To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

-
»
9
q\
7
<
O
-
c
)

W
N

LENESAS

The revision list can be viewed directly by
clicking the title page.

The revision list summarizes the locations of
revisions and additions. Details should always
be checked by referring to the relevant text.

SH-3/SH-3E/SH3-DSP

Software Manual

Renesas 32-Bit RISC Microcomputer
SuperH™ RISC engine Family

Renesas Electronics Rev.4.00 2006.05

Unknown
The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 4.00 May 15, 2006 page ii of xviii

RENESAS

Introduction

The SH-3/SH-3E/SH3-DSP is a new generation of RISC microcomputers that integrate a RISC-
type CPU and the peripheral functions required for system configuration onto a single chip to
achieve high-performance operation. It can operate in a power-down state, which is an essential
feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

In addition, the SH-3E supports single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. The SH-3E
instructions are a subset of the floating point calculations conforming to the IEEE754 standard.

This programming manual describes in detail the instructions for the SH-3/SH-3E/SH3-DSP and
is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH-3/SH-3E/SH3-DSP. For information on the hardware,
please refer to the hardware manual for the product in question.

Please contact a Renesas sales office for information on development environment systems.

Rev. 4.00 May 15, 2006 page iii of xviii

RENESAS

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 show the relationships between the items
listed and lists the sections within this manual that cover those items.

Table 1 Manual Organization
Category Section Title Contents
Introduction 1. Features CPU features
Architecture (1) 2. Programming Types and structure of general registers, control
model registers and system registers
3. Data Formats Data formats for registers and memory

4. Floating Point

Processor Unit

FPU register configuration, FPU exceptions

DSP Operations
and Data Transfer

Fixed-point operations, integer operations, logic
operations, multiplication, shift operations,
overview of DSP operations such as saturation
operations, repeat control

Introduction to 6. Instruction Instruction features, addressing modes, and
instructions Features instruction formats
7. Instruction Set Summary of instructions by category and listin
alphabetic order
Detailed information 8. Instruction Operation of each instruction in alphabetical order
on instructions Descriptions
Architecture (2) 9. Processing States Power-down and other processing states

10. Pipeline Operation

Pipeline operation

Rev. 4.00 May 15, 2006 page iv of xviii

RENESAS

Table 2

Category

Subjects and Corresponding Sections

Topic

Section Title

Introduction and
features

CPU features

1. Features

Instruction features

6.1 RISC-Type Instruction Set

Pipelines

10.1 Basic Configuration of
Pipelines

10.2 Slot and Pipeline Flow

Architecture

Organization of registers

2. Programming model

Data formats

Data Formats

Floating point processor unit

DSP

3
4. Floating Point Processor Unit
5

DSP Operations and Data
Transfer

Processing states, reset state, exception
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode

9. Processing States

Pipeline operation 10. Pipeline Operation
Introduction to Instruction features 6. Instruction Features
instructions Addressing modes 6.2 Addressing Modes

Instruction formats 6.3 Instruction Formats
List of Instruction sets 7.1 Instruction Set by
instructions Classification

7.2 Instruction Set in Alphabetical
Order

Detailed Detailed information of instruction 8. Instruction Description
information on operation 10.7 Instruction Pipelines
instructions

Number of instruction execution states

10.3 Number of Instruction
Execution Cycles

RENESAS

Rev. 4.00 May 15, 2006 page v of xviii

Rev. 4.00 May 15, 2006 page vi of xviii

RENESAS

Main Revisions for This Edition

Item Page Revision (See Manual for Details)

All — * Notification of change in company name amended
(Before) Hitachi, Ltd. — (After) Renesas Technology Corp.

Rev. 4.00 May 15, 2006 page vii of xviii

RENESAS

Rev. 4.00 May 15, 2006 page viii of xviii

RENESAS

Contents

SECtioN 1 FEATUIES.cuieiiieie et 1
L1 SH-3 CPU FAUIESeeoueiiieniieitieieeitenit ettt sttt ettt ettt e saae e 1
1.2 SH3-DSP FEATUIESueieuiiieietieiieieeeeie ettt ettt ettt ettt et e b e b et e emaeeneesaeenee 2
Section 2 Programming Model...........c.cocoooiiiiriiiniiiiee e 5
2.1 Organization Of REGISTETS.cccueiieriieriieiieieeieetiesiteie et e e e sseesseeaessaesseesseanseenseans 5
2.1.1 Privileged Mode and Banksccoccvecierienienienieeie e 5
2.2 General-Purpose REZISIEISciiiriiiiiieiiiiecieeiteieet ettt ste e ve e eenesneessaeseens 11
2.3 CONLIOl REGISEIS. .. .eiiuiiieietieitiee ettt sttt ettt ettt b e b et et enee e see 13
2.4 SYSEM REGISTETS ..eueiiiiiiiiitieeiiet ettt ettt ettt ettt e 15
2.5 Initial ReIStEr VAIUEcc.eiiiiiiiiiiiieiie ettt 16
Section 3 Data FOrmatscoooiiiiiiii e 17
3.1 Data FOrmat in REGISTEIS.cccvirieriieiieiieie ettt ettt seese e eneeees 17
3.2 Data FOrmat in MEmOTYcouiiiiiieiieieeie ettt et 17
3.3 Data Format for Immediate Datacoccooiiiiiiiiiiii e 18
3.4 DSP Type Data Formats (SH3-DSP Only)cocoeiiiiiiiiiiieeeeeeeee e 18
Section 4 Floating Point Unit (SH-3E Only).......cccooviiiioieiccceccece 21
4.1 INITOQUCLION ...ttt ettt st b ettt bbbt eae et et enenaens 21
4.2 Floating Point Registers and System Registers for FPU.........c.ccooiiiiiiiniiiiiiiieee 22
4.2.1 Floating Point Register Fileccccoiiiiiiiiiiiiec e 22
4.2.2 Floating Point Communication Register (FPUL)...........cccccoooiniiiiniiniiieeene 22
4.2.3 Floating Point Status/Control Register (FPSCR).......cccccvevieviirciiniiieeeieeieeen 22
4.3 Floating Point FOIMALc.cccveiiiriiiiiieieciese ettt sae e e e ens 24
4.3.1 Floating Point FOrmMatcccveciieiirieiieiieie ettt 24
4.3.2 Not a NUmMber (NAN)coooiiiiiiiieeie ettt esee e sreesae e saeessbeesebeesnaee e 25
4.3.3 Denormalized ValUes.........cccoeiiiiiiiieiieieeieee ettt 25
4.3.4 Other Special ValUes......cccoiiiiieiiiieiieeeeeee et 25
4.4 Floating Point EXception MoOdelccccoviiiiiiieiiiieiieiceie ettt 26
4.4.1 Enabled EXCEPHONcccvieiiiieiieeiietieie ettt sttt e e ssaenseenseensesenesenas 26
4.4.2 Disabled EXCEPLION ...cccuieiiiiiiiieeiieiieie et eieeitesiee st e e eaesee e esseeseenseessesssensnenseas 26
4.4.3 Exception Event and Code for FPU..........cccooiiiiiiiiiiiieeeeeeee e 27
4.4.4 Alignment of Floating Point Data in MemOTrycc.ccoeievieiiniinienieeeienceene 27
4.4.5 Arithmetic with Special Operandscocceerieriiiiiiiinieeeeee e 27
4.5 SyNChronization ISSUES..........cccuerieriirrieeiiiieiteseerte et eteerestaessees e eseesesssesseesseesseenseessenns 27

Rev. 4.00 May 15, 2006 page ix of xviii

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only) 29

5.1 ALU Fixed Decimal Point Operationsccoccereerueeiieienieniieieeie e 30
5101 FUNCHION .ttt ettt et et e s bt e s be e bt emteemeeeaeeeaeenbeans 30
5.1.2 Instructions and OPerands............ccceeuerierierienieeieeieeie s eeste et ee st seee e eeeens 32
513 DIC Bttt sttt st ettt 32
514 Condition BiItScoeiiiiiiiiiieieete sttt 35
5.1.5 Overflow Prevention Function (Saturation Operation)............ccccceevvevuervereeennnnns 35
5.2 ALU INtEZEr OPCIAtIONS.eeruietietieteeiteeiiestiesteesteerte et eteeaeesteesbee bt e beetesneesaeesaeeneeeneeenes 35
5.3 ALU Logical OPerations.........ccceeiueeiieiirieniieriienieeie et eeesitesteete et e e seeeseeesbeesaeeneeeneeenes 37
5301 FUNCHON c.eetiiitieeee ettt ettt et et s b e sbe e bt et et eeaeesaeenbeans 37
5.3.2 Instructions and OPErands............ccceeeuerveriereeriiesieeieeeeseesteesseessesnesseesseesseensenns 38
533 DIC Bttt ettt st ettt 39
534 Condition BitS.....coeiiiiiiiieiieieieie st 39
5.4 Fixed Decimal Point MultipliCation..........c.ccereeriiiiirieniieieee e 39
5.5 Shift OPErations ...c...eoiiiuiiiiieitieie ettt sttt ettt sb et e ete e saeeeee 41
5.5.1 Arithmetic Shift OPerationsccooeeiieiiriiiienieeee e 42
5.5.2 Logical Shift Operationscceecueruieriierieeiieeiesieseesieseeseesseesseesaesnesseesseensenns 44
5.6 The MSB Detection INStIUCTIONcc.evueriieieriiienienerieeiceit ettt 45
56,1 FUNCHIOM .ottt ettt sb ettt e 45
5.6.2 Instructions and OPerands...........cccceeuerierierieniieie et s eas 49
563 DIC Bttt ettt ettt sttt ettt te et eneent et ensenen 49
5.6.4 Condition BitScoouiiiiiiiiiieiieiiee et 50
5.7 ROUNAING.....iiiiiiieiieiieiieieete ettt et ettt e et e et e e e e e s e esbessaesseesseeseesseensenssenssensaesens 50
5.7.1 Operation FUNCHONccueeciiiieiieiieie ettt eae et steesreessesnaesseesseeseenseens 50
5.7.2 Instructions and OPErands............cccceeevereveriierieriiesierieesieeeesreseeesseesseenseessessnesseens 52
R T B T O 2 (USRS 52
5.7.4 Condition BItScooiiiiiiiiiiiiiiece et 53
5.7.5 Overflow Prevention Function (Saturation Operation)............ccceceeveereereeneennenns 53
5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)c.cccveevvvvievienieienieenne. 53
5.9 Overflow Prevention Function (Saturation Operation)...........ccceceeruverurevesveneeniessvesnennnns 55
5.10 Data TranSTerS....cc.eeieiiiiriirierieeteet ettt sttt sttt 56
5.10.1 Xand Y Memory Data Transferoccoooiiiiiieiieieeeeeecee e 56
5.10.2 Single Data Transfers.........ccooueiierieriiie et 57
5.11 Operand CONENTIONeevuieiiieiieiieeieet et ie ettt ettt et et e bt en e et eeeeeseeesbeenaeeneeeneeenes 60
5.12 DSP Repeat (Lo0p) CONIOL.......ccuieiiieiieieiieeieeiieie ettt sttt ssaesees 61
51201 USAZE INOLES ..eeeneveeiiieiieeiieestee sttt e et testeeebee st e ebteebteeate sttt esabeesseeesaseesaseesseenane 65
5.13 Conditional Instructions and Data Transfers.........c..coceeeerieienininienienneeeeeeseeee 69
Section 6 INStruction FEAtUIES...........cccoveirieiiieieeee e 71
6.1 RISC-Type INStruCtiON SEt......cocuiiiiieiieiiieiieitieriee ettt 71
6.1.1 16-Bit Fixed Length.......cccccoeiieiieiieiieeeeeeeeeeee e 71

Rev. 4.00 May 15, 2006 page x of xviii

RENESAS

6.1.2 One INSruction/CYCLeecuiiiiieiiieiieieeie ettt st sre e ese e seaesseenseens 71

6.1.3 Data Length.......ocooiiiiiee e e 71
6.1.4 Load-Store ArChiteCtUIE.ccuuiitieiiiiieie ettt 72
6.1.5 Delayed Branch INStrucCtionscooueiiiiienieniieiieieeiesee e 72
6.1.6 Multiplication/Accumulation OPerationceceeeereerrerceereereerieeseeneesseenseens 72
0.1.7 T Bttt ettt 72
6.1.8 ImMMEdIate DAata......cccoueiieiiiiiinienieeeeiteteet et 73
6.1.9 ADSOIULE AdAIESS .. .eiieieiieiieiiee e e 73
6.1.10 16-Bit/32-Bit DiSplacementc.cerueeriiriirieniieniieeee et 74
6.1.11 Privileged INSTrUCHIONSeouiiiiiiiieiieiteie ettt 74
6.2 CPU Instruction Addressing MOAES.........c.eecuirrierieiieiierienieie e ere e eeesieesee e eseeseeenns 75
6.3 DSP Data Addressing (SH3-DSP Only)cccerieriiiriiiiieieeieriieie ettt 78
6.3.1 X and Y Data AddresSingcoccveeiereierierienieriieieeieeieseesteesse e saesnesseenseenseens 79
6.3.2 Single Data AddressSing........coeereeiirieiiiiiereee et 80
6.3.3 MoOdUulo AdAreSSING.....ceouieiiiiieiieetietiete ettt 81
6.3.4 DSP Addressing OPerationceecuereerienienieeieeieeiesieesieeie e see e seeeeeeeeeas 83
6.4 Instruction Format of CPU INStrUCHIONSc..couevueeuieienienieniinierieeiieieteie sttt 85
6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)ccceeevevienievenierieneeee 88
6.5.1 Double and Single Data Transfer INStructionsccceeevevevereereenieesieeienrenieens 88
6.5.2 Parallel Processing INStructionscoceerieiirienieneeneee e 91
Section 7 INSIUCHION Set........ooiiiiiriiieeee s 95
7.1 Instruction Set by ClassifiCationc.cccvevieriieiiieiiieieieie et 95
7.1.1 Data Transfer INStruCtions.........cceviririeieiiiniinerieeieeeeeree e 100
7.1.2 Arithmetic INSIIUCLIONSc.cocuiriiriiriiriiiiieieientesterte ettt 102
7.1.3 Logic Operation INStIrUCHIONSc.ceruieriieriieiiniientieneesie et 104
7.1.4 Shift INSHUCTIONS -....eeeietietieieeie ettt ettt s esae e e e eas 105
7.1.5 Branch INStrUCtIONScccueiiiiiiiieiieit et 106
7.1.6 System Control INStrUCHIONSccovieverierierierieeieeteeeesee e e sre e saeseesaeesseenseees 107
7.1.7 Floating Point Instructions (SH-3E Only)........cccoevvvrieniiiiiiieniereee e 110
7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)cccceeuvennenns 111
7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only).......ccccccueeueene 111
7.2 Instruction Set in Alphabetical Order...........cccoooiiiiiiiiieiieeeeeeeee e 113
7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)......cccceoeeiiniiiiinieiieieceeee 125
7.3.1 Double Data Transfer Instructions (X Memory Data)c.ccccoevverveniiecinnennnnns 126
7.3.2 Double Data Transfer Instructions (Y Memory Data)ccccccovvverieniieciinnennnnns 126
7.3.3 Single Data Transfer INStruCtions..........c.cccveeverierieneesieeiesie e e esie e eee e seeens 127
7.4 DSP Operation Instruction Set (SH3-DSP Only).......ccccoeiiiiiiiiiiiiieeeeeeeee e 129
7.4.1 ALU Arithmetic Operation INStruCtionscceecvereerieneeneene e 132
7.4.2 ALU Logical Operation INStruCtionscecueeeeruieneeneniieiie e 136
7.4.3 Fixed Decimal Point Multiplication InStructions............cceevevveeceerieneerienrennnns 136

Rev. 4.00 May 15, 2006 page xi of xviii

RENESAS

7.4.4
7.4.5
7.4.6

Shift Operation INStIUCIONSevvieriiirieeieeierieieecie et seeesee e eeeeenesreenseens
System Control INStUCTIONSc..eeiuiiiiiieiieeieeee e
NOPX and NOPY Instruction Codececeeiieiiniiniiiieniencee e

Section 8 Instruction DESCIIPLIONS...........ccoviviveiriieieieieicee s
8.1 Sample Description (Name): ClassifiCationccceevvierieeeierienieniieie e eeeneese e eeees
8.2 Instruction Description (Listing and Description of Instructions Common

to the SH-3, SH-3E and SH3-DSP)........cooiiiiiieiecie ettt

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10
8.2.11
8.2.12
8.2.13
8.2.14
8.2.15
8.2.16
8.2.17
8.2.18
8.2.19
8.2.20
8.2.21
8.2.22
8.2.23
8.2.24
8.2.25
8.2.26
8.2.27

8.2.28

8.2.29

8.2.30

ADD (Add Binary): Arithmetic InStructionccoeeeveeneenensenieie e
ADDC (Add with Carry): Arithmetic InsStruction............occeeverienienienceneee
ADDYV (Add with V Flag Overflow Check): Arithmetic Instruction...................
AND (AND Logical): Logic Operation Instruction.............ccccecevevereeeeienennenne.
BF (Branch if False): Branch InsStruction............ccocceevieviieciieieeienieseeie e
BF/S (Branch if False with Delay Slot): Branch Instruction.............cccocceneeneene
BRA (Branch): Branch INStructioncccceevvvieeciieiiienieesieeeieecieeeveesvee e
BRAF (Branch Far): Branch InStruction............ccceeevveviieeciieiciieeiie e
BSR (Branch to Subroutine): Branch InsStruction............cccceceevevenenenenceneneene.
BSRF (Branch to Subroutine Far): Branch Instruction..........c.ccocceevevenceiennenne.
BT (Branch if True): Branch InStruction.............cceeveviveciieieeienienienieee e
BT/S (Branch if True with Delay Slot): Branch Instructioncccccoceneennee.
CLRMAC (Clear MAC Register): System Control Instruction...........c.cceeueenee.
CLRS (Clear S Bit): System Control InStructionccocceeveeveeneenenienieneennen.
CLRT (Clear T Bit): System Control InStruction..............cceeeververvenieecreecvennennnn
CMP/cond (Compare Conditionally): Arithmetic Instruction...........cccccoceverenene
DIVOS (Divide Step 0 as Signed): Arithmetic Instruction...........cccceceevvevuercnnenne.
DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction............cccocceveenneene.
DIV1 (Divide Step 1): Arithmetic InStructioncecceeeereereeienenenceeee
DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction.......
DT (Decrement and Test): Arithmetic InStruction...........cocevceveverceienieniencnene.
EXTS (Extend as Signed): Arithmetic InStruction...........cccecevevevceieneniencnenne.
EXTU (Extend as Unsigned): Arithmetic Instruction...........ccccocceveiierceneencene
IJMP (Jump): Branch InStructioncceeeeoieiienienienieeieee e
JSR (Jump to Subroutine): Branch Instructioncccceeveeieiieniineniencee
LDC (Load to Control Register): System Control Instruction

(Privile@ed ONLY) ..oooviieiiiieiieit ettt ettt et enneenaeeeees
LDRE (Load Effective Address to RE Register): System Control Instruction
(SH3-DSP ONLY) .ttt ettt ettt s
LDRS (Load Effective Address to RS Register): System Control Instruction
(SH3-DSP ONLY) .ttt sttt sttt s
LDS (Load to System Register): System Control Instruction............cccceceevuennne.

