the CA850 package, a function does not have to be
specified by using the .ext_func quasi directive.

(h) Interrupt handler
Describe the part that calls an interrupt handler in the area where the address of the interrupt handler exists.

__ext_table_head:

 jr _func_flash0

 jr _func_flash1

 jr _func_flash2

.ext_ent_size Entry-size-of-table

jr _flash_func0 -- 4-byte instruction

mov #_flash_func0, r1 -- 6-byte instruction

jmp [r1] -- 2-byte instruction

movhi hi1(#_flash_func0), r0, r1 -- 4-byte instruction

movea lo(#_flash_func0), r1, r1 -- 4-byte instruction

jmp [r1] -- 2-byte instruction

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 601

In the following case, an interrupt handler function name must also be specified by the .ext_func quasi
directive.

- Interrupt handler address is in the boot area.
- Interrupt handler body is in the flash area.

Assembly Source Described by User Assembler Image after Linking

[ext_table.inc]

 .ext_func _int_flash0, 0

[rom.s]

 .include "ext_table.inc"

 .extern _int_flash0

 .section "INT00", text

 jr _int_flash0

[rom.out]
 .section "INT00", text

 jr __ext_table_head+0x4*0,lp

[flash.s]

 .include "ext_table.inc"

 .globl _int_flash0

_int_flash0:

 :

 reti

[flash.o]

#(branch table)

 .section ".ext_table", text

 .globl __ext_table_head

 .extern _int_flash0

__ext_table_head:

 jr _int_flash0

#(handler body)

 .globl _int_flash0

_int_flash0:

 :

 reti

APPENDIX B COMMAND REFERENCE

602 User’s Manual U19386EJ1V0UM

B.3.4 Supplementary information

This section describes the supplementary points related to the linker.

(1) Using -A option
This section describes how to use the -A option.
With CubeSuite, on the Property panel, from the [Link Options] tab, in the [Other] category, set the [Display GP
information] property to [Yes(-A)].

(a) Function
This option displays the information that serves as a yardstick for the value to be set to num of the -Gnum
option that can be specified for the ca850 and as850 when a source file is compiled or assembled. The
information is output via standard output, if ca850 or as850 has been activated with the -A option specified
on the command line. With CubeSuite, If [Yes(-A)] in the [Display GP information] property is selected, the
information is output on the Output panel.
The -Gnum option allocates data of less than num bytes to the .sdata or .sbss section.
The ca850 and as850 output codes in compliance with the following rule for the data allocated to the sdata,
sbss, data, and bss areas.
The ca850 or as850 first tries to allocate the data to the sdata-attribute section or sbss-attribute section,
which are areas that can be accessed with a single instruction from the gp register (data with a default value
is allocated to the sdata-attribute section and data without a default value is allocated to the sbss-attribute
section).
Because these areas are accessed by a code that uses gp and a 16-bit displacement for access, data can
be allocated only in a range of +32 KB from gp. If the data does not fit in these areas, the ca850 or as850
tries to allocate the data to the data-attribute section or bss-attribute section, which are areas that can be
accessed with two instructions from the gp register (data with a default value is allocated to the data-
attribute section and data without a default value is allocated to the bss-attribute section). In these areas,
the address of the access area is first generated, and a code using gp and a 32-bit displacement for access
is generated. Consequently, the entire 4 GB space can be accessed.

Figure B-25. Memory Allocation Image of gp Offset Reference Section

Therefore, the execution efficiency and object efficiency are enhanced if more data is allocated to the sdata-
attribute or sbss-attribute section, which can be accessed with a single instruction.
To allocate data, the user can intentionally specify the allocation location by using the #pragma section
directive in the case of a C source or by using the .section quasi directive in the case of an assembly
language source.
If a threshold value of the size of the data to be allocated to the sdata-attribute or sbss-attribute section is
prepared and if data of a size less than the threshold value can be allocated to the sdata-attribute or sbss-
attribute section, more data can be allocated without having to modify the source program. This
specification is made by the -Gnum option of the ca850 or as850. The value specified as num of this option
is the data size, so it would be convenient to have information that can be used as a yardstick.
The -A option outputs this information.

Upper address

bss-attribute section

sbss-attribute section

sdata-attribute section

data-attribute section

Lower address

Data without default value

Data with default value
gp indicates the position of the first

+32 KB of the sdata-attribute section

gp

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 603

If the -A option is specified for the linker, it outputs information that can serve as a yardstick for determining
the value of num of the -Gnum option.

(b) Explanation of output information
An example of the information output when this option is specified when an executable object file is
generated without the -r option, and an example of the information output when this option is specified when
a relocatable object file is generated with the -r option are shown below.

Examples 1. The output information for the executable object file

2. The output information for the relocatable object file

 ******** LINK EDITOR GP INFORMATION ********

 (1) (2) (3) (4) (5) (6)

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

_gp_DATA

 .sdata 0x000af10

 0x00002000 4 *OK*

 0x00003450 8 *OK*

 0x00004430 12 *OK*

 0x000050a8 16 *OK*

 0x00007b40 20 *OK*

 0x0000a010 24

 0x0000af10 32

 .sbss 0x00012050

 0x00000050 4 *OK*

 0x00002050 16 *OK*

 0x00007050 512 *OK*

 0x00010050 1024

APPENDIX B COMMAND REFERENCE

604 User’s Manual U19386EJ1V0UM

 ******** LINK EDITOR GP INFORMATION ********

 (1) (2) (3) (4) (5) (6)

GP SYMBOL SECTION SECTION SECTION GP

NAME NAME SIZE(REAL) SIZE(ASSUMED) NUMBER

*(NOT AVAILABLE)

 .sdata 0x000af10

 0x00002000 4 *OK*

 0x00003450 8 *OK*

 0x00004430 12 *OK*

 0x000050a8 16 *OK*

 0x00007b40 20 *OK*

 0x0000a010 24

 0x0000af10 32

 .sbss 0x00012050

 0x00000050 4 *OK*

 0x00002050 16 *OK*

 GpCommon 0x00010000

 0x00005000 512 *OK*

 0x00010000 1024

Item
Number

Description

(1) Name of global pointer symbol

This is the name of the global pointer symbol used for linking. If the created object file is a
relocatable file, "*(NOT AVAILABLE)*" is displayed.

(2) Section name

This is the name of the sdata-attribute section or sbss-attribute section to which data are
allocated. Because a relocatable object file cannot determine allocation of an undefined external
symbol to a section, the linker internally creates a virtual section "*GpCommon*" and temporarily
allocates the data to this section.

(3) Actual size of section

This is the actual size of the section that is considered for use as the area for the hole generated
by data alignment.

(4) Assumed size of section

This is the size of the section that is assumed if the ca850 is started with the -Gnum option (with
the value shown in the column at the right to this column specified as num). Because the
calculation of this size assumes an alignment condition of more than 4 bytes without taking the
actual alignment condition into consideration, the value shown in this column does not
necessarily agree with the actual size of the created section.

(5) Value of num of -Gnum option assumed

This is the value of the -Gnum option num upon starting the ca850 and the as850 that is
assumed as a result of calculating the "assumed size of section" shown on the column to the left
of this column.

(6) Judgement result

This is the result of the judgmentNote as to whether or not the size of the section is within a range
of 15 bits (0x0 to 0x7fff) if the ca850 is started with the -Gnum option with the value shown in the
column at the left to this column (specified as num). If the size is within this range, "*OK*" is
displayed; if it is not, nothing is displayed.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 605

Note Usually the sections to which data is allocated are allocated from the lower address in the order
of data/sdata/sbss/bss attribute sections in the C compiler. The global pointer (gp) is assumed
to be set in the startup module, etc. so as to indicate the start address of the sdata-attribute
section + 32 KB. If the result is OK in this judgement, the sdata/sbss attribute sections are
assumed to be allocated to a memory range that can be referenced using 16-bit displacement.

(c) Cautions
The information output by this option is only a yardstick, and the judgment result may not be correct, such
as in the following cases:

- If allocation of a section that creates a hole is specified by a link directive, etc.
- If a direct address is specified for a global pointer symbol.
- If data is allocated to the .sdata/.sbss section by the #pragma section directive.

(d) Example

file1.o and file2.o are linked and information that can be used as a yardstick for setting the num value of the
-Gnum option that can be specified for the ca850 or the as850 when compiling or assembling is output via
standard output.

(2) Archive file
An archive file is created by linking two or more object files with the archiver.
When an archive file is specified, the linker searches the archive file for unresolved external referencesNote 1

and links only the necessary object files.
The archive file can be also specified via the link directive's mapping directive. If the archive file is also specified
in the mapping directive, it is searched for unresolved external references at that time and only the necessary
object filesNote 2 are linked.

Notes 1. The archive file includes a symbol table of the symbols belonging to the archiver's object files, and
the archive file is repeatedly searched as long as unresolved external references remain unresolved.

2. Object file that defines a referenced symbol.

(3) Reserved symbols
During link-related processing, the linker creates reserved symbols whose values include the start address of
each output section, the start address beyond the end of each output section, and the start address beyond the
end of a created executable object file.
If the user defines a symbol having the same name as any of these reserved symbols, the linker uses the
defined symbol, and does not create its own symbol.
A symbol having a name made by prefixing "_ _ s" to the name of the output section is used as a reserved
symbol that has the start address of a section as a value.
If this section name begins with ".", "." is taken out and "_ _ s" is prefixed to make it a symbol name. A symbol
name with "_ _ e" prefixed to the name of that output section is used as a reserved symbol that has the start
address beyond the end of a section as a value.
If this section name begins with ".", "." is taken out and "_ _ e" is prefixed to make it a symbol name. _ _ end is
used as a reserved symbol having a start address beyond the end of a created executable object file.
The default link directive used by the linker uses the following reserved sections as output sections.

Table B-12. Reserved Section

C>ld850 -A file1.o file2.o

.text, .pro_epi_runtime, .data, .sdata, .sbss, .bss, .sconst, .const, .sedata, .sebss, .sidata, .sibss, .tidata, .tibss,

.tidata.byte, .tibss.byte, .tidata.word, .tibss.word

APPENDIX B COMMAND REFERENCE

606 User’s Manual U19386EJ1V0UM

Therefore, the linker normally creates the following reserved symbols.

Table B-13. Special Symbols in Ordinary Object File

Caution Of the above symbols, only those for which a section exists in the executable file after link
processing are generated. The linker behaves as if no section exists if a section that is
actually allocated does not exist even if a mapping directive is described in the link directive
file.

(4) May not be allocated to the expected sections
Even if a directive file specifies an object file or archive file to be allocated to a section, the object file or archive
file may not be allocated to the expected sections, depending on how the file name is described. In such cases,
see the link map (-m) and specify the directive file with the file name displayed on the link map and with the
identical name including the path name, and then relink.

(5) V850 core and V850Ex core
The V850Ex is upwardly compatible with the other V850 core microprocessors. Source programs that are used
with the V850 core can be used with the V850Ex. In this case, create the V850 core object file as an object file
common to the core with the as850 option.
An object file created as "common to V850Ex" cannot link with a non-V850Ex and non-V850E2 object file.
See “(1) Magic number” for details.

(6) V850 core and V850E2 core
The V850E2 is upwardly compatible with the other V850 core microprocessors. Source programs that are used
with the V850 core can be used with the V850E2. In this case, create the V850 core object file as an object file
common to the core with the as850 option.
An object file created as "common to V850E2" cannot link with a non-V850E2 object file.
See “(1) Magic number” for details.

(7) Mathematics library
An error such as an undefined symbol error may be output even when a mathematics library function is used in
a program and a mathematics library (libm.a) is linked during linking. This relates to the linking sequence with
the standard libraries. Since this sequence must comply with the ANSI standard, the standard libraries should
be linked last. Note this with caution, especially when starting the linker from the command line. Specifically,
describe the options in the order of the -lm and the -lc.

(8) main function
If linking is performed without creating a main function, an error message may be output to indicate that the
_main symbol is an undefined symbol. This may occur when the user links the default startup routine (crtN.o or
crtE.o[V850E]) rather than a user-specified startup routine, or when the crtN.s or crtE.s that are provided with
the package are used as they are for assembly and linkage. The error is due to the "jarl _main, lp" code that is
written following crtN.s or crtE.s. If the main function is not needed, overwrite this code then use the
reassembled object as the startup routine. In the case of an application that uses the real-time OS, main
function does not exist normally. Use the startup routine provided as a sample of the real-time OS.

__end, __ebss, __econst, __edata, __epro_epi_runtime, __esbss, __esconst, __esdata, __esebss, __esedata,
__esibss, __esidata, __etext, __etibss, __etibss.byte, __etibss.word, __etidata, __etidata.byte, __etidata.word,
__sbss, __sconst, __sdata, __spro_epi_runtime, __ssbss, __ssconst, __ssdata, __ssebss, __ssedata, __ssibss,
__ssidata, __stibss, __stibss.byte, __stibss.word, __stidata, __stidata.byte, __stidata.word

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 607

(9) Prologue/epilogue runtime library
The prologue/epilogue runtime library must be allocated to the special-purpose .pro_epi_runtime section. If it is
not allocated there, the linker outputs the following message and stops linking.

If a link directive file has been specified, describe the mapping directive before the .text section.

If the .pro_epi_runtime section is placed after the .text section, it overlaps the allocation position of the default
operation of the section that is packed during ROMization. Allocating the .pro_epi_runtime section before the
.text section is recommended. If a link directive file has not been specified, link before the .text section.

(a) Cautions
- The prologue/epilogue runtime libraries are included in standard library libc.a.
- Unlike ordinary sections, the .pro_epi_runtime section has a fixed input section name and only the

special-purpose section is allocated.
- If the .pro_epi_runtime section is placed after the .text section, it overlaps the allocation position of the

default operation of the section that is packed during ROMization. Allocate the .pro_epi_runtime
section before the .text section.

- The prologue/epilogue runtime libraries use the callt instruction when a device of the V850Ex/V850E2
core is used. Set CTBP in the startup routine.

(10)Linking for ROMization
For ROMization, the packing section area must be considered when coding the link directive. See “B.4
ROMization Processor” for details.
ROMization is not possible if the default link directive and the CONST segment are both used. Since the default
link directive allocates the CONST segment immediately after the TEXT segment, the packed section (rompsec
section) and the CONST segment become overlapped during the ROMization processor's default operation.
Perform one of the following responses while considering the additional sample directiveNote attached to the
package.

Note v850def.dir, v850def2, or dirv850def3.dir stored in "install-
folder\CubeSuite\CA850\Vx.xx\smp850\ca850".

Memory allocation must suit the microprocessor being used. Allocate the CONST segment before the TEXT
segment.

F4286 : section ".pro_epi_runtime" must be specified in link directive.

.pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

.text = $PROGBITS ?AX;

v850def.dir Sample using internal ROM/RAM and external RAM

v850def2.dir Sample using only internal ROM/RAM

v850def3.dir Sample using internal ROM/RAM, external RAM, and internal instruction RAM (such as V850E/
ME2)

APPENDIX B COMMAND REFERENCE

608 User’s Manual U19386EJ1V0UM

Reserve a packed section area (see "B.4 ROMization Processor") after the TEXT segment and allocate the
CONST segment after that reserved section.

(11) Programmable peripheral I/O register
For an application program that uses programmable peripheral I/O register functions, the .bpc section (which is
a reserved section) is output when assembling. If there is the .bpc section in a input object file to the linker, the
linker checks values specified as BPC values. If values do not match between input object files, the linker
outputs an error message like the following and suspends link processing.

In the above case, there is an error because the value set in file3.o is different.
Object that does not reference the programmable peripheral I/O register is not checked.
As in file4.o above, "*(none)*" is displayed.
If there are no errors in checking BPC values, a .bpc section is generated with section type SHT_PROGBITS,
section attribute "none", and section size 0x4. The start address of the programmable peripheral I/O register
area, which is the BPC value shifted a preset number of bits, is stored in the .bpc section.

Example If the BPC value is specified as "0x1234" when using the V850E/IA1, the start address of the
programmable peripheral I/O register area is the value shifted 14 bits to the left, or "0x48d0000". In
this case, the information in the .bpc section is as follows.

CONST : !LOAD ?R{

 .const = $PROGBITS ?A .const;

};

TEXT : !LOAD ?RX{

 .text = $PROGBITS ?AX;

};

TEXT : !LOAD ?RX{

 .text = $PROGBITS ?AX;

};

 [Packed section area]

CONST : !LOAD ?R V0x200000{ <- Address specification takes packed section into account

 .const = $PROGBITS ?A .const;

};

F4457: input files have different BPC value.

0x00001234 file1.o

0x00001234 file2.o

0x00001235 file3.o

(none) file4.o

.bpc

 Address 00 01 02 03 04 05 06 07 - 08 09 0A 0B 0C 0D 0E 0F

0x00000000 : 00 00 8d 04 - ...

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 609

- The processing above is performed without question when creating a relocatable object file and when
creating an executable object file.

- The .bpc section is a special reserved section for information and is never loaded into memory.
Therefore, it need not be specified in a link directive like a normal section.

(12)Option byte
Describe 6-byte data in the assembler source as follows in order to use the option byte function.

- If a device not having the option byte is specified, it is handled as an ordinary input section.
- If a device having the option byte is specified and if description of this section is omitted, the default value

set in the device file is set.
- Be sure to describe 6 bytes for this section. If 6 bytes or less is described, the following message is output

and linking is stopped.

- The default value of a bit that cannot be set must not be changed. If it is changed, the following message is
output.

.section "OPTION_BYTES"

.byte 0b00000001 -- 0x7a

.byte 0b00000000 -- 0x7b

.byte 0b00000000 -- 0x7c

.byte 0b00000000 -- 0x7d

.byte 0b00000000 -- 0x7e

.byte 0b00000000 -- 0x7f

F4112: illegal "section" section size.