Rev. 4.00 May 15, 2006 page xii of xviii

RENESAS

8.2.31

8.2.32
8.2.33
8.2.34
8.2.35
8.2.36
8.2.37
8.2.38
8.2.39
8.2.40
8.2.41
8.2.42
8.2.43
8.2.44
8.2.45
8.2.46
8.2.47
8.2.48
8.2.49
8.2.50
8.2.51
8.2.52
8.2.53
8.2.54
8.2.55

8.2.56
8.2.57
8.2.58
8.2.59
8.2.60
8.2.61
8.2.62
8.2.63
8.2.64
8.2.65
8.2.66
8.2.67
8.2.68
8.2.69

LDTLB (Load PTEH/PTEL to TLB): System Control Instruction

(Privile@ed ONLY) ...ooueiieiiiieieee et 204
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction...................... 205
MAC (Multiply and Accumulate): Arithmetic Instructioncceeeeevveeeneene 208
MOV (Move Data): Data Transfer InStructioncccecevevereerierviencvereeneenenn 211
MOV (Move Immediate Data): Data Transfer Instruction...........c.cceceeeveeerennenne. 216
MOV (Move Peripheral Data): Data Transfer Instructionc.ccccevevercnnennn. 219
MOV (Move Structure Data): Data Transfer Instruction............ccceeevvevveerveennnen. 222
MOVA (Move Effective Address): Data Transfer Instruction............ccceeevvennen.. 225
MOVT (Move T Bit): Data Transfer INStructioncccceevveereeenieerieenveennnnn 226
MUL.L (Multiply Long): Arithmetic InStruction..........c..cccovcevenereeienicncncnenne. 227
MULS.W (Multiply as Signed Word): Arithmetic Instructionc.cceccvueneeee. 228
MULU.W (Multiply as Unsigned Word): Arithmetic Instructionc..c....... 229
NEG (Negate): Arithmetic INStruction..........oeeoereereeriiieiencercee e 230
NEGC (Negate with Carry): Arithmetic InStructionccecevveniencniencenenn. 231
NOP (No Operation): System Control InStruction............coeceeveeveriineneeneenene 232
NOT (NOT—Logical Complement): Logic Operation Instruction 233
OR (OR Logical) Logic Operation INStructioncceeevveeeeereeeenreenreeeennennen 234
PREF (Prefetch Data to the Cache)........ccceveerieniieciieiieiecieece e 236
ROTCL (Rotate with Carry Left): Shift Instruction..........ccceeoeeveneenencencene 237
ROTCR (Rotate with Carry Right): Shift Instructionccccceeeevviicinoinennnn 238
ROTL (Rotate Left): Shift INStrUCtIONcccviiviiiiiiecieecie e 239
ROTR (Rotate Right): Shift INStruction.............cccveevirienienieiee e 240
RTE (Return from Exception): System Control Instruction (Privileged Only).... 241
RTS (Return from Subroutine): Branch InsStruction...........ccceeeveverinenceiennenne. 243
SETRC (Set Repeat Count to RC): System Control Instruction

(SH3-DSP ONLY) .ttt ettt sttt 245
SETS (Set S Bit): System Control InStructioncccceeeeveereeneeneiienieneeenne 247
SETT (Set T Bit): System Control InStruction............ccceeeververeeniesciesieneesieenenns 248
SHAD (Shift Arithmetic Dynamically): Shift Instruction...........c.cccceveverenennenn. 249
SHAL (Shift Arithmetic Left): Shift InStruction..........ccocevereneninienieneieneenn 251
SHAR (Shift Arithmetic Right): Shift Instructionc..ccocceveiniiniiiniiee 252
SHLD (Shift Logical Dynamically): Shift Instruction...........c.cccecevienieiennenenn. 253
SHLL (Shift Logical Left): Shift InStructionccooceevirreiiinienieeeeeees 255
SHLLn (Shift Logical Left n Bits): Shift Instruction...........ccccecevevievienencnenenn 256
SHLR (Shift Logical Right): Shift Instruction.............ccccoeverinenenienienieneneenn 258
SHLRn (Shift Logical Right n Bits): Shift Instruction............cccceceeerveeeeienenne. 259
SLEEP (Sleep): System Control Instruction (Privileged Only)ccccceeneeneenne 261
STC (Store Control Register): System Control Instruction (Privileged Only)..... 262
STS (Store System Register): System Control Instruction............eccceceeveeneencnne 267
SUB (Subtract Binary): Arithmetic InStructionccoccvevvveeeirienienieeieeveennnns 272

Rev. 4.00 May 15, 2006 page xiii of xviii

RENESAS

8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction............cceccvevevreververeennrennene 273
8.2.71 SUBYV (Subtract with V Flag Underflow Check): Arithmetic Instruction........... 274
8.2.72 SWAP (Swap Register Halves): Data Transfer Instructioncc.ccccceeceeennenns 276
8.2.73 TAS (Test and Set): Logic Operation Instructionc.ccceceveereenennieneneenienns 278
8.2.74 TRAPA (Trap Always): System Control Instructionccccceevevererciencnennns 279
8.2.75 TST (Test Logical): Logic Operation INStructionccceeevevereerieeneenceennennnns 280
8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction...............ccoecveevrennns 282
8.2.77 XTRCT (Extract): Data Transfer Instructionccceeeeevivieeneeenieecie e 284
8.3 Floating Point Instructions and FPU Related CPU Instructions (SH-3E Only)............... 285
8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction 287
8.3.2 FADD (Floating Point Add): Floating Point Instruction............c.ceeveevervenirennnns 289
8.3.3 FCMP (Floating Point Compare): Floating Point Instruction.............cccceeurennens 292
8.3.4 FDIV (Floating Point Divide): Floating Point Instruction.............c.cceevecverrennnns 296
8.3.5 FLDIO (Floating Point Load Immediate 0): Floating Point Instruction 298
8.3.6 FLDII (Floating Point Load Immediate 1): Floating Point Instruction 299
8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction 300
8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction......... 301
8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction.......... 302
8.3.10 FMOV (Floating Point Move): Floating Point Instructioncceeeeevervrennnns 305
8.3.11 FMUL (Floating Point Multiply): Floating Point Instructioncccceceeeenns 309
8.3.12 FNEG (Floating Point Negate): Floating Point Instruction...........cc.ccecevceenrennns 311
8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction 312
8.3.14 FSTS (Floating Point Store From System Register): Floating Point
INSEIUCTION ..ttt ettt st eb et a et b e 314
8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction............c.ccecvevennnns 315
8.3.16 FTRC (Floating Point Truncate And Convert To Integer):
Floating Point INStruCtioN.cceeiiiiiiiiieiieee et 318
8.3.17 LDS (Load to System Register): FPU Related CPU Instruction.............cccccceuneev. 320
8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction.............. 323
8.4 DSP Data Transfer Instructions (SH3-DSP Only)cccoeeverierieniieiieiieiereeeeie e 326
8.4.1 MOVS (Move Single Data between Memory and DSP Register):
DSP Data Transfer INStructioncoceeeerierienieiieieeesicecee e 333
8.4.2 MOVX (Move between X Memory and DSP Register):
DSP Data Transfer INStructioncoccoeeerienienieiieeieee e 335
8.4.3 MOVY (Move between Y Memory and DSP Register):
DSP Data Transfer INStructionccceouerererereninieieieniene et 336
8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction .. 337
8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction .. 337
8.5 DSP Operation INStrUCIONS.cc.eeuieiieiieeiieetieieeie ettt ettt saeas 338
8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction............cccceeveeceeeenncns 351

Rev. 4.00 May 15, 2006 page xiv of xviii

RENESAS

8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation

INSEIUCHION -ttt ettt 354
8.5.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic
Operation INSTIUCTION .. .couiiiieiieiieie e 357
8.54 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction 359
8.5.5 [ifcc] PAND (Logical AND): DSP Logical Operation Instruction...................... 362
8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction.............cc.ecveevenenns 365
8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction.................. 367
8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction.. 369
8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction............. 372
8.5.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation
INSEIUCTION ..ttt ettt ettt bbbt ettt nbe e 375
8.5.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation
INSEIUCHION -ttt ettt et 379
8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction............. 382
8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction... 384
8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction.............ccceevenenn. 385
8.5.15 [ifcc] POR (Logical OR): DSP Logical Operation Instruction..............ccceveee. 388
8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction...............ccceecvererennns 391
8.5.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift
INSEIUCHION -t ettt ettt ettt et 394
8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction ... 400
8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction 405
8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation
INSEIUCTION ..ottt ettt ettt st eb ettt nbe e 408
8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic
Operation INSTIUCTIONcovueiiieiieiieeieet et 411
8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction........... 413
8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction........ 415
Section 9 ProcesSING STALES..........cocoiveieiieeieiiieieiie e 419
L2 BN v 11 I 30153 18 o) OSSO 419
O.1.1 RS STALC. ...ttt ettt ettt et ettt et aeesaeesae et eneeeaeeeaeenneens 420
9.1.2 Exception Processing Stateccccerieiiriiiiiiienieseeie et 420
9.1.3 Program EXECULION STALC........ceeeverieriieriieieeieeiienieeeeie e seee e esseensesnnesseenseenseens 420
9.1.4 POWET-DOWI STALE ..cotiriiiiiiiiiiiienieeicetc ettt ettt et st eas 420
9.1.5 BUS REICASE StAe....c.coveiiiiriiriieiiciieiietetese sttt sttt 420
9.2 POWET-DOWI SEALEcueiiiiiiiiiitietieit ettt ettt ettt et ea e bt e sb et enteeneesaeeneee 421
0.2.1 SIEEP MOMEC ...ttt s sttt et eeee 421
0.2.2 Standby MOEcoouieiieiieiieeiee et 421
9.2.3 Hardware Standby MOdecccuevieriieiiieiiieieeieetee et 421

Rev. 4.00 May 15, 2006 page xv of xviii

RENESAS

9.2.4 Module Standby FUNCHON.........ccoeviiriieiieiieiecieeeeee e 422

Section 10 Pipeline OPerationcocooieieieirieieieieieieie e 423
10.1 Basic Configuration of Pipelines.cccceiouiiiiiienieiieieiieeei e 423
10.1.1 Five-Stage PIPeliNecccvevuieiieieeieiieieeie ettt ettt esb e seae s nees 423
10.1.2 Slot and Pipeling FIOWcc.cecuveiiiiiiieiieieee ettt 424
10.1.3 Number of Cycles Required for Execution of One SIot.........c.ccocevceevenienencnnene. 425
10.1.4 Number of Instruction Execution Cycles........coooeiieriiniiniinieiiiieeieeeceeeee 426
L 1031 113 113) DO SR SSRRRRRSR 427
10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)............... 427
10.2.2 Effects of Memory Load Instructions on Pipelines.........c..ccccoveverenenieniencnenne. 431
10.2.3 Contention due to SR Update InStructions............cceevverueerieeceeeieeniienieerieeiennenenes 432
10.2.4 Multiplier Access CONLENTIONeevrrierireriieiieieeeeetereeieereeeeeaesreesseeseensesenes 432
10.2.5 FPU Contention (SH-3E Only)cccciiiiiiiiiiiieieeee e 433
10.2.6 Contention between DSP Data Operation Instructions and Store Instructions
(SH3-DSP ONLY) 1.ttt ettt ettt se et eneene st enseeens 435
10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only).................. 436
10.3 Programming GUIAEIINEScceecviriiiiieiieiiereesie ettt teebe e eeaeseaesseesseeseenseenns 437
10.3.1 Correspondence between Contention and Instructionsccoeceeeververvennenne. 437
10.3.2 Increasing Instruction Execution Speed..........ccooceiiiiiiiiiiiiiiiinececeeeee, 440
10.3.3 NUMDBET OFf CYCIES ..ottt 440
10.4 Operation of Instruction Pipelines...........cccoiiiiiiiiiniiiiiieeeeee e 441
10.4.1 Data Transfer INStrUCHIONS.c..coereriririiieiereserie ettt 458
10.4.2 Arithmetic INStIUCTIONSooueruieiiriiiiriinieeieet ettt 463
10.4.3 Logic Operation INStIUCHIONSccvveevieiiieieeieniesiienieeie e eereeeeseenseesseensesnsesenes 469
10.4.4 Shift INStIUCTIONS ...c.veitietieitee ettt ettt et sbe e e 474
10.4.5 Branch INStrUCHIONSeeueiiiiiieniieiieie ettt ettt 476
10.4.6 System Control INStrUCTIONScecueeitieiieiieieriieiiete e 481
10.4.7 EXCEPLION PrOCESSINGeivviiiieiieiieiieiieeiieeitesieeieeieetesreseeesaeesseesseensesssessaenseensens 496
10.4.8 Pipeline for FPU Instructions (SH-3E Only)cccccoeviivieiieiieiieieieeee e 500
10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)cccoevvveviievienienieieeieenenenn 502
10.4.10 DSP Operation Instructions (SH3-DSP Only)ccooceeiieiiiiiiiieeeeeeeee, 508
Appendix A InStruction Codecooiiiiirieieieieeee s 515
A.1 Instruction Set by Addressing MOde..........c.oecvirierienieiieieeie et 515
A LT NO OPEIANG.....ciiiiiieiieiieiieie et ete st et e e testeseesseesseesteesseessesssessaesseenseensesnsennns 516
A.1.2 Direct Register AAAIeSSINgGc.cccveiierierierieeieeieeiestee et eeeeresaesaesseesseeseenns 517
A.1.3 Indirect Register AddresSing........ccoceeruieiirienienieieee e 523
A.1.4 Post-Increment Indirect Register Addressingocceeeeveereeneenieieneeieeeeees 524
A.1.5 Pre-Decrement Indirect Register Addressing..........cccceeveeeeiriinieniencnieeieneneen 526
A.1.6 Indirect Register Addressing with Displacement.............cccceevveverviercieneeneennnn, 527

Rev. 4.00 May 15, 2006 page xvi of xviii

RENESAS

A.1.7 Indirect Indexed Register Addressing.........cceeeververeenieniieniieieeiesie e see e 528
A.1.8 Indirect GBR Addressing with Displacement.............coccoeciniiniiininiinninee 528
A.1.9 Indirect Indexed GBR Addressing.........cccecueruienienienieiieiceieeeeeiceee e 529
A.1.10 PC Relative Addressing with Displacementc.ccocceeiiiiininieniencceeeee, 529
A.1.11 PC Relative AdAIessingc.eecveiierierienierieeeeeteeeesieesteeteeseesessaessaesseesseenseenns 529
AT 12 TMMEAIALE ...ttt sttt 530
A.2 Instruction Sets by Instruction FOrmat...........ccecveeiirieiiienienieie e 532
A2.1 O FOIMAt....ciiiiiiiiiieec ettt ettt sttt s 533
A2.2 M FOIMAL ...ttt ettt ettt 534
A23 M EFOIMAL ... ettt 538
A24 MM FOIMAL ..ottt st 541
A2.5 M FOIMAL...c.iiiiiiiiiiirietteee ettt 545
A2.6 NAA FOIMAL ..ottt sttt st st et 545
A2.7 M FOIMAL ..ottt 545
A28 A FOIMAL.....iiiiiiiiiiee ettt ettt et 546
A2.9 A12 FOIMAL....iuiiiieeieiieiee ettt sttt eae et e e sseebeeseeneeneenean 547
A2.10 A8 FOIMAL..c..iitiiiiiiiiiiiieiereet ettt ettt st 547
A2 1T TFOIMAL.c..etiiiiiiiei ettt et 547
A2.12 N FOIMAL..c.iiiiiiiciee ettt 548
A3 Operation Code MAPcoiuiiiiiiieeee ettt sttt et 549
Appendix B Pipeline Operation and Contentioncccooevoeeirioricnieinieeieinnns 555

Rev. 4.00 May 15, 2006 page xvii of xviii

RENESAS

Rev. 4.00 May 15, 2006 page xviii of xviii

RENESAS

Section 1 Features

Section 1 Features

1.1 SH-3 CPU Features

The SH-3/SH-3E/SH3-DSP has RISC-type instruction sets. Basic instructions are executed in one
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-3/SH-
3E/SH3-DSP CPU features.

Table 1.1 SH-3/SH-3E/SH3-DSP CPU Features

Feature Description

Architecture * Renesas Technology original architecture
e 32-bit internal data bus

General-register machine « Sixteen 32-bit general registers (eight banked registers)
« Five 32-bit control registers
¢ Four 32-bit system registers (SH-3)
¢ Six 32-bit system registers (SH-3E)

Instruction set ¢ Instruction length: 16-bit fixed length for improved code efficiency

¢ Load-store architecture (basic arithmetic and logic operations are
executed between registers)

« Delayed branch system used for reduced pipeline disruption

¢ Instruction set optimized for C language

Instruction execution time < One instruction/cycle for basic instructions

Address space ¢ Architecture makes 4 Gbytes available

On-chip multiplier e Multiplication operations (32 bits x 32 bits - 64 bits) executed in 2
to 5 cycles, and multiplication/accumulation operations (32 bits x
32 bits + 64 bits — 64 bits) executed in 2 to 5 cycles

Pipeline ¢ Five-stage pipeline

Processing states ¢ Reset state
* Exception processing state
* Program execution state
e Power-down state

¢ Bus release state

Rev. 4.00 May 15, 2006 page 1 of 558
REJ09B0317-0400
RENESAS

Section 1 Features

Feature Description

Power-down states e Sleep mode
¢ Standby mode
« Hardware standby mode

FPU (SH-3E only) ¢ Single-precision floating point format
¢ Subset of IEEE754 standard data types

¢ Invalid calculation exception and divide-by-zero exception (in
compliance with IEEE754 standard)

¢ Rounding to zero (in compliance with IEEE754 standard)
¢ General purpose register file, 16 32-bit floating point registers

¢ Execution pitch for basic instructions: 1 cycle/latency or 2 cycles
(FADD, FSUB, FMUL)

¢ FMAC (floating point multiply accumulate)
Execution pitch: 1 cycle/latency or 2 cycles

e Support for FDIV and FSQRT

e Support for FLDIO and FLDI1 (load constant 0/1)

1.2 SH3-DSP Features

The SH3 CPU only has 16-bit instructions. The SH3-DSP basically has the same 16-bit
instructions, but it also has additional 32-bit DSP instructions that it uses for parallel processing of
DSP type instructions. The SH3 CPU use a standard Neumann architecture, but the SH3-DSP has
the DSP data paths of the expanded Harvard architecture. Table 1.2 lists the added features of
SH3-DSP.

Rev. 4.00 May 15, 2006 page 2 of 558
REJ09B0317-0400
RENESAS

Section 1 Features

Table 1.2 Features of SH3-DSP Series Microprocessor CPUs
Feature Description
DSP unit e Multiplier
¢ Arithmetic logic unit (ALU)
« Barrel shifter
e DSP registers
¢ MSB detection
Multiplier ¢ 16 bits x 16 bits - 32 bits (fixed decimal point)

1 cycle multiplier

DSP registers

Two 40-bit data registers

Six 32-bit data registers

Modulo register (MOD, 32 bits) added to control registers
Repeat counter (RC) added to status registers (SR)

Repeat start register (RS, 32-bit) and repeat end register (RE, 32-
bit) added to control registers

DSP data bus

Expanded Harvard architecture
Simultaneous access of two data bus and one instruction bus

On-chip memory

16-kbyte RAM

Parallel processing

Maximum of four parallel processes (ALU operation, multiplication,
and two loads or stores)

Address operator

Two address operators

Address operations for accessing two memories

DSP data addressing
modes

Increment decrement and index

Increment decrement and index can have modulo addressing or
not

Repeat control

Zero-overhead repeat control (loop)

Instruction set

16 or 32 bits
O 16 bits (for load or store only)
O 32 bits (including for ALU operations and multiplication)

SuperH microprocessor instructions added for accessing DSP
registers.

Pipeline

Five-stage pipeline
Fifth stage is the DSP stage

Rev. 4.00 May 15, 2006 page 3 of 558
REJ09B0317-0400
RENESAS

Section 1 Features

Rev. 4.00 May 15, 2006 page 4 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

Section 2 Programming Model

2.1 Organization of Registers

2.1.1 Privileged Mode and Banks

Processing Modes: The SH-3/SH-3E/SH3-DSP has two operating modes: user mode and
privileged mode. The SH-3/SH-3E/SH3-DSP operates in user mode under normal conditions and
enters privileged mode in response to an exception or interrupt. There are three types of registers:
general, system, and control. All of these registers are 32 bits. Which registers can be accessed
through software depends on the processing mode.

General-Purpose Registers: There are 16 general-purpose registers, numbered RO through R15.
General-purpose registers RO to R7 are banked registers that are switched by the processor mode.

In privileged mode, the register bank (RB) bit in the status register (SR) defines which banked
registers can be accessed as general-purpose registers and which cannot. Inaccessible registers can
be accessed through the load control register (LDC) and store control register (STC) instructions.

When the RB bit is one (BANKI is selected), BANK1 general-purpose registers RO BANK1
through R7 BANKI1 and non-banked general-purpose registers R8 through R15 (a total of 16
registers) can be accessed as general-purpose registers RO through R15 and BANKO general-
purpose registers RO BANKO through R7 BANKO (eight registers) are accessed by the LDC and
STC instructions. When the RB bit is a zero (BANKO is selected), BANKO general-purpose
registers RO BANKO through R7 BANKO and nonbanked general-purpose registers R8 through
R15 (16 registers) can be accessed as general-purpose registers RO through R15 and BANK1
general-purpose registers RO BANK 1 through R7 BANKI (eight registers) are accessed by the
LDC and STC instructions.

In user mode, BANKO general-purpose registers RO BANKO through R7 BANKO and nonbanked
general-purpose registers R8 through R15 can be accessed as general-purpose registers RO through
R15 (a total of 16 registers) and BANK1 general-purpose registers RO BANK1 through

R7 BANKI (eight registers) cannot be accessed.

When the DSP extended features of the SH3-DSP are enabled, DSP instructions use X and Y data
memory and L bus data memory (single data) addressing for eight of the 16 general-purpose
registers.

To access X memory, R4 and R5 are used as the X address register [Ax] and RS is used as the X
index register [Ix]. To access the Y memory, R6 and R7 are used as the Y address register [Ay]

Rev. 4.00 May 15, 2006 page 5 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

and R9 is used as the Y index register [Iy]. To access single data using the L bus, R2, R3, R4, and
RS are used as the single data address register and R8 as the single data index register [Is].

DSP type instructions can simultaneously access X and Y memory. There are two groups of
address pointers for specifying the X and Y data memory addresses.

Control Registers: The control registers include registers that can be accessed in either mode (the
global base register (GBR) and status register (SR)) and registers that can only be accessed in
privileged mode (the saved status register (SSR), saved program counter (SPC), and vector base
register (VBR)). Some bits in the status register (for example, the RB bit) can only be accessed in
privileged mode.

System Registers: There are four system registers that can be accessed in either processing mode:

* Multiply and accumulate registers
0 Multiply and accumulate high (MACH)
0 Multiply and accumulate low (MACL)
* Procedure register (PR)
* Program counter (PC)

The register configurations are shown in figure 2.1 by processing mode. Switch between user and
privileged modes using the processing operation mode bit in the status register.

Floating Point Registers and System Registers Used by the FPU (SH-3E Only): There are 16
floating point registers: FRO to FR15. These are used as source and destination registers for single-
precision floating point operations.

The system registers used by the FPU are the floating point communication register (FPUL) and
the floating point status/control register (FPSCR). These are used for communication between the
FPU and CPU as well as exception handling settings.

The register configurations for the different processing modes are illustrated in Figure 2.1 and
Figure 2.2. Refer to 4. Floating Point Unit.

Rev. 4.00 May 15, 2006 page 6 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

Notes: 1.

31

RO_BANKOQ*1*2

R1_BANKO0*2

R2_BANKO0*?

R3_BANKO0*2

R4_BANKO*2

R5_BANK0*2

R6_BANKO*2

R7_BANKO0*2

R8

R9

R10

R11

R12

R13

R14

R15

31

FRO*3

FR1*3

FR2*3

FR15"3

SR

FPSCR*3

GBR

MACH

MACL

FPUL*3

PR

PC

Register RO is used as an index register in the indexed register-indirect addressing
mode and indexed GBR-indirect addressing mode. There are some instructions for
which only RO can be used as the source or destination register.

RO to R7 are banked registers, and BANKO is used in the user mode.

These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FRO to FR15, FPSCR, and FPUL.

Figure 2.1 User Mode Programming Model

Rev. 4.00 May 15, 2006 page 7 of 558

RENESAS

REJ09B0317-0400

Section 2 Programming Model

Notes: 1.

2.