W4613: illegal flash mask option access (file:"file" address:num1 bit:num2)

APPENDIX B COMMAND REFERENCE

610 User’s Manual U19386EJ1V0UM

B.4 ROMization Processor

When a variable is declared globally within a program, the variable is allocated to the data-attribute section in RAM if
the variable has a default value, or to the bss-attribute section if it does not have a default value. When the variable
has a default value, that default value is also stored in RAM. In addition, program code may be stored in the internal
RAM area to speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules can
be downloaded and executed just as they are in the allocation image. But if you actually write the program to the ROM
area of the target system and execute it, the default values in the data attributes section and the program code to be
allocated to the RAM area must be loaded into RAM before execution.In other words, data that is residing in RAM must
be deployed in ROM, and this means that data must be copied from ROM to RAM before the corresponding
application is executed.

The ROMization processor (romp850) is a tool that takes default value information for variables in data-attribute
sections as well as programs allocated to RAM and packs them into a single section. This makes it easy to load
default value information and program into RAM by allocating this section to ROM, and calling the copy function
provided by the CA850.

The following figure shows an outline of the operation flow in creating objects for ROMization.

Figure B-26. Creation of Object for ROMization

When ROMization objects are created as shown in the figure, execution of the _rcopy function copies the data to be
allocated to RAM from the packed ROM. An image of this operation is shown below.

ROMization area reservation code

(default: rompcrt.o)
Source program

Copy function _rcopy

Additional code

Compile with ROMization

specification option (-Xr)

ROMization library (libr.a)

(_rcopy function)

Link

Executable object

ROMization processor

ROMization

object

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 611

Figure B-27. Image of Before and After _rcopy Function Is Called

The default values for the section name and the section's start address (label name) required for the ROMization
object are as follows.

- Name of packed section -> rompsec section
- Start address (label name) of rompsec section -> __S_romp

The function used to copy from the rompsec section to the RAM area is as follows.
- Copy function -> _rcopy, _rcopy1, _rcopy2, _rcopy4 function

This function is stored in the library "libr.a" which is in the lib850\r** folder.
_ _ S_romp is a label that is defined by "rompcrt.o" in the lib850\r** folder (the corresponding source file is

rompcrt.s). Using rompcrt.o as is causes the ROMization processor to create automatically a rompsec section
immediately after the .text attributes (at the 4-byte aligned location).__S_romp becomes the label indicating the start
address of that rompsec section.

In addition to this method for automatically creating a rompsec section, it is also possible to independently create
and allocate a program corresponding to rompcrt.s. See “(2) Creating procedure (customize)” for details.

The actual ROMization works as follows: after creating this ROMization object, it converts it into a hex file, and writes
it to ROM.

Copy data to RAM

RAM area for data with

default value

RAM area for data

without default value

RAM allocation program area

Text area

Constant data area

Packed data with

default value

Image of object for ROMization

RAM area for data with

default value

RAM area for data

without default value

RAM allocation program area

Text area

Constant data area

Packed data with

default value

Image after data is copied _rcopy function

Copy text to RAM

APPENDIX B COMMAND REFERENCE

612 User’s Manual U19386EJ1V0UM

If the application does not include any data that requires packing, there is no need to create a ROMization object.
Convert the object created by the linker into a hex file directly.

If the object files resolved for relocation include symbol information and debug information, the ROMization
processor creates a ROMization object file without deleting them. Therefore, the debugger can debug the source even
with a ROMization object file.

B.4.1 I/O files

The ROMization processor enables the following files to be handled as input file.

The output file is:

The linker and the ROMization processor are both able to specify I/O file names. The default output file name is
romp.out.

B.4.2 rompsec section

(1) Types of sections to be packed
The default data that can be packed as a rompsec section is "data allocated to sections having a write-enabled
attribute". If a device with V850/V850E1 core is specified, sections allocated to the internal instruction RAM are
also packed (they are not packed if a device with V850E2 cores is specified).In addition, any section that has
either the text attribute or const attribute can be specified for packing by specifying the -t option.
Specific examples are listed below.

-「The reserved sections listed in ”Table B-14. Reserved Sections Packed by ROMization Processor”
- In an assembler program, sections generated with arbitrary names specifying a sdata or data attribute by

the .section pseudo instruction, and sections allocated to the internal instruction RAM.

Table B-14. Reserved Sections Packed by ROMization Processor

Note, however, that if any user-specified sections with either the text attribute or const attribute are not packed
and if the above-listed sections are not in an executable module, there is no need to create a ROMization
object.
See the link map file to determine whether or not the sections listed in “Table B-14. Reserved Sections Packed
by ROMization Processor”.
It can be confirmed that a rompsec section is created in place of a .data section, .sdata section, sections
allocated to an internal RAM (including interrupt handler sections), and the like, by referencing the object file
which is created by the ROMization processor via the dump tool.

(2) Size of rompsec section
This section describes the memory area size to be reserved for the rompsec section.
When creating the ROMization module, note the size of the rompsec section as well as the address range and
size of using CPU’s internal ROM area and the target system's ROM area. Code the link directive file carefully
to prevent the rompsec section from overlapping other sections. See “B.4.3 Creating object for ROMization” for
specific code examples.
Formulas used to calculate the size of the rompsec section are shown below.

file1.out Executable object output by the ld850

file2.out Executable object for ROMization

.data, .sdata, .sedata, .sidata, .tidata, .tidata.byte, .tidata.word

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 613

8 + 16 x (Number of sdata/data sections) + Size of sdata/data section
+ Padding sizeNote

For example, if .sdata and .data sections exist, the size of each is 1002 bytes and 1000 bytes, and the alignment
condition of each section is 4 bytes, the size of the rompsec section is as follows.

8 + 16 x 2 + 1002 + 1000 + 2 = 2044 bytes

Note The size is 0 to 3 bytes per section, depending on the alignment condition of the section subject to
ROMization.

(3) rompsec section and link directive
During ROMization, a rompsec section is added immediately after the .text section. Consequently, it is possible
to allocate the rompsec section up to the end of ROM by allocating a .text section to the end of the ROM, or
explicitly specifying the end of the ROM for the rompsec section.

- Link directive taking ROMization processing into consideration

Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

CONST : !LOAD ?R {

 .const = $PROGBITS ?A .const;

};

Allocates .text to end of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX .text { rompcrt.o };

};

Allocates DATA to external RAM

DATA : !LOAD ?RW V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RW V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

__ep_DATA @ %EP_SYMBOL;

APPENDIX B COMMAND REFERENCE

614 User’s Manual U19386EJ1V0UM

If the rompsec section exceeds the internal ROM area, the following message is output and the processing is
stopped.

By specifying the -rom_less option, the internal ROM area may be ignored.
By specifying the -Ximem_overflow=warning option, an error message can be changed to a warning message.
The above check is not performed if the rompsec section is allocated to the end of the external ROM area.
Check the memory map information to see if the sections fit in ROM.
If it is necessary to allocate the rompsec section in the middle of ROM, check the area where the rompsec
section is to be allocated as follows, from the size and allocation address of the rompsec section, and specify an
appropriate address for the segment immediately after the rompsec section.

- Link directive taking ROMization processing into consideration (size considered)

F8425: rompsec section overflowed highest address of target machine.

Allocates SCONST, CONST, and TEXT to internal ROM

SCONST : !LOAD ?R {

 .sconst = $PROGBITS ?A .sconst;

};

Allocates .text in middle of internal ROM

TEXT : !LOAD ?RX {

 .pro_epi_runtime = $PROGBITS ?AX .pro_epi_runtime;

 .text = $PROGBITS ?AX .text;

 rompsec = $PROGBITS ?AX .text { rompcrt.o };

};

rompsec between TEXT and CONST

Allocates CONST to end of internal ROM by specifying address taking size into
consideration

CONST : !LOAD ?R Vx3f800 {

 .const = $PROGBITS ?A .const;

};

Allocates DATA to external RAM

DATA : !LOAD ?RW V0x100000 {

 .data = $PROGBITS ?AW;

 .sdata = $PROGBITS ?AWG;

 .sbss = $NOBIT ?AWG;

 .bss = $NOBIT ?AW;

};

Allocates SIDATA to internal RAM

SIDATA : !LOAD ?RW V0xffe000 {

 .sidata = $PROGBITS ?AW .sidata;

 .sibss = $NOBIT ?AWG .sibss;

};

__tp_TEXT @ %TP_SYMBOL;

__gp_DATA @ %GP_SYMBOL &__tp_TEXT{DATA};

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 615

B.4.3 Creating object for ROMization

(1) Creating procedure (default)
This section describes a method that uses the ROMization area reservation code (rompcrt.o) that is provided as
the default object.

(a) Call a copy function within the application.
The copy function should be activated early on, such as within the startup routine or at the start of the main
function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a
different transfer size (the transfer size of _rcopy and _rcopy1 is the same). See “B.4.4 Copy function” for
details about these.
In the following example, the _rcopy function is activated at the start of the main function.

Example Example of using copy function _rcopy

(b) During ROMization, a rompsec section is added immediately after the .text section.
By allocating the .text section to the end of ROM, the rompsec section up to the end of ROM can be
allocated (see “(3) rompsec section and link directive”).

(c) Specify the creation of object for ROMization by the compile option.

<1> From command line
Add compile option "-Xr".

<2> From CubeSuite
On the Property panel, from the [ROMization Process Options] tab, in the [Output File] category,
select [Yes(-Xr -lr)] on the [Output ROMized object file] property.

Figure B-28. [Output ROMized object file] Property

__ep_DATA @ %EP_SYMBOL;

#define ALL_COPY(-1)

int _rcopy(unsigned long *, long);

extern unsigned long _S_romp;

void main(void)

{

 int ret;

ret = _rcopy(&_S_romp, ALL_COPY);

 :

}

APPENDIX B COMMAND REFERENCE

616 User’s Manual U19386EJ1V0UM

As a result, a code that indicates that label __S_romp indicates the first address that exceeds the end of the
.text section in the object is generated.

(d) Specify ROMization process option.

<1> From CubeSuite
On the Property panel, from the [ROMization Process Options] tab, in the [Input File] category, set the
[Use standard ROMization area reservation code file] property to [Yes] (default).

Figure B-29. [Use standard ROMization area reservation code file] Property

(e) Compile and link.
By specifying the creation of object for ROMization for the ca850, the ROMization area reservation code
"rompcrt.o" (that is in lib850\r**) and "libr.a" that stores the _rcopy function are automatically linked. At this
time, the linking sequence is relevant.Because "rompcrt.o" must be linked at the end of a group of TEXT
attributes, link it after the libraries specified by the -l option for linking if the linker has been activated from
the command line. If CubeSuite is used, there is no need to be aware of "rompcrt.o" because it is
automatically linked at the end of the TEXT attribute group.

Caution If the linker's -rescan option is specified, the library is linked after rompcrt.o, and the
ROMization processor may output an F8426 error. In such a case, explicitly secure a
rompsec section area (see "(3) rompsec section and link directive").

(f) Activate the ROMization processor.
Generate a ROMization module from the executable module completed in (d), by using the ROMization
processor.
If the creation of object for ROMization is specified with CubeSuite, (d) and this is automatically performed,
and a hex file is generated. If the commands has been activated from the command line, the ROMization
processor is activated and a ROMization object is created after the C compiler to linker have been activated
and an executable module has been generated. An image of the map is shown below.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 617

Figure B-30. ROMization Image 1

(2) Creating procedure (customize)
This section describes the method for independently creating 途 ompcrt.o_ corresponding to the ROMization
area reservation code and determining the desired rompcrt section start address and allocation position.

(a) Enter code corresponding to the default ROMization area reservation code "rompcrt.s".
The file name is "rompack.s" and the name of the symbol indicating the start of the ROMization area is
"__rompack". Also, the section containing this symbol is the "rompack section". In this case, the code in
rompack.s appears as follows.

Example rompack.s

 .file "rompack.s"

 .section ".rompack",text

 .align 4

 .globl __rompack, 4

__rompack:

(Executable object output by the linker)

.sidata section

.const section

.sconst section

.text section

.sdata section

.data section

.sedata section

.tidata section

Peripheral I/O

Interrupt

__S_romp

0x0

(Executable object output by the ROMization processor)

.const section

.sconst section

.text section

Peripheral I/O

Interrupt

.sidata section

.sdata section

.data section

.sedata section

.tidata section

Copied information
__S_romp

0x0

rompsec section

ROMization processor

Hex converter

Hex file

Target system

ROM

ROM writer

APPENDIX B COMMAND REFERENCE

618 User’s Manual U19386EJ1V0UM

(b) Call a copy function within the application.
The copy function should be activated early on, such as within the startup routine or at the start of the main
function. _rcopy, _rcopy1, _rcopy2, and _rcopy4 are available as copy functions, and each of these has a
different transfer size (the transfer size of _rcopy and _rcopy1 is the same). See “B.4.4 Copy function” for
details about these.
In the following example, the _rcopy function is activated at the start of the main function.

Example Example of using copy function _rcopy

(c) Define the created rompack section in a link directive.
The allocation location of the rompack section can be determined arbitrarily by specifying an address
simultaneously.
To specify ROMPACK as the segment containing the rompack section and to allocate that segment to at
address 0x3000, enter the following link directive.

Example Link Directive Specification Example

The rompack section's size is estimated using the formula described in "(2) Size of rompsec section" to
avoid the ROMPACK segment's allocation address from overlapping with adjacent segments.

(d) Specify the creation of object for ROMization by the compile option.
- From command line

Add compile option "-Xr".

- From CubeSuite
On the Property panel , from the [ROMization Process Options] tab, in the [Output File] category, select
[Yes(-Xr -lr)] on the [Output ROMized object file] property.

#define ALL_COPY (-1)

int _rcopy(unsigned long *, long);

extern unsigned long _rompack;

void main(void)

{

 int ret;

 ret = _rcopy(&_rompack, ALL_COPY);

 :

}

TEXT: !LOAD ?RX V0x1000 {

 .text = $PROGBITS ?AX .text;

};

ROMPACK: !LOAD ?RX V0x3000 {

 .rompack = $PROGBITS ?AX .rompack;

};

 :

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 619

Figure B-31. [Output ROMized object file] Property

This generates code that indicates the same address for label "rompack" as is specified for rompsec.

(e) Specify ROMization process option.
- From command line

As a ROMization process option, specify "__rompack" for the "-b" option to specify the entry symbol for
the ROMization area reservation code.

- From CubeSuite
On the Property panel , from the [ROMization Process Options] tab, in the [Input File] category, select
[No] on the [Use standard ROMization area reservation code file] property. And then add “rompack.s”
or “rompack.o” in the [ROMization area reservation code file name] property.

Figure B-32. [Input File] Category

In the [Other] category, specify rompack section's start label “_rompack” in the [Entry label] property.

Figure B-33. [Entry label] Property

(f) Compile and link.
By specifying the creation of object for ROMization for the ca850, "libr.a" that stores the _rcopy function are
automatically linked.

Caution If the linker's -rescan option is specified, the library is linked after rompcrt.o, and the
ROMization processor may output an F8426 error. In such a case, explicitly secure a
rompsec section area (see "(3) rompsec section and link directive").

(g) Activate the ROMization processor.
Generate a ROMization module from the executable module completed in (f), by using the ROMization
processor.
If the creation of object for ROMization is specified with CubeSuite, (f) and this is automatically performed,
and a hex file is generated. If the commands has been activated from the command line, the ROMization
processor is activated and a ROMization object is created after the C compiler to linker have been activated
and an executable module has been generated. An image of the map is shown below.

APPENDIX B COMMAND REFERENCE

620 User’s Manual U19386EJ1V0UM

Figure B-34. ROMization Image 2

B.4.4 Copy function

This section describes the copy routines (_rcopy) necessary for the program to be stored in ROM.

Table B-15. Copy Routines

Use 1-byte, 2-byte, or 4-byte transfer, depending on the specification of the RAM at the transfer destination. The
specification of each function is as follows.

Function Name Function

_rcopy Copies ROMization section (1-byte transfer)

_rcopy1 Copies ROMization section (1-byte transfer)

_rcopy2 Copies ROMization section (2-byte transfer)

_rcopy4 Copies ROMization section (4-byte transfer)

(Executable object output by the linker)

.sidata section

.const section

.text section

.sdata section

.data section

.sedata section

.tidata section

Peripheral I/O

Interrupt

__rompack

0x0

(Executable object output by the ROMization processor)

.const section

.sconst section

.text section

Peripheral I/O

Interrupt

.sidata section

.sdata section

.data section

.sedata section

.tidata section

Copied information
__rompack

0x0

.rompack section

ROMization processor

Hex converter

Hex file

Target system

ROM

ROM writer

.sconst section

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 621

[Overview]

- Copies default data or RAM textNote (1 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy(&label, number) copies the default value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to
the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in
the specified order.

- With CubeSuite, on the Property panel, from the [ROMization Process Options] tab, in the [Section List]
category, set the [Output ROMization section file] property to [Yes]. A C source header file that makes “number”
and “label” correspond to each other by #define is generated, and number can be specified by a label name.

- See “B.4.5 Example of using copy function” for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy, it is not possible to add an offset to the destination address.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy, label. If

any other value or address is specified, the result is not guaranteed.
- The _rcopy and _rcopy1 functions are identical. _rcopy is used to maintain compatibility with old versions.

_rcopy

int _rcopy(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

APPENDIX B COMMAND REFERENCE

622 User’s Manual U19386EJ1V0UM

[Overview]

- Copies default data or RAM textNote (1 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy1(&label, number) copies the default value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 1 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to
the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in
the order in which they are specified.

- With CubeSuite, on the Property panel, from the [ROMization Process Options] tab, in the [Section List]
category, set the [Output ROMization section file] property to [Yes]. A C source header file that makes “number”
and “label” correspond to each other by #define is generated, and number can be specified by a label name.

- See “B.4.5 Example of using copy function” for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy1 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy1, it is not possible to add an offset to the destination address.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy1, label.