31 0 31 0
RO_BANK1*1*2 RO_BANK(Q*1*2
R1_BANK1*2 R1_BANKO0*2
R2_BANK1*2 R2_BANKO0*2
R3_BANK1*2 R3_BANKO0*2
R4_BANK1*2 R4_BANKO0*2
R5_BANK1*2 R5_BANKO0*2
R6_BANK1*2 R6_BANKO0*2
R7_BANK1*2 R7_BANKO0*2
R8 R8
R9 R9
R10 R10
R11 R11
R12 R12
R13 R13
R14 R14
R15 R15
FRO*4 FRO*4
FR1*4 FR1*4
FR2*4 FR2*4
FR15*4 FR15
31 0 31 0
SR SR
SSR SSR
FPSCR*4 FPSCR*4
GBR GBR
MACH MACH
MACL MACL
FPUL*4 FPUL*4
PR PR
VBR VBR
[PC | [PC |
[SPC | [SPC |
RO_BANK(Q*1*3 RO_BANK1*1*3
R1_BANKO*3 R1 _BANK1*3
R2_BANKO0*3 R2_BANK1*3
R3_BANKO0*3 R3_BANK1*3
R4_BANKO0*3 R4_BANK1*3
R5_BANKO0*3 R5_BANK1*3
R6_BANKO0*3 R6_BANK1*3
R7_BANKO0*3 R7_BANK1*3
(b) User Mode Programming Model (c) User Mode Programming Model
(RB=1) (RB=0)

Register RO is used as an index register in the indexed register-indirect addressing mode and
indexed GBR-indirect addressing mode.
RO to R7 are banked registers. In privileged mode, the RB bit of register SR determines which
bank is accessed:

BANKO if the RB bit is set to 0

BANK1 if the RB bit is set to 1.

. These banks are accessed by the LDC and STC instructions only. the RB bit of register SR

determines which bank is accessed:
BANKO if the RB bit is set to 0
BANK1 if the RB bit is set to 1.

. These registers only exist on the SH-3E. They are used for floating point operations.

Refer to 4, Floating Point Unit, for details on FRO to FR15, FPSCR, and FPUL.

Figure 2.2 Structure of Registers in Privileged Mode

Rev. 4.00 May 15, 2006 page 8 of 558
REJ09B0317-0400

RENESAS

Section 2 Programming Model

DSP Registers and Registers Used by the DSP (SH3-DSP Only)
The DSP unit has nine DSP registers, divided into eight data registers and one control register.

The DSP data registers include two 40-bit registers (A0 and A1) and six 32-bit registers (M0, M1,
X0, X1, Y0, and Y1). The Al and A0 registers each has eight guard bits, AOG and A1G.

The DSP data registers are used in transferring and processing DSP data as the operand for the
DSP instruction. There are three types of instructions that access the DSP data registers: DSP data
processing, X data processing, and Y data processing.

The 32-bit DSP status register (DSR) is the control register, which indicates the results of
operations. The DSR register has bits to display the results of the operation, which include a
signed greater than bit (GT), a zero value bit (Z), a negative value bit (N), an overflow bit (V), a
DSP condition bit (DC), and condition select bits, which control the DC bit settings (CS).

The DC bit is one of the status flags; it is very similar to the SuperH microcomputer CPU core’s
T bit. In the case of conditional DSP type instructions, the execution of DSP data processing is
controlled in accordance with the DC bit. This control is related to DSP unit execution only, and
only the DSP registers are updated. It is not related to the execution instructions of the SuperH
microprocessor’s CPU core, such as address calculation and load/store instructions. The control
bits CS (bits 0 to 2) specify the condition that the DC bits set.

DSP instructions include both unconditional DSP instructions and conditioned DSP instructions.
Data processing of unconditional DSP instructions updates the condition bits and DC bits, except
for the PMULS, PWAD, PWSB, MOVX, MOVY, and MOVS instructions. Conditional DSP type
instructions are executed in accordance with the status of the DC bit. DSR registers are not
updated, regardless of whether these instructions are executed or not.

Figure 2.1 shows the DSP registers. Table 2.1 lists the DSR register bit functions.

Rev. 4.00 May 15, 2006 page 9 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

39 32 31 0
AOG A0 DSP data registers
Al1G Al

MO

M1

X0

X1

YO

Y1

31 87654 3210
———————— IGTI ZIN| V| CS[2:0] IDC| DSP status register (DSR)

Figure 2.3 Organization of the DSP Registers

Table 2.1 DSR Register Bits

Bits Name Function

31-8 Reserved 0: Always reads 0. Always write 0.

7 Signed greater than bit Indicates whether the operation result is positive (and nonzero)
(GT) or whether operand 1 is larger than operand 2.

1: Operation result is positive or operand 1 is larger.

6 Zero value bit (Z) Indicates whether the operation result is zero or whether of
operands 1 and 2 are the same.

1: Operation result is zero or operands 1 and 2 are the same.

5 Negative value bit (N) Indicates whether the operation result is negative or whether
operand 1 is smaller than operand 2.

1: Operation result is negative or operand 1 is smaller.

4 Overflow bit (V) Indicates that the operation result overflowed.

1: Operation result overflowed.

31 Condition select bits Specifies the mode for selecting the status of the operation
(CS) result set in the DC bit. Do not specify 110 or 111.

000: Carry/borrow mode

001: Negative value mode

010: Zero value mode

011: Overflow mode

100: Signed greater than mode

101: Signed equal or greater than mode

Rev. 4.00 May 15, 2006 page 10 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

Bits Name Function
0 DSP condition bit (DC) Sets the operation result status in the mode specified by the
CS bits.

0: Specified mode status not achieved
1: Specified mode status achieved.

CPU core instructions use the DSR register as a system register. Data transfer to the DSR register
include the following load store instructions:

STS DSR, Rm
STS.L DSR, @Rn;
LDS Rn, DSR;
LDS. L @+, DSR

CPU core instructions also use the A0, Al, X0, X1, Y0, and Y1 registers as system registers.
There are three DSP control registers: the repeat start (RS) register, the repeat end (RE) register,
and the modulo (MOD) register.

The RS and RE registers are used to control program repetition (loops). The number of iterations
is specified in the SR register’s repeat counter (RC), the repeat start address is specified in the RS
register, and the repeat end address is specified in the RE register. The address values stored in the
RS and RE registers are not always the same as the physical starting address and ending address of
the repeat.

The MOD register uses modulo addressing to buffer the repeat data. Modulo addressing is
specified by DMX or DMY in the SR register, the modulo end address (ME) is specified in the top
16 bits of the MOD register, and the modulo start address (MS) is specified in the bottom 16 bits.
The DMX and DMY bits cannot simultaneously specify modulo addressing. Modulo addressing
can be used for X and Y data transfers (MOVX and MOVY). It cannot be used in single data
transfers (MOVYS).

Figure 2.5 shows the control registers.

2.2 General-Purpose Registers

Figure 2.4 shows the structure of the general-purpose registers.

Rev. 4.00 May 15, 2006 page 11 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

31

0

Ro*l *2

R1*2

R2*2 [As]*4

R3"2 [As]™4

R4*2 [As, Ax]*4

R5*2 [As, Ax]4

R6"2 [Ay]"4

R7*2[Ay]™4

R8 [Ix, Is]"4

RO [ly]"

R10

R11

R12

R13

R14

R15

31

FRO*3

FR1*3

FR2*3

FR3*3

FR4"3

FR5*3

FR6*3

FR7*3

FR8*3

FRO*3

FR10*3

FR11*3

FR12*3

FR13*3

FR14*3

FR15*3

General-purpose registers
Undefined after reset

Floating point data register

The FMAC instruction uses FRO to set the multipli-
cation value.

Notes: 1. RO functions as an index register in the
indexed register-indirect addressing mode
and indexed GBR-indirect addressing mode.
In some instructions, only RO can be used
as the source or destination register.

2. RO to R7 are banked registers. In privileged
mode, the RB bit of register SR determines
which banks (RO_BANKO to R7_BANKO or
RO_BANK1 to R7_BANK1) are accessed as
general-purpose registers.

3. These registers only exist on the SH-3E.
They are used for floating point operations.
Refer to 4. Floating Point Unit for details on
FRO to FR15.

4. When the DSP instruction extended features
of the SH3-DSP are enabled, DSP
instructions use these registers as memory
address registers and index registers.

Figure 2.4 Structure of the General-Purpose Registers

Rev. 4.00 May 15, 2006 page 12 of 558
REJ09B0317-0400

RENESAS

Section 2 Programming Model

The symbols R2-R9 are used by the assembler. To change a name to something that indicates the
role of the register for DSP instructions, use an alias. The assembler writes as follows:

Ix: .REG (R8)

The name Ix becomes the alias R8. Aliases are also assigned as follows:

Ax0:
Ax1:

Ix:

AyO0:
Ayl:

Iy:

AsO:
Asl:
As2:
As3:

Is:

2.3

.REG
.REG
.REG
.REG
.REG
.REG
.REG
.REG
.REG
.REG
.REG

(R4)

(R5)

(R8)

(R6)

(R7)

(R9)

(R4); defined when an alias is needed for a single data transfer.
(R5); defined when an alias is needed for a single data transfer.
(R2); defined when an alias is needed for a single data transfer.
(R3); defined when an alias is needed for a single data transfer.
(R8); defined when an alias is needed for a single data transfer.

Control Registers

Figure 2.5 shows the organization of the control registers.

Rev. 4.00 May 15, 2006 page 13 of 558
REJ09B0317-0400
RENESAS

Section 2 Programming Model

MD:

RB:

BL:

DSP bit:

M and Q bits:
RC:

DMY:

DMX:

13-10:

S bit:
RF1, RFO:

T bit:

0 bits:

Notes:

31 0 Saved Status Register (SSR)
| SSR | Stores current SR value at time of exception to indicate processor status
in the return to instruction stream from exception handler. Undefined after reset.

31 0 Saved Program Counter (SPC)
| SPC | Stores current PC value at time of exception to indicate return address at
completion of exception processing. Undefined after reset.

31 0 Global Base Register (GBR)
| GBR | Stores the base address of the GBR-indirect addressing mode.
The GBR-indirect addressing mode is used to transfer data to the register areas
of the resident peripheral modules, and for logic operations. The GBR can be
accessed in user mode. Undefined after reset.

31 0 Vector Base Register (VBR)
| VBR Stores the base address of the exception processing vector area. Initialized
to H'00000000 after reset.
31 0
[RS | Repeat Start Register (RS)
31 0
[RE | Repeat End Register (RE)
31 16 15 0
[ME | MS | Modulo Register (MOD)

ME: Modulo End Address
MS: Modulo Start Address

31 30 29 28 27

615 13 12 11 10 9
[o|wmp|rele] re* | o—o]os*

87
DMY* [DMX* M|Q| 13121110 |RFl*

10
| | Status
S|T register (SR)

RFO*

Processor operation mode bit: Indicates the processor operation mode as follows:

1 = Privileged mode; 0 = User mode. Becomes 1 when an exception or interrupt occurs. Initialized to 1 reset.

Register bank bit: Defines the general-purpose register used as bank in privileged mode. A logic 1 designates
RO_BANK1-R7_BANK1 and R8-R15 are accessed as general—purpose registers, and RO_BANKO0-R7_BANKO are only
accessed by LDC and STC instructions; a logic zero designates RO_BANKO0-R7_BANKO and R8-R15 are accessed as
general-purpose registers, and RO_BANK1-R7_BANK1 are only accessed by LDC and STC instructions. Becomes 1
when an exception or interrupt occurs. Initialized to 1 reset.

Block bit: Masks exceptions and interrupts when 1. For details, see section 5, Exception Processing. When 0, accepts
exceptions and interrupts. Becomes 1 when an exception or interrupt occurs. Initialized to 1 at reset.

DSP operation mode. DSP instructions are enabled when set to 1.

Used by the DIVOS/DIVOU and DIV1 instructions.

Repeat counter. Specifies the number of repeats for repeat (loop) control (2 to 4,095).

Modulo addressing specification for pointer Y. 1: Modulo addressing mode enabled for Y memory address pointer and
Ay (R6 and R7).

Modulo addressing specification for pointer X. 1: Modulo addressing mode enabled for memory address pointer and Ax
(R4 and R5).

Interrupt mask bits: A 4-bit field indicating the interrupt request mask level. The level of interrupt acceptance does not
change when an interrupt occurs. Initialized to B'1111 at reset.

Used by the MAC instruction.

Repeat flags. Used for zero-overhead repeat (loop) control.

00: 1-step repeat

01: 2-step repeat

11: 3-step repeat

10: 4-step (or more) repeat

The MOVT, CMP/cond, TAS, TST, BT, BF, SETT, CLRT, and DT instructions use the T bit to indicate true (logic one) or
false (logic zero). The ADDV/ADDC, SUBV/SUBC, DIVOU/DIVOS, DIV1, NEGC, SHAR/SHAL, SHLR/SHRL,
ROTA/ROTL, and ROTCR/ROTCL instructions also use the T bit to indicate a carry, borrow,

overflow or underflow.

Always read as 0, and should always be written as 0.

Only the M, Q, S, and T can be set or cleared by special instructions from user mode.
Undefined after reset. All other bits are read or written from privileged mode.
* 0 for versions other than the SH3-DSP.

Figure 2.5 Control Registers Configuration

Rev. 4.00 May 15, 2006 page 14 of 558
REJ09B0317-0400

RENESAS

Section 2 Programming Model

24

System Registers

The system registers are accessed by the LDS and STS instructions.

Figure 2.3 shows the system register configuration.

31

MACH

MACL
31 0
| FPUL* |
31 0
| PR |
31 0
| PC |
31 0
| FPSCR* |

System registers

Multiply and Accumulate High and Low
Registers (MACHY/L)

Store the results of multiply and multiply-and-
accumulate operations. Undefined after reset.

Floating Point Communication Register (FPUL)
Points the communication buffer between
the CPU and the FPU.

Procedure Register (PR)
Stores the return address for existing subroutines.
Undefined after reset.

Program Counter (PC)

Indicates starting address of the current instruction
incremented by four (two instructions). Initialized to
H'A000 0000 after reset.

Floating Point Status/Control Register (FPSCR)
Stores status or controls information for floating
point operations.

Note: * See section 4, Floating Point Unit, for more information on the FPUL and FPSCR.

Figure 2.6 System Register Configuration

Rev. 4.00 May 15, 2006 page 15 of 558
REJ09B0317-0400

RENESAS

Section 2 Programming Model

2.5 Initial Register Value

Table 2.1 shows the register values after a reset.

Table 2.1 Initial Register Values

Register Type Register Initial Value™’
General purpose RO-R15 Undefined
FRO-FR15™ Undefined
Control SR MD bit is 1, RB bit is 1, BL bit is 1, bits I13—10 are
1111 (H'F), bits RC, DMY, and DMX are 0 (SH3-
DSP only), reserved bits are 0, and all others are
undefined
GBR, SSR, SPC Undefined
VBR H'00000000
RS*?, RE*2 Undefined
MOD*? Undefined
System MACH, MACL, PR, Undefined
FPSCR*', FPUL*’
PC H'A0000000
DSP A0, AOG, A1, A1G,
MO, M1, X0, X1, YO,
Y1
DSR H'00000000

Notes: 1. These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FRO to FR15, FPSCR, and FPUL.

2. These registers only exist on the SH-3E.

Rev. 4.00 May 15, 2006 page 16 of 558

REJ09B0317-0400

RENESAS

Section 3 Data Formats

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only
a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
bytes (8 bits), words (16 bits), or longwords (32 bits). Memory operands that do not fill out 32 bits
are sign-extended and stored in a register.

Access word operands from word boundaries (even addresses two bytes apart: 2n addresses) and
longword operands from longword boundaries (even addresses four bytes apart: 4n addresses).
Other accesses cause address errors. Byte operands can be accessed from any address.

Data formats can use either big endian or little endian byte order. Use the external pin (MD5) to
set the endian at power-on reset. When MDS5 is low, the processor operates in big endian; when
MDS5 is high, the processor operates in little endian. Endians cannot be changed dynamically.
Numbers are always assigned to bit positions, from most significant to least significant and from
left to right. For example, in a longword (32 bits), the leftmost bit (31) is the most significant and
the rightmost bit (0) is the least significant.

Figure 2.6 shows the data format in memory. When little endian is used, data written in bytes (8
bits) should be read in bytes. Data written in words (16 bits) should be read in words.

Rev. 4.00 May 15, 2006 page 17 of 558
REJ09B0317-0400
RENESAS

Section 3 Data Formats

A A+1 A+2 A+3 A+11A+10A+9 A+8
31 283 15 7 0 |31 23 15 7 0

7 0|7 0|7 0|7 0| (7 0|7 0|7 0|7 O
Address A ByteO | Bytel|Byte2 | Byte3 Byte3 | Byte2| Bytel|ByteO| Address A+ 8

Address A + 4 15 Word0 0]15 Word1 o 5 Word1 0|15 WordO 0 Address A + 4
AddressA+8 |31 Longword o 31 Longword 0| Address A
Big endian Little endian

Figure 3.2 Data Formats in Memory

33 Data Format for Immediate Data
Immediate data bytes are arranged inside instruction codes.

For the MOV, ADD, and CMP/EQ instructions, immediate data is sign-extended and then
processed as registers and longwords. In contrast, for the TST, AND, OR, and XOR instructions,
immediate data is zero-extended and then processed as longwords. Consequently, if immediate
data is used with the AND instruction, the upper 24 bits of the destination register will always be
cleared.

Word and longword immediate data is not arranged inside instruction codes. Instead, it is stored in
memory table. Memory tables can be accessed using the immediate data transfer instruction
(MOV) in the PC relative addressing mode with displacement.

For specific examples, see 6.1.8 Immediate Data in section 6. Instruction Features.

34 DSP Type Data Formats (SH3-DSP Only)

The SH-DSP uses three different data formats for instructions: the fixed decimal point data format,
the integer data format, and the logical data format.

The DSP type of fixed decimal point data format places a binary decimal point between bits 31
and 30. This data format can have guard bits, no guard bits, or be multiplication input. The valid
bit lengths and values displayed vary for each.

DSP type integer data formats place a binary decimal point between bits 16 and 15. This data
format can have guard bits, no guard bits, or be a shift amount. The valid bit lengths and values
displayed vary for each. The shift amount for arithmetic shift (PSHA) is a seven-bit area between
—64 and +63, although only values between —32 and +32 are valid. The shift amount for logical
shifts is a six bit area, although, in the same fashion, only values between —16 and +16 are valid.

Rev. 4.00 May 15, 2006 page 18 of 558
REJ09B0317-0400
RENESAS

Section 3 Data Formats

The DSP type logical data format has no decimal point. The data format and valid data length vary
with the instruction and DSP register.

Figure 3.3 shows the three DSP data formats and the position of the two binary decimal points, as
well as the SuperH data format (as reference).

DSP fixed decimal

point data
39 32 3130 0
With guard bits |S| | | 2810 +28 — 231
A
3130 0
No guard bits | s | -1to+1-2-31
A
39 31 30 16 15 0
Multiplication input |S | —1to+1-2"15
A
DSP integer data
39 3231 16 15 0
With guard bits |s | | | —223t0 +223 1
Y
31 16 15 0
No guard bits | S | | | —215t0 +2151
A
31 22 16 15 0
Arithmetic shift (PSHA) | s | —32t0+32
A
31 21 16 15 0
Logical shift (PSHL) | Is| | -161t0+16
A
39 31 16 15 0
DSP logical data | | | (16 bits)
31 0
SuperH integer (word) | S| —23119 +231 1
(reference) 4
Legend:
S: Sign bit

A: Binary decimal point
|:|: Unrelated to processing (ignored)

Figure 3.3 DSP Data Formats

Rev. 4.00 May 15, 2006 page 19 of 558
REJ09B0317-0400
RENESAS

Section 3 Data Formats

Rev. 4.00 May 15, 2006 page 20 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

Section 4 Floating Point Unit (SH-3E Only)

4.1 Introduction

The SH-3E has a built-in floating point operations unit (FPU). Figure 4.1 shows the FPU registers.

Floating point registers
31 0

FRO functions as the index register
FRO for FMAC instructions.

FR1
FR2
FR3
FR4
FRS
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

System registers

31 0 Floating Point Communication Register (FPUL)
| EPUL* | Indicates the buffer as the communication register
between the CPU and the FPU.

31 0 Floating Point Status/Control Register (FPSCR)
| FPSCR* | Stores status or control information for floating point
operations.

Note: * See section 4.2, Floating Point Registers and System Registers for FPU, for more
information.

Figure 4.1 Register Set Overview: Floating Point Registers and
System Registers Used by the FPU

Rev. 4.00 May 15, 2006 page 21 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

4.2 Floating Point Registers and System Registers for FPU

4.2.1 Floating Point Register File

The SH-3E provides sixteen 32-bit single-precision floating point registers. Register designators
are always 4-bits. In assembly language, the floating point registers are designated as FRO, FR1,
FR2, etc. FRO functions as the index for FMAC instructions.

4.2.2 Floating Point Communication Register (FPUL)

Information is transferred between the FPU and the CPU through a communication register,
FPUL, which is analogous to the MACL and MACH registers of the integer unit. The SH-3E
provides this communication register because of the differences between integer format and FPU
format. FPUL is a 32-bit system register, accessed on the CPU side by LDS and STS instructions.

4.2.3 Floating Point Status/Control Register (FPSCR)

The SH-3E implements a floating point status and control register, FPSCR, as a system register
accessed through the LDS and STS instructions (figure 4.2). FPSCR is available for modification
by user programs. The FPSCR is part of the process context. It must be saved across context
switches and may need to be saved across procedure calls.

The FPSCR is a 32-bit register that controls FPU rounding, handling of denormalized values, and
captures details about floating point exceptions.

In the SH-3E, only the following modes are supported for these functions.

* Rounding mode: Rounding toward 0.

* Handling of denormalized values: When denormalized values are in the source or destination
operand, they are always treated as 0.

* FPU exceptions: Divide by zero (Z) and invalid (V).