If any other value or address is specified, the result is not guaranteed.
- The _rcopy1 and _rcopy functions are identical. _rcopy is used to maintain compatibility with old versions.

_rcopy1

int _rcopy1(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 623

[Overview]

- Copies default data or RAM textNote (2 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy2(&label, number) copies the default value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 2 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to
the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in
the order in which they are specified.

- With CubeSuite, on the Property panel, from the [ROMization Process Options] tab, in the [Section List]
category, set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number"
and "label" correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy2 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy2, it is not possible to add an offset to the destination address.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy2, label.

If any other value or address is specified, the result is not guaranteed.

_rcopy2

int _rcopy2(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

APPENDIX B COMMAND REFERENCE

624 User’s Manual U19386EJ1V0UM

[Overview]

- Copies default data or RAM textNote (4 byte).

Note Data section with default value which is to be allocated to RAM, and text section for internal RAM.

[Format]

[Description]

- _rcopy4(&label, number) copies the default value data of section number number to be copied, or text to be
allocated to RAM, to the RAM area 4 byte at a time, based on the information in the rompsec section allocated
starting at the address following the address indicated by label. If -1 is specified as number, all sections in the
rompsec section are copied. Section number number is a positive number that starts from 1.

- By default, sections are allocated in the order in which they appear in the input file. If sections to be allocated to
the rompsec section are specified by the "-p" or "-t" option of the ROMization processor, they are allocated in
the order in which they are specified.

- With CubeSuite, on the Property panel, from the [ROMization Process Options] tab, in the [Section List]
category, set the [Output ROMization section file] property to [Yes]. A C source header file that makes "number"
and "label" correspond to each other by #define is generated, and number can be specified by a label name.

- See "B.4.5 Example of using copy function" for specific examples.

[Return value]

[Cautions]

- Data is not copied if the address indicated by label is not at the start of the rompsec section.
- _rcopy4 copies data in accordance with the information generated by the ROMization processor.

When executing _rcopy4, it is not possible to add an offset to the destination address.
- No data is copied if data may be overwritten as a result of copying.
- Specify a global label having an absolute value or an absolute address as the first argument of _rcopy4, label.

If any other value or address is specified, the result is not guaranteed.

_rcopy4

int _rcopy4(&label, number)

unsigned long label;

long number;

0 Normal completion (if copied correctly)

-1 Abnormal termination (if not copied correctly)

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 625

B.4.5 Example of using copy function

(1) To transfer all sections in 1-byte units

The label references an absolute address when the ca850's ROMization option has been specified as shown
above. Therefore, describe as follows to call _rcopy() in an assembler source program.

(2) To transfer sections 1 to 6 in 4-byte units and sections 7 to 11 in 1-byte units

extern unsigned long _S_romp;

main()

{

 int ret;3

 ret = _rcopy(&_S_romp, -1);

 /* -Xr specifies a global label having an absolute value. */

}

.extern __S_romp, 4 -- Declared as an external label

-- Calls rcopy with absolute address of __S_romp as first argument and -1 as second
argument

mov #__S_romp, r6

mov -1, r7

jarl __rcopy, lp

extern unsigned long _S_romp;

main()

{

 int ret, num;

 for(num = 1; num<=6; num++) {

 ret = _rcopy4(&_S_romp, num);

 if(ret == -1) {

 /* Error processing */

 }

 }

 for(num = 7; num <= 11; num++) {

 ret = _rcopy1(&_S_romp, num);

 if(ret == -1) {

 /* Error processing */

 }

 }

}

APPENDIX B COMMAND REFERENCE

626 User’s Manual U19386EJ1V0UM

(3) Example 1 of incorrect specification

(4) Example 2 of incorrect specification

- The section number to be specified as number is a positive number that starts from 1.
The relationship between the section name and section number can be referenced from the memory map.
When CubeSuite is used, on the Property panel, from the [ROMization Process Options] tab, in the [Section
List] category, set the [Output ROMization section file] property to [Yes]. A C language header file in which
correspondence between the section number and label is established can be created. In other words, a
label can be used as number.

- If a section number or -1 is specified as number, nothing is copied.
- If two or more RAMs exist and two or more copy routines are used, and if -1 is specified as number, data

cannot be correctly copied due to problems such as alignment of all sections.
Do not specify -1 as number; specify a section number.

- If -1 is specified as number, data is copied in the order of section numbers.
If there are any sections that are not copied during this operation due to one of the problems above, a value
of -1 is returned.Sections following the section in which a problem has occurred are not copied.

extern unsigned long _S_romp;

char *cp;

func()

{

 int ret;

 /* First argument is gp relative value because copied to variable */

 cp = &_S_romp;

 ret = _rcopy(cp, -1);

}

extern unsigned long _S_romp;

int i;

func()

{

 int ret;

 /* First argument is gp relative value because copied to variable */

 i = 0x100;

 ret = _rcopy(i, -1);

}

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 627

B.4.6 Method for manipulating

This section explains how to manipulate the ROMization processor.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set ROMization process options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [ROMization Process Options] tab.
You can set the various ROMization process options by setting the necessary properties in this tab.

Figure B-35. Property Panel: [Romization Process Option] Tab

B.4.7 Option

This section explains how to manipulate the ROMization processor.
The types and explanations for ROMization process options are shown below.

Table B-16. ROMization Process Options

C>romp850[option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Classification Option Description

File +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Specifies the name of the object file to be generated.

APPENDIX B COMMAND REFERENCE

628 User’s Manual U19386EJ1V0UM

ROMization
processor

-Ximem_overflow=warning Controls checking when the internal ROM/RAM overflows.

-b Regards the specified label value as the start address of the rompsec
section to be created.

-d Creates an object file that includes only a rompsec section.

-i Does not check for the duplicate addresses of the input file and output
file.

-m Outputs the memory map of the object file to be created.

-p Inserts the contents of the data and sdata attribute sections and the
corresponding address and size information into the rompsec section.

-rom_less Does not check a peripheral allocation error of the internal ROM for
the rompsec section.

-t Inserts the contents of the text and const attribute sections and the
corresponding address and size information into the rompsec section.

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error
output.

-help Outputs option descriptions to the standard error output.

@ Handles the specified file as a command file.

Classification Option Description

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 629

The options related to the file are as follows.
- +err_file
- -err_file
- -o

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

File

+err_file=file

C>romp850 +err_file=err a.out

APPENDIX B COMMAND REFERENCE

630 User’s Manual U19386EJ1V0UM

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>romp850 -err_file=err a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 631

-o

[Description format]

- Interpretation when omitted
This option specifies romp.out as the name of the object file to be generated.

[Function Description]

- This option specifies ofile as the name of the object file to be generated.

[Example of use]

- To specify test.out as the name of the object file to be generated, describe as:

-o ofile

C>romp850 -o test.out a.out

APPENDIX B COMMAND REFERENCE

632 User’s Manual U19386EJ1V0UM

The ROMization processor options are as follows.
- -Ximem_overflow=warning
- -b
- -d
- -i
- -m
- -p
- -rom_less
- -t

-Ximem_overflow=warning

[Description format]

- Interpretation when omitted
A error message is output when overflowing and processing is stopped.

[Function Description]

- This option controls checking when the internal ROM/RAM overflows.
- This option outputs a warning message when overflowing and continues processing.

[Example of use]

- To control checking when the internal ROM/RAM overflows, describe as:

ROMization processor

-Ximem_overflow=warning

C>romp850 -Ximem_overflow=warning a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 633

-b

[Description format]

- Interpretation when omitted
Label value _ _ S _ r o m p is regarded as the start address of the rompsec section to be created.

[Function Description]

- This option specifies label value label as the start address of the rompsec section to be created.
- If the specified label does not exist in the object file or if the option is specified more than once, a message is

output and processing is stopped.

[Example of use]

- To specify label value "__rompack" as the start address of the rompsec section to be created, describe as:

-b label

C>romp850 -b __rompack a.out

APPENDIX B COMMAND REFERENCE

634 User’s Manual U19386EJ1V0UM

-d

[Description format]

- Interpretation when omitted
A section with the text attribute is included.

[Function Description]

- This option creates an object file that includes only a rompsec section; no text-attribute section is included in the
file to be created.

[Example of use]

- To create an object file that includes only a rompsec section; no text-attribute section is included in the file to be
created, describe as:

-d

C>romp850 -d a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 635

-i

[Description format]

- Interpretation when omitted
The linker checks for the duplicate addresses of the input file and output file and outputs the following message
and stops linking if an illegalities is found.

[Function Description]

- This option does not check for the duplicate addresses of the input file and output file.

[Example of use]

- Not to check for the duplicate addresses of the input file and output file, describe as:

-i

C>romp850 -i a.out

APPENDIX B COMMAND REFERENCE

636 User’s Manual U19386EJ1V0UM

-m

[Description format]

- Interpretation when omitted
No link map is output.

[Function Description]

- This option outputs to mapfile a memory map of the object file to be created.
- If mapfile is omitted, the link map is output to the standard output.

[Example of use]

- To output to "mapfile" a memory map of the object file to be created, describe as:

-m[=mapfile]

C>romp850 -m=map a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 637

-p

[Description format]

- Interpretation when omitted
The contents of all the data and sdata attribute sections and the sections allocated to the internal instruction
RAM and the corresponding address and size information are inserted into the rompsec section.

[Function Description]

- This option inserts the contents of section section and the corresponding address and size information into the
rompsec section.

- This option is related to data and sdata attribute sections.
- If this option is specified more than once, insertion to the rompsec section occurs according to the specified

order.
- If the specified section does not exist in the object file, a message is output and processing is stopped.
- The section name cannot include blank spaces.

[Example of use]

- To insert the contents of the section (.sdata) and the corresponding address and size information into the
rompsec section, describe as:

-p section

C>romp850 -p .sdata a.out

APPENDIX B COMMAND REFERENCE

638 User’s Manual U19386EJ1V0UM

-rom_less

[Description format]

- Interpretation when omitted
A peripheral allocation error of the internal ROM is not checked for the rompsec section.

[Function Description]

- This option does not check a peripheral allocation error of the internal ROM for the rompsec section.
- It is recommended to specify this option in the ROM-less mode.
- Checking of the overflow of the internal ROM is not supported when the single-chip mode is selected.
- Invalidate checking of the overflow of the internal ROM and check the overflow on the dump tool.

[Example of use]

- Not to check a peripheral allocation error of the internal ROM for the rompsec section, describe as:

-rom_less

C>romp850 -rom_less a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 639

-t

[Description format]

- Interpretation when omitted
The contents of the sections allocated to the internal instruction RAM and the corresponding address and size
information are inserted into the rompsec section.

[Function Description]

- This option inserts the contents of section section and the corresponding address and size information into the
rompsec section.

- This option is related to text and const attribute sections.
- If this option is specified more than once, insertion to the rompsec section occurs according to the specified

order.
- If the specified section does not exist in the object file, a message is output and processing is stopped.
- Only sections having either a text or const attribute can be specified by this option. If any other attribute of

section is specified, a message is output and processing is stopped.
- The section name cannot include blank spaces.
- If this option specifies a particular section of an input file linked specifying a device file with internal instruction

RAM, sections allocated to unspecified internal instruction RAM will not be placed in the rompsec section, and
will also be deleted from the output file.

[Example of use]

- To insert the contents of the section (.text) and the corresponding address and size information into the rompsec
section, describe as:

-t section

C>romp850 -t .text a.out

APPENDIX B COMMAND REFERENCE

640 User’s Manual U19386EJ1V0UM

Other options are as follows.
- -F
- -V
- -help
- @

-F

[Description format]

- Interpretation when omitted
The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder C:\NECTools32\dev, describe as:

Other

-F devpath

C>romp850 -F C:\NECTools32\dev a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 641

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the ROMization processor to the standard error output and
terminates processing.

[Example of use]

- To output the version information of the ROMization processor to the standard error output, describe as:

-V

C>romp850 -V

APPENDIX B COMMAND REFERENCE

642 User’s Manual U19386EJ1V0UM

-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs option descriptions of the ROMization processor to the standard error output.

[Example of use]

- To output option descriptions to the standard error output, describe as:

-help

C>romp850 -help

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 643

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>romp850 @command

APPENDIX B COMMAND REFERENCE

644 User’s Manual U19386EJ1V0UM

B.5 Hex Converter

The hex converter (hx850) inputs an executable object file output by the ROMization processor and converts the
format of that file into a hex (hexadecimal) format.

If the application does not require the use of the ROMization processor (e.g. there are no default data in the
application), then the executable object file output by the linker is input.

Figure B-36. Operation Flow of Hex Converter

B.5.1 I/O files

The hex converter enables the following files to be handled as input file.

The following formats can be specified as hex format output.

(1) Intel hex format
- Intel expanded hex format

(2) Tektronix hex format
- Expanded Tektronix hex format

(3) Motorola hex format
- S type format (standard address)
- S type format (32-bit address)

Note Addresses of each line in the hex format are output in ascending order.

See "3.3 Hex Converter" for details about output lists.

B.5.2 Method for manipulating

This section explains how to manipulate the hex converter.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set hex convert options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Hex Convert Options] tab.

file1.out Executable object output by the ld850 or romp850

C>hx850 [option] ... file-name

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Hex converter

Executable object file Intel hex format file

Motorola hex format file

Textronix hex format file

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 645

You can set the various hex convert options by setting the necessary properties in this tab.

Figure B-37. Property Panel: [Hex Convert Option] Tab

B.5.3 Option

This section explains hex converter.
The types and explanations for hex convert options are shown below.

Table B-17. Hex Convert Options

Classification Option Description

File +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-o Outputs the hex-converted result to the specified file.

Format -b Regards the specified value as the maximum block length.

-d Specifies the offset of the address to be output.

-f Specifies the hex format.

-I Converts and outputs code in the specified section.

-S Converts and outputs a symbol table.

-U Converts into hex format and outputs all the codes in the area specified by the specified
address to the specified size.

-x When converts and outputs the symbol table, also converts and outputs local symbols.

-rom_less Disables use of the information of the internal ROM area defined by the device file when
the -U option is specified.

-z Generates as many null characters (\0) as the size of a section for a section with the
section type NOBITS and section attribute A.

Other -F Searches a device file from the specified folder.

-V Outputs the version information of the C compiler to the standard error output.

@ Handles the specified file as a command file.

APPENDIX B COMMAND REFERENCE

646 User’s Manual U19386EJ1V0UM

The options related to the file are as follows.
- +err_file
- -err_file
- -o

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

File

+err_file=file

C>hx850 +err_file=err -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 647

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>hx850 -err_file=err -o a.hex a.out

APPENDIX B COMMAND REFERENCE

648 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
The hex-converted result to the file is output to the standard output.

[Function Description]

- This option outputs the hex-converted result to the file named ofile.

[Example of use]

- To output the hex-converted result to the file to the file (test), describe as:

-o ofile

C>hx850 -o test a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 649

The options related to the format are as follows.
- -b
- -d
- -f
- -I
- -S
- -U
- -x
- -rom_less
- -z

-b

[Description format]

- Interpretation when omitted
The default value for each hex format is used as the block length.

[Function Description]

- This option regards the value specified by num as the maximum block length (or, in the case of the Intel
expanded hex format or Motorola S type hex format, the number of bytes of the code indicated in one data
record).

- Specify a decimal number or a hexadecimal number that starts with 0x or 0X as num.

Table B-18. HEX Format Block/Record

[Example of use]

- To specify 255 as the maximum number of bytes of the code indicated in one Intel expanded hex format data
record, describe as:

Format

-bnum

HEX Format Range of Specifiable Values Default Value

Intel expanded 1 to 255 (0x01 to 0xff) 31 (0x1f)

Motorola S type 1 to 251 (0x01 to 0xfb) 80 (0x50)

Motorola S type (32-bit address) 1 to 250 (0x01 to 0xfa) 80 (0x50)

Extended tektronix 16 to 255 (0x10 to 0xff) 255 (0xff)

C>hx850 -b255 -o a.hex a.out

APPENDIX B COMMAND REFERENCE

650 User’s Manual U19386EJ1V0UM

-d

[Description format]

- Interpretation when omitted
The address to be output is not calculated as the offset.

[Function Description]

- This option regards the address to be output as the offset from num.
- Specify a decimal number or a hexadecimal number that starts with 0x or 0X as num.
- The range that can be specified for the value is 0H to 0xfffffffe.
- The address to be output is the offset value from the specified value.
- The default value is 0.

[Example of use]

- To regard the address to be output as the offset from 0x10000, describe as:

-dnum

C>hx850 -d0x10000 -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 651

-f

[Description format]

- Interpretation when omitted
Intel expanded hex format is used.

[Function Description]

- This option uses of the hex format specified by character c.
- The meanings of character c are as follows.

- If the -fT and -U options are specified at the same time, -U is ignored.

[Example of use]

- To use the Motorola S type (32-bit address) format, describe as:

-fc

I Intel expanded

S Motorola S type

s Motorola S type (32-bit address)

T Extended tektronix

C>hx850 -fs -o a.hex a.out

APPENDIX B COMMAND REFERENCE

652 User’s Manual U19386EJ1V0UM

-I

[Description format]

- Interpretation when omitted
All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option converts and outputs code in the section specified by section name name. In other words, the hex
converter converts in section units, not in segment units.

- If a section (section having the section type NOBITS and section attribute A) is specified for the data for which
no default value is specified, null characters (\0) are created corresponding to the section's size.

- The hex converter converts in section units, not in segment units.
- The section name cannot include blank spaces.
- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To convert and output code in the .text section, describe as:

-Iname

C>hx850 -I.text -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 653

-S

[Description format]

- Interpretation when omitted
No symbol table is converted and output.