Rev. 4.00 May 15, 2006 page 22 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

31 19 18 17 16 15 14 12 11 10 9 7 6 5 4 210
Cause Enable Flag
0 ----mmmmmeme e 0 1|0|CVICZ|[0O O O|EVIEZ|O O O|FV|FZ|O 0 0|01

CV: Invalid-operation cause bit
1: Invalid-operation exception occurred during execution of the current instruction
0: Invalid-operation exception did not occur

CZ: Divide-by-zero cause bit
1: Divide-by-zero exception occurred during the execution of the current instruction
0: Divide-by-zero exception did not occur

EV: Invalid-operation exception enable bit
1: Enable invalid-operation exception
0: Disable invalid-operation exception and return gNaN as a result

EZ: Divide-by-zero exception enable bit
1: Enable divide-by-zero exception
0: Disable divide-by-zero exception and return correctly signed infinity

FV: Invalid-operation exception flag bit
1: Invalid-operation exception occurred during execution of the current instruction
0: Invalid-operation exception did not occur

FZ: Divide-by-zero exception flag bit
1: Divide-by-zero exception occurred during the execution of the current instruction
0: Divide-by-zero exception did not occur

Note: With the exception of the above bits, all bits are reserved as shown in the figures and
cannot be modified even by LDS instruction.

Figure 4.2 Floating Point Status/Control Register

The bits in the cause field indicate the cause of exception for the executing of the current
instruction. The cause bits are modified by execution of a floating point instruction. These bits are
set to 0 or 1, depending on occurrence or non-occurrence of exception conditions during the
execution of a single instruction.

The bits in the enable field indicate the specific types of exceptions that are enabled to cause an
exception, that is, change of flow to an exception handling procedure. An exception occurs if the
enable bit and the corresponding cause bit are set by the execution of the current instruction.

The bits in the flag field are used to capture the cumulative effect of all exceptions during the
execution of a sequence of instructions. These bits, once set by an instruction, can not be reset by
following instructions. The bits in this field can only be reset by an explicit store operation on
FPSCR.

Rev. 4.00 May 15, 2006 page 23 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

See section 4.4, Floating Point Exception Model, for more information on handling of floating
point exceptions.

4.3 Floating Point Format

4.3.1 Floating Point Format

The SH-3E supports single-precision floating point operations. It also conforms fully to the
IEEE754 standard.

Floating point numbers are composed of three fields:

Sign field: s
Exponent field: e
Mantissa field: f

The exponent is biased. In other words:
e = E + bias

The range of unbiased exponents E is E;;—1 to E.x+1. The two values (E,;,—1 and E,x+1) are
distinguished as follows. E,;;—1 represents zero (sign is both positive and negative) and a
denormalized number while E,,,+1 represents positive and negative infinity and a not-a-number
(NaN). In single-precision operations, the bias value is 127, E ;, is =126, and E,,, is 127.

31 30 23 22 0
s e f

Figure 4.3 Floating Point Format

The value v of the floating point number is determined as follows:

If E== Emaxt1 and f1=0, then v is not a number (NaN) regardless of sign s
If E== Emax*+1 and f==0, then v=(-—1)® (infinity) [positive or negative infinity]
If Emin<=E<= Emax, then v =(—1)°2 (1.f) [normalized number]

If E== Emin—1 and f1=0, then v =(—1)°2™" (0.f) [denormalized number]

If E== Emin—1 and f==0, then v =(—1)° 0 [positive or negative zero]

Rev. 4.00 May 15, 2006 page 24 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

4.3.2 Not a Number (NaN)

In not-a-number (NaN) expressions in single-precision operations, at least one of the bits 220 is
set. Set bit 22 for a signaling NaN (sNaN). When bit 22 is reset, the value is then the quiet NaN
(qNaN).

The following figure shows the bit pattern of the not-a-number (NaN). Bit N in the figure is set for
sNaN and reset for qNaN. An x indicates a don’t-care bit. At least one of bits 22-0 must be set.

In a not-a-number (NaN), the sign bit is a don’t-care bit.

31 30 23 22 0
X 11111111 NXXXXXXXXXXXXXXXXKXXXKXX

N =1: sNaN

N =0: gNaN

Figure 4.4 NaN Bit Pattern
When a not-a-number (sNaN) is entered in the operation that generates the floating point value:
When the EV bit is reset in the FPSCR, the operation result (output) is qNaN.

When the EV bit is set in the FPSCR, an invalid operation exception occurs. In such cases, the
contents of the register at the destination side of the operation do not change.

When gNaN is input to the operation that generates the floating point value and sNaN is not input
to the operation, the output will always be qNaN regardless of how the EV bit is set in the FPSCR.
No exception will occur.

4.3.3 Denormalized Values

Denormalized floating point values are expressed by a biased exponent of 0, a nonzero mantissa,
and a hidden bit of 0. In the SH-3E’s floating point unit, denormalized values (operand source or
operation result) are uniformly flushed with 0 in floating point operations (other than copy) that
generate values.

4.3.4 Other Special Values

Other special values are as stipulated by standard IEEE754. Table 4.1 shows the seven different
types of special values in floating point value expressions.

Rev. 4.00 May 15, 2006 page 25 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

Table 4.1 Special Value Expressions in Single-Precision Stipulated in IEEE754

Value Expression
+0.0 0x00000000
-0.0 0x80000000
Denormalized number See section 4.3.3, Denormalized Values
+INF 0x7F800000
—INF OxFF800000
gNaN (quiet NaN) See section 4.3.2, Not a Number (NaN)
sNaN (signaling NaN) See section 4.3.2, Not a Number (NaN)

4.4 Floating Point Exception Model

4.4.1 Enabled Exception

Invalid-operation and divide-by-zero exceptions are enabled by setting the enable bit for the
relevant exception (the EV or EZ bit) in FPSCR. All exceptions caused by the FPU are mapped as
FPU exception events. The meaning of an individual exception is determined by software by
reading the FPSCR system register and analyzing the information held there.

4.4.2 Disabled Exception

If enable bit EV is not set in FPSCR, the result of an invalid operation will be qNaN (with the
exception of FCMP and FTRC). If enable bit EZ is not set, division by zero will return infinity
with the sign of the current expression (+ or -).

The other floating-point exceptions specified in the IEEE754 standard—inexact, overflow, and
underflow—are not supported by the SH-3E. In these cases, the SH-3E operates as described
below.

* An overflow will produce the number whose absolute value is the largest representable finite
number in the format with the correct sign bit. An underflow will produce a correctly signed
zero. If the result of an operation is inexact, the destination register will hold the inexact
result.

Rev. 4.00 May 15, 2006 page 26 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

4.4.3 Exception Event and Code for FPU

All FPU exceptions are mapped onto the single general exception event at address H'0x120. Loads
and stores of system registers FPUL and FPSCR cause the normal memory management general
exceptions.

4.4.4 Alignment of Floating Point Data in Memory

Single precision floating point data is aligned on modulus-4 boundaries, that is, in the same
fashion as SH-3E long integers.

4.4.5 Arithmetic with Special Operands

All arithmetic with special operands (qNaN, sNaN, +INF, —INF, +0, —0) follows IEEE754 rules.

4.5 Synchronization Issues

Synchronization with CPU: Floating-point and CPU instructions are issued serially in program
order, but may complete out-of-order due to execution cycle differences. A floating point
operation that accesses only FPU resources does not require synchronization with the CPU, and
subsequent CPU operations can complete before the completion of the floating point operation.
Therefore an optimized program can hide the execution cycle of a long-execution-cycle floating
point operation such as Divide. A floating point operation such as Compare that accesses CPU
resources, however, requires synchronization to ensure program order.

Floating Point Instructions Requiring Synchronization: Loads, stores, compares/tests, and
instructions accessing FPUL access CPU resources and therefore require synchronization. Loads
and Stores refer to general registers. Post-increment loads and pre-decrement stores modify
general registers. Compares/tests modify the T bit. Instructions accessing FPUL refer to or modify
FPUL. These references and modifications must be synchronized with the CPU.

Maintaining Program Order on Exceptions: Floating point instructions are never completed
until subsequent CPU instructions are completed. If an FPU exception is detected before
subsequent CPU instructions finish and an FPU exception occurs, subsequent CPU instructions are
canceled.

During a floating point instruction execution, if a subsequent instruction causes an exception, the
floating point instruction is left executing and FPU resources cannot be accessed by other
instructions. The other instructions must await the completion of the floating point operation
before they can access. This ensures program order.

Rev. 4.00 May 15, 2006 page 27 of 558
REJ09B0317-0400
RENESAS

Section 4 Floating Point Unit (SH-3E only)

Rev. 4.00 May 15, 2006 page 28 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Section 5 DSP Operation Functions and Data Transfers
(SH3-DSP Only)

DSP operations and data transfers are listed below:

ALU Fixed Decimal Point Operations: These are fixed decimal point operations with either 40-
bit (with guard bits) or 32-bit (with no guard bits) fixed decimal point data. These include
addition, subtraction, and comparison instructions.

ALU Integer Operations: These are integer arithmetic operations with either 24-bit (with guard
bits) or 16-bit (with no guard bits) integer data. They include increment and decrement
instructions.

ALU Logical Operations: These are logical operations with 16-bit logical data. They include
AND, OR, and exclusive OR.

Fixed Decimal Point Multiplication: This is fixed decimal point multiplication (arithmetic
operation) of the top 16 bits of fixed decimal point data. Condition bits such as the DC bit are not
updated.

Shift Operations: These are arithmetic and logical shift operations. Arithmetic shift operations
are arithmetic shifts of 40 bits (with guard bits) or 32 bits (with no guard bits) of fixed decimal
point data. Logical shift operations are logical operations on 16 bits of logical data. The amount of
the arithmetic shift operation is —32 to +32 (negative for right shifts, positive for left shifts); for
logical shifts, the amount is —16 to +16.

MSB Detection Instruction: This operation finds the amount of the shift to normalize the data. It
finds the position of the MSB bit in either 40-bit (with guard bits) or 32-bit (with no guard bits)
fixed decimal point data as either 24 bits (with guard bits) or 16 bits (with no guard bits) integer
data.

Rounding Operation: Rounds 40-bit fixed decimal point data (with guard bits) to 24 bits or 32-
bit (with no guard bits) fixed decimal point data to 16 bits.

Data Transfers: Data transfers consist of X and Y data transfers, which load or store 16-bit data
to and from X and Y memory, and single data transfers, which load and store 16- or 32-bit data
from all memories. Two X and Y data transfers can be processed in parallel. Condition bits such
as the DC bit are not updated.

The operation instructions include both conditional operation instructions and instructions that are
conditionally executed depending on the DC bit. Condition bits such as the DC bit are not updated

Rev. 4.00 May 15, 2006 page 29 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

by conditional instructions. Their settings vary for arithmetic operations, logical operations,
arithmetic shifts, and logical shifts. or MSB detection instructions and rounding instructions, set
the condition bits like for arithmetic operations.

Arithmetic operations include overflow preventing instructions (saturation operations). When
saturation operation is specified with the S bit in the SR register, the maximum (positive) or
minimum (negative) value is stored when the result of operation overflows.

5.1 ALU Fixed Decimal Point Operations

5.1.1 Function

ALU fixed decimal point operations basically work with a 32-bit unit to which 8 guard bits are
added for a total of 40 bits. When the source operand is a register without guard bits, the register’s
sign bit is extended and copied to the guard bits. When the destination operand is a register
without guard bits, the lower 32 bits of the operation result are stored in the destination register.

ALU fixed decimal point operations are performed between registers. The source and destination
operands are selected independently from the DSP register. When there are guard bits in the
selected register, the operation is also executed on the guard bits. These operations are executed in
the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are updated by the operation result. For conditional instructions, however, condition bits are not
updated even when the specified condition is achieved. For unconditional instructions, the bits are
updated according to the operation result.

The condition reflected in the DC bit is selected with the CS[2:0] bits. The DC bits of the PADDC
and PSUB instructions, however, are updated regardless of the CS bit settings. In the PADDC
instruction, it is updated as a carry flag; in the PSUB instruction, it is updated as a borrow flag.

Figure 5.1 shows the ALU fixed decimal point operation flowchart.

Rev. 4.00 May 15, 2006 page 30 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Guard bits Guard bits
31 0 y 31 0
L | L]
Source 1 Source 2
A 4 A 4
ALU GT[z| N]V][DC]
DSR
Destination
L]
e 0
Guard bits

Figure 5.1 ALU Fixed Decimal Point Operation Flowchart

When the memory read destination operand is the same as the ALU operation source operand and
the data transfer instruction program is written on the same line as the ALU operation, data loaded
from memory in the memory access stage (MA) cannot be used as the source operand of the ALU
operation instruction. When this occurs, the result of the instruction executed first is used as the
source operand of the ALU operation and is updated as the destination operand of the data load
instruction thereafter. Figure 5.2 is a flowchart of the operation.

PADD X0, Y0, AO MOVX.W @ R4+, X0

The result of the previous step is used.

Slot 1 2 3 4 5 6
EX (ad- MA DSP
MOVX IF D dressing) | (MOVX) (nop)
MOVX, EX (ad- MA DSP
ADD IF D dressing) \(MOVX) (ADD)
\/:

Figure 5.2 Sample Processing Flowchart

Rev. 4.00 May 15, 2006 page 31 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.1.2 Instructions and Operands

Table 5.1 shows the types of ALU fixed decimal point arithmetic operations. Table 5.2 shows the
correspondence between the operands and registers.

Table 5.1 Types of ALU Fixed Decimal Point Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination
PADD Addition Sx Sy Dz (Du)
PSUB Subtraction Sx Sy Dz (Du)
PADDC Addition with carry Sx Sy Dz
PSUBC Subtraction with borrow Sx Sy Dz
PCMP Compare Sx Sy —
PCOPY Copy data Sx — Dz

— Sy Dz
PABS Absolute value Sx — Dz

— Sy Dz
PNEG Invert sign Sx — Dz

— Sy Dz
PCLR Zero clear — — Dz

Table 5.2 Correspondence between Operands and Registers for ALU Fixed Decimal Point
Arithmetic Operations

Operand X0 X1 YO0 Y1 MO M1 A0 A1
Sx Yes™’ Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes
Du*? Yes Yes Yes Yes

Notes: 1. Yes: Register can be used with operand.
2. Du: Operand when used in combination with multiplication.

5.1.3 DC Bit

The DC bit is set as follows depending on the specification of the CS0-CS2 bits (condition select
bits) of the DSR register.

Rev. 4.00 May 15, 2006 page 32 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Carry/Borrow Mode: CS2—CS0 = 000: The DC bit indicates whether a carry or borrow has
occurred from the MSB of the operation result. The guard bits have no affect on this. This mode is
the default. Figure 5.3 shows examples when carries and borrows occur.

Example 1: Carry

Guard bits

0000 0000 1111 1111 1111 1111
+) 0000 0000 0000 0000 0000 0001

Example 2: Carry
Guard bits

1111 1111 0111 0000 0000 0000
+) 0011 1111 0001 0000 0000 0000

0000 0001 0000 0000 0000 0000

Position where
carry is detected

Example 3: Borrow
Guard bits

0000 0000 0000 0000 0000 0001
—) 0000 0000 0000 0000 0000 0001

(1)0011 1110 1000 0000 0000 0000

Position where
carry is detected

Example 4: Borrow
Guard bits

0000 0000 0001 0000 0000 0001
—) 0000 0000 0001 0000 0000 0010

0000 0000 0000 0000 0000 0OOOO

Position where
borrow is detected

1111 1111 1111 1111 1111 1111

Position where
borrow is detected

Figure 5.3 Examples of Carries and Borrows

Negative Mode: CS2—-CS0 = 001: In this mode, the DC bit is the same as the MSB of the
operation result. When a result is negative, the DC bit is 1. When the result is positive, the DC bit
is 0. ALU arithmetic operations are always done in 40 bits. The sign bit indicating positive or
negative is thus the MSB included in the guard bits of the operation result rather than the MSB of
the destination operand. Figure 5.4 shows an example of distinguishing negative from positive. In
this mode, the DC bit has the same value as the condition bit N.

Example 1: Negative

Guard bits

1100 0000 0000 0000 0000 0000
+) 0000 0000 0000 0000 0000 0001

Example 2: Positive
Guard bits

0011 0000 0000 0000 0000 0000
+) 0000 0000 1000 0000 0000 0001

1100 0000 0000 0000 0000 0001

L Sign bit

0011 0000 1000 0000 0000 0001

L Sign bit

Figure 5.4 Distinguishing Negative and Positive

Rev. 4.00 May 15, 2006 page 33 of 558
REJ09B0317-0400

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Zero Mode: CS2—CS0 = 010: The DC bit indicates whether the operation result is zero. When it
is, the DC bit is 1. When the operation result is nonzero, the DC bit is 0. In this mode, the DC bit
has the same value as the condition bit Z.

Overflow Mode: CS2—CS0 = 011: The DC bit indicates whether the operation result has caused
an overflow. When the operation result without the guard bits has exceeded the bounds of the
destination register, the DC bit is set to 1. The DC bit considers there to be no guard bits, which
makes it an overflow even when there are guard bits. This means that the DC bit is always set to 1
when large numbers use guard bits. In this mode, the DC bit has the same value as the condition
bit V. Figure 5.5 shows an example of distinguishing overflows.

Example 1: Overflow Example 2: No overflow
Guard bits Guard bits
1111 1121 11221 1111 1111 1111 1111 1121 11221 1111 1111 1111
+) 1111 1111 1000 0000 0000 0000 +) 1111 1111 1000 0000 0000 0001
1111 1111 0111 1111 1111 1111 1111 1111 1000 0000 0000 0000
L Overflow detection range L Overflow detection range

Figure 5.5 Distinguishing Overflows

Signed Greater Than Mode: CS2—CS0 = 100: The DC bit indicates whether the source 1 data
(signed) is greater than the source 2 data (signed) in the result of a comparison instruction PCMP.
For that reason, the PCMP instruction is executed before checking the DC bit in this mode. When
the source 1 data is larger than the source 2 data, the result of the comparison is positive, so this
mode becomes similar to the negative mode. When the source 1 data is larger than the source 2
data and the bounds of the destination operand are exceeded, however, the sign of the result of the
comparison becomes negative. The DC bit is updated. In this mode, the DC bit has the same value
as the condition bit GT. The equation shown below defines the DC bit in this mode. However, VR
becomes a positive value when the result including the guard bit area exceeds the display range of
the destination operand.

DC bit = ~ {(N bit » VR)|Z bit}

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SH core’s CMP/GT instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

Signed Greater Than or Equal to Mode: CS2—-CS0 = 101: The DC bit indicates whether or not
the source 1 data (signed) is greater than or equal to the source 2 data (signed) in the result of the
execution of a comparison instruction PCMP. For that reason, the PCMP instruction is executed

Rev. 4.00 May 15, 2006 page 34 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

before checking the DC bit in this mode. This mode is similar to the Signed Greater Than mode
except for checking if the operands are the same. The equation shown below defines the DC bit in
this mode. However, VR becomes a positive value when the result, including the guard bit area,
exceeds the display range of the destination operand.

DC bit = ~ (N bit A VR)

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SuperH core’s CMP/GE instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

5.1.4 Condition Bits
The condition bits are set as follows:

* The N (negative) bit has the same value as the DC bit when the CS bits specify negative mode.
When the operation result is negative, the N bit is 1. When the operation result is positive, the
N bit is 0.

* The Z (zero) bit has the same value as the DC bit when the CS bits specify zero mode. When
the operation result is zero, the Z bit is 1. When the operation result is nonzero, the Z bit is 0.

* The V (overflow) bit has the same value as the DC bit when the CS bits specify overflow
mode. When the operation result exceeds the bounds of the destination register without the
guard bits, the V bit is 1. Otherwise, the V bit is 0.

» The GT (greater than) bit has the same value as the DC bit when the CS bits specify Signed
Greater Than mode. When the comparison result indicates the source 1 data is greater than the
source 2 data, the GT bit is 1. Otherwise, the GT bit is 0.

5.1.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function is engaged for the
ALU fixed decimal point arithmetic operation executed by the DSP unit. When the operation
result overflows, the maximum (positive) or minimum (negative) value is stored.

5.2 ALU Integer Operations

ALU integer operations are basically 24-bit operations on the top word (the top 16 bits, or bits 16
through 31) and 8 guard bits. In ALU integer operations, the bottom word of the source operand
(the bottom 16 bits, or bits 0—15) is ignored and the bottom word of the destination operand is
cleared with zeros. When the source operand has no guard bits, the sign bit is extended to fill the

Rev. 4.00 May 15, 2006 page 35 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

guard bits. When the destination operand has no guard bits, the top word of the operation result
(not including the guard bits) are stored in the top word of the destination register.

Integer operations are basically the same as ALU fixed decimal point arithmetic operations. There
are only two types of integer operation instructions, increment and decrement, which change the
second operand by +1 or —1. 16 bits of integer data (word data) is loaded to the DSP register and
stored in the top word. The operation is performed using the top word in the DSP register. When
there are guard bits, they are valid as well. These operations are executed in the DSP stage (the last
stage) of the pipeline.

Whenever an ALU integer arithmetic operation is executed, the DSR register’s DC, N, Z, V, and
GT bits are basically updated by the operation result. This is the same as for ALU fixed decimal
point operations.

For conditional instructions, condition bits and flags are not updated even when the specified

condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result. Figure 5.6 shows the ALU integer operation
flowchart.

Guard bits Guard bits
y 31 0 y 3t 0
L | L
Source 1 Source 2
A4 A4
ALU GT|z|N]| vV |DC|
DSR
Destination
Y
L
e 0
Guard bits : Ilgnored
:Clearedto 0

Figure 5.6 ALU Integer Operation Flowchart

Table 5.3 lists the types of ALU integer operations. Table 5.4 shows the correspondence between
the operands and registers.

Rev. 4.00 May 15, 2006 page 36 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Table 5.3 Types of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination
PINC Increment by 1 Sx (+1) Dz

(+1) Sy Dz
PDEC Decrement by 1 Sx =1 Dz

=1) Sy Dz

Table 5.4 Correspondence between Operands and Registers for ALU Integer Operations

Operand X0 X1 YO Y1 Mo M1 A0 A1
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

When the S bit of the SR register is set to 1, the overflow prevention function (saturation
operation) is engaged. The overflow prevention function can be specified for ALU integer
arithmetic operations executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

5.3 ALU Logical Operations

5.3.1 Function

ALU logical operations are performed between registers. The source and destination operands are
selected independently from the DSP register. These operations use only the top word of the
respective operands. The bottom word of the source operand and the guard bits are ignored and the
bottom word of the destination operand and guard bits are cleared with zeros. These operations are
executed in the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. For conditional instructions, condition bits and flags
are not updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result. The DC
bit is updated as specified in the CS bits. Figure 5.7 shows the ALU logical operation flowchart.

Rev. 4.00 May 15, 2006 page 37 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Guard bits Guard bits
l 31 0 l 31 0
| | Source1 | | [Source2
A 4 A 4
ALU GT[z[NV [DC]
DSR
Destination v
£
T 31 0
Guard bits

: Ignored
:Cleared to O

Figure 5.7 ALU Logical Operation Flowchart

5.3.2 Instructions and Operands

Table 5.5 lists the types of ALU logical arithmetic operations. Table 5.6 shows the correspondence
between the operands and registers, which is the same as for ALU fixed decimal point operations.

Table 5.5 Types of ALU Logical Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination

PAND AND Sx Sy Dz

POR OR Sx Sy Dz

PXOR Exclusive OR Sx Sy Dz

Table 5.6 Correspondence between Operands and Registers for ALU Logical Arithmetic
Operations

Operand X0 X1 YO0 Y1 Mo M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

Rev. 4.00 May 15, 2006 page 38 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.3.3 DC Bit
The DC bit is set in logical operations as follows:
Carry/Borrow Mode: CS2—CS0 = 000: The DC bit is always 0.

Negative Mode: CS2—CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2—CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal to Mode: CS2—CS0 = 101: The DC bit is always 0.

5.3.4 Condition Bits
The condition bits are set as follows.

* The N bit is the value of bit 31 of the operation result.

* The Z bit is 1 when the operation result is zero; otherwise, the Z bit is 0.
e The V bit is always 0.

* The GT bit is always 0.

5.4 Fixed Decimal Point Multiplication

Multiplication in the DSP unit is between signed single-length operands. It is processed in one
cycle. When double-length multiplication is needed, use the SuperH RISC engine’s double-length
multiplication.

Basically, the operation result for multiplication is 32 bits. When a register that has guard bits is
specified as the destination operand, it is sign-extended.

In the DSP unit, multiplication is a fixed decimal point arithmetic operation, not an integer
operation. This means the top words of the constant and multiplicand are entered into the MAC
operator. In SuperH RISC engine multiplication, the bottom words of the two operands are entered
into the MAC operator. The operation result thus is different from the SuperH RISC engine. The

Rev. 4.00 May 15, 2006 page 39 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

SuperH RISC engine operation result is matched to the LSB of the destination, while the fixed
decimal point multiplication operation result is matched to the MSB. The LSB of the operation
result in fixed decimal point multiplication is thus always 0.

Figure 5.8 shows a flowchart of fixed decimal point multiplication.

Guard bits Guard bits
l 31 0 l 31 0
L] | [
l A A4
\V
MAC
Destination
A4

[+~—s o]

31

1 0
Guard bhits |:| : Ilgnored

Figure 5.8 Fixed Decimal Point Multiplication Flowchart

Table 5.7 shows the fixed decimal point multiplication instruction. Table 5.8 shows the
correspondence between the operands and registers.

Table 5.7 Fixed Decimal Point Multiplication

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table 5.8 Correspondence between Operands and Registers for Fixed Decimal Point

Multiplication
Operand X0 X1 YO0 Y1 MO M1 A0 A1
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

Rev. 4.00 May 15, 2006 page 40 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

DSP unit fixed decimal point multiplication completes a single-length 16 bit X 16 bit operation in
one cycle. Other multiplication is the same as in the SuperH RISC engines.

Multiplication instructions do not update the DC, N, Z, V, GT, or any condition bit of the DSR
register.

The overflow prevention function is valid for DSP unit multiplication. Specify it by setting the S
bit of the SR register is set to 1. When an overflow or underflow occurs, the operation result value
is the maximum or minimum value respectively. In DSP unit fixed decimal point multiplication,
overflows only occur for H'8000 x H'8000 ((—1.0) x (—1.0)). When the S bit is 0, the operation
result is H'80000000, which means —1.0 rather than the correct answer of +1.0. When the S bit is
1, the overflow prevention function is engaged and the result is H'007FFFFFFF.

5.5 Shift Operations

The amount of shift in shift operations is specified either through a register or using a direct
immediate value. Other source operands and destination operands are registers. There are two
types of shift operations: arithmetic and logical. Table 5.9 shows the operation types. The
correspondence between operands and registers is the same as for ALU fixed decimal point
operations, except for immediate operands. The correspondence is shown in table 5.10.

Table 5.9 Types of Shift Operations

Mnemonic Function Source 1 Source 2 Destination
PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz
PSHL Sx, Sy, Dz Logical shift Sx Sy Dz
PSHA #lmm, Dz Arithmetic shift with Dz Imm1 Dz
immediate data
PSHL #lmm, Dz Logical shift with immediate Dz Imm1 Dz
data

-32<Imm1<+32, -16 < Imm2 < +16

Table 5.10 Correspondence between Operands and Registers for Shift Operations

Operand X0 X1 YO Y1 Mo M1 A0 A1
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

Rev. 4.00 May 15, 2006 page 41 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.5.1 Arithmetic Shift Operations

Function: ALU arithmetic shift operations basically work with a 32-bit unit to which 8 guard bits
are added for a total of 40 bits. ALU fixed decimal point operations are basically performed
between registers. When the source operand has no guard bits, the register’s sign bit is copied to
the guard bits. When the destination operand has no guard bits, the lower 32 bits of the operation
result are stored in the destination register.

In arithmetic shifts, all bits of the source 1 operand and destination operand are valid. The source 2
operand, which specifies the shift amount, is integer data. The source 2 operand is specified as a
register or immediate operand. The valid amount of shift is —32 to +32. Negative values are shifts
to the right; positive values are shifts to the left. Between —64 and +63 can be specified for the
source 2 operand, but only —32 to +32 is valid. When an invalid number is specified, the results
cannot be guaranteed. When an immediate value is specified for the shift amount, the source 1
operand must be the same as the destination operand. The action of the operation is the same as for
fixed decimal point operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever an arithmetic shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. This is the same as for ALU fixed decimal point
operations. For conditional instructions, condition bits are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result.

Figure 5.9 shows the arithmetic shift operation flowchart.

Left shift Right shift
79 0g 31 16 15 0 79 0g 31 16 15 0
. ‘;(T l«—0 [PP —f> \lx
Copy MSB
Shift out 2:\ % (Copy MSB) Shift out
+32 10 -32
_ 79 0g 3l 23221615 0

Shift amount data. | [[Dz] | Update [GT[z [N]V[DC]

(source 2) 6 0 DSR

I:l : Ignored

Figure 5.9 Arithmetic Shift Operation Flowchart

Rev. 4.00 May 15, 2006 page 42 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits:

Carry/Borrow Mode: CS2—-CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

Negative Mode: CS2—CS0 = 001: Set to 1 for a negative operation result and 0 for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—CS0 = 011: The DC bit is set to 1 by an overflow. In this mode, the DC
bit has the same value as bit V.

Signed Greater Than Mode: CS2—CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2—-CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows:

The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow.

The GT bit is always 0.

Overflow Prevention Function (Saturation Operation): When the S bit of the SR register is set
to 1, the overflow prevention function is engaged for the ALU fixed decimal point arithmetic
operation executed by the DSP unit. When the operation result overflows, the maximum (positive)
or minimum (negative) value is stored.

Rev. 4.00 May 15, 2006 page 43 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.5.2 Logical Shift Operations

Function: Logical shift operations use the top words of the source 1 operand and the destination
operand. As in ALU logical operations, the guard bits and bottom word of the operands are
ignored. The source 2 operand, which specifies the shift amount, is integer data. The source 2
operand is specified as a register or immediate operand. The valid amount of shift is —16 to +16.
Negative values are shifts to the right; positive values are shifts to the left. Between —32 and +31
can be specified for the source 2 operand, but only —16 to +16 is valid. When an invalid number is
specified, the results cannot be guaranteed. When an immediate value is specified for the shift
amount, the source 1 operand must be the same as the destination operand. The action of the
operation is the same as for fixed decimal point operations and is executed in the DSP stage (the
last stage) of the pipeline.

Whenever a logical shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. This is the same as for ALU logical operations. For
conditional instructions, condition bits are not updated even when the specified condition is
achieved and the instruction executed. For unconditional instructions, the bits are always updated
according to the operation result.

Figure 5.10 shows the logical shift operation flowchart.

Left shift Right shift
7g Og 31 16 15 0 7g Og 31 16 15 0
I I x| | I |4 I |

¥ X

. 0 0 _

Shift out Shift out
2:\ %
+16 to -16
) 79 Og 31 23221615 0
Shift amount data 7] [Dz | | update [GT] Z[N[V]DC]

(source 2) 5 0

DSR

|:| - Ignored
|:|: Cleared to O

Figure 5.10 Logical Shift Operation Flowchart

Rev. 4.00 May 15, 2006 page 44 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits.

* Carry/borrow mode: CS2—CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

* Negative Mode: CS2—CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

* Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is all zeros; otherwise,
the DC bit is 0. In this mode, the DC bit has the same value as bit Z.

* Overflow Mode: CS2—-CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the
same value as bit V.

» Signed Greater Than Mode: CS2—CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

* Signed Greater Than Or Equal To Mode: CS2—CS0 = 101: The DC bit is always 0.
Condition Bits: The condition bits are set as follows.

» The N bit is the same as the result of the ALU logical operation. It is set to the value of bit 31
of the operation result.

* The Z bit is the same as the result of the ALU logical operation. It is set to 1 when the
operation result is all zeros; otherwise, the Z bit is 0.

* The V bit is always 0.

* The GT bit is always 0.

5.6 The MSB Detection Instruction

5.6.1 Function

The MSB detection instruction (PDMSB: most significant bit detection) finds the amount of shift
for normalizing the data.

The operation result is the same as for ALU integer operations. Basically, the top 16 bits and 8
guard bits are valid for a total 24 bits. When the destination operand is a register that has no guard
bits, it is stored in the top 16 bits of the destination register.

The MSB detection instruction works on all bits of the source operand, but gets its operation result
in integer data. This is because the shift amount for normalization must be integer data for the
arithmetic shift operation. The action of the operation is the same as for fixed decimal point
operations and is executed in the DSP stage (the last stage) of the pipeline.

Rev. 4.00 May 15, 2006 page 45 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Whenever a PDMSB instruction is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. For conditional instructions, condition bits are not
updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result.

Figure 5.11 shows the MSB detection instruction flowchart. Table 5.11 shows the relationship

between source data and destination data.

Guard bits
31 0
L |
Source 1 or 2
Y
Priority encoder —>|GT| Z| N | \ |DC|
DSR
Destination
A 4

L |
R

0
Guard bits I:l :Cleared to 0

Figure 5.11 MSB Detection Flowchart

Rev. 4.00 May 15, 2006 page 46 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Table 5.11 Relationship between Source Data and Destination Data

Source Data

Guard Bits Top Word Bottom Word
79 | 6g | 5g-2g | 1g | 0g | 31 | 30 | 29 | 28 | 274 | 274 | 3 2 1 0
0 0 — 0 0 0 0 0 0 — — 0 0 0 0
0 0 — 0 0 0 0 0 0 — — 0 0 0 1
0 0 — 0 0 0 0 0 0 — — 0 0 1 *
0 0 — 0 0 0 0 0 0 — — 0 1 * *
! ! !

0 0 — 0 0 0 0 0 1 — — * * * *
0 0 — 0 0 0 1 * — — * * * *
! ! !

O 1 J— * * * * * * —_ —_ * * * *
1 0 — * * * * * * — — * * * *
! ! !

1 1 — 1 1 1 1 0 * — — * * * *
1 1 — 1 1 1 1 0 — — * * * *
! ! !

1 1 — 1 1 1 1 1 1 — — 1 0 * *
1 1 — 1 1 1 1 1 1 — — 1 1 0 *
1 1 — 1 1 1 1 1 1 — — 1 1 1 0
1 1 — 1 1 1 1 1 1 — — 1 1 1 1

Rev. 4.00 May 15, 2006 page 47 of 558

RENESAS

REJ09B0317-0400

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Destination Result

Guard Bits Top word
79-0g 31-22 21 20 19 18 17 16 10 Hexadecimal
allo allo 0 1 1 1 1 1 +31
0 1 1 1 1 0 +30
0 1 1 1 0 1 +29
0 1 1 1 0 0 +28
! l !
allo allo 0 0 0 0 1 0 +2
0 0 0 0 0 1 +1
0 0 0 0 0 0 0
all 1 all 1 1 1 1 1 1 1 -1
1 1 1 1 1 0 -2
! ! !
all 1 all 1 1 1 1 0 -8
1 1 1 0 -8
! l !
all 1 all 1 1 1 1 1 1 0 -2
1 1 1 1 1 1 -1
allo allo 0 0 0 0 0 0 0
0 0 0 0 0 1 +1
0 0 0 0 1 0 +2
! ! !
allo allo 0 1 1 1 0 0 +28
0 1 1 1 0 1 +29
0 1 1 1 1 0 +30
0 1 1 1 1 1 +31

Note: Don’t care bits have no effect.

Rev. 4.00 May 15, 2006 page 48 of 558
REJ09B0317-0400

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.6.2 Instructions and Operands

Table 5.12 shows the MSB detection instruction. The correspondence between the operands and
registers is the same as for ALU fixed decimal point operations. It is shown in table 5.13.

Table 5.12 MSB Detection Instruction

Mnemonic Function Source 1 Source 2 Destination
PDMSB MSB detection Sx — Dz
— Sy Dz

Table 5.13 Correspondence between Operands and Registers for MSB Detection

Instructions
Operand) (] X1 YO0 Y1 MO M1 A0 A1
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.6.3 DC Bit
The DC bit is set as follows depending on the mode specified by the CS bits:
Carry/Borrow Mode: CS2—CS0 = 000: The DC bit is always 0.

Mode: CS2—CS0 = 001: Set to 1 for a negative operation result and 0 for a positive operation
result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2—CS0 = 100: Set to 1 for a positive operation result and 0 for a
negative operation result. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2—CS0 = 101: Set to 1 for a positive or zero
operation result and O for a negative operation result.

Rev. 4.00 May 15, 2006 page 49 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.6.4 Condition Bits
The condition bits are set as follows.

* The N bit is the same as the result of the ALU integer operation. It is set to 1 for a negative
operation result and 0 for a positive operation result.

* The Z bit is the same as the result of the ALU integer operation. It is set to 1 when the
operation result is zero; otherwise, the Z bit is 0.

* The V bit is always 0.

* The GT bit is the same as the result of the ALU integer operation. It is set 1 for a positive
operation result and otherwise to 0.

5.7 Rounding

5.71 Operation Function

The DSP unit has a function for rounding 32-bit values to 16-bit values. When the value has guard
bits, 40 bits are rounded to 24 bits. When the rounding instruction is executed, H'0000 8000 is
added to the source operand and the bottom word is then cleared to zeros.

Rounding uses all bits of the source and destination operands. The action of the operation is the
same as for fixed decimal point operations and is executed in the DSP stage (the last stage) of the
pipeline.

The rounding instruction is unconditional. The DSR register’s DC, N, Z, V, and GT bits are thus
always updated according to the operation result.

Figure 5.12 shows the rounding flowchart. Figure 5.13 shows the rounding process definitions.

Rev. 4.00 May 15, 2006 page 50 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Guard bits
v 31 0
[] | | H'00008000
Source 1 or 2 Addition
A 4 A 4
ALU cT[z[N[V [DC]
DSR
Destination
A\ 4
Y3 0
Guard bits
:Cleared to O
Figure 5.12 Rounding Flowchart
Rounding result A
]
|
Analog values
H000002 ~--—1--==--- “—0 9
Lo
Lo
H'000001 ----1 F-- P!
|
Lo
| |
O T + >
| |
0 to Actual value
o
o
o
(o]
N
o
o
o
o
e
T

H'0000018000 ———1~-———
H'0000020000

Figure 5.13 Rounding Process Definitions

Rev. 4.00 May 15, 2006 page 51 of 558
REJ09B0317-0400

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.7.2 Instructions and Operands

Table 5.14 shows the instruction. The correspondence between the operands and registers is the
same as for ALU fixed decimal point operations. It is shown in table 5.15.

Table 5.14 Rounding Instruction

Mnemonic Function Source 1 Source 2 Destination
PRND Rounding Sx — Dz
— Sy Dz

Table 5.15 Correspondence between Operands and Registers for Rounding Instruction

Operand X0 X1 YO Y1 Mo M1 A0 A1
Sx Yes Yes Yes Yes
Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.7.3 DC Bit

The DC bit is updated as follows depending on the mode specified by the CS bits. Condition bits
are updated as for ALU fixed decimal point arithmetic operations.

Carry/Borrow Mode: CS2—CS0 = 000: The DC bit is set to 1 when a carry or borrow from the
MSB of the operation result occurs; otherwise, it is set to 0.

Negative Mode: CS2—CS0 = 001: Set to 1 for a negative operation result and O for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2—-CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2—-CS0 = 011: The DC bit is set to 1 by an overflow; otherwise, it is set to 0.
In this mode, the DC bit has the same value as bit V.

Signed Greater Than Mode: CS2—CS0 = 100: Set to 1 for a positive operation result; otherwise,
it is set to 0. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2—CS0 = 101: Set to 1 for a positive or zero
operation result; otherwise, it is set to 0..

Rev. 4.00 May 15, 2006 page 52 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.7.4 Condition Bits

The condition bits are set as follows. They are updated as for ALU fixed decimal point arithmetic
operations.

* The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

* The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

* The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow; otherwise, the V bit is 0.

» The GT bit is the same as the result of the ALU fixed decimal point arithmetic operation and
the ALU integer operation. It is set 1 for a positive operation result; otherwise, the GT bit is 0.

5.7.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function can be specified for
all rounding processing executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)

DSP instructions may be either conditional or unconditional. Unconditional instructions are
executed without regard to the DSP condition bit (DC bit), but conditional instructions may
reference the DC bit before they are executed. With unconditional instructions, the DSR register’s
DC bit and condition bits (N, Z, V, and GT) are updated according to the results of the ALU
operation or shift operation. The DC bit and condition bits (N, Z, V, and GT) are not updated
regardless of whether the conditional instruction is executed. The DC bit is updated according to
the specifications of the condition select (CS) bits. Updates differ for arithmetic operations, logical
operations, arithmetic shifts and logical shifts. Table 5.16 shows the relationship between the CS
bits and the DC bit.

Rev. 4.00 May 15, 2006 page 53 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Table 5.16 Condition Select Bits (CS) and DSP Condition Bit (DC)
CS Bits

1 0 Condition Mode Description

0 0 Carry/borrow The DC bit is set to 1 when a carry or borrow occurs in the
result of an ALU arithmetic operation. Otherwise, it is cleared to
0.
In logical operations, the DC bit is always cleared to 0.
For shift operations (the PSHA and PSHL instructions), the bit
shifted out last is copied to the DC bit.

0 O 1 Negative In ALU arithmetic operations or arithmetic shifts (PSHA), the
MSB of the result (including the guard bits) is copied to the DC
bit.

In ALU logical operations and logical shifts (PSHL), the MSB of
the result (not including the guard bits) is copied to the DC bit.

0o 1 0 Zero When the result of an ALU or shift operation is all zeros (0), the
DC bit is set to 1. Otherwise, it is cleared to 0.

0o 1 1 Overflow In ALU arithmetic operations or arithmetic shifts (PSHA), when
the operation result (not including the guard bits) exceeds the
destination register’s value range, the DC bit is set to 1.
Otherwise, it is cleared to 0.

In ALU logical operations and logical shifts (PSHL), the DC bit is
always cleared to 0.
1 0 O Signed greater This mode is like the Greater Than Or Equal To mode, but the
than DC bit is cleared to 0 when the operation result is zero (0).
When the operation result (including the guard bits) exceeds the
expressible limits, the TRUE condition is VR.
DC bit = ~{(N bit # VR)|Z bit)}; for arithmetic operations
DC bit = 0; for logical operations
1 0 1 Greaterthanor In ALU arithmetic operations or arithmetic shifts (PSHA), when
equal to the result does not overflow, the value is the inversion of the
negative mode’s DC bit. When the operation result (including
the guard bits) exceeds the expressible limits, the value is the
same as the negative mode’s DC bit.
In ALU logical operations and logical shifts (PSHL), the DC bit is
always cleared to 0.
DC bit = ~(N bit * VR)); for arithmetic operations
DC bit = 0; for logical operations
1 1 0 Reserved
1 1

Rev. 4.00 May 15, 2006 page 54 of 558
REJ09B0317-0400

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.9 Overflow Prevention Function (Saturation Operation)

The overflow prevention function (saturation operation) is specified by the S bit of the SR register.
This function is valid for arithmetic operations executed by the DSP unit and multiply and
accumulate operations executed by the CPU core. An overflow occurs when the operation result
exceeds the bounds that can be expressed as a two’s complement (not including the guard bits).

Table 5.17 shows the overflow definitions for fixed decimal point arithmetic operations. Table
5.18 shows the overflow definitions for integer arithmetic operations. Multiply/Accumulate
calculation instructions (MAC) supported by previous SuperH RISC engines are performed on 64-
bit registers (MACH and MACL), so the overflow value differs from the maximum and minimum
values. They are defined exactly the same as before.

Table 5.17 Overflow Definitions for Fixed Decimal Point Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result > 1-2-31 1-2-31 007FFFFFFF
Negative Result < -1 -1 FF80000000

Table 5.18 Overflow Definitions for Integer Arithmetic Operations

Maximum/
Sign Overflow Condition Minimum Hexadecimal Display
Positive Result > 27151 27151 007FFF***
Negative Result < —2-15 2715 FF8000*#+*

Note: Don’t care bits have no effect.