[Function Description]

- This option converts and outputs a symbol table.
- This option is valid only when the expanded Tektronix hex format is specified (via the -fT option).
- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To convert and output a symbol table, describe as:

-S

C>hx850 -fT -S -o a.hex a.out

APPENDIX B COMMAND REFERENCE

654 User’s Manual U19386EJ1V0UM

-U

[Description format]

- Interpretation when omitted
All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option converts into hex format and outputs all the codes in the area specified by address start to size size.
- If start and size are omitted, all the codes in the internal ROM area defined by the device file are converted into

hex format and output.
- Of the specified area, the unused area is filled with num. 1 or 2 can be specified as num. If num does not

occupy 2 or 4 digits, it is assumed that 0 are used to fill the empty digit(s).
- If num is omitted, the unused area is filled with 0xff.
- This option cannot be specified when the extended Tektronix hex format is specified.
- If this option is specified, the -I, -S, -x, and -Z options are ignored.

[Example of use]

- All the codes in the internal ROM area defined by the device file are converted into hex format and output. The
unused area is filled with 0xff.

-U

-Unum

-Unum,start,size

-Ustart,size

C>hx850 -U -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 655

-x

[Description format]

- Interpretation when omitted
When this option converts and outputs the symbol table, it also converts and outputs only global symbols.

[Function Description]

- When this option converts and outputs the symbol table, it also converts and outputs local symbols.
- This option is valid only when the -S option is specified.
- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- When this option converts and outputs the symbol table, it also converts and outputs local symbols.

-x

C>hx850 -fT -S -x -o a.hex a.out

APPENDIX B COMMAND REFERENCE

656 User’s Manual U19386EJ1V0UM

-rom_less

[Description format]

- Interpretation when omitted
The information of the internal ROM area defined by the device file is used.

[Function Description]

- This option disables use of the information of the internal ROM area defined by the device file when the -U
option is specified.
It also disables output of a warning message if the area subject to hex conversion exceeds the internal ROM
area.

- If this option and -U option are specified at the same time, start, size of the -U option must be specified.
- If this option and start, size of the -U option is omitted, the internal ROM area defined in the device file is

converted.
If the area subject to hex conversion exceeds the internal ROM area, a warning message is output.

[Example of use]

- To disable use of the information of the internal ROM area defined by the device file and specify the -U option,
describe as:

-rom_less

C>hx850 -rom_less -U0xff,0x0,1000 -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 657

-z

[Description format]

- Interpretation when omitted
All sections having the section type other than NOBITS and section attribute A are converted.

[Function Description]

- This option generates as many null characters (\0) as the size of a section for a section with the section type
NOBITS and section attribute A (section for data for which no default value is specified, such as the .bss and
.sbss section).

- If this option and -U option are specified at the same time, this option is ignored.

[Example of use]

- To generate as many null characters (\0) as the size of a section for a section with the section type NOBITS and
section attribute A, describe as:

-z

C>hx850 -z -o a.hex a.out

APPENDIX B COMMAND REFERENCE

658 User’s Manual U19386EJ1V0UM

Other options are as follows.
- -F
- -V
- @

-F

[Description format]

- Interpretation when omitted
The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder C:\NECTools32\dev, describe as:

Other

-F devpath

C>hx850 -F C:\NECTools32\dev -o a.hex a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 659

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the hex converter to the standard error output and terminates
processing.

[Example of use]

- To output the version information of the hex converter to the standard error output, describe as:

-V

C>hx850 -V

APPENDIX B COMMAND REFERENCE

660 User’s Manual U19386EJ1V0UM

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>hx850 @command

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 661

B.6 Archiver

The archiver is a utility that couples specified relocatable object files and generates one archive file. Therefore, this
utility is used to combine two or more objects to create a "library".

In the CA850, "ar850" is the archiver.

Figure B-38. Operation Flow of Archiver

The archive file generated by the archiver can be specified as an input file to the linker. If an archive file is specified,
the ld850 searches the necessary objects from the specified archive file, and links only the objects found.

B.6.1 Method for manipulating

This section explains how to manipulate the archiver.

(1) Command input method
Enter the following from the command prompt.

Note When files are linked within an archive file, they are called members. Each member's name is the same
as its original file name.

(2) Set options in CubeSuite
This section describes how to set archive options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Archive Options] tab.
You can set the various archive options by setting the necessary properties in this tab.

C>ar850 [error-output-specification-option] key [option][member-nameNote] archive-file-
name [member-name o file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Archive file

Archiver

Object file

APPENDIX B COMMAND REFERENCE

662 User’s Manual U19386EJ1V0UM

Figure B-39. Property Panel: [Archive Options] Tab

When starting the archiver from the command line, collect a group of object files and create an archive file. Various
detailed operations can be performed within archive files, such as manipulation of archive file objects.

By contrast, when using CubeSuite to create an archive file, start by compiling and assembling source files, then
collect the resulting objects into an archive file. Operations cannot be executed within complete archive files via
CubeSuite. The user should keep this difference in mind when choosing between command-line activation and
activation via CubeSuite.

B.6.2 Key/Option

This section explains keys and options of the archiver.
A key is an item that must be specified for activation, while an option can be omitted.
The types and explanations for archiver keys/options are shown below.

Table B-19. Archive Keys

Classification Key Description

Key V Outputs the version information of the archiver to the standard error output.

d Deletes the specified member from the specified archive file.

m Moves the specified member to the end of the specified archive file.

ma Moves the specified member to the position immediately after the member of the specified
archive file.

mb Moves the specified member to the position immediately before the member of the
specified archive file.

q Adds the specified file to the end of the specified archive file.

r Replaces the specified file with the member having the same name in the specified archive
file.

ra Replaces the specified file with the member having the same name in the specified archive
file, and then moves the specified file to the position immediately after the specified
member.

ru If the specified file has been updated more recently than the member having the same
name in the specified archive file, replaces the member with the specified file.

t Outputs only the member name of the member existing in the specified archive file.

x Extracts the member in the specified archive file and creates files having the same names.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 663

Table B-20. Archive Options

Classification Option Description

Archiver c Does not output messages.

v Outputs the execution status of the archiver.

@ Handles the specified file as a command file.

Output file +err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

APPENDIX B COMMAND REFERENCE

664 User’s Manual U19386EJ1V0UM

The archiver keys are as follows.
- V
- d
- m
- ma
- mb
- q
- r
- ra
- ru
- t
- x

V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key outputs the version information of the archiver to the standard error output and terminates processing.

[Example of use]

- To output the version information of the archiver to the standard error output, describe as:

Key

V

C>ar850 V

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 665

d

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key deletes the specified member from the specified archive file.

[Example of use]

- To delete the member (sub.o) from the archive file (libarc.a), describe as:

d

C>ar850 d libarc.a sub.o

APPENDIX B COMMAND REFERENCE

666 User’s Manual U19386EJ1V0UM

m

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key moves the specified member to the end of the specified archive file.

[Example of use]

- To move the member (sub.o) to the end of the archive file (libarc.a), describe as:

m

C>ar850 m libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 667

ma

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key moves the specified member to the position immediately after member member of the specified
archive file.

- If member is omitted, processing is stopped.

[Example of use]

- To move the member (sub.o) to the position immediately after member (main.o) of the archive file (libarc.a),
describe as:

ma member

C>ar850 ma main.o libarc.a sub.o

APPENDIX B COMMAND REFERENCE

668 User’s Manual U19386EJ1V0UM

mb

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key moves the specified member to the position immediately before member member of the specified
archive file.

- If member is omitted, processing is stopped.

[Example of use]

- To move the member (sub.o) to the position immediately before member (main.o) of the archive file (libarc.a),
describe as:

mb member

C>ar850 mb main.o libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 669

q

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key adds the specified file to the end of the specified archive file.
There is no checking as to whether or not a member with the same name as the specified file exists.

- If the specified archive file does not exist, a new archive file that contains the specified file is created.
There is no checking as to whether or not a member with the same name as the specified file exists.

- If there is a members with the same name, the archive file contains multiple members with the same name, and
the oldest member will be selected during linking.

- Be sure to delete on old archive file if a new file is created.
- To replace the member with the member having the same name, use the r key.

[Example of use]

- To add the member (sub.o) to the end of the archive file (libarc.a), describe as:

q

C>ar850 q libarc.a sub.o

APPENDIX B COMMAND REFERENCE

670 User’s Manual U19386EJ1V0UM

r

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key replaces the specified file with the member having the same name in the specified archive file.
- If the member with the same name as the specified file does not exist in the specified archive file, the specified

file is added to the end of the specified archive file.
- If the specified archive file does not exist, a new archive file that contains the specified file is created.

[Example of use]

- To replace the member (sub.o) in the archive file (libarc.a), describe as:

r

C>ar850 r libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 671

ra

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key replaces the specified file with the member having the same name in the specified archive file, and
then moves the specified file to the position immediately after member member.

- If the member with the same name as the specified file does not exist in the specified archive file, the specified
file is added to the end of the specified archive file.

- If member is omitted, processing is stopped.

[Example of use]

- To exchange the member (sub.o) in the archive file (libarc.a), and then moves the member to the position
immediately after the member (main.o), describe as:

ra member

C>ar850 ra main.o libarc.a sub.o

APPENDIX B COMMAND REFERENCE

672 User’s Manual U19386EJ1V0UM

ru

[Description format]

- Interpretation when omitted
None

[Function Description]

- If the specified file has been updated more recently than the member having the same name in the specified
archive file, this key replaces the member with the specified file.

- If the member with the same name as the specified file does not exist in the specified archive file, the specified
file is added to the end of the specified archive file.

- If the specified archive file does not exist, a new archive file that contains the specified file is created.

[Example of use]

- If sub.o has been updated more recently than sub.o in the archive file (libarc.a), to replace the members,
describe as:

ru

C>ar850 ru libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 673

t

[Description format]

- Interpretation when omitted
None

[Function Description]

- If a member name is specified, this key outputs only the member name of the member existing in the specified
archive file.

- If a member name is not specified, this key outputs (via the standard output) the names of all members existing
in the specified archive file.

[Example of use]

- To output the names of all members existing in the archive file (libarc.a), describe as:

t

C>ar850 t libarc.a

APPENDIX B COMMAND REFERENCE

674 User’s Manual U19386EJ1V0UM

x

[Description format]

- Interpretation when omitted
None

[Function Description]

- If a member name is specified and if the specified member exists in the specified archive file, this key extracts
that member and creates a file having the same name.

- If a member name is not specified, this key extracts all of the members existing in the specified archive file and
creates files having the same names. The contents of the archive file are not changed.

[Example of use]

- To extracts the member (sub.o) existing in the archive file (libarc.a) and creates a file, describe as:

x

C>ar850 x libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 675

The options related to the archiver are as follows.
- c
- v
- @

c

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option does not output messages.

[Example of use]

- Not to output messages, describe as:

Archiver

c

C>ar850 tc libarc.a

APPENDIX B COMMAND REFERENCE

676 User’s Manual U19386EJ1V0UM

v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the execution status of the archiver using the format "[a|d|q|m|r|x] - file".

[Example of use]

- To display the execute status, describe as:

v

a - file Add

d - file Delete

q - file Create new, or add

m - file Move

r - file Replace

x - file Extract

C>ar850 dv libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 677

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>ar850 @command

APPENDIX B COMMAND REFERENCE

678 User’s Manual U19386EJ1V0UM

The options related to the output file are as follows.
- +err_file
- -err_file

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

Output file

+err_file=file

C>ar850 +err_file=err ar850 d libarc.a sub.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 679

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>ar850 -err_file=err ar850 d libarc.a sub.o

APPENDIX B COMMAND REFERENCE

680 User’s Manual U19386EJ1V0UM

B.7 Section File Generator

This section explains a section file and the section file generator.

B.7.1 Section file

The section file is a file that define the sections to which external variables (global variables) and static variables that
have been declared in a C source file are allocated. The sections to which these variables are allocated can be
determined at compilation by referencing the section file. As the default setting, as many high access-frequency
variables as possible are assigned to the .tidata-attribute, .tidata.word-attribute, .tidata.byte-attribute, .sidata-attribute,
and .sedata-attribute sections allocated to the internal RAM area of the V850 microcontrollers.

The C compiler provides the following three methods for declaring external variables in C source files and allocating
the variables to the intended sections.

(1) Use the compile option (-Gnum) to limit the data size when allocating to a .sdata section or .sbss
section.

(2) Use the #pragma section directive to determine the section for allocation of each variable.

(3) Use a section file to allocate the specified variables when the compiler is activated.

Method (1) is applicable in cases where external variables that do not exceed a certain size can be allocated to
either .sdata or .sbss sections. Since this specification is via a compile option, there is no need to add changes to the
C source file.

Method (2) enables a freer choice of the section for allocation. Here, the #pragma section directive is used in the C
source file to explicitly specify the target section for allocation. However, this method requires that changes be added
to the C source file.

Methods (1) and (2) cannot be used much if you want to freely set the section for allocation, but don't want to use the
#pragma section instruction because you want your code to be strictly ANSI compliant, or you want to port C source
files compiled on other than the CA850 to the CA850 with minimal modifications.

Use the section file in method (3) to resolve this issue.
Define the following for all external variables and static variables in the section file.

- The names of C source files where the static variables are declared
- External variable names, static variable names, and the names of the sections where they are allocated

Also, by having the section file referenced by the CA850, the variables can be allocated to the intended locations
without having to modify the C source file.

With the CA850, specification of a compile option (-Xcre_sec_data or -Xcre_sec_data_only) generates a frequency
information file, which can be input to the section file generator to generate a section file.

However, the section file generator is designed to output information for allocating data to tidata-attribute,
tidata.word-attribute, tidata.byte-attribute, sidata-attribute, sedata-attribute, and sdata-attribute sections that are
intended to be allocated in the internal RAM of V850 microcontroller.

Since a section file is a text-format file, it can be edited and modified by using an editor. In other words, changes can
be made in this way to the section file that is output by the section file generator in order to create the final (completed)
section file.

When compilation is performed once again using the completed section file (with the -Xsec_file option specified), the
object file whose external variables and static variables are allocated to the specified sections is completed.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 681

Figure B-40. Image of Compilation Using Section File Specifications

(1) Compile once using the -Xcre_sec_data option to generate a section file.

(2) Use the section file generator to convert the frequency information file into a section file.

(3) Edit the section file, if necessary.

(4) Compile once more using the -Xsec_file option to input the section file.

See "3.4 Section File Generator" for details about the section file's format.
The variables whose allocation can be specified via a section file are external variables (global variables), static

variables in files (static variables that are declared within a file), and static variables in functions (static variables that
are declared within a function). Allocation specifications cannot be made using character string constants (such as
"abc").

When compiling each of two or more C source files and linking them to generate an object file, compile each file
specifying its frequency information output, which generates two or more .sec files. However, when generating these
section files, all the .sec files must be input to the section file generator at once and then integrated. Otherwise, the
variable information for the external variables will not be integrated, and valid section files cannot be generated.

Variables specified in the section file are the same as if they are specified for allocation to the section via the
"#pragma section" directive. Therefore, a tentative definition of an external variable is handled as a "definition", so if
an external variable is tentatively defined by two or more files, an error occurs during linking. In such cases, extern
must be always declared in a file that references external variables.

If a variable whose allocation has been specified via a section file has also been specified (via a #pragma section
directive in a C source file) to be allocated to a different section, the specification via the section file takes precedence.

Even when the "-Gnum" compile option has been specified, if a section file specifies that the variable will be
allocated to the .sdata section or .sbss section, it will be allocated to that section regardless of the num value. In other
words, the order of precedence among the specifications, "section file" specification, "#pragma section" specification,
and "-Gnum" specification, is as follows.

(Higher precedence) Section file > #pragma section > -Gnum (Lower precedence)

Section file

Section file

C source file

C source file

Compile Section file generator

-Xcre_sec_data

is specified

Re-compile

-Xsec_file is specified

(1) (2) (3)

(4)

Frequency information file

(.sec)

Object file with modified

allocation of variables

APPENDIX B COMMAND REFERENCE

682 User’s Manual U19386EJ1V0UM

B.7.2 Method for manipulating

This section explains how to manipulate the section file generator.

(1) Command input method
Enter the following from the command prompt.

(2) Use from command line
This section describes how to use the section file from the command line.

(a) First, create a frequency information file. Specify the compile option "-Xcre_sec_data_only" and
compile the C source file to create a frequency information file for the external variables and static
variables in the C source file. The default file name is "source-file-name.sec".
If the -Xcre_sec_data_only option is specified along with a file name, the specified file name will be
the name of the frequency information file.

Example A frequency information file for "func1.c" is output as "secsrc"

(b) Input the generated frequency information file to the section file generator, which outputs a section
file. In this case, the generated section file specifies that variables will be allocated to tidata-
attribute sections, tidata.word-attribute sections, tidata.byte-attribute sections, sidata-attribute
sections, sedata-attribute sections, and sdata-attribute sections .

Example The three frequency information files func1.sec, func2.sec, and func3.sec are collected as one
section file, which is output as "secfile".

It is convenient to create a command file if there are a large number of files. See “(2) Command file” for
details about command files.

(c) Since the default specification for the output section file is that all variables are allocated to a
.tidata-attribute section, it may be necessary to modify the section file.
If the -O option is specified when activating the section file generator, the variables that can be
accommodated in the memory range of the .tidata-attribute section can be automatically selected in
sequence, starting from the most frequently referenced variable.

(d) Re-compile the C source file by specifying the compile option "-Xsec_file". As a result of
compilation, an object file will be generated with sections allocated in accordance with the input
section file.

Example “secfile” is input as a section file and func1.c, func2.c, and func3.c are compiled.

C>sf850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

C>ca850 -cpu 3201 -Xcre_sec_data_only=secsrc func1.c

C>sf850 func1.sec func2.sec func3.sec -o secfile

C>ca850 -cpu 3201 -Xsec_file secfile func1.c func2.c func3.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 683

(3) Set options in CubeSuite
This section describes how to set section file generate options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Section File Generate Options] tab.
You can set the various librarian options by setting the necessary properties in this tab.