When the overflow prevention function is specified, overflows do not occur. Naturally, the
overflow bit (V bit) is not set. When the CS bits specify overflow mode, the DC bit is not set
either.

Rev. 4.00 May 15, 2006 page 55 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.10 Data Transfers

The SH3-DSP can perform up to two data transfers in parallel between the DSP register and on-
chip memory with the DSP unit. The SH-DSP has the following types of data transfers:

1. X and Y memory data transfers: Data transfer to X and Y memory using the XDB and YDB
buses

* Double data transfer: Data transfer only, where transfer in one direction only is permitted
» Parallel data transfers: Data transfer that proceeds in parallel to ALU operation processing

2. Single data transfers: Data transfer to on-chip memory using the LDB bus
Note: Data transfer instructions do not update the DSR register’s condition bits.
Table 5.19 shows the various functions.

Table 5.19 Data Transfer Functions

Parallel
Processing Parallel
with ALU Processing with Instruction
Category Bus Length Operation Data Transfer Length
X andY memory XDB bus 16 bits None None (XDB or 16 bits
data transfer YDB bus (double) YDB bus)
Available (XDB 16 bits
and YDB bus)
Available None (XDB or 32 bits
(parallel) YDB bus)
Available (XDB 32 bits
and YDB bus)
Single data LDB bus 32 bits None None 16 bits

transfer 16 bits

5.10.1 X and Y Memory Data Transfer

X and Y memory data transfers allow two data transfers to be executed in parallel and allow data
transfers to be executed in parallel with DSP data operations. 32-bit instruction code is required
for executing DSP data operations and transfers in parallel. This is called a parallel data transfer.
When executing an X and Y memory data transfer by itself, 16-bit instruction code is used. This is
called a double data transfer.

Rev. 4.00 May 15, 2006 page 56 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Data transfers consist of X memory data transfers and Y memory data transfers. X memory data is
loaded to either the X0 or X1 register; Y memory data is loaded to the YO or Y1 register. The X0,
X1, YO0, and Y1 registers become the destination registers. Data can be stored in the X and Y
memory if the A0 or Al register is the source register. All these data transfers involve word data
(16 bits). Data is transferred from the top word of the source register. Data is transferred to the top
word of the destination register and the bottom word is automatically cleared with zeros.

Specifying a conditional instruction as the operation instruction executed in parallel has no effect
on the data transfer instructions.

X and Y memory data transfers access only the X and Y memory; they cannot access other

memory areas.
X pointer (R4, R;)/P Y pointer (R6, R;)/D

0, +2, +R8 0, +2, +R9
XAB[15:1] YAB[15:1]
A\ 4 A\ 4
X memory Y memory
(RAM, ROM) (RAM, ROM)
A A
XDB[15:0] YDB[15:0]
A A4
X0 YO
X1 Y1
AO MO
Al M1
[AoG]] A1G][DSR

I:I : Not affected for storing; cleared for loading

l:l : Cannot be set

Figure 5.14 Flowchart of X and Y Memory Data Transfers

5.10.2 Single Data Transfers

Single data transfers execute only one data transfer. They use 16-bit instruction code. Single data
transfers cannot be processed in parallel with ALU operations. The X pointer, which accesses X
memory, and two added pointers are valid; the Y pointer is not valid. As with the SuperH RISC

Rev. 4.00 May 15, 2006 page 57 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

engine, single data transfers can access all memory areas, including external memory. Except for
the DSR register, the DSP registers can be specified as source and destination operands. (The DSR
register is defined as the system register, so it can transfer data with LDS and STS instructions.)
The guard bit registers AOG and A1G can be specified for operands as independent registers.
Single data transfers use the LAB and LDB buses in place of the XAB, XDB, YAB, and YDB
buses, so contention occurs on the LDB bus between data transfers and instruction fetches.

Single data transfers handle word and longword data. Word data transfers involve only the top
word of the register. When data is loaded to a register, it goes to the top word and the bottom word
is automatically filled with zeros. If there are guard bits, the sign bit is extended to fill them. When
storing from a register, the top word is stored.

When a longword is transferred, 32 bits are valid. When loading a register that has guard bits, the
sign bit is extended to fill the guard bits.

When a guard bit register is stored, the top 24 bits become undefined, and the read out is to the
LDB bus. When the guard bit registers AOG and A1G load word data as the destination registers
of the MOVS.W instruction, the bottom byte is written to the register.

Pointer (R2, R3, R4, Rv5/)P

-2,0,+2, +R8
LAB[31:0]
A 4
All memory areas
A
LDBI[15:0]
y
X0 Y0
X1 Y1
A0 MO
Al M1
[A0G | A1G [DSR

. Not affected for storing; cleared for loading. See
the text for information about AOG and A1G.

l:l : Cannot be set

Figure 5.15 Single Data Transfer Flowchart (Word)

Rev. 4.00 May 15, 2006 page 58 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Pointer (R2, R3, R4, Rvs)/p

-4, 0, +4, +R8
LAB[31:0]
v
All memory areas
Y
LDBJ[31:0]
4
X0 YO
X1 Y1l
A0 MO
Al M1
[AOG | A1G [DSR

I:l : Cannot be set

Figure 5.16 Single Data Transfer Flowchart (Longword)

Data transfers are executed in the MA stage of the pipeline while DSP operations are executed in

the DSP stage. Since the next data store instruction starts before the data operation instruction has
finished, a stall cycle is inserted when the store instruction comes on the instruction line after the

data operation instruction. This overhead cycle can be avoided by adding one instruction between
the data operation instruction and the data transfer instruction. Figure 5.17 shows an example.

Rev. 4.00 May 15, 2006 page 59 of 558

RENESAS

REJ09B0317-0400

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

PADD X0, YO, AO MOVX.W A0, @R4+ Insert an unrelated step
MOVX.W @R5, X1 «—| between data operation
MOVX.W A0, @R4+ instruction and store instruction.
Slot 1 2 3 4 5 6 7
MOVX, EX (ad-
ADD IF ID dressing) MOVX ADD
MOVX IF ID EX(@d- | \1ovx \| DSP (nop)
dressing)
R
MOVX IF ID EX(@d- | %piovx | DSP (nop)
dressing)

Figure 5.17 Example of the Execution of Operation and Data Store Instructions

5.11 Operand Contention

Data contention occurs when the same register is specified as the destination operand for two or
more parallel processing instructions. It occurs in three cases.

1. When the same destination operand is specified for an ALU operation and multiplication (Du,
Dg)

2. When the same destination operand is specified for an X memory load and an ALU operation
(Dx, Du, Dz)

3. When the same destination operand is specified for a Y memory load and an ALU operation
(Dx, Du, Dz)

Results cannot be guaranteed when contention occurs. Table 5.20 shows the operand and register
combinations that cause contention.

Some assemblers can detect these types of contention, so pay attention to assembler functions
when selecting one.

Rev. 4.00 May 15, 2006 page 60 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Table 5.20 Operand and Register Combinations That Create Contention
DSP Register

Operation Operand X0 X1 YO0 Y1 MO M1 A0 A1
X memory Ax
load IX

Dx *2 *2
Y memory Ay
load ly

Dy *3 *3
6-operand ALU Sx * * * *
operation Sy *1 *1 *1 *1

Du *2 *3 *4 *4
3-operand Se * * * *
multiplication Sf *1 *1 *1 *1

Dg *1 *1 *4 *4
3-operand ALU Sx * * * *
operation Sy *1 *1 *1 *1

Dz *2 *2 *3 *3 *1 *1 *1 *1

Notes: 1. Register is settable for the operand
2. Dx, Du, and Dz contend

3. Dy, Du, and Dz contend

4.

Du and Dg contend

5.12

The SH3-DSP repeat (loop) control function is a special utility for controlling repetition

DSP Repeat (Loop) Control

efficiently. The SETRC instruction is executed to hold a repeat count in the repeat counter (RC, 12
bits) and set an execution mode in which the repeat (loop) program is repeated until the RC is 1.
Upon completion of the repeat operation, the content of the RC becomes 0.

The repeat start register (RS) holds the start address of the repeated section. The repeat end

register (RE) holds the ending address of the repeated section. (There are some exceptions. Refer
to Note 1, Actual programming, in this section [below figure 5.18].) The repeat counter (RC)
holds the repeat count. The procedure for executing repeat control is shown below:

Rev. 4.00 May 15, 2006 page 61 of 558
REJ09B0317-0400

RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

1. Set the repeat start address in the RS register.
2. Set the repeat end address in the RE register.
3. Set the repeat count in the RC counter.

4. Execute the repeated program (loop).

The following instructions are used for executing 1 and 2:

LDRS @di sp, PO);
LDRE @di sp, PO);

The SETRC instruction is used to execute 3 and 4. Immediate data or a general register may be
used to specify the repeat count as the operand of the SETRC instruction:

SETRC #imm #imm - Rc, enable repeat control
SETRC Rm Rm - Rc, enable repeat control

#imm is 8 bits and the RC counter is 12 bits, so to set the RC counter to a value of 256 or greater,
use the Rm register. A sample program is shown below.

LDRS RptStart;
LDRE Rpt End;
SETRC #i mm RC=#i nm
instro;
instrl~5 executes repeatedly
RptStart: instrl;
nstr2;

nstr3;

nstr4,
Rpt End:

nstrb5;

nstr6;
There are several restrictions on repeat control:

1. At least one instruction must come between the SETRC instruction and the first instruction of
the repeat program (loop).

2. Execute the SETRC instruction after executing the LDRS and LDRE instructions.
3. When there are more than four instructions for the repeat program (loop) and there is no repeat

start address (in the above example, it was address instrl) at the long word boundary, one cycle
stall (cycle awaiting execution) is required for each repeat.

Rev. 4.00 May 15, 2006 page 62 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

4. When there are three or fewer instructions in the loop, branch instructions (BRA, BSR, BT,
BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, IMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used. If such an
instruction is used, illegal instruction exception handling starts and the address values shown in
Table 5.21 are stored in SPC.

Table 5.21 PC Values Address Stored in SPC (1)

Conditions Position Address Stored in SPC
RC>=2 Any RptStart
RC=1 Any Program address of illegal instruction

5. Ifthere are four or fewer instructions in the loop, branched instructions (BRA, BSR, BT, BF,
BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used for the last
three instructions in the repeat program (loop). If such an instruction is used, illegal instruction
exception handling starts and the address values shown in Table 5.22 are stored in SPC. In case
of repeat control instruction (SETRC, LDRS, LDRE), and SR, RS, and RE load instructions,
they cannot be described in positions other than the repeat module. If described, proper
operation cannot be guaranteed.

Table 5.22 PC Values Address Stored in SPC (2)

Conditions Position Address Stored in SPC

RC>=2 instr3 Program address of illegal instruction
instr4 RptStart-4
instr5 RptStart-2

RC=1 Any Program address of illegal instruction

6. When there are three or fewer instructions in the loop, PC relative instructions (MOVA
(disp,PC), RO, or the like) can only be used at the first instruction (instr1).

7. If there are four or more instructions in the loop, PC relative instructions (MOVA (disp,PC),
RO, or the like) cannot be used in the final two instructions.

8. The SH3-DSP does not have a repeat valid flag; repeats become invalid when the RC counter
becomes 0. When the RC counter is not 0 and the PC counter matches the RE register contents,
repeating begins. When the RC counter is set to 0, the repeat program (loop) is invalid but the
loop is executed only once and does not return to the starting instruction of the loop as when
RC is 1. When the RC counter is set to 1, the repeat module is executed only once. Though it

Rev. 4.00 May 15, 2006 page 63 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

does not return to the repeat program (loop) start instruction, the RC counter becomes zero
when the repeat module is executed.

9. If there are four or more instructions in the loop, the branched instructions including the
subroutine call back and return instructions cannot be used for the “inst3” through “inst5”
instructions as branch destination address. If they are executed, the repeat control does not
work correctly. If a repeating portion of a program (a loop) contains three or more instructions
and the branching destination is RptStart or an address ahead of it, repeat control does not
work properly and the content of RC in the SR register is not updated.

10. While the repeat is being executed, interruption is restricted. Figure 5.18 shows the flow for
each stage of EX. The initial EX stage of interruption is usually started immediately after the
EX stage of the instruction is completed (indicated by “A”). "B" in the figure below indicates
locations where no interruption is accepted.

A: Interruption is accepted.
B: No interruption is accepted.

When RC>=1

1-step repeat 2-step repeat 3-step repeat
. <A . <A) <A
instr0 _ g instr0 _ g instr0 _ g
Start(End): instrl _ g Start: instrl _ g Start: instrl _ g
instr2 _ p End: instr2 _ g instr2 _ g
instr3 _ A End: instr3 _ g
instr4 _ A

More than 4 steps repeat

<A

instr0 ~ A or B (when returning from instr n)
Start: instrl A

- <A
instrn-3 _ B
instrn-2 _ g
instrn-1 _ g
End: instr n - B
instrn+l _ A

When RC=0: Interruption is accepted.

Figure 5.18 Restriction on Acceptance of Interruption by Repeat Module

Rev. 4.00 May 15, 2006 page 64 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.12.1 Usage Notes

Note: 1. Actual programming

The repeat start register (RS) and repeat end register (RE) store the repeat start address
and repeat end address respectively. Addresses stored in these registers are changed
depending on the number of instructions in the repeat program (loop). This rule is
shown below.

Repeat_Start: Address of repeat start instruction
Repeat Start0: Address of instruction one higher than the repeat start instruction
Repeat Start3: Address of instruction three higher than the repeat end instruction

Table 5.23 RS and RE Setup Rule

Number of Instructions in Repeat Program (Loop)

Register 1 2 3 >=4
RS Repeat_start0 + 8 Repeat_start0+6 Repeat_start0+4 Repeat_Start
RE Repeat_start0 + 4 Repeat_start0+4 Repeat_start0+4 Repeat_End3+4

An example of an actual repeat program (loop) assuming various cases based on the above table is
given below:

Case 1: One repeat instruction

LDRS RptStart0+8;
LDRE Rpt Start0+4;
SETRC Rpt Count ;
Rpt Start 0:instrO;
RtpStart: instrl; Repeat instruction
instr2;

Case 2: Two repeat instructions

LDRS RptStart0+6;
LDRE Rpt Start0+4;
SETRC Rpt Count ;

Rpt Start0:instrO;

Rev. 4.00 May 15, 2006 page 65 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

RtpStart: instrl; Repeat instruction 1
Rpt End: instr2; Repeat instruction 2
instr3;

Case 3: Three repeat instructions

LDRS RptStart0+4;
LDRE Rpt Start0+4;
SETRC Rpt Count ;

Rpt Start0:instrO;

RtpStart: instril; Repeat instruction 1
instr2; Repeat instruction 2

Rpt End: instr3; Repeat instruction 3
instr4,

Case 4: Four or more instructions

LDRS Rpt Start;
LDRE Rpt Start 3+4;
SETRC Rpt Count ;
Rpt Start 0:instrO;
RtpStart: instrl; Repeat
instr2; Repeat

nstruction 1

nstruction 2

nstruction 3

instr3; Repeat

nstruction N

Rpt End3: instrN-3; Repeat
instrN-2; Repeat
instrN-1; Repeat

nstrN;

nstrN+1

nstruction N2

nstruction N1

instruction N

Rpt End:

&
e}
[¢]
o)
f=rt

The above example can be used as a template when programming this repeat program (loop)
sequence. Extension instruction “REPEAT” can simplify the problems of such complicated

labeling and offset. Details are described in Note 2 below.

Rev. 4.00 May 15, 2006 page 66 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Note 2. Extension instruction REPEAT

The extension instruction REPEAT can simplify the handling of the labeling and offset
described in Table 5.23. Labels used are shown below.

RptStart: RptStart: Address of first instruction of repeat program (loop)
RptEnd: Address of last instruction of repeat program (loop)
PptCount: Repeat count immediate No.

Use this instruction as described below.

Repeat count can be designated as immediate value #lmm or register indirect value Rn.
Case 1: One repeat instruction

REPEAT Rpt Start, RptEnd, Rpt Count

instro;
Rpt Start: instril; Repeat instruction 1
instr2;

Case 2: Two repeat instructions

REPEAT Rpt Start, RptEnd, RptCount

instro;
RptStart: instrl; Repeat instruction 1
Rpt End: instr2; Repeat instruction 2

Case 3: Three repeat instructions

REPEAT Rpt Start, RptEnd, Rpt Count

instro;
Rpt Start: instril; Repeat instruction 1
instr2; Repeat instruction 2
Rpt End: instr3; Repeat instruction 3

Rev. 4.00 May 15, 2006 page 67 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Case 4: Four or more instructions

REPEAT Rpt Start, RptEnd, Rpt Count

nstro;
nstruction 1

RtpStart: instril; Repeat
nstruction 2

nstr2; Repeat
nstruction 3

nstr3; Repeat

instruction N

nstrN-3;
nstrN2; Repeat
nstrN-1; Repeat

&
e}
[¢]
QD
f=rt

nstruction N2

nstruction N1

nstruction N

Rpt End: nstrN; Repeat

nstrN+1

Result of extension of each case corresponds to the case 1 in Note 1.

Rev. 4.00 May 15, 2006 page 68 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

5.13 Conditional Instructions and Data Transfers

Data operation instructions include both unconditional and conditional instructions. Data transfer
instructions that execute both in parallel can be specified, but they will always execute regardless
of whether the condition is met without affecting the data transfer instruction.

The following is an example of a conditional instruction and a data transfer:

DCT PADD X0, YO, A0 MOVX.W @R4+, X0 MOVY.W A0, @R6+R9;

When condition is true:

Before execution: X0=H 33333333, YO=H 55555555, AOQ=H 123456789A,
R4=H 00008000, R6=H 00008232, R1=H 00000004
(R4)=H 1111, (R6)=H 2222

After execution: X0=H 11110000, YO=H 55555555, AO0=H 0088888888,
R4=H 00008002, R6=H 00008236, R1=H 00000004
(R4)=H 1111, (R6)=H 1234

When condition is false:

Before execution: X0=H 33333333, YO=H 55555555, AO0=H 123456789A,
R4=H 00008000, R6=H 00008232, R1=H 00000004
(R4)=H 1111, (R6)=H 2222

After execution: X0=H 11110000, YO=H 55555555, AO0=H 123456789A,
R4=H 00008002, R6=H 00008236, R1=H 00000004
(R4)=H 1111, (R6)=H 1234

Rev. 4.00 May 15, 2006 page 69 of 558
REJ09B0317-0400
RENESAS

Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)

Rev. 4.00 May 15, 2006 page 70 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

Section 6 Instruction Features

6.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

6.1.1 16-Bit Fixed Length

In the SH-3 CPU all instructions have a fixed length of 16 bits. This contributes to increased code
efficiency.

Like SH-3, the SH-3DSP has 16-bit instructions, but additional 32-bit DSP instructions are
provided to allow parallel processing of DSP instructions. For details on the DSP, see section 5,
DSP Operation Functions and Data Transfers.

6.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system.

6.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and handled as longword
data (table 6.1). Immediate data is sign-extended for arithmetic operations or zero-extended for
logic operations. It also is handled as longword data.

Table 6.1 Sign Extension of Word Data

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU
MV. W @disp, PO, RL Data is sign-extended to 32 ADD. W #H 1234, RO
ADD R1, RO bits, and R1 becomes

H'00001234. It is next
""""" operated upon by an ADD
. DATA. W H 1234 instruction.

Note: The address of the immediate data is accessed by @(disp, PC).

Rev. 4.00 May 15, 2006 page 71 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

6.14 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.

6.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 6.2).

Table 6.2 Delayed Branch Instructions

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU
BRA TRGET Executes an ADD before ADD. W R1, RO
ADD RL, RO branching to TRGET. BRA TRGET

6.1.6 Multiplication/Accumulation Operation

Multiplication of two 16-bit values to produce a 32-bit result is executed in one to three cycles
(one to two cycles for the SH3-DSP), and multiplication of two 32-bit values to produce a 64-bit
result is executed in two to five cycles (two to three cycles for the SH3-DSP).
Multiplication/accumulation, in which two 32-bit values are multiplied and one 32-bit value is
added, is executed in two to five cycles (two to four cycles for the SH3-DSP) when the MAC
instruction is used and in one system when the FMAC instruction™ is used.

Note: * The FMAC instruction is only available on the SH-3E (floating point calculation
instruction).

6.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 6.3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Rev. 4.00 May 15, 2006 page 72 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

Table 6.3 T Bit

SH-3/SH-3E/SH3-DSP Example for Conventional

CPU Description CPU

CWP/ GE R1, RO T bit is set when RO = R1. CWP. W R1, RO

BT TRCGETO The program branches to BGE TRCGETO
TRGETO when RO = R1 and to

BF TRGET1 TRGET1 when RO < R1. BLT TRGET1

ADD #-1, RO T bit is not changed by ADD. SUB. W #1, RO

CVP/EQ #0, RO T bit is set when RO = 0. The BEQ TRCET

program branches if RO = 0.
BT TRCET

6.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 6.4).

Table 6.4 Immediate Data Accessing

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU
8-bit immediate MoV #H 12, RO MOV. B #H 12, RO
16-bit immediate MOV. W @di sp, PO), RO MOV. W #H 1234, RO

.DATA.W H 1234
32-bit immediate MV.L @disp, PO), RO MOV. L #H 12345678, RO

.DATA. L H 12345678
Note: The address of the immediate data is accessed by @(disp, PC).

6.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Rev. 4.00 May 15, 2006 page 73 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

Table 6.5 Absolute Address

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU
Absolute address MOV. L @disp, PO, R1 MOV. B @ 12345678, RO
MOV. B @r1, RO

. DATA. L H 12345678

6.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 6.6 16-Bit/32-Bit Displacement

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

16-bit displacement MOV. W @di sp, PC), RO MOV.W @H 1234, R1), R2
MOV. W @RO, Rl), R2

.DATA. W H 1234

6.1.11 Privileged Instructions

The processor has two operation modes (user/privileged). If these instructions are used in user
mode, an illegal instruction exception is detected. Privileged instructions are:

« LDC

« STC

* RTE

« LDTLB
» SLEEP

Rev. 4.00 May 15, 2006 page 74 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

6.2 CPU Instruction Addressing Modes
Addressing modes and effective address calculation are described in table 6.7.

Table 6.7 Addressing Modes and Effective Addresses

Addressing Instruction

Mode Format Effective Addresses Calculation Equation
Direct Rn The effective address is register Rn. —
register (The operand is the contents of register Rn.)
addressing
Indirect @Rn The effective address is the content of register Rn. Rn
register
Post- @Rn+ The effective address is the content of register Rn. Rn
increment A constant is added to the content of Rn after the (After the
indirect instruction is executed. 1 is added for a byte instruction is
register operation, 2 for a word operation, and 4 for a executed)
addressing longword operation.
Byte: Rn + 1
Ao - Rn
e Wors i+
- Rn
Longword:
1/2/4
7 e
Pre- @-Rn The effective address is the value obtained by Byte: Rn — 1
decrement subtracting a constant from Rn. 1 is subtracted fora _, Rn
indirect byte operation, 2 for a word operation, and 4 for a
register longword operation. Word: Rn -2
addressing = Rn
Longword:
Rn — 1/2/4 Rn-4 - Rn

(Instruction
executed with
Rn after
calculation)

Rev. 4.00 May 15, 2006 page 75 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

Addressing Instruction

Mode Format Effective Addresses Calculation Equation
Indirect @(disp:4, The effective address is Rn plus a 4-bit displacement Byte: Rn +
register Rn) (disp). The value of disp is zero-extended, and disp
addressing remains the same for a byte operation, is doubled for Word: Rn +
with a word operation, and is quadrupled for a longword disp x 2
displace- operation.
ment Longword:
Rn + disp x 4
disp . Rn
(zero-extended) + disp x 1/2/4
Indirect @(RO, Rn) The effective address is the Rn value plus RO. Rn + RO
indexed
register
addressing
o
Indirect @(disp:8, The effective address is the GBR value plus an 8-bit Byte: GBR +
GBR GBR) displacement (disp). The value of disp is zero- disp
addressing extended, and remains the same for a byte Word: GBR +
with operation, is doubled for a word operation, and is disp x 2
displace- quadrupled for a longword operation.
ment Longword:
GBR + disp x
disp . GBR 4
(zero-extended) + disp x 1/2/4
Indirect @(RO, The effective address is the GBR value plus the R0. GBR + R0
indexed GBR)
GBR
addressing

GBR + RO

Rev. 4.00 May 15, 2006 page 76 of 558
REJ09B0317-0400
RENESAS

Section 6

Instruction Features

Addressing Instruction
Mode Format Effective Addresses Calculation Equation
Indirect PC ~ @(disp:8, The effective address is the PC value plus an 8-bit Word: PC +
addressing PC) displacement (disp). The value of disp is zero- disp x 2
with extended, and remains the same for a byte Longword:
displace- operation, is doubled for a word operation, and is PC & '
ment quadrupled for a longword operation. For a longword H'FFEFFEEC
operation, the lowest two bits of the PC are masked. disp x 4
(for longword)
PC + disp x 2
or
. PC&H'FFFFFFFC
disp +disp x 4
(zero-extended)
PC relative disp:8 The effective address is the PC value sign-extended PC + disp x 2
addressing with an 8-bit displacement (disp), doubled, and
added to the PC.
disp PC + disp x 2
(sign-extended)
disp:12 The effective address is the PC value sign-extended PC + disp x 2

with a 12-bit displacement (disp), doubled, and
added to the PC.

disp
(sign-extended)

PC + disp x 2

Rev. 4.00 May 15, 2006 page 77 of 558
REJ09B0317-0400

RENESAS

Section 6

Instruction Features

Addressing Instruction
Mode Format Effective Addresses Calculation Equation
PC relative Rn The effective address is the register PC plus RO. PC + RO
addressing
(con)
®

Immediate #imm:8 The 8-bit immediate data (imm) for the TST, AND, —
addressing OR, and XOR instructions are zero-extended.

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD, —

and CMP/EQ instructions are sign-extended.
#imm:8 Immediate data (imm) for the TRAPA instruction is —

zero-extended and is quadrupled.

I:I . Effective address

6.3 DSP Data Addressing (SH3-DSP Only)

The DSP command performs two different types of memory accesses. One uses the X and Y data
transfer instructions (MOVX.W and MOVY.W) while the other uses the single data transfer
instructions (MOVS.W and MOVS.L). Data addressing for these two types of instructions also
differs. Table 6.8 summarizes the data transfer instructions.

Rev. 4.00 May 15, 2006 page 78 of 558
REJ09B0317-0400

RENESAS

Section 6 Instruction Features

Table 6.8 Summary of Data Transfer Instructions

Item

X and Y Data Transfer
Processing (MOVX.W and
MOVY.W)

Single Data Transfer
Processing (MOVS.W and
MOVS.L)

Address registers

Ax: R4, R5; Ay: R6, R7

As: R2, R3, R4, R5

Index registers Ix: R8; ly: R9 Is: R8
Addressing Nop/Inc(+2)/Index addition: Nop/Inc(+2, +4)/Index addition:
Post updating Post updating
— Dec(-2, —4): Pre updating
Modulo addressing Available Not available
Data buses XDB, YDB LDB
Data length 16 bits (word) 16 or 32 bits (word or longword)
Bus contention None Occurs

Memory

X and Y data memories

All memory spaces

Source registers

Dx, Dy: A0, A1

Ds: AO/A1, MO/M1, X0/X1, YO/Y1,
A0G, A1G

Destination registers

Dx: X0/X1; Dy: YO/Y1

Ds: AO/A1, MO/M1, X0/X1, YO/Y1,
AOG, A1G

6.3.1 X and Y Data Addressing

The DSP command allows X and Y data memories to be accessed simultaneously using the
MOVX.W and MOVY.W instructions. DSP instructions have two pointers so they can access the
X and Y data memories simultaneously. DSP instructions have only pointer addressing; immediate
addressing is not available. Address registers are divided in two. The R4 and R5 registers become
the X memory address register (Ax) while the R6 and R7 registers become the Y memory address
register (Ay). The following three types of addressing may be used with X and Y data transfer

instructions.

* Address registers with no update: The Ax and Ay registers are address pointers. They are not

updated.

e Addition index register addressing: The Ax and Ay registers are address pointers. The values
of the Ix and ly registers are added to the Ax and Ay registers respectively after data transfer

(post updating).

* Increment address register addressing: The Ax and Ay registers are address pointers. +2 is
added to them after data transfer (post updating).

RENESAS

Rev. 4.00 May 15, 2006 page 79 of 558

REJ09B0317-0400

Section 6 Instruction Features

Each of the address pointers has an index register. Register R8 becomes the index register (Ix) for
the X memory address register (Ax); register R9 becomes the index register (Iy) for the Y memory
address register (Ay).

X and Y data transfer instructions are processed in words. X and Y data memory is accessed in 16
bit units. Increment processing for that purpose adds two to the address register. To decrement
them, set -2 in the index register and specify addition index register addressing.

Figure 6.1 shows the X and Y data transfer addressing.

R8[Ix] R4[AX] R9[ly] R6[AY]

R5[AX] R7[AY]
+2 (INC) +2 (INC)

+0 (No update) —| +0 (No update) —I

V

ALU AU*1

Notes: 1. Adder added for DSP processing
2. All three addressing methods (increment, index register addition (lx, ly), and
no update) are post-updating methods. To decrement the address pointer, set
the index register to -2 or —4.

Figure 6.1 X and Y Data Transfer Addressing

6.3.2 Single Data Addressing

The DSP command has single data transfer instructions (MOVS.W and MOVS.L) that load data
to DSP registers and store data from DSP registers. With these instructions, the R2—-R5 registers
are used as address registers (As) for single data transfers.

There are four types of data addressing for single data transfer instructions.

* Address registers with no update: The As register is the address pointer. It is not updated.

* Addition index register addressing: The As register is the address pointer. The value of the Is
register is added to the As register after data transfer (post updating).

Rev. 4.00 May 15, 2006 page 80 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

* Increment address register addressing: The As register is the address pointer. +2 or +4 is added
to it after data transfer (post updating).

* Decrement address register addressing: The As register is the address pointer. —2 or —4 (or +2
or +4) is added to it before data transfer (pre updating).

The address pointer uses the R8 register as its index register (Is). Figure 6.2 shows the single data
transfer addressing.

R2[As]

R3[As]

R8[Is] R4[As]

—2/-4 (DEC) — RS[As]
+2/+4 (INC)
+0 (No update) —|

ALU

Note: There are four addressing methods (no update, index register addition (Is),
increment, and decrement). Index register addition and increment are
post-updating methods. Decrement is a pre-updating method.

Figure 6.2 Single Data Transfer Addressing

6.3.3 Modulo Addressing

Like other DSPs, the SH3-DSP has a modulo addressing mode. Address registers are updated in
the same way in this mode. When a modulo end address in which the address pointer value is
already set is reached, the address pointer becomes the modulo start address.

Modulo addressing is only effective for X and Y data transfer instructions (MOVX.W and
MOVY.W). When the DMX bit of the SR register is set, the X address register enters modulo
addressing mode; when the DMY bit is set, the Y address register enters modulo addressing mode.
Modulo addressing cannot be used on both X and Y address registers at once. Accordingly, do not
set DMX and DMY at the same time. Should they both be set at once, only DMY will be valid.

Rev. 4.00 May 15, 2006 page 81 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

The MOD register is provided for specifying the start and end addresses for the modulo address
area. The MOD register stores the MS (modulo start) and ME (modulo end). The following shows
how to use the modulo register (MS and ME).

MOV. L ModAddr, Rn; Rn=MbdEnd, ModStart

LDC Rn, MOD, ME=MbdEnd, MS=MbdSt art
ModAddr: . DATA.W nEnd; Lower 8bit of MdEnd

.DATA W nftart; Lower 8bit of MdStart

ModSt art: . DATA

ModEnd: . DATA

Set the start and end addresses in MS and ME and then set the DMX or DMY bit to 1. The address
register contents are compared to ME. If they match ME, the start address MS is stored in the
address register. The bottom 16 bits of the address register are compared to ME. The maximum
modulo size is 64 kbytes. This is ample for accessing the X and Y data memory. Figure 6.3 shows
a block diagram of modulo addressing.

Instruction (MOVX/MOVY)

31 1615 0 PMXDMY 5, 1515 o

31 0 R4[AX] R6[AY] 31 0
| Reix | R5[AX] s R?[Ay]I RO[ly]
:g | [o +2
-] 7 15 (O —+0
MS
\V4 — V
ALU AU
CMP
| aex | [mME] ABy
15 l 1 15 0 15 1
XAB YAB

Figure 6.3 Modulo Addressing

Rev. 4.00 May 15, 2006 page 82 of 558
REJ09B0317-0400

RENESAS

Section 6 Instruction Features

The following is an example of modulo addressing.

MS=H 08; ME=H 0C; R4=H C008;
DMX=1; DMY=0; (Sets nodul o addressing for address register Ax (R4, R5))

The above setting changes the R4 register as shown below.

R4. H C008
I nc. R4. H CO0A
I nc. R4: H CO0C

I nc. R4: H C008 (Becomes the modulo start address when the modulo end address is
reached)

Place data so the top 16 bits of the modulo start and end address are the same, since the modulo
start address only swaps the bottom 16 bits of the address register.

Note: When using addition index as the DSP data addressing, the address pointer may exceed
this value without matching ME. Should this occur, the address pointer will not return to
the modulo start address.

6.3.4 DSP Addressing Operation

The following shows how DSP addressing works in the execution stage (EX) of a pipeline
(including modulo addressing).

if (Operation is MOVX WMOWY.W) {
ABx=Ax; ABy=Ay’

/* menory access cycle uses Abx and Aby. The addresses to be used
have not been updated */

[* AX is one of R4,5 */

if (DW==0 || DwWX==1 @@ DMv==1)} Ax=Ax+(+2 or R8[Ix} or +0);
/* Inc, | ndex, Not - Update */

else if (!not-update) Ax=nodul o(Ax, (+2 or R8[IX]));

/* Ay is one of R6,7 */
if (==0) Ay=Ay+(+2 or RO[ly] or +0; /* Inc,|ndex, Not-Update */
else if (! not-update) Ay=nodul o(Ay, (+2 or RO[IyY]));

Rev. 4.00 May 15, 2006 page 83 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

else if (Operationis MWS. Wor MOVS.L) {
if (Addressing is Nop, Inc, Add-index-reg) {
MAB=As;

/* menory access cycle uses MAB. The address to be used has not
been updated */

/* As is one of R2-5 */
As=As+(+2 or +4 or R8[Is] or +0); /* Inc.I|ndex, Not-Update */
else { /* Decrenment, Pre-update */
[* As is one of R2-5 */
As=As+(-2 or -4);
MAB=As
/* menory access cycle uses MAB. The address to be used has been
updated */

}

/* The value to be added to the address regi ster depends on addressing
oper ati ons.

For exanple, (+2 or R8[Ix] or +0) neans that

+2: if operation is increnent
R8[I x}: if operation is add-index-reg
+0: if operation is not-update

/*

function nodul o (AddrReg, Index) {
if (AdrReg[15:0]==ME) AdrReg[15: 0] ==M5;
el se Adr Reg=Adr Reg+l ndex
return AddrReg;

Rev. 4.00 May 15, 2006 page 84 of 558
REJ09B0317-0400
RENESAS

Section 6

Instruction Features

6.4 Instruction Format of CPU Instructions

The instruction format table, table 6.8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

* xxxx: Instruction code

* mmmm: Source register

* nnnn: Destination register
* iiii: Immediate data

* dddd: Displacement

Table 6.9 Instruction Formats

Source Operand Destination
Instruction Formats Operand Example
0 format — — NOP
15 0
| XXXX XXXX XXXX XXXX |
n format — nnnn: Direct MOVT Rn
15 0 register
| xxxx| nnnn | XXXX XXXX | Control register nnnn: Direct STS MACH, Rn
or system register
register
Control register nnnn: Indirect pre- STC. L
or system decrement register SR, @ Rn
register
m format mmmm: Direct Control register or LDC Rm SR
15 0 register system register
| XXXX |mmmm| XXXX XXXX mmmm: Indirect Control registeror LDC. L @wm+, SR
post-increment system register
register
mmmm: Direct — JW @m
register
mmmm: PC — BRAF Rm

relative using Rm

Rev. 4.00 May 15, 2006 page 85 of 558

RENESAS

REJ09B0317-0400

Section 6 Instruction Features

Source Operand Destination
Instruction Formats Operand Example
nm format mmmm: Direct nnnn: Direct ADD Rm Rn
15 register register
| XXXX | nnnn |mmmm| XXXX | mmmm: Direct nnnn: Direct MOV.L Rm @n
register register
mmmm: Indirect MACH, MACL MAC. W
post-increment @rmt+, @Rn+
register (multiply/
accumulate)
nnnn: Indirect
post-increment
register (multiply/
accumulate)*
mmmm: Indirect nnnn: Direct MOV.L @Rm+, Rn
post-increment register
register
mmmm: Direct nnnn: Indirect pre- MOV.L Rm @ Rn
register decrement register
mmmm: Direct nnnn: Indirect MOV. L
register indexed register Rm @ RO, Rn)
md format mmmmdddd: RO (Direct MOV. B
15 indirect register register) @di sp, Rm), RO
| XXXX XXXX |mmmm| dddd | with
displacement
nd4 format RO (Direct nnnndddd: Indirect MOV. B
15 register) register with RO, @di sp, Rn)
| XXXX XXXX | nnnn | dddd | displacement
nmd format mmmm: Direct nnnndddd: Indirect MOV. L
15 register register with Rm @ di sp, Rn)
| XXXX | nnnn |mmmm| dddd | displacement
mmmmdddd: nnnn: Direct MOV. L
Indirect register register @di sp, R, Rn

with
displacement

Rev. 4.00 May 15, 2006 page 86 of 558

REJ09B0317-0400

RENESAS

Section 6

Instruction Features

Source Operand Destination
Instruction Formats Operand Example
d format dddddddd: RO (Direct MOV. L
15 0 Indirect GBR with register) @di sp, GBBR), RO
XXXX XXxX | dddd dddd | displacement
RO(Direct dddddddd: MOV. L
register) Indirect GBR with RO, @ di sp, GBR)
displacement
dddddddd: PC RO (Direct MOVA
relative with register) @di sp, PO, RO
displacement
dddddddd: PC — BF | abel
relative
d12 format dddddddddddd: — BRA | abel
15 0 PC relative (label = disp +
| %0 | dddd dddd dddd | PO)
nd8 format dddddddd: PC nnnn: Direct MOV. L
15 0 relative with register @di sp, PO, Rn
| XXXX | nnnn | dddd dddd | displacement
i format iiiiiiii: Immediate Indirect indexed AND. B
GBR #i nm @ RO, GBR)
15 0 iiiiiiii: Immediate RO (Direct AND #i mm RO
| XXXX XXXX | i Qi | register)
iiiiiiii: Immediate — TRAPA #i mm
ni format iiiiiiii: Immediate nnnn: Direct ADD #i mm Rn
15 0 register

|xxxx | nnnn| Piii

Note: * In multiply/accumulate instructions, nnnn is the source register.

Rev. 4.00 May 15, 2006 page 87 of 558

RENESAS

REJ09B0317-0400

Section 6 Instruction Features

6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)

New instructions have been added to the SH3-DSP for use in digital signal processing. The new
instructions are divided into two groups.

* Double and single data transfer instructions for memory and DSP registers (16 bits)

» Parallel processing instructions processed by the DSP unit (32 bits)

Figure 6.4 shows their instruction formats.

15 0
CPU core 0000
instructions b
1110
15 10 9 0
Double data | |] |
transfer instructions 111100 A field
] 15 109 0
Single data :
transfer instructions | 111101 | A field |
) 31 26 25 16 15 0
Parallel processing]]
| 111110| A field | B field

instructions

Figure 6.4 Instruction Formats of DSP Instructions

6.5.1 Double and Single Data Transfer Instructions

Table 6.10 shows the instruction formats for double data transfer instructions. Table 6.11 shows
the instruction formats for single data transfer instructions

Rev. 4.00 May 15, 2006 page 88 of 558
REJ09B0317-0400
RENESAS

Section 6 Instruction Features

Table 6.10 Instruction Formats for Double Data Transfers

Category Mnemonic 15 14 13 12 1 10 9 8
X memory NOPX 1 1 1 1 0 0
data transfers MOVX. W @, Dx Ax
MOVX. W @\x+, Dx
MOVX. W @X+l x, Dx
MOVX. W Da, @
MOVX. W Da, @\x+
MOVX. W Da, @\x+l x
Y memory NOPY 1 1 1 1 0 0 0
data transfers MOVY. W @y, Dy Ay
MOVY. W @\y+, Dy
MOVY. W @\y+ly, Dy
MOVY. W Da, @y
MOVY. W Da, @vy+
MOVY. W Da, @y+ly
Category Mnemonic 7 6 5 4 3 2 1 0
X memory NOPX 0 0
data transfers MOVX. W @, Dx Dx 0 1
MOVX. W @\x+, Dx 1 0
MOVX. W @x+l x, Dx 1 1
MOVX. W Da, @ Da 1 0 1
MOVX. W Da, @\x+ 1 0
MOVX. W Da, @x+l x 1 1
Y memory NOPY 0 0 0
data transfers MOVY. W @y, Dy Dy 0 1
MOVY. W @Ay+, Dy 1 0
MOVY. W @\y+ly, Dy 1 1
MOVY. W Da, @y Da 1 0 1
MOVY. W Da, @vy+ 1 0
MOVY. W Da, @y+ly 1 1

Ax0=R4,1=R5
Ay:0=R6, 1=R7
Dx: 0 = X0, 1 = X1
Dy: 0= Y0, 1=Y1
Da: 0 = A0, 1 = A1

Rev. 4.00 May 15, 2006 page 89 of 558
REJ09B0317-0400
RENESAS

Section 6

Instruction Features

Table 6.11 Instruction Formats for Single Data Transfers

Category Mnemonic 15 14 13 12 1 10 9 |8
Single data | MOVS. W @-As, Ds 1 1 1 1 0 1 As
transfer MOVS. W @As, Ds 0: R4

MOVS. W @As+, Ds 1:R5
MOVS. W @As+l's, Ds 2:R2
MOVS. W Ds, @\-s 3:R3
MOVS. W Ds, @s

MOVS. W Ds, @As+

MOVS. W Ds, @s+l s

MOVS. L @As, Ds

MOVS. L @As, Ds

MOVS. L @As+, Ds

MOVS. L @As+ls, Ds

MOVS. L Ds, @-s

MOVS. L Ds, @s

MOVS. L Ds, @\s+

MOVS. L Ds, @stls

Category Mnemonic 7 6 5 ‘ 4 3 2 1
Singledata | MOVS. W @-As, Ds Ds 0: (%) 0 0 0
transfer MOVS. W @As, Ds 1: (%) 0 1

MOVS. W @As+, Ds 2: (%) 1 0
MOVS. W @As+l s, Ds 3: (%) 1 1
MOVS. W Ds, @\-s 4: (%) 0 0
MOVS. W Ds, @\s 5: A1 0 1
MOVS. W Ds, @As+ 6: (*) 1 0
MOVS. W Ds, @As+l s 7: AO 1 1
MOVS. L @As, Ds 8: X0 0 0
MOVS. L @\s, Ds 9: X1 0 1
MOVS. L @As+, Ds A: YO 1 0
MOVS. L @As+ls, Ds B: Y1 1 1
MOVS. L Ds, @\-s C: MO 0 0
MOVS. L Ds, @\s D: A1G 0 1
MOVS. L Ds, @As+ E:M1 1 0
MOVS. L Ds, @s+ls F:A0G 1 1

Note: * System reserved code

Rev. 4.00 May 15, 2006 page 90 of 558

REJ09B0317-0400

RENESAS

Section 6 Instruction Features

6.5.2 Parallel Processing Instructions

Parallel processing instructions are used by the SH3-DSP to increase the execution efficiency of
digital signal processing using the DSP unit. They are 32 bits long and four can be processed in
parallel (one ALU operation, one multiplication, and two data transfers).