Figure B-41. Property Panel: [Section File Generate Option] Tab

APPENDIX B COMMAND REFERENCE

684 User’s Manual U19386EJ1V0UM

B.7.3 Option

This section explains section file generate options.
The types and explanations for section file generate options are shown below.

Table B-21. Section File Generate Options

Classification Option Description

Section file generator -O Determines that only the number of variables that can be allocated to the
sections to be optimized will be selected, in the order starting from highest
use frequency and outputs.

-V Outputs the version information of the section file generator to the standard
error output.

-Xcs Does not subject variables allocated to the specified section to optimization
when the -O option is specified.

-Xcv Does not subject specified variables to optimization when the -O option is
specified.

-cl Specifies the comment level of the section file to be output.

+err_file Adds and saves error messages to the file.

-err_file Overwrites and saves error messages to the file.

-h Outputs option descriptions of the section file generator to the standard
error output.

-help

-ns Sorts variable names in the section file to be output in the order they
appear.

-o Specifies the section file name to be output.

-size_tidata Limits the upper size variables allocated to the .tidata.word/.tidata.byte
section.

-size_tidata_byte Limits the upper size variables allocated to the .tidata.byte section.

-size_sidata Limits the upper size variables allocated to the .sidata section.

-size_sedata Limits the upper size variables allocated to the .sedata section.

-size_sdata Limits the upper size variables allocated to the .sdata section.

-sname Sorts variable names in the section file to be output according to the
dictionary order of variable names.

-ssection Sorts variable names in the section file to be output according to the
dictionary order of section names to be allocated.

-ssize Sorts variable names in the section file to be output according to the
variables (smallest first).

-v Displays the execution process of the section file generator.

@ Handles the specified file as a command file.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 685

The section file generator options are as follows.
- -O
- -V
- -Xcs
- -Xcv
- -cl
- +err_file
- -err_file
- -h/-help
- -ns
- -o
- -size_tidata
- -size_tidata_byte
- -size_sidata
- -size_sedata
- -size_sdata
- -sname
- -ssection
- -ssize
- -v
- @

Section file generator

APPENDIX B COMMAND REFERENCE

686 User’s Manual U19386EJ1V0UM

-O

[Description format]

- Interpretation when omitted
All variables that have appeared are output to the section file.

[Function Description]

- If c is not specified, this option determines that only the number of variables that can be allocated to the sections
to be optimized will be selected, in the order starting from highest use frequency and outputs.

- The maximum data size that can be allocated to the .tidata section is 256 bytes, which are internally divided into
.tidata.byte byte data (128 bytes) and .tidata.word word data. When this option is specified, variables are
selected until the total section size of 256 bytes is reached, at which point the variables are output to the section
file.
However, selection is stopped when the byte data reaches 128 bytes.

- If 2 is specified for c, this option selects variables for each variable size that can be allocated to .tidata, sidata,
.sedata, and .sdata sections in the order starting from highest use frequency and determines that only the
number of variables that can be allocated will be selected and outputs.

[Example of use]

- To determine that only the number of variables that can be allocated to the sections to be optimized will be
selected, in the order starting from highest use frequency and outputs, describe as:

-Oc

C>sf850 -O main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 687

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the section file generator to the standard error output and
terminates processing.

[Example of use]

- To output the version information of the section file generator to the standard error output, describe as:

-V

C>sf850 -V

APPENDIX B COMMAND REFERENCE

688 User’s Manual U19386EJ1V0UM

-Xcs

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option does not subject variables allocated to the section specified as name to optimization when the -O or
-O2 option is specified.

- Specify name as a section file name to be specified in the link directive file.
- Replace .bss/.sbss of the bss-attribute section with .data/.sdata.
- If num is omitted, it is assumed that all section names has been specified.
- If .tidata is specified as name, it is assumed that .tidata.word and tidata.byte have been specified.

[Example of use]

- Not to subject variables allocated to the .const section to optimization, describe as:

-Xcs[=name]

C>sf850 -O -Xcs=.const main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 689

-Xcv

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option does not subject variables specified as name to optimization when the -O or -O2 option is specified.
- Specify name with the same format as "Table 3-1. Variable Types and Displays".

[Example of use]

- Not to subject variable "val" to optimization, describe as:

-Xcv=name

C>sf850 -O -Xcv=val main.sec

APPENDIX B COMMAND REFERENCE

690 User’s Manual U19386EJ1V0UM

-cl

[Description format]

- Interpretation when omitted
-cl 1

[Function Description]

- This option specifies the comment level of the section file to be output.
- The following number can be specified as num.

[Example of use]

- To specify 2 as the comment level of the section file to be output, describe as:

-cl num

0 No comment is output.

1 A dash (-) will be output for dates and other file generation information, variable information, and variable
information outputting their descriptions if the section name, size, or section names for usage frequency external
variables are not determined.

2 If -O which outputs a format guide in addition to level 1 has been specified, variables judged not to fit in the
.tidata section are output as comments.

C>sf850 -cl 2 main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 691

+err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option adds and saves error messages to file file.

[Example of use]

- To add and save error messages to the file "err", describe as:

+err_file=file

C>sf850 +err_file=err main.sec

APPENDIX B COMMAND REFERENCE

692 User’s Manual U19386EJ1V0UM

-err_file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option overwrites and saves error messages to file file.

[Example of use]

- To overwrite and save error messages to the file "err", describe as:

-err_file=file

C>sf850 -err_file=err main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 693

-h/-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs option descriptions of the section file generator to the standard error output and terminates
processing.

[Example of use]

- To output option descriptions of the section file generator to the standard error output, describe as:

-h

-help

C>sf850 -help

APPENDIX B COMMAND REFERENCE

694 User’s Manual U19386EJ1V0UM

-ns

[Description format]

- Interpretation when omitted
Variable names in the section file to be output are sorted in the order starting from highest use frequency.

[Function Description]

- This option sorts variable names in the section file to be output in the order they appear instead of sorting them.

[Example of use]

- To sort variable names in the section file to be output in the order they appear instead of sorting them, describe
as:

-ns

C>sf850 -ns main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 695

-o

[Description format]

- Interpretation when omitted
The section file is output to the standard output.

[Function Description]

- This option specifies name as the section file name to be output.

[Example of use]

- To specify "secfile" as the section file name to be output, describe as:

-o name

C>sf850 -o secfile main.sec

APPENDIX B COMMAND REFERENCE

696 User’s Manual U19386EJ1V0UM

-size_tidata

[Description format]

- Interpretation when omitted
-size_tidata=256

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the tidata.word/tidata.byte
section when the -O or -O2 option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 128 bytes as the upper size limit of variables allocated to the tidata.word/tidata.byte section, describe
as:

-size_tidata=num

C>sf850 -O -size_tidata=128 main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 697

-size_tidata_byte

[Description format]

- Interpretation when omitted
-size_tidata_byte=128

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the tidata.byte section when the
-O or -O2 option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 64 bytes as the upper size limit of variables allocated to the tidata.byte section, describe as:

-size_tidata_byte=num

C>sf850 -size_tidata_byte=64 main.sec

APPENDIX B COMMAND REFERENCE

698 User’s Manual U19386EJ1V0UM

-size_sidata

[Description format]

- Interpretation when omitted
-size_sidata=32512

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sidata section when the -O
option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 32000 bytes as the upper size limit of variables allocated to the .sidata section, describe as:

-size_sidata=num

C>sf850 -size_sidata=32000 main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 699

-size_sedata

[Description format]

- Interpretation when omitted
-size_sidata=32768

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sedata section when the -O
option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 16384 bytes as the upper size limit of variables allocated to the .sedata section, describe as:

-size_sedata=num

C>sf850 -size_sedata=16384 main.sec

APPENDIX B COMMAND REFERENCE

700 User’s Manual U19386EJ1V0UM

-size_sdata

[Description format]

- Interpretation when omitted
-size_sdata=65536

[Function Description]

- This option specifies num bytes as the upper size limit of variables allocated to the .sdata section when the -O
option is specified.

- 0 to 2147483647 (in decimal numbers) can be specified as num.

[Example of use]

- To specify 32768 bytes as the upper size limit of variables allocated to the .sdata section, describe as:

-size_sdata=num

C>sf850 -size_sdata=32768 main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 701

-sname

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option sorts variable names in the section file to be output according to the dictionary order of variable
names.

- If two variables have the same name, they are sorted according to the dictionary order of file names and
function names.

[Example of use]

- To sort variable names in the section file to be output according to the dictionary order of variable names,
describe as:

-sname

C>sf850 -sname func.sec

APPENDIX B COMMAND REFERENCE

702 User’s Manual U19386EJ1V0UM

-ssection

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option sorts variable names in the section file to be output according to the dictionary order of section
names to be allocated.

- If two section files have the same name, they are sorted in the order starting from highest use frequency.

[Example of use]

- To sort variable names in the section file to be output according to the dictionary order of section names to be
allocated, describe as:

-ssection

C>sf850 -ssection main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 703

-ssize

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option sorts variable names in the section file to be output according to the variables (smallest first).
- If two variables have the same size, they are sorted in the order starting from highest use frequency.

[Example of use]

- To sort variable names in the section file to be output according to the variables (smallest first), describe as:

-ssize

C>sf850 -ssize main.sec

APPENDIX B COMMAND REFERENCE

704 User’s Manual U19386EJ1V0UM

-v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the execution process of the section file generator.

[Example of use]

- To display the execution process of the section file generator, describe as:

-v

C>sf850 -v main.sec

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 705

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>sf850 @command

APPENDIX B COMMAND REFERENCE

706 User’s Manual U19386EJ1V0UM

B.7.4 Cautions

Some options become invalid if they are specified at the same time as certain other options.
- If two or more options related to sorting (-o or -cl) are specified, the one specified last is valid and the others are

invalid.
- If -V, -h, and -help are specified at the same time, the one specified first is valid, and the others are invalid.
- If -O and an option related to sorting are specified at the same time, -O is valid and the option related to sorting

is invalid.
- Use the frequency information file output by the C compiler as the input to the section file generator, without

modifying it first in any way. Operation is not guaranteed if a frequency information file with modified content
has been input.

See "3.4 Section File Generator" for details about the contents of section files output by the section file generator.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 707

B.8 Dump Tool

A dump tool displays the contents or information of a specified object file or archive file. It is used to check
information such as the address, attribute, and symbol name of a section/segment in a created object file or archive
file.

In the CA850, "dump850" is the dump tool.

Figure B-42. Operation Flow of Dump Tool

If an archive file is input to the dump tool, and if a member that is not an object file exists in the archive file, a warning
message is output and the next member is processed; except, however, when the -e option is specified.

See "B.8.2 Option" for details about the options.

B.8.1 Method for manipulating

This section explains how to manipulate the dump tool.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set dump options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Dump Options] tab.
You can set the various dump options by setting the necessary properties in this tab.

Figure B-43. Property Panel: [Dump Options] Tab

C>dump850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Dump tool

Object file or archive file

Outputs input file contents

via standard output

APPENDIX B COMMAND REFERENCE

708 User’s Manual U19386EJ1V0UM

B.8.2 Option

This section explains dump options.
The types and explanations for dump options are shown below.

Table B-22. Dump Tool Option

Classification Option Description

Dump tool -A Displays the entire contents of the specified object file or archive file.

-T Does not display the update date of the member when the contents of the archive
header are displayed.

-V Outputs the version information of the dump tool to the standard error output.

-a Displays the contents of the archiver header of all members existing in the specified
file.

-b Displays the contents of debug information.

-c Displays the contents of the string table.

-d Displays data from the section indicated by the section header table.

+d Displays data up to the section indicated by the section header table.

-e Displays the contents of the member existing in the specified archive file.

-f Displays the contents of the ELF header of all members existing in the specified
object file or archive file.

-g Displays the contents of the external symbol existing in the archive symbol table of the
specified archive file.

-h Displays the contents of all section headers existing in the specified object file or
archive file.

-i Displays the contents of all program headers existing in the specified object file or
archive file.

-k Displays the contents of the global pointer table.

-l Displays the contents of line number information.

-m Displays the contents of the string existing in the archive string table of the specified
file.

-n Displays the contents of the specified section.

-p Does not display the title.

-r Displays the contents of relocation information.

-s Displays the contents of the section.

-t Displays the contents of a symbol table starting from the specified symbol table entry.

+t Displays the contents of a symbol table up to the specified symbol table entry.

-v Displays a value, such as for a section attribute value, using a character string to
indicate the meaning of the value.

-z Displays contents of line number information for the function, starting from the
specified line number entry.

+z Displays contents of line number information for the function, up to the specified line
number entry.

@ Handles the specified file as a command file.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 709

The dump tool options are as follows.
- -A
- -T
- -V
- -a
- -b
- -c
- -d
- +d
- -e
- -f
- -g
- -h
- -i
- -k
- -l
- -m
- -n
- -p
- -r
- -s
- -t
- +t
- -v
- -z
- +z
- @

Dump tool

APPENDIX B COMMAND REFERENCE

710 User’s Manual U19386EJ1V0UM

-A

[Description format]

- Interpretation when omitted
-A

[Function Description]

- This option displays the entire contents of the specified object file or archive file.
- Specifying this option is the same as specifying "-abcfghiklmrst". If no option is specified, it is assumed that the

-A option has been specified.

[Example of use]

- To display the entire contents of a.out, describe as:

-A

C>dump850 -A a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 711

-T

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option does not display the update date of the member when the contents of the archive header are
displayed.

[Example of use]

- Not to display the update date of the member when the contents of the archive header are displayed.

-T

C>dump850 -T libarc.a

APPENDIX B COMMAND REFERENCE

712 User’s Manual U19386EJ1V0UM

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This key outputs the version information of the dump tool to the standard error output and terminates
processing.

[Example of use]

- To output the version information of the dump tool to the standard error output, describe as:

-V

C>dump850 -V

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 713

-a

[Description format]

- Interpretation when omitted
-a

[Function Description]

- This option displays the contents of the archiver header of all members existing in the specified archive file.

[Example of use]

- To display the contents of the archiver header of all members existing in libarc.a, describe as:

-a

C>dump850 -a libarc.a

APPENDIX B COMMAND REFERENCE

714 User’s Manual U19386EJ1V0UM

-b

[Description format]

- Interpretation when omitted
-b

[Function Description]

- This option displays the contents of debug information.

[Example of use]

- To display the contents of debug information, describe as:

-b

C>dump850 -b a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 715

-c

[Description format]

- Interpretation when omitted
-c

[Function Description]

- This option displays the contents of the string table.

[Example of use]

- To display the contents of the string table, describe as:

-c

C>dump850 -c a.out

APPENDIX B COMMAND REFERENCE

716 User’s Manual U19386EJ1V0UM

-d

[Description format]

- Interpretation when omitted
All sections are displayed.

[Function Description]

- This option displays data from the section indicated by the section header table index num.

[Example of use]

- To display data from the section indicated by the section header table index 2, describe as:

-d num

C>dump850 -d 2 a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 717

+d

[Description format]

- Interpretation when omitted
All sections are displayed.

[Function Description]

- This option displays data up to the section indicated by the section header table index num.

[Example of use]

- To display data up to the section indicated by the section header table index 9, describe as:

+d num

C>dump850 +d 9 a.out

APPENDIX B COMMAND REFERENCE

718 User’s Manual U19386EJ1V0UM

-e

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the contents of members (other than archive symbol table, archive string table, and object
file) existing in the specified archive file.

[Example of use]

- To display the contents of members (other than archive symbol table, archive string table, and object file)
existing in libarc.a, describe as:

-e

C>dump850 -e libarc.a

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 719

-f

[Description format]

- Interpretation when omitted
-f

[Function Description]

- This option displays the contents of the ELF header of all members existing in the specified object file or archive
file.

[Example of use]

- To display the contents of the ELF header of members existing in a.out, describe as:

-f

C>dump850 -f a.out

APPENDIX B COMMAND REFERENCE

720 User’s Manual U19386EJ1V0UM

-g

[Description format]

- Interpretation when omitted
-g

[Function Description]

- This option displays the contents of the external symbol existing in the archive symbol table of the specified
archive file.

[Example of use]

- To display the contents of the external symbol existing in the archive symbol table of libarc.a, describe as:

-g

C>dump850 -g libarc.a

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 721

-h

[Description format]

- Interpretation when omitted
-h

[Function Description]

- This option displays the contents of all section headers existing in the specified object file or archive file.

[Example of use]

- To display the contents of all section headers existing in a.out, describe as:

-h

C>dump850 -h a.out

APPENDIX B COMMAND REFERENCE

722 User’s Manual U19386EJ1V0UM

-i

[Description format]

- Interpretation when omitted
-i

[Function Description]

- This option displays the contents of all program headers existing in the specified object file or archive file.

[Example of use]

- To display the contents of all program headers existing in a.out, describe as:

-i

C>dump850 -i a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 723

-k

[Description format]

- Interpretation when omitted
-k

[Function Description]

- This option displays the contents of the global pointer table.

[Example of use]

- To display the contents of the global pointer table, describe as:

-k

C>dump850 -k a.out

APPENDIX B COMMAND REFERENCE

724 User’s Manual U19386EJ1V0UM

-l

[Description format]

- Interpretation when omitted
-l

[Function Description]

- This option displays the contents of line number information.

[Example of use]

- To display the contents of line number information, describe as:

-l

C>dump850 -l a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 725

-m

[Description format]

- Interpretation when omitted
-m

[Function Description]

- This option displays the contents of the string existing in the archive string table of the specified archive file.

[Example of use]

- To display the contents of the string existing in the archive string table of libarc.a, describe as:

-m

C>dump850 -m libarc.a

APPENDIX B COMMAND REFERENCE

726 User’s Manual U19386EJ1V0UM

-n

[Description format]

- Interpretation when omitted
The contents of all sections is displayed.

[Function Description]

- This option displays the contents of the section indicated by section name name.

[Example of use]

- To display the contents of the .text section, describe as:

-n name

C>dump850 -n .text a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 727

-p

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option does not display the title.

[Example of use]

- Not to display the title, describe as:

-p

C>dump850 -p a.out

APPENDIX B COMMAND REFERENCE

728 User’s Manual U19386EJ1V0UM

-r

[Description format]

- Interpretation when omitted
The contents of relocation information is displayed.

[Function Description]

- This option displays the contents of relocation information.

[Example of use]

- To display the contents of relocation information, describe as:

-r

C>dump850 -r main.o

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 729

-s

[Description format]

- Interpretation when omitted
-s

[Function Description]

- This option displays the contents of the section.

[Example of use]

- To display the contents of the section, describe as:

-s

C>dump850 -s a.out

APPENDIX B COMMAND REFERENCE

730 User’s Manual U19386EJ1V0UM

-t

[Description format]

- Interpretation when omitted
The contents of all symbol table is displayed.

[Function Description]

- This option displays the contents of a symbol table starting from the numth symbol table entry.
- If num is omitted, the display starts from the first symbol table entry.

[Example of use]

- To display the contents of a symbol table starting from the 5th symbol table entry, describe as:

-t [num]

C>dump850 -t 5 a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 731

+t

[Description format]

- Interpretation when omitted
The contents of all symbol table is displayed.

[Function Description]

- This option displays the contents of a symbol table starting up to the numth symbol table entry.

[Example of use]

- To display the contents of a symbol table starting up to the 10th symbol table entry, describe as:

+t num

C>dump850 +t 10 arc.a

APPENDIX B COMMAND REFERENCE

732 User’s Manual U19386EJ1V0UM

-v

[Description format]

- Interpretation when omitted
A value, such as for a section attribute value, is displayed using a number.

[Function Description]

- This option displays a value, such as for a section attribute value, using a character string to indicate the
meaning of the value rather than a number (see "3.5.2 Element values and meanings").

[Example of use]

- To display a value, such as for a section attribute value, using a character string to indicate the meaning of the
value rather than a number, describe as:

-v

C>dump850 -v a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 733

-z

[Description format]

- Interpretation when omitted
The contents of line number information for all functions is displayed.

[Function Description]

- This option displays contents of line number information for function name, starting from the numth line number
entry.

- If num is omitted, the display starts from the first line number entry.

[Example of use]

- To display contents of line number information for the function (func), starting from the first line number entry,
describe as:

-z name [num]

C>dump850 -z func a.out

APPENDIX B COMMAND REFERENCE

734 User’s Manual U19386EJ1V0UM

+z

[Description format]

- Interpretation when omitted
The contents of line number information for all functions is displayed.

[Function Description]

- This option displays contents of line number information, up to the numth line number entry.

[Example of use]

- To display contents of line number information for the function (func), up to the 10th line number entry, describe
as:

+z num

C>dump850 -z func +z 10 a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 735

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>dump850 @command

APPENDIX B COMMAND REFERENCE

736 User’s Manual U19386EJ1V0UM

B.9 Disassembler

A disassembler is a utility that converts the program codes of an object file that has been compiled or assembled, or
an archive file created with the archiver into assembly language codes for output. This utility is used to verify the
codes of an object file.

In the CA850, "dis850" is the disassembler.

Figure B-44. Operation Flow of Disassembler

B.9.1 Method for manipulating

This section explains how to manipulate the disassembler.

(1) Command input method
Enter the following from the command prompt.

C>dis850 [option] ... file-name [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

Disassembler

Object file or archive file

Outputs assembly language program

via standard output

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 737

B.9.2 Option

This section explains disassemble options.

Caution If no option is specified, it is assumed that the -o option has been specified.

The types and explanations for disassemble options are shown below.

Table B-23. Disassemble Options

Classification Option Description

Disassembler -A Assumes that -aoptr has been specified.

-F The device file is searched from the standard folder.

-V Outputs the version information of the disassembler to the standard error output.

-a Displays the address.

-c Displays the code (assembler instruction and data).

-e Specifies the end address.

-l Specifies the display size.

-m Displays in the assembler source format.

-o Displays the offset from symbols.

-p Displays the code that has been arranged according to the processor's instruction
format.

-r Displays registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp.

-s Specifies the start address.

-t Displays the title indicating the displayed contents.

-v Displays comments, etc.

@ Handles the specified file as a command file.

APPENDIX B COMMAND REFERENCE

738 User’s Manual U19386EJ1V0UM

The disassembler options are as follows.
- -A
- -F
- -V
- -a
- -c
- -e
- -l
- -m
- -o
- -p
- -r
- -s
- -t
- -v
- @

-A

[Description format]

- Interpretation when omitted
-o

[Function Description]

- This option assumes that -aoptr has been specified.

[Example of use]

- To display the address, offset from the address, and title indicating the displayed contents of a.out, and then
display registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp, describe as:

Disassembler

-A

C>dis850 -A a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 739

-F

[Description format]

- Interpretation when omitted
The device file is searched from the standard folder.

[Function Description]

- This option searches a device file from folder devpath.

[Example of use]

- To search a device file from folder C:\NECTools32\dev, describe as:

-F devpath

C>dis850 -F C:\NECTools32\dev a.out

APPENDIX B COMMAND REFERENCE

740 User’s Manual U19386EJ1V0UM

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version information of the disassembler to the standard error output and terminates
processing.

[Example of use]

- To output the version information of the disassembler to the standard error output, describe as:

-V

C>dis850 -V

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 741

-a

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the addresses among the information in the object file or archive file.

[Example of use]

- To display the addresses among the information in a.out, describe as:

-a

C>dis850 -a a.out

APPENDIX B COMMAND REFERENCE

742 User’s Manual U19386EJ1V0UM

-c

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the code (assembler instruction and data) of the object file or archive file.

[Example of use]

- To display the code (assembler instruction and data) of a.out, describe as:

-c

C>dis850 -c a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 743

-e

[Description format]

- Interpretation when omitted
-e 0xffffffff

[Function Description]

- This option specifies the end address.
- Specify a decimal number or a hexadecimal number that starts with 0x as address.

[Example of use]

- To specify 0xffff as the end address, describe as:

-e address

C>dis850 -e 0xffff a.out

APPENDIX B COMMAND REFERENCE

744 User’s Manual U19386EJ1V0UM

-l

[Description format]

- Interpretation when omitted
-l 0xffffffff

[Function Description]

- This option specifies the display size.
- Specify a decimal number or a hexadecimal number that starts with 0x as size.

[Example of use]

- To specify 0xffff as the display size, describe as:

-l size

C>dis850 -l 0xffff a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 745

-m

[Description format]

- Interpretation when omitted
The assembler source is displayed with a symbol offset, etc.

[Function Description]

- This option displays in the assembler source format.

[Example of use]

- To display in the assembler source format, describe as:

-m

C>dis850 -m a.out

APPENDIX B COMMAND REFERENCE

746 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
If the -a or -m option is not specified, the offset from symbols is displayed.

[Function Description]

- This option displays the offset from symbols among the information in the object file or archive file.

[Example of use]

- To display the offset from symbols among the information in a.out, describe as:

-o

C>dis850 -o a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 747

-p

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the code that has been arranged according to the processor's instruction format among the
information in the object file or archive file.

- The -c option is specified, -c is given precedence,

[Example of use]

- To display the code that has been arranged according to the processor's instruction format among the
information in a.out, describe as:

-p

C>dis850 -p a.out

APPENDIX B COMMAND REFERENCE

748 User’s Manual U19386EJ1V0UM

-r

[Description format]

- Interpretation when omitted
All registers are displayed in "rnum" format. "num" is a numerical value from 0 to 31.

[Function Description]

- This option displays registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp.

[Example of use]

- To display registers r0, r2, r3, r4, r5, r30, and r31 as zero, hp, sp, gp, tp, ep, and lp, describe as:

-r

C>dis850 -r a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 749

-s

[Description format]

- Interpretation when omitted
-s 0x0

[Function Description]

- This option specifies the start address.
- Specify a decimal number or a hexadecimal number that starts with 0x as address.
- If numerical value address is larger than 0xfffffffe, the value is omitted.

[Example of use]

- To specify 0x1000 as the start address, describe as:

-s address

C>dis850 -s 0x1000 a.out

APPENDIX B COMMAND REFERENCE

750 User’s Manual U19386EJ1V0UM

-t

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays the title indicating the displayed contents among the information in the object file or archive
file.

[Example of use]

- To display the title indicating the displayed contents among the information in a.out, describe as:

-t

C>dis850 -t a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 751

-v

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option displays comments, etc.

[Example of use]

- To display comments, etc., describe as:

-v

C>dis850 -v a.out

APPENDIX B COMMAND REFERENCE

752 User’s Manual U19386EJ1V0UM

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>dis850 @command

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 753

B.9.3 Cautions

Cautions are shown below.
- If labels for the same address exist in the object file, the latter label in the symbol table takes precedence.
- If the program starts from address 0 and if output of the symbol at address 0 is required during output for an

object that does not have a symbol indicating address 0, "_ _ dummy" may be output as the symbol of address
0.

APPENDIX B COMMAND REFERENCE

754 User’s Manual U19386EJ1V0UM

B.10 Cross Reference Tool

The cross reference tool "cxref" is a tool that checks identifier references and definition locations based on the C
source file. The target identifiers, which are functions and variables (other than auto variables), also identify their
storage class. Cross reference information and tag jump information are output as the detection results. The analysis
is performed for individual functions, and a call tree, function metrics, and call database can also be output.

In cross reference tool processing, a "reference" means that the identifier appears within an expression and a
"definition" means that the identifier appears within a declaration statement. "Definition" means that the identifier
appears within a declaration statement. The cross reference tool handles an identifier for which it cannot determine
whether it appears in an expression or a declaration statement as "unknown."

Call trees, function metrics, or call databases that are output by the cross reference tool have the following features.
- They do not depend on the target and the ca850 optimization.
- Standard output can be used by specifying an option.

Figure B-45. Operation Flow of Cross Reference Tool

B.10.1 Input/Output

(1) Input file
The input file of the cross reference tool is a C source file. If the -cpp850 option is specified when the cross
reference tool is started, the cross reference tool processing is performed after the specified C source file has
passed through the preprocessor.

- A prerequisite for cross reference tool processing is that the C source file to be input contains no syntax
errors.
Confirm that compilation has been executed for the C source file and that no syntax error was found.

- The character set is assumed to be Shift-JIS.
- The cross reference tool does not treat preprocess directives in the C source file as errors. Instead, it

simply ignores them and continue the analysis.Therefore, if a C source file does not contain any of the
following items, it can be processed directly without specifying the -cpp850 option, even if the file has not
passed through the ca850. This is effective when ignoring a header file, when subjecting false condition
blocks to analysis, and when targeting macro names for cross reference.

- Condition block in which braces { } are not balanced
- Macro created for a control structure
- Macro created for a declaration statement

- The input file can contain line number information and comment information.

Cross reference tool

C source file

C compiler
[Output information 1]

- Cross reference

- Tag jump information

 -> Text file or standard output

[Output information 2]

- Call tree

- Call database

- Function metrics

 -> Text file, CSV-format file, or

standard output

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 755

(2) Output information
The following information is output by the cross reference tool.

(a) Cross reference
The cross reference tool outputs cross reference information for variables and functions that are used within
the file, for each file.

(b) Tag information
The cross reference tool outputs the definition file name and line number information (tag jump information)
for variables and functions.

(c) Call tree
The cross reference tool outputs which functions are called by certain function in tree format.

(d) Function metrics
The cross reference tool outputs information about the function such as the "number of lines" and "call
frequency."

(e) Call database
The cross reference tool outputs the functions called by certain function, and how many times it calls them.

See "3.7 Cross Reference Tool" for details about these information.

B.10.2 Method for manipulating

This section explains how to manipulate the cross reference tool.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set cross reference options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Cross Reference Options] tab.
You can set the various cross reference options by setting the necessary properties in this tab.

Figure B-46. Property Panel: [Cross Reference Option] Tab

C>cxref [option] ... [file-name] ...

 []: Can be omitted

 ...: Pattern in proceeding [] can be repeated

APPENDIX B COMMAND REFERENCE

756 User’s Manual U19386EJ1V0UM

B.10.3 Option

This section explains cross reference options.
The types and explanations for cross reference options are shown below.

Table B-24. Cross Reference Options

Classification Option Description

Common options -V Outputs the version information of the cross reference tool to the standard error
output.

-all Outputs all information to a text-format file and CSV-format file.

-cpp850 Processes the C source file after it is passed through the ca850 (preprocessor).

-d Specifies the identifier that is handled as a type name and the name of the file that
the identifier is described.

-file Specifies the file in which the information is described.

-h Outputs option descriptions.

-help

-i Specifies the identifier that is not to be displayed in the execution results.

-ni Does not display include file information.

Specifies the file name that is not to be displayed in the execution results.

-o Specifies the output file path.

@ Handles the specified file as a command file.

Cross reference -x Outputs the cross reference in text-format to the specified file.

-xstd Outputs the cross reference to the standard output.

Tag information -t Outputs the tag information in text-format to the specified file.

-tstd Outputs tag information to the standard output.

Call tree -c Outputs the call tree in text-format to the specified file.

-cc Outputs the call tree in CSV-format to the specified file.

-call Outputs the call tree in text-format and CSV-format to the specified file.

-ce Specifies the method of omitting output.

-cf Specifies the name of the function for which the call tree is to be output or the text
file that the function name is described.

-cl Specifies the output level.

-cp Includes the arguments and return value in the output.

-cr Includes reference information in the output.

-cs Includes the source file name and description starting line in the output.

-cstd Outputs the text-format call tree to the standard output.

-ct Outputs only the first tree.

Function metrics -m Outputs the function metrics in text-format to the specified file.

-mc Outputs the function metrics in CSV-format to the specified file.

-mall Outputs the function metrics in text-format and CSV-format to the specified file.

-ms Specifies the output order.

-mstd Outputs the text-format function metrics to the standard output.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 757

Call database -b Outputs the call database in text-format to the specified file.

-bc Outputs the call database in CSV-format to the specified file.

-ball Outputs the call database in text-format and CSV-format to the specified file.

-mstd Outputs the text-format call database to the standard output.

Classification Option Description

APPENDIX B COMMAND REFERENCE

758 User’s Manual U19386EJ1V0UM

The common options of the cross reference tool are as follows.
- -V
- -all
- -cpp850
- -d
- -file
- -h/-help
- -i
- -ni
- -o
- @

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version number of the cross reference tool and then terminates processing.

[Example of use]

- To output the version number of the cross reference tool, describe as:

Common options

-V

C>cxref -V

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 759

-all

[Description format]

- Interpretation when omitted
Cross reference is output to the standard output.

[Function Description]

- This option outputs all information to a text-format file and CSV-format file.
- This option has the same result as when "-x -t -c -cc -m -mc -b -bc" is specified.

[Example of use]

- To output all information to a text-format file and CSV-format file, describe as:

-all

C>cxref -all main.c

APPENDIX B COMMAND REFERENCE

760 User’s Manual U19386EJ1V0UM

-cpp850

[Description format]

- Interpretation when omitted
The ca850 (preprocessor) is not executed.

[Function Description]

- This option processes the C source file after it is passed through the ca850 (preprocessor).
- This option and all subsequent options are passed as the ca850 options. Therefore, this option must be

specified as the last cross reference option.
- Setting the -c option that works to include comments of the source programs with the preprocessor is

recommended so that line numbers are output correctly.

[Example of use]

- To process the C source file after it is passed through the ca850 (preprocessor), describe as:

-cpp850

C>cxref -cpp850 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 761

-d

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies identifier ident that is handled as a type name.
- Specify file file that the identifier handled as a type name is described.

[Example of use]

- To handle identifier U16 as a type name, describe as:

-dident

-d=file

C>cxref -dU16 main.c

APPENDIX B COMMAND REFERENCE

762 User’s Manual U19386EJ1V0UM

-file

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies file file in which the following information is described.
- File name that is not to be displayed in execution results
- Identifier name that is not to be displayed in execution results
- Identifier name that is to be handled as a type name

- If -file=file and -ni are specified at the same time, the contents of "NoIncludeFile" in file of the previously
specified -file=file are invalid.

- File format specified in the -ni/-i/-d/-file options
The -ni/-i/-d options read the corresponding section information, and the -file option reads all the section
information.
The three sections below can be described.

- NoIncludeFile section
- IgnoreIdent section
- DefinitionType section

If the line begins with //, the line is interpreted as a comment.

(1) NoIncludeFile section
This section specifies information that is not displayed as an analysis result in file units. Describe mainly include
files.
The file name described here has the same effect as when specified following the -ni option.
Describe one file name on one line.
Wildcard characters can be used.

(2) IgnoreIdent section
This section specifies information that is not displayed as an analysis result in identifier units.
The file name described here has the same effect as when specified following the -i option.
Describe one identifier on one line.

-file=file

[NoIncludeFile]

// All the * .h files

*.h

// Common definition file

common.def

[IgnoreIdent]

// Common area temporarily used in each process

tmp

buf

work

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 763

(3) DefinitionType section
This section specifies an identifier that is handled as a type name.
The file name described here has the same effect as when specified following the -d option.
Describe one identifier on one line.

[Example of use]

- Information of the file name and identifier that is specified in the file (noresult) is not displayed as an analysis
result.
The identifier specified in "noresult" is handled as a type name.

[DefinitionType]

// 1-byte type

BYTE

UBYTE

// 2-byte type

WORD

UWORD

C>cxref -file=noresult main.c

APPENDIX B COMMAND REFERENCE

764 User’s Manual U19386EJ1V0UM

-h/-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the description of the options and then terminates processing.

[Example of use]

- To output the description of the cross reference options and then terminates processing, describe as:

-h

-help

C>cxref -help

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 765

-i

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies the identifier that is not to be displayed in the execution results.

[Example of use]

- Not to display the identifier (data) in the execution results, describe as:

-iident

C>cxref -idata main.c

APPENDIX B COMMAND REFERENCE

766 User’s Manual U19386EJ1V0UM

-ni

[Description format]

- Interpretation when omitted
None

[Function Description]

- In the case of -ni, this option does not display include file information.
- In the case of -nifile, this option specifies file name file that is not to be displayed in the execution results.

The following wildcard characters can be used in file.

- In the case of -ni=file, this option specifies file file in which file names that are not to be displayed in the
execution results are described.

[Example of use]

- Not to display include file information, describe as:

- Not to display information for files whose name includes an "r", describe as:

- Not to display information for files whose name includes an "e", followed by at least two characters, describe as:

- Not to display information for files whose name starts with "w", contain at least two characters, describe as:

- Not to display information of the file name that is described in the file (noresult), describe as:

-ni

-nifile

-ni=file

? One arbitrary character

* Arbitrary character sequences of zero or more characters

C>cxref -ni main.c

C>cxref -ni*r* main.c

C>cxref -ni*e??* main.c

C>cxref -niw?*.h main.c

C>cxref -ni=noresult main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 767

-o

[Description format]

- Interpretation when omitted
The file is output to the current path.

[Function Description]

- This option specifies path as the output file path.

[Example of use]

- To output the file to folder D:\sample, describe as:

-o path

C>cxref -o D:\sample main.c

APPENDIX B COMMAND REFERENCE

768 User’s Manual U19386EJ1V0UM

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>cxref @command

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 769

The cross reference options are as follows.
- -x
- -xstd

-x

[Description format]

- Interpretation when omitted
Cross reference is output to the standard output.

[Function Description]

- This option outputs the cross reference in text-format to the specified file.
- If =file is omitted, the file name is "cxref".

[Example of use]

- To output the cross reference in text-format to the file (cxfile), describe as:

Cross reference

-x[=file]

C>cxref -x=cxfile main.c

APPENDIX B COMMAND REFERENCE

770 User’s Manual U19386EJ1V0UM

-xstd

[Description format]

- Interpretation when omitted
-xstd

[Function Description]

- This option outputs the cross reference to the standard output (default).

[Example of use]

- To output the cross reference to the standard output, describe as:

-xstd

C>cxref -xstd main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 771

The options for tag information are as follows.
- -t
- -tstd

-t

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the tag information in text-format to the specified file file.
- If =file is omitted, the file name is "ctags".

[Example of use]

- To output the tag information in text-format to the file (tagfile), describe as:

Tag information

-t[=file]

C>cxref -t=tagfile main.c

APPENDIX B COMMAND REFERENCE

772 User’s Manual U19386EJ1V0UM

-tstd

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs tag information to the standard output.

[Example of use]

- To output tag information to the standard output, describe as:

-tstd

C>cxref -tstd main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 773

The options for the call tree are as follows.
- -c
- -cc
- -call
- -ce
- -cf
- -cl
- -cp
- -cr
- -cs
- -cstd
- -ct

-c

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call tree in text-format to the specified file file.
- If =file is omitted, the file name is "ccalltre.lst".

[Example of use]

- To output the call tree in text-format to the file (callfile.lst), describe as:

Call tree

-c[=file]

C>cxref -c=callfile.lst main.c

APPENDIX B COMMAND REFERENCE

774 User’s Manual U19386EJ1V0UM

-cc

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call tree in CSV-format to the specified file file.
- If =file is omitted, the file name is "ccalltre.csv".

[Example of use]

- To output the call tree in CSV-format to the file (callfile.csv), describe as:

-cc[=file]

C>cxref -cc=callfile.csv main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 775

-call

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call tree in text-format and CSV-format to the specified file.
- The file names are file.lst and file.csv.
- If an extension is appended to file, that extension is ignored.
- If =file is omitted, the file names are "ccalltre.lst" and "ccalltre.csv".

[Example of use]

- To output the call tree in text-format and CSV-format to the file (callfile.lst and callfile.csv), describe as:

-call[=file]

C>cxref -call=callfile main.c

APPENDIX B COMMAND REFERENCE

776 User’s Manual U19386EJ1V0UM

-ce

[Description format]

- Interpretation when omitted
-ce3

[Function Description]

- This option specifies the method of omitting output.
- Any of the following numbers can be specified as num.

[Example of use]

- To omit output for call trees at the same level, describe as:

-cenum

1 Output all information

2 Omit output for call trees at the same level

3 Omit output once the information has been output

C>cxref -call -ce2 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 777

-cf

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option specifies for string the name of the function for which the call tree is to be output.
- This option specifies text file file that the name of the function for which the call tree is to be output is described.

[Example of use]

- To specify for "func the name of the function for which the call tree is to be output, describe as:

-cfstring

-cf=file

C>cxref -call -cffunc main.c

APPENDIX B COMMAND REFERENCE

778 User’s Manual U19386EJ1V0UM

-cl

[Description format]

- Interpretation when omitted
-cl255

[Function Description]

- This option specifies the output level.1to 255 can be specified as num.

[Example of use]

- To specify the output level, describe as:

-clnum

C>cxref -call -cl128 main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 779

-cp

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option includes the arguments and return value in the output.

[Example of use]

- To include the arguments and return value in the output, describe as:

-cp

C>cxref -call -cp main.c

APPENDIX B COMMAND REFERENCE

780 User’s Manual U19386EJ1V0UM

-cr

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option includes reference information in the output.

[Example of use]

- To include reference information in the output, describe as:

-cr

C>cxref -call -cr main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 781

-cs

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option includes the source file name and description starting line in the output.

[Example of use]

- To include the source file name and description starting line in the output, describe as:

-cs

C>cxref -call -cs main.c

APPENDIX B COMMAND REFERENCE

782 User’s Manual U19386EJ1V0UM

-cstd

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the text-format call tree to the standard output.

[Example of use]

- To output the text-format call tree to the standard output, describe as:

-cstd

C>cxref -cstd main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 783

-ct

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs only the first tree.

[Example of use]

- To output only the first tree, describe as:

-ct

C>cxref -call -ct main.c

APPENDIX B COMMAND REFERENCE

784 User’s Manual U19386EJ1V0UM

The options for the function metrics are as follows.
- -m
- -mc
- -mall
- -ms
- -mstd

-m

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the function metrics in text-format to the specified file file.
- If =file is omitted, the file name is "cmeasure.lst".

[Example of use]

- To output the function metrics in text-format to the file (measurefile.lst), describe as:

Function metrics

-m[=file]

C>cxref -m=measurefile.lst main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 785

-mc

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the function metrics in CSV-format to the specified file file.
- If =file is omitted, the file name is "cmeasure.csv".

[Example of use]

- To output the function metrics in CSV-format to the file (measurefile.csv), describe as:

-mc[=file]

C>cxref -mc=measurefile.csv main.c

APPENDIX B COMMAND REFERENCE

786 User’s Manual U19386EJ1V0UM

-mall

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the function metrics in text-format and CSV-format to the specified file.
- The file names are file.lst and file.csv.
- If an extension is appended to file, that extension is ignored.
- If =file is omitted, the file names are "cmeasure.lst" and "cmeasure.csv".

[Example of use]

- To output the function metrics in text-format and CSV-format to the file (measurefile.lst and measurefile.csv),
describe as:

-mall[=file]

C>cxref -mall=measurefile main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 787

-ms

[Description format]

- Interpretation when omitted
The information is output without sorting, in the order that the functions appeared.

[Function Description]

- This option specifies the output order.Any of the following numbers can be specified as num.

- If "+" is specified, the information is output in ascending order. If "-" is specified, the information is output in
descending order. By default, the information is output in descending order.

[Example of use]

- To output the information sorted in descending order of the function names, describe as:

-ms[+|-]num

1 Output the information sorted in alphabetical order of the function names.

2 Output the information sorted in alphabetical order of the file names and function names.

3 Output the information without sorting.

C>cxref -ms1 main.c

APPENDIX B COMMAND REFERENCE

788 User’s Manual U19386EJ1V0UM

-mstd

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the text-format function metrics to the standard output.

[Example of use]

- To output the text-format function metrics to the standard output, describe as:

-mstd

C>cxref -mstd main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 789

The options for the call database are as follows.
- -b
- -bc
- -ball
- -bstd

-b

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call database in text-format to the specified file file.
- If =file is omitted, the file name is "cprofile.dat".

[Example of use]

- To output the call database in text-format to the file (calldbfile.dat), describe as:

Call database

-b[=file]

C>cxref -b=calldbfile.dat main.c

APPENDIX B COMMAND REFERENCE

790 User’s Manual U19386EJ1V0UM

-bc

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call database in CSV-format to the specified file file.
- If =file is omitted, the file name is "cprofile.csv".

[Example of use]

- To output the call database in CSV-format to the file (calldbfile.csv), describe as:

-bc[=file]

C>cxref -bc=calldbfile.csv main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 791

-ball

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the call database in text-format and CSV-format to the specified file.
- The file names are file.dat and file.csv.
- If an extension is appended to file, that extension is ignored.
- If =file is omitted, the file name is "cprofile.dat" and "cprofile.csv".

[Example of use]

- To output the call database in text-format and CSV-format to the file (calldbfile.dat and calldbfile.csv), describe
as:

-ball[=file]

C>cxref -ball=calldbfile main.c

APPENDIX B COMMAND REFERENCE

792 User’s Manual U19386EJ1V0UM

-bstd

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the text-format call database to the standard output.

[Example of use]

- To output the text-format call database to the standard output, describe as:

-bstd

C>cxref -bstd main.c

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 793

B.11 Memory Layout Visualization Tool

The memory layout visualization tool is a utility that reads the memory map information of variables from the created
load module file for display.

In the CA850, "rammap" is the memory layout visualization tool.
The memory layout visualization tool outputs the memory map information of variables to a text-format file and CSV-

format file.

Figure B-47. Operation Flow of Memory Layout Visualization Tool

B.11.1 Input/Output

(1) Input file
The input file of the memory layout visualization tool is an executable object fileNote (.out file) output by the
ld850.

Note Does not include a re-linkable object file or a file (.out file) output by the romp850.

(2) Output information
The information that is output by memory layout visualization tool is a memory map that shows the variable
names, sizes, and memory layout.

(a) Memory map table
The memory layout visualization tool outputs a memory map that shows the variable names, sizes, and
memory layout.

See "3.8 Memory Layout Visualization Tool" for details about this information.

B.11.2 Method for manipulating

This section explains how to manipulate the memory layout visualization tool.

(1) Command input method
Enter the following from the command prompt.

(2) Set options in CubeSuite
This section describes how to set memory layout visualization options from CubeSuite.
On CubeSuite's Project Tree panel, select the Build Tool node. Next, select the [View] menu -> [Property]. The
Property panel opens. Next, select the [Memory Layout Visualization Options] tab.
You can set the various memory layout visualization options by setting the necessary properties in this tab.

C>rammap [option][file-name]

 []: Can be omitted

Memory layout visualization tool

Executable object file [Output information]

- Memory map table

 -> Text file, CSV-format file, or standard output

APPENDIX B COMMAND REFERENCE

794 User’s Manual U19386EJ1V0UM

Figure B-48. Property Panel: [Memory Layout Visualization Options] Tab

B.11.3 Option

This section explains memory layout visualization options.
The types and explanations for memory layout visualization options are shown below.

Table B-25. Memory Layout Visualization Options

Classification Option Description

Memory layout
visualization tool

-V Outputs the version number of the memory layout visualization tool to the standard
output.

-all Outputs all information to a text-format file and CSV-format file.

-h Outputs option descriptions.

-help

-m Outputs the memory map table in text-format to the specified file.

-mall Outputs the memory map table in text-format and CSV-format to the specified file.

-mc Outputs the memory map table in CSV-format to the specified file.

-mr Specifies the range for outputting the memory map table.

-mstd Outputs the text-format memory map table to the standard output.

-o Specifies the output file path.

@ Handles the specified file as a command file.

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 795

The memory layout visualization options are as follows.
- -V
- -all
- -h/-help
- -m
- -mall
- -mc
- -mr
- -mstd
- -o
- @

-V

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the version number of the memory layout visualization tool and then terminates processing.

[Example of use]

- To output the version number of the memory layout visualization tool, describe as:

Memory layout visualization tool

-V

C>rammap -V

APPENDIX B COMMAND REFERENCE

796 User’s Manual U19386EJ1V0UM

-all

[Description format]

- Interpretation when omitted
The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs all information to a text-format file and CSV-format file.
- This option has the same result as when "-mall" is specified.

[Example of use]

- To output all information to a text-format file and CSV-format file, describe as:

-all

C>rammap -all a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 797

-h/-help

[Description format]

- Interpretation when omitted
None

[Function Description]

- This option outputs the description of the options and then terminates processing.

[Example of use]

- To output option descriptions of the memory layout visualization tool, describe as:

-h

-help

C>rammap -help

APPENDIX B COMMAND REFERENCE

798 User’s Manual U19386EJ1V0UM

-m

[Description format]

- Interpretation when omitted
-m

[Function Description]

- This option outputs the memory map table in text-format to the specified file file.
- If =file is omitted, the file name is "rammap.txt".

[Example of use]

- To output the memory map table in text-format to the file (memmapfile.txt), describe as:

-m[=file]

C>rammap -m=memmapfile.txt a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 799

-mall

[Description format]

- Interpretation when omitted
The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs the memory map table in text-format and CSV-format to the specified file.
- The file names are file.txt and file.csv.
- If an extension is appended to file, that extension is ignored.
- If =file is omitted, the file name is "rammap.txt" and "rammap.csv".

[Example of use]

- To output the memory map table in text-format and CSV-format to the file (memmapfile.txt and
memmapfile.csv), describe as:

-mall[=file]

C>rammap -mall=memmapfile a.out

APPENDIX B COMMAND REFERENCE

800 User’s Manual U19386EJ1V0UM

-mc

[Description format]

- Interpretation when omitted
The text-format memory map table is output to the standard output.

[Function Description]

- This option outputs the memory map table in CSV-format to the specified file file.
- If =file is omitted, the file name is "rammap.csv".

[Example of use]

- To output the memory map table in CSV-format to the file (memmapfile.csv), describe as:

-mc[=file]

C>rammap -mc=memmapfile.csv a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 801

-mr

[Description format]

- Interpretation when omitted
All ranges within the object are targeted for the memory map table.

[Function Description]

- This option specifies the range for outputting the memory map table.
- Do not enter a blank space between "-mr" and range.
- Octal, decimal, or hexadecimal numbers can be specified for the addresses.

- Multiple ranges can be specified.
- To specify multiple ranges, either specify multiple -mr options or separate each of the ranges with commas.
- When specified ranges overlap, they are handled as follows.

Examples 1. This case is handled as one in which the two ranges a to b and c to d are specified.

2. This case is handled as one in which the one range a to d is specified.

3. This case is handled as one in which the one range a to d is specified.

4. This case is handled as one in which the one range a to b is specified.

Cautions 1. The actual address range is aligned at 16 bytes.
For the start address, the specified value is rounded to 16 bytes (logical AND with 0xfffffff0).
For the end address, the specified value is rounded to 16 bytes and added to 0xF.

-mrrange

Octal specification format -mr0200000-0400000

Decimal specification format -mr65536-131072

Hexadecimal specification format -mr0x10000-0x20000

-mr0x10000-0x20000 0x10000 to 0x2000f

-mr0x10004- 0x10000 to 0xffffffff

-mr-0x20005 0x0 to 0x2000f

a ---------------------------- b c ------------------------- d

a ---------------------------- b
 c -------------------------- d

a ---------------------------- b
c ------------------------------- d

a --- b
c ------------------------------- d

APPENDIX B COMMAND REFERENCE

802 User’s Manual U19386EJ1V0UM

2. If the range specification is illegal, an error message is output, and processing is interrupted.

[Example of use]

- To specify 0x10000 to 0x20000 as the range for outputting the memory map table, describe as:

- To specify 0x10000 as the start address for outputting the memory map table, describe as the following. In this
case, the end address is 0xffffffff.

- To specify 0x20000 as the end address for outputting the memory map table, describe as the following. In this
case, the start address is 0x0.

- To specify 0x10000 to 0x20000 and 0x30000 to 0x40000 as the range for outputting the memory map table,
describe as:

or

C>rammap a.out -mr0x10000-0x20000

C>rammap a.out -mr0x10000-

C>rammap a.out -mr-0x20000

C>rammap a.out -mr0x10000-0x20000 -mr0x30000-0x40000

C>rammap a.out -mr0x10000-0x20000,0x30000-0x40000

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 803

-mstd

[Description format]

- Interpretation when omitted
-mstd

[Function Description]

- This option outputs the text-format memory map table to the standard output.

[Example of use]

- To output the text-format memory map table to the standard output, describe as:

-mstd

C>rammap -mstd a.out

APPENDIX B COMMAND REFERENCE

804 User’s Manual U19386EJ1V0UM

-o

[Description format]

- Interpretation when omitted
The file is output to the current path.

[Function Description]

- This option specifies path as the output file path.

[Example of use]

- To output the file to folder D:\sample, describe as:

-o path

C>rammap -mc -o D:\sample a.out

APPENDIX B COMMAND REFERENCE

User’s Manual U19386EJ1V0UM 805

@

[Description format]

- Interpretation when omitted
Command files are assumed not to exist.

[Function Description]

- This option handles cfile as a command file.
- Instead of specifying options and file names for commands as command-line arguments, they can be specified

in a command file.
- On Windows, the length of a character string specified as options for commands is limited. If many options are

set and some of the options cannot be recognized, create a command file and specify this option.
- See "(2) Command file" for details about a command file.

[Example of use]

- To handle "command" as a command file, describe as:

@cfile

C>rammap @command

APPENDIX C INDEX

806 User’s Manual U19386EJ1V0UM

APPENDIX C INDEX

A

Active project ... 75

Add a build mode ... 76

Add a file to a project ... 33

Add Existing File dialog box ... 353

Add File dialog box ... 272

Add Folder and File dialog box ... 274

Archive file ... 390

Assemble list ... 97

Assembler ... 388

B

Batch build ... 81, 87

Batch Build dialog box ... 300

Boot-flash relink function ... 589

Browse For Folder dialog box ... 355

Build ... 81, 84

Build mode ... 76, 77

Build Mode Settings dialog box ... 298

Build tool version ... 26

C

Call database ... 130

Call tree ... 125

Category ... 38

Change the build mode ... 77

Change the output file name ... 42

Character String Input dialog box ... 276

Clean ... 90

Code generation module ... 388

[Commands] tab ... 344

Cross reference ... 123

Customize Keyboard dialog box ... 348

D

Delete a build mode ... 78

Dump list ... 115

E

Editor panel ... 266

ELF header ... 134

Executable object ... 390

Expanded tektronix hex format ... 107

F

File dependencies ... 39

File display order ... 38

Front end ... 388

Function metrics ... 127

G

[General - Build/Debug] category ... 334

[General - Display] category ... 321

[General - External Tools] category ... 330

[General - Font and Color] category ... 325

[General - Startup and Exit] category ... 319

[General - Text Editor] category ... 323

[General - Update] category ... 336

Global optimization module ... 388

Go to the Location dialog box ... 315

I

Intel expanded hex format ... 101

Intermediate language file ... 390

L

Link Directive File Generation dialog box ... 283

Link map ... 99

Link Order dialog box ... 296

Linker ... 388

M

Machine-dependent optimization module ... 388

Magic number ... 533

main function ... 606

Main window ... 142

Memory map table ... 132

APPENDIX C INDEX

User’s Manual U19386EJ1V0UM 807

Motorola S type hex format ... 105

N

New Toolbar dialog box ... 346

O

Object file ... 134, 390

Object File Select dialog box ... 292

Object for ROMization ... 615

Open with Program dialog box ... 369

Option dialog box ... 317

[General - Build/Debug] category ... 334

[General - Display] category ... 321

[General - External Tools] category ... 330

[General - Font and Color] category ... 325

[General - Startup and Exit] category ... 319

[General - Text Editor] category ... 323

[General - Update] category ... 336

[Other - User Information] category ... 338

[Other - User Information] category ... 338

Output an assemble list ... 43

Output information of cross reference tool ... 755

Output map information ... 44

Output panel ... 269

Output symbol information ... 44

P

Path Edit dialog box ... 280

Pre-optimizer ... 388

Program header table ... 135

Progress Status dialog box ... 316

Project Tree panel ... 146

Property panel ... 158

[Archive Options] tab ... 225

[Assemble Options] tab ... 197

[Build Settings] tab ... 237

[Category Information] tab ... 265

[Common Options] tab ... 161

[Compile Options] tab ... 176

[Cross Reference Options] tab ... 235

[Dump Options] tab ... 234

[File Information] tab ... 263

[Hex Convert Options] tab ... 218

[Individual Assemble Options] tab ... 257

[Individual Compile Options] tab ... 240

[Link Options] tab ... 202

[Memory Layout Visualization Options] tab ... 236

[ROMization Process Options] tab ... 211

[Section File Generate Options] tab ... 228

Q

[Quick Replace] tab ... 309

[Quick Search] tab ... 303

R

Rapid build ... 81, 85

_rcopy ... 621

_rcopy1 ... 622

_rcopy2 ... 623

_rcopy4 ... 624

Rearrange Commands dialog box ... 350

Rebuild ... 81, 85

Relink function ... 589

Rename Toolbar dialog box ... 347

Reserved symbols ... 605

rompsec section ... 612

Run a build ... 81

S

Save As dialog box ... 367

Search and Replace dialog box ... 302

[Quick Replace] tab ... 309

[Quick Search] tab ... 303

[Whole Replace] tab ... 312

[Whole Search] tab ... 306

Section ... 136

Section file ... 111, 680

Section header table ... 135

Segment Select dialog box ... 294

Select External Text Editor dialog box ... 373

Select Program dialog box ... 371

Set archive options ... 64

Set assemble options ... 50

Set compile options ... 45

Set cross reference options ... 68

Set dump options ... 67

Set hex convert options ... 61

Set link options ... 53

APPENDIX C INDEX

808 User’s Manual U19386EJ1V0UM

Set memory layout visualization options ... 69

Set ROMization process options ... 59

Set section file generate options ... 65

Specify Boot Area Object File dialog box ... 357

Specify Far Jump File dialog box ... 363

Specify Function Information File dialog box ... 359

Specify Intermediate Language File for External

Variable Sorting dialog box ... 361

Specify ROMization Area Reservation Code File dialog

box ... 365

T

Tag information ... 124

Tag jump ... 270

Text Edit dialog box ... 278

[Toolbars] tab ... 342

U

User Setting dialog box ... 340

[Commands] tab ... 344

[Toolbars] tab ... 342

W

[Whole Replace] tab ... 312

[Whole Search] tab ... 306

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Overview
	1.2 Features

	CHAPTER 2 FUNCTIONS
	2.1 Overview
	2.1.1 Create a load module
	2.1.2 Create a user library

	2.2 Change the Build Tool Version
	2.3 Set Build Target Files
	2.3.1 Set a startup routine
	2.3.2 Automatically generate link directives
	2.3.3 Add a file to a project
	2.3.4 Remove a file from a project
	2.3.5 Remove a file from the build target
	2.3.6 Classify a file into a category
	2.3.7 Change the file display order
	2.3.8 Update file dependencies

	2.4 Set the Type of the Output File
	2.4.1 Change the output file name
	2.4.2 Output an assemble list
	2.4.3 Output map information
	2.4.4 Output symbol information

	2.5 Set Compile Options
	2.5.1 Perform optimization with the code size precedence
	2.5.2 Perform optimization with the execution speed precedence
	2.5.3 Add an include path
	2.5.4 Set a macro definition
	2.5.5 Enable C++ comments
	2.5.6 Reduce the code size (perform prologue/epilogue runtime calls)
	2.5.7 Change the register mode

	2.6 Set Assemble Options
	2.6.1 Add an include path
	2.6.2 Set a macro definition

	2.7 Set Link Options
	2.7.1 Add a user library

	2.8 Prepare for Implementing Boot-Flash Relink Function
	2.8.1 Prepare the build target files
	2.8.2 Set the boot area project
	2.8.3 Set the flash area project

	2.9 Set ROMization Process Options
	2.9.1 Create an object for ROMization

	2.10 Set Hex Convert Options
	2.10.1 Set the output of a hex file
	2.10.2 Fill the vacant area

	2.11 Set Archive Options
	2.11.1 Set the output of an archive file

	2.12 Set Section File Generate Options
	2.12.1 Automatically allocate variables through static analysis

	2.13 Set Dump Options
	2.13.1 Use the dump tool
	2.13.2 Reference the section information

	2.14 Set Cross Reference Options
	2.14.1 Use the cross reference tool

	2.15 Set Memory Layout Visualization Options
	2.15.1 Use the memory layout visualization tool

	2.16 Set Build Options Separately
	2.16.1 Set build options at the project level
	2.16.2 Set build options at the file level

	2.17 Make Settings for Build Operations
	2.17.1 Set the link order of files
	2.17.2 Change the file build order of subprojects
	2.17.3 Display a list of build options
	2.17.4 Change the file build target project
	2.17.5 Add a build mode
	2.17.6 Change the build mode
	2.17.7 Delete a build mode
	2.17.8 Set the current build options as the standard for the project

	2.18 Run a Build
	2.18.1 Run a build of updated files
	2.18.2 Run a build of all files
	2.18.3 Run a build in parallel with other operations
	2.18.4 Run builds in batch with build modes
	2.18.5 Compile/assemble individual files
	2.18.6 Stop running a build
	2.18.7 Save the build results to a file
	2.18.8 Delete intermediate files and generated files

	2.19 Using Stack Usage Tracer
	2.19.1 Starting and exiting
	2.19.2 Check the call relationship
	2.19.3 Check the stack information
	2.19.4 Check unknown functions
	2.19.5 Change the frame size

	CHAPTER 3 BUILD OUTPUT LISTS
	3.1 Assembler
	3.1.1 Output method
	3.1.2 Output example

	3.2 Linker
	3.2.1 Output method
	3.2.2 Link map output example

	3.3 Hex Converter
	3.3.1 Intel expanded
	3.3.2 Motorola S type
	3.3.3 Expanded tektronix

	3.4 Section File Generator
	3.4.1 Cautions

	3.5 Dump Tool
	3.5.1 Dump list display contents
	3.5.2 Element values and meanings

	3.6 Disassembler
	3.7 Cross Reference Tool
	3.7.1 Cross reference
	3.7.2 Tag information
	3.7.3 Call tree
	3.7.4 Function metrics
	3.7.5 Call database

	3.8 Memory Layout Visualization Tool
	3.8.1 Memory map table

	3.9 Format of Object File
	3.9.1 Structure of object file
	3.9.2 ELF header
	3.9.3 Program header table
	3.9.4 Section header table
	3.9.5 Sections

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Main window
	Project Tree panel
	Property panel
	[Common Options] tab
	[Compile Options] tab
	[Assemble Options] tab
	[Link Options] tab
	[ROMization Process Options] tab
	[Hex Convert Options] tab
	[Archive Options] tab
	[Section File Generate Options] tab
	[Dump Options] tab
	[Cross Reference Options] tab
	[Memory Layout Visualization Options] tab
	[Build Settings] tab
	[Individual Compile Options] tab
	[Individual Assemble Options] tab
	[File Information] tab
	[Category Information] tab

	Editor panel
	Output panel
	Add File dialog box
	Add Folder and File dialog box
	Character String Input dialog box
	Text Edit dialog box
	Path Edit dialog box
	Link Directive File Generation dialog box
	Object File Select dialog box
	Segment Select dialog box
	Link Order dialog box
	Build Mode Settings dialog box
	Batch Build dialog box
	Search and Replace dialog box
	[Quick Search] tab
	[Whole Search] tab
	[Quick Replace] tab
	[Whole Replace] tab

	Go to the Location dialog box
	Progress Status dialog box
	Option dialog box
	[General - Startup and Exit] category
	[General - Display] category
	[General - Text Editor] category
	[General - Font and Color] category
	[General - External Tools] category
	[General - Build/Debug] category
	[General - Update] category
	[Other - User Information] category

	User Setting dialog box
	[Toolbars] tab
	[Commands] tab

	New Toolbar dialog box
	Rename Toolbar dialog box
	Customize Keyboard dialog box
	Rearrange Commands dialog box
	Add Existing File dialog box
	Browse For Folder dialog box
	Specify Boot Area Object File dialog box
	Specify Function Information File dialog box
	Specify Intermediate Language File for External Variable Sorting dialog box
	Specify Far Jump File dialog box
	Specify ROMization Area Reservation Code File dialog box
	Save As dialog box
	Open with Program dialog box
	Select Program dialog box
	Select External Text Editor dialog box
	Stack Usage Tracer window
	Stack Size Unknown / Adjusted Function Lists dialog box
	Adjust Stack Size dialog box
	Open dialog box

	APPENDIX B COMMAND REFERENCE
	B.1 C Compiler
	B.1.1 I/O files
	B.1.2 Executable object
	B.1.3 Method for manipulating
	B.1.4 Option
	Version/help display/operation status
	-V
	-help
	-v

	Output file specification
	-Fic
	-Fo
	-Fs
	-Fv
	-o
	-temp

	Controlling source debugger
	-Xno_word_bitop
	-g

	Device specification
	-X256M
	-Xbpc
	-cn
	-cnv850e
	-cnv850e2
	-cpu
	-devpath

	Compiler control specification
	-S
	-a
	-c
	-m

	ROMization control
	-Xr

	Preprocessor processing setting
	-C
	-D
	-E
	-I
	-P
	-U
	-Wa,-D
	-Wa,-I
	-Xcxxcom
	-Xd
	-Xm
	-t

	Memory saving during compilation
	-Wp,-D
	-Wi,-D

	Error output specification
	+err_file
	-err_file
	-err_limit

	Expansion function specification
	-cc78k

	Optimization
	-Od
	-Ob
	-Og
	-O
	-Os
	-Ot

	Target code optimization
	-Wi,-O4
	-Wi,-P

	File merging
	-Om

	Inline expansion optimization control
	-Wp,-G
	-Wp,-N
	-Wp,-S
	-Wp,-l
	-Wp,-inline
	-Wp,-no_inline
	-Wp,-r

	Loop expansion optimization control
	-Wo,-Ol
	-Wo,-Xlo

	strcpy, strcmp expansion
	-Xi

	External variable sort
	-Wo,-Op

	Branch instruction control
	-Wo,-XFo

	Register use control
	-r
	-reg
	-Xmask_reg

	Prologue/epilogue processing control
	-Xpro_epi_runtime

	Variable placement control
	-G
	-Xsconst
	-Xcre_sec_data
	-Xcre_sec_data_only
	-Xsec_file

	signed/unsigned control
	-Xbitfield
	-Xchar
	-Xenum_type

	Switch-case statement output code control
	-Xcase
	-Xword_switch

	Structure packing control
	-Xbyte
	-Xpack

	Far jump output control
	-Xfar_jump
	-Xj

	Comment output
	-Xc

	ANSI standard
	-Xe
	-Xdefvar
	-ansi

	Library specification
	-L
	-R
	-l

	Warning message control
	-w
	-won
	-woff

	Command file specification
	@

	CPU bug patch
	-Xv850patch

	Each module
	-W

	Other
	+Oc

	B.1.5 Cautions

	B.2 Assembler
	B.2.1 I/O files
	B.2.2 Method for manipulating
	B.2.3 Option
	File
	-a
	+err_file
	-err_file
	-l

	Assembler
	-D
	-G
	-I
	-m
	-O
	-v
	-w
	-Xfar_jump

	Device
	-X256M
	-bpc

	Other
	-cn
	-cnv850e
	-cnv850e2
	-cpu
	-F
	-g
	-o
	-p
	-V
	-zf
	@

	B.2.4 Cautions

	B.3 Linker
	B.3.1 Method for manipulating
	B.3.2 Option
	Input file
	-D
	-Xolddir

	Output file
	+err_file
	-err_file
	-o
	-m
	-mo

	Library
	-L
	-lc
	-lm
	-l

	Flash
	-ext_table
	-zf

	Device
	-X256M
	-Xsid
	-Xob=none

	Linker
	-A
	-B
	-E
	-M
	-T
	-Ximem_overflow=warning
	-e
	-f
	-mc
	-rc
	-rescan
	-rom_less
	-s
	-t
	-v
	-w

	Other
	-F
	-V
	-cpu
	-fc
	-help
	-mask_reg
	-r
	-ro
	-reg
	@

	B.3.3 Boot-flash relink function
	B.3.4 Supplementary information

	B.4 ROMization Processor
	B.4.1 I/O files
	B.4.2 rompsec section
	B.4.3 Creating object for ROMization
	B.4.4 Copy function
	_rcopy
	_rcopy1
	_rcopy2
	_rcopy4

	B.4.5 Example of using copy function
	B.4.6 Method for manipulating
	B.4.7 Option
	File
	+err_file
	-err_file
	-o

	ROMization processor
	-Ximem_overflow=warning
	-b
	-d
	-i
	-m
	-p
	-rom_less
	-t

	Other
	-F
	-V
	-help
	@

	B.5 Hex Converter
	B.5.1 I/O files
	B.5.2 Method for manipulating
	B.5.3 Option
	File
	+err_file
	-err_file
	-o

	Format
	-b
	-d
	-f
	-I
	-S
	-U
	-x
	-rom_less
	-z

	Other
	-F
	-V
	@

	B.6 Archiver
	B.6.1 Method for manipulating
	B.6.2 Key/Option
	Key
	V
	d
	m
	ma
	mb
	q
	r
	ra
	ru
	t
	x

	Archiver
	c
	v
	@

	Output file
	+err_file
	-err_file

	B.7 Section File Generator
	B.7.1 Section file
	B.7.2 Method for manipulating
	B.7.3 Option
	Section file generator
	-O
	-V
	-Xcs
	-Xcv
	-cl
	+err_file
	-err_file
	-h/-help
	-ns
	-o
	-size_tidata
	-size_tidata_byte
	-size_sidata
	-size_sedata
	-size_sdata
	-sname
	-ssection
	-ssize
	-v
	@

	B.7.4 Cautions

	B.8 Dump Tool
	B.8.1 Method for manipulating
	B.8.2 Option
	Dump tool
	-A
	-T
	-V
	-a
	-b
	-c
	-d
	+d
	-e
	-f
	-g
	-h
	-i
	-k
	-l
	-m
	-n
	-p
	-r
	-s
	-t
	+t
	-v
	-z
	+z
	@

	B.9 Disassembler
	B.9.1 Method for manipulating
	B.9.2 Option
	Disassembler
	-A
	-F
	-V
	-a
	-c
	-e
	-l
	-m
	-o
	-p
	-r
	-s
	-t
	-v
	@

	B.9.3 Cautions

	B.10 Cross Reference Tool
	B.10.1 Input/Output
	B.10.2 Method for manipulating
	B.10.3 Option
	Common options
	-V
	-all
	-cpp850
	-d
	-file
	-h/-help
	-i
	-ni
	-o
	@

	Cross reference
	-x
	-xstd

	Tag information
	-t
	-tstd

	Call tree
	-c
	-cc
	-call
	-ce
	-cf
	-cl
	-cp
	-cr
	-cs
	-cstd
	-ct

	Function metrics
	-m
	-mc
	-mall
	-ms
	-mstd

	Call database
	-b
	-bc
	-ball
	-bstd

	B.11 Memory Layout Visualization Tool
	B.11.1 Input/Output
	B.11.2 Method for manipulating
	B.11.3 Option
	Memory layout visualization tool
	-V
	-all
	-h/-help
	-m
	-mall
	-mc
	-mr
	-mstd
	-o
	@

	APPENDIX C INDEX