Parallel processing instructions are divided into two fields, A and B. The data transfer instructions
are defined in field A and the ALU operation instruction and multiplication instruction are defined
in field B. These instructions can be defined independently, processed independently, and can be
executed simultaneously in parallel. Table 6.12 lists the field A parallel data transfer instructions,
and Table 6.13 shows the field B ALU operation instructions and multiplication instructions. The
field A instructions are identical to the double data transfer instructions shown in Table 6.10.

Table 6.12 Field A Parallel Data Transfer Instructions

Category Mnemonic 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23
X memory NOPX 1 1 1 1 1 0 0 0
data f MOVX. W @x, Dx Ax Dx
transfers MOVX. W @\ +, Dx

MOVX. W @\x+I x, Dx

MOVX. W Da, @\ Da

MWVX. W Da, @+

MWVX. W Da, @\X+| x
Y memory NOPY 0
data MOVY. W @ A
transfers ! Y. Dy y

MOVY. W @\y+, Dy

MOVY. W @\y+ly, Dy

MOVY. W Da, @y

MOVY. W Da, @y+

MOVY. W Da, @y+ly

Rev. 4.00 May 15, 2006 page 91 of 558
REJ09B0317-0400
RENESAS

Section 6

Instruction Features

Category Mnemonic 22 | 21 20 | 19 | 18 | 17 | 16 15-0
X memory NOPX 0 0 Field B
data MOVX. W @x, Dx 0 | 1
transfers | vovx. W @x+, Dx 1] 0

MOVX. W @+l x, Dx 1 1
MOVX. W Da, @\x 1 0 1
MOVX. W Da, @\x+ 1 0
MVX. W Da, @+l x 1 1
Y memory NOPY 0 0 0
data
MOVY. W , D 0 1
transfers NOVY. W ng,DyDy Y 1 0
MOVY. W @\y+ly, Dy 1 1
MOVY. W Da, @y Da 1 0 1
MOVY. W Da, @\y+ 1 0
MOVY. W Da, @y+ly 1 1

Ax:0=R4,1=R5
Ay:0=R6,1=R7
Dx: 0 =X0, 1=X1
Dy:0=Y0,1=Y1
Da: 0=A0, 1 =A1

Rev. 4.00 May 15, 2006 page 92 of 558
REJ09B0317-0400

RENESAS

Section 6 Instruction Features

Table 6.13 Field B ALU Operation Instructions and Multiplication Instructions

Category Mnemonic 31-27] 26 | 25-16 [1514 13J12f11]10] o[8[7]6] 5[4 [3[2[1] 0
)) PSHL #imm, Dz 1 0 FieldA |0 0 O 0| =16 <imm<+16 Dz
imm. shift PSHA #imm, Dz 00 0[1]|0] —32<imm<+32
o | 00 0] |1]
eserve 00 1
5 PMULS Se, Sf, Dg 0100|Se | Sf|sx| Sy|Dg|Du
x - - - - - -~~~ _____
operand Reserved 01 O 1{0:X0 |0:YO [0:X0|0:YO |0:MO|0:X0
parallet | | 1:X1 | 1:Y1 |1:X1]1:Y1|1:M1|1:YO
instruction PSUB Sx, Sy, Du 01 1 0|2:YO |2:X0 |2:A0|2:MO0 |2:A0 |2:A0
| _PMuLssestbg | | 3:A1 | 3:AL |3:AL|3:M1 [3:AL|3:AL
PADD Sx, Sy, Du 0111
PMULS Se, S, Dg _
Three Reserved 1 0100j0 010 0 Dz
01
operand F-------—-—---—--—- ————F-—-
instructions| _ PSUBC Sx, Sy, Dz_ _ ____|to 0: ("1
| _PADDC Sx, Sy, Dz__ O 1 (*1)
| ___PCMPSx. Sy __ ____[99jo1 2: (*1)
,,,,,, Reserved ____ ____|01 3 (Y
| PWSBSX Sy.Dz__ lio PO
| __PWAD Sx, Sy, Dz __ |t 1 5: Al
| ___PABSSx,Dz____ ____|00j1o0 6: (*1)
| ___PRNDSx,Dz ___ I L 7: AO
| ___PABSSy,Dz____ ____[to 8: X0
| ___PRNDSy,Dz ___ S I N 9: X1
00|11 AYO
01 B:Y1
10 .
Reserved C:Mo
11 D: (*1)
E: M1
F: ("9

Rev. 4.00 May 15, 2006 page 93 of 558
REJ09B0317-0400
RENESAS

Section 6

Instruction Features

Category Mnemonic 31—27‘ 26 ‘ 25-16 [1514 131211 10| 9 ‘ 8 7‘ 6 5‘ 4 3‘2‘ 1‘ 0
Conditional|(if €0 PSHL Sx, Sy, bz| 1 0O FieldA |1 0|0 0|0 0] ifecc | Sx | Sy Dz
three | (if cc) PSHA Sx, Sy, Dz ___Jo1 0:X0] 0:Y0 - 0:(7)
operand | (if cc) PSUB Sx, Sy, Dz S 1x1)1:vl l:(*)
instructions| (if cc) PADD Sx, Sy, Dz 1 1 01:*2 2:Y0|2:MO| 2:(*Y)
***************** il piiale 3Y1[3ML| 3:(*Y
,,,,,, Reserved_____ ___[oojo1 2
| (if cc) PAND Sx, Sy, Dz, |0 5:AL
| (if cc) PXOR Sx, Sy, bz |0 6:(*1)
| (if cc) POR Sx, Sy, Dz_ |1 : 7:A0
(if cc) PDEC Sx, Dz 0 o[z o |tO-DCT 8:X0
| _(fc) PINCSx, Dz__ o1 9:X1
| _(if cc) PDEC Sy, Dz _ _Jio NV
(if cc) PINC Sy, Dz i1 B:¥1
Fmmm e] R 11:DCF C:M0
| (fcoPCLRDz ~Joof11 Di("1)
| (if cc) PDMSB Sx, Dz |01 E:M1
,,,,,, Reserved _____ ____|t 0 Fi(*1)
| (i cc) PDMSB Sy, Dz _ 11
| _(if cc) PNEG Sx, Dz _ 11j0010
| (if cc) PCOPY Sx, Dz _ |01
| _(ifcc) PNEG Sy, Dz _ |10
| (if cc) PCOPY Sy, Dz _ o t1
,,,,, Reserved _ N 0 0
| (if cc) PSTS MACH, Dz ____|00]1 1 ifcc
| (if cc) PSTS MACL, Dz ____|01
| (if cc) PLDS Dz, MACH __|ro0
(if cc) PLDS Dz, MACL_ B L
Reserved 0 0
0*3
Reserved 1 1
Notes: 1. [if cc]: DCT (DC bit true), DCF (DC bit false), or none (unconditional instruction)
2. Unconditional

3. System reserved code

Rev. 4.00 May 15, 2006 page 94 of 558

REJ09B03

17-0400

RENESAS

Section 7 Instruction Set

Section 7 Instruction Set

7.1 Instruction Set by Classification

The SH-3 instruction set includes 68 basic instruction types, and the SH-3E instruction set
includes 84 basic instruction types, divided into seven functional classifications, as shown in Table
7.1. Tables 7.3 to 7.9 summarize instruction notation, machine mode, execution time, and
function.

Rev. 4.00 May 15, 2006 page 95 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

Table 7.1 Classification of Instructions

Operation No. of
Classification Types Code Function Instructions
Data transfer 5 MOV Data transfer 39
Immediate data transfer
Peripheral module data transfer
Structure data transfer
MOVA Effective address transfer
MOVT T bit transfer
SWAP Swap of upper and lower bytes
XTRCT Extraction of the middle of registers
connected
PREF Prefetching data to cache
Arithmetic 21 ADD Binary addition 33
operations ADDC Binary addition with carry
ADDV Binary addition with overflow check
CMP/cond Comparison
DIVA1 Division
DIV0OS Initialization of signed division
DIVOU Initialization of unsigned division
DMULS Signed double-length multiplication
DMULU Unsigned double-length multiplication
DT Decrement and test
EXTS Sign extension
EXTU Zero extension
MAC Multiply/accumulate, double-length
multiply/accumulate operation
MUL Double-length multiplication (32 x 32 bits)
MULS Signed multiplication (16 x 16 bits)
MULU Unsigned multiplication (16 x 16 bits)
NEG Negation
NEGC Negation with borrow
SuB Binary subtraction
SUBC Binary subtraction with carry
SUBV Binary subtraction with underflow check

Rev. 4.00 May 15, 2006 page 96 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

Operation No. of
Classification Types Code Function Instructions
Logic 6 AND Logical AND 14
operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR
Shift 12 ROTL One-bit left rotation 16

ROTR One-bit right rotation

ROTCL One-bit left rotation with T bit

ROTCR One-bit right rotation with T bit

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift

SHAD Dynamic arithmetic shift

SHLD Dynamic logical shift
Branch 9 BF Conditional branch, conditional branch 11

with delay (T = 0)
BT Conditional branch, conditional branch
with delay (T = 1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure

Rev. 4.00 May 15, 2006 page 97 of 558
REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Operation No. of
Classification Types Code Function Instructions
System 15 CLRT T bit clear 83 (75)*
control CLRMAC MAC register clear
CLRS S bit clear
LDC Load to control register
LDS Load to system register
LDTLB Load PTE to TLB
NOP No operation
RTE Return from exception processing
SETS S bit set
SETT T bit set
SLEEP Shift into power-down mode
STC Storing control register data
STS Storing system register data
TRAPA Trap exception handling
Floating point 16 FABS Floating point absolute value 23
instructions FADD Floating point add
(SH-3E only) FCMP Floating point compare
FDIV Floating point divide
FLDIO Floating point load immediate O
FLDI1 Floating point load immediate 1
FLDS Floating point load to system register
FPUL
FLOAT Floating point convert from integer
FMAC Floating point multiply accumulate
FMQOV Floating point move
FMUL Floating point multiply
FNEG Floating point negate
FSQRT Floating point square root
FSTS Floating point store from system register
FPUL
FSUB Floating point subtract
FTRC Floating point truncate and convert to
integer
Total: 84 219 (188)*

Note: * The LDS and STS instructions include instructions to load/store to the FPU system register.

These instructions can only be used with the SH-3E. The figure in parentheses

() is the total excluding the SH-3E instructions.

Rev. 4.00 May 15, 2006 page 98 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction codes, operation, and execution states are listed as shown in Table 7.2 in order by
classification.

Tables 7.3 to 7.8 list the minimum number of clock cycles required for execution. In practice, the
number of execution cycles increases when the instruction fetch is in contention with data access
or when the destination register of a load instruction (memory — register) is the same as the
register used by the next instruction.

Table 7.2

Item

Instruction Code Format

Format

Explanation

Instruction

OP. Sz SRC, DEST

OP: Operation code

Sz: Size

SRC: Source

DEST: Destination

Rm: Source register

Rn: Destination register
imm: Immediate data
disp: Displacement

Operation

<<n, >>n

Direction of transfer
Memory operand

Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit shift

Code

MSB -~ LSB

mmmm: Source register
nnnn: Destination register
0000: RO
0001: R1
1111: R15
iiii: Immediate data
dddd: Displacement

Privilege

Indicates a privileged instruction

Cycles

The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:

1. When contention occurs between instruction fetches and data
access, or

2. When the destination register of the load instruction (memory -
register) and the register used by the next instruction are the same.

T bit

Value of T bit after instruction is executed
—: No change

Note:

Descriptions, for details.

Scaling (x1, x2, x4) is performed according to the instruction operand size. See section 8, Instruction

Rev. 4.00 May 15, 2006 page 99 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

7.1.1 Data Transfer Instructions

Table 7.3 Data Transfer Instructions

Instruction Operation Code Privilege Cycles T Bit

MoV #i mm Rn imm - Sign extension -~ 1110nnnniiiiiiii — 1 —
Rn

MOV. W @disp, PO), Rn (disp x2 + PC) - Sign 1001nnnndddddddd — 1 —
extension - Rn

MOV.L @disp, PO, Rn (disp x4 +PC) - Rn 1101nnnndddddddd — 1 —

MoV Rm Rn Rm - Rn 0110nnnnmmm0011 — 1 —

MOV. B Rm @n Rm - (Rn) 0010nnnnmmmO000 — 1 —

MOV. W Rm @n Rm - (Rn) 0010nnnnmMmMMO001 — 1 —

MOV.L Rm @n Rm - (Rn) 0010nnnnmmm0010 — 1 —

MOV.B @m Rn (Rm) - Sign extension 0110nnnnmmmmd000 — 1 —
- Rn

MOV. W @Rm Rn (Rm) - Sign extension 0110nnnnmMmm®O001 — 1 —
- Rn

MV.L @Rm Rn (Rm) - Rn 0110nnnnmMmmm®D010 — 1 —

MOV. B Rm @Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmm®0100 — 1 —

MOV. W Rm @Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnnmm®0101 — 1 —

MOV.L Rm @Rn Rn-4 - Rn,Rm - (Rn) 0010nnnnmmm®0110 — 1 —

MOV. B @m+, Rn (Rm) - Sign extension 0110nnnnmmm0100 — 1 —
- Rn,Rm+1 - Rm

MOV. W @mt+, Rn (Rm) - Sign extension 0110nnnnmmm0101 — 1 —
- Rn,Rm+2 - Rm

MOV.L @m+, Rn (Rm) -~ Rn,Rm +4 0110nnnnmmm0110 — 1 —
Rm

MOV. B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd — 1 —

MOV. W RO, @di sp, Rn) RO - (disp x2 + Rn) 10000001nnnndddd — 1 —

MV.L Rm @disp, Rn) Rm - (disp x4 + Rn) 0001nnnnmmmdddd — 1 —

MOV.B @disp, Rm, RO (disp + Rm) - Sign 10000100mmMmdddd — 1 —
extension - RO

MOV. W @disp, Rm, RO (disp x 2 + Rm) - Sign 10000101nmmmdddd — 1 —
extension - RO

MOV.L @disp, Rm, Rn (disp x4+ Rm) - Rn 0101nnnnmmmdddd — 1 —

MV.B Rm @RO, Rn) Rm - (RO + Rn) 0000NNNNMM®O100 — 1 —

MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmMMMO101 — 1 —

Rev. 4.00 May 15, 2006 page 100 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

MV.L Rm @RO, Rn) Rm - (RO + Rn) 0000NnnNnMM®O110 — 1 —

MOV.B @RO,Rm, Rn (RO + Rm) - Sign 0000nnnnmMMM100 — 1 —
extension - Rn

MOV. W @RO, Rm, Rn (RO + Rm) - Sign 0000nnnnmMMM101 — 1 —
extension - Rn

MOV.L @RO,Rm, Rn (RO + Rm) - Rn 0000nnnnmMM110 — 1 —

MV.B RO, @disp, BR) RO - (disp + GBR) 11000000dddddddd — 1 —

MOV. W RO, @di sp, BBR) RO - (disp x2 + GBR) 11000001dddddddd — 1 —

MOV.L RO, @disp, GBBR) RO - (disp x4+ GBR) 11000010dddddddd — 1 —

MV.B @disp, GBBR), RO (disp + GBR) - Sign 11000100dddddddd — 1 —
extension - RO

MV. W @disp, GBR), R0 (dispx2+ GBR) - Sign 11000101dddddddd — 1 —
extension - RO

MV.L @disp, BR), R0 (disp x4+ GBR) - RO 11000110dddddddd — 1 —

MOVA @disp,PC),R0 dispx4+PC - RO 11000111dddddddd — 1 —

MOVT Rn T - Rn 0000nnnn00101001 — 1 —

PREF @Rn (Rn) - cache 0000nnnn10000011 — 1/2* —

SWAP. B Rm Rn Rm - Swap the bottom 0110nnnnmMmmMm1000 — 1 —
two bytes - REG

SWAP. W Rm Rn Rm - Swap two 0110nnnnmMmmMm1001 — 1 —
consecutive words - Rn

XTRCT Rm Rn Rm: Middle 32 bits of Rn 0010nnnnnmmm1101 — 1 —

- Rn

Note: * Two cycles on the SH3-DSP.

Rev. 4.00 May 15, 2006 page 101 of 558

RENESAS

REJ09B0317-0400

Section 7 Instruction Set

7.1.2 Arithmetic Instructions

Table 7.4 Arithmetic Instructions

Instruction Operation Code Privilege Cycles T Bit
ADD Rm Rn Rn+Rm - Rn 0011nnnnmMmmMm1100 — 1 —
ADD # mm R Rn +imm - Rn Olllnnnniiiiiiii — 1 —
ADDC Rm Rn Rn+Rm+ T - Rn, 0011nnnnmmmml110 — 1 Carry
Carry - T
ADDV Rm Rn Rn + Rm - Rn, 001innnnmmmll1l — 1 Overflow
Overflow - T
CMVP/ EQ #Himm RO IfRO=imm,1 - T 10001000iiiiiiii — 1 Comparison
result
CWP/ EQ Rm Rn fRn=Rm,1 - T 0011nnnnmmmMmO000 — 1 Comparison
result
CWP/ HS Rm Rn If Rn=Rm with unsigned 0011nnnnmmm0010 — 1 Comparison
data,1 - T result
CwPl GE Rm Rn If Rn = Rm with signed 0011nnnnmmm0011 — 1 Comparison
data,1 - T result
CVP/ HI Rm Rn If Rn > Rm with unsigned 0011nnnnmmm0110 — 1 Comparison
data,1 - T result
CWP/ GT Rm Rn If Rn > Rm with signed 001lnnnnmmmoO111 — 1 Comparison
data,1 - T result
CwWP/ PZ Rn IfRn=0,1-T 0100nnnn00010001 — 1 Comparison
result
CWP/ PL Rn IfRn>0,1-T 0100nnnn00010101 — 1 Comparison
result
CW/ STR Rm Rn If Rn and Rm have an 0010nnnnmMMmM1100 — 1 Comparison
equivalent byte, 1 - T result
D v1 Rm Rn Single-step division 0011nnnnmMmmm®OD100 — 1 Calculation
(Rn/Rm) result
Dl VOS Rm Rn MSB of Rn - Q, MSB of 0010nnnnnmm0111 — 1 Calculation
Rm - M,M*Q - T result
DI VOU 0 - M/IQ/IT 0000000000011001 — 1 0
DMULS.L RmRn Signed operation of 0011nnnnmmml101 — 2 (to —
Rn x Rm — MACH, 5/4)""
MACL 32 x 32 - 64 bits
DMULU.L Rm Rn Unsigned operation of 0011nnnnmmm®O101 — 2 (to —
Rn x Rm — MACH, 5/4)""

MACL 32 x 32 - 64 bits

Rev. 4.00 May 15, 2006 page 102 of 558
REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit

DT Rn Rn-1 - Rn,ifRn=0, 0100nnnn00010000 — 1 Comparison
1-T,else0 - T result

EXTS.B Rm Rn A byte in Rm is sign- 0110nnnnmmmMm1110 — 1 —
extended - Rn

EXTS. W Rm Rn A word in Rm is sign- 0110nnnnmmmil1ll — 1 —
extended - Rn

EXTU. B Rm Rn A byte in Rm is zero- 0110nnnnmMmmMm1100 — 1 —
extended - Rn

EXTU. W Rm Rn A word in Rm is zero- 0110nnnnmMmmMm1101 — 1 —
extended - Rn

MAC.L @Rmt, Signed operation of (Rn) 0000nnnnmMMM1111 — 2 (to —

@n+ x (Rm) + MAC — MAC 5/4)*!
MAC. W @R, Signed operation of (Rn) 0100nnnnmmMmM1111 — 2 (to 5)"" —
@n+ x (Rm) + MAC - MAC

16 x 16 + 64 - 64 bits

MJLL.L RmRn Rn xRm - MACL 0000nnnnmMmMMO111 — 2 (to —
32 x 32 32 bits 5/4)*!

MULS. W Rm Rn Signed operation of 0010nnnnmmMmML111 — 1 (to 3)"* —
Rn xRm - MAC
16 x 16 - 32 bits

MJLU. W Rm Rn Unsigned operation of 0010nnnnmMML110 — 1 (to 3)"* —
Rn xRm - MAC
16 x 16 - 32 bits

NEG Rm Rn 0-Rm - Rn 0110nnnnmmmml011 — 1 —

NEGC Rm Rn 0-Rm-T - Rn, 0110nnnnmmm1010 — 1 Borrow
Borrow - T

SUB Rm Rn Rn—-Rm - Rn 0011lnnnnmMMmMM1000 — 1 —

SUBC Rm Rn Rn—-Rm-T - Rn, 0011nnnnmmm1010 — 1 Borrow
Borrow -~ T

SUBV Rm Rn Rn-Rm - Rn, 0011nnnnmmml011 — 1 Underflow
Underflow —» T

Notes: 1. The normal minimum number of execution cycles is 2, but 5 cycles (4 cycles on the
SH3-DSP) are required when the results of an operation are read from the MAC
register immediately after the instruction.

2. The normal minimum number of execution cycles is 1, but 3 cycles are required when
the results of an operation are read from the MAC register immediately after a MUL
instruction.

Rev. 4.00 May 15, 2006 page 103 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

7.1.3 Logic Operation Instructions
Table 7.5 Logic Operation Instructions
Instruction Operation Code Privilege Cycles T Bit
AND Rm Rn Rn & Rm - Rn 0010nnnnmmMmMM1001 — 1 —
AND #i nm RO RO & imm - RO 1100100%iiiiiiii — 1 —
AND. B #i nm @ R0, GBR) (RO + GBR) & imm - 1100210%iiiiiiii — 3 —
(RO + GBR)
NOT Rm Rn ~Rm - Rn 0110nnnnmmm®0111 — 1 —
R Rm Rn Rn|Rm - Rn 0010nnnnmMmMM1011 — 1 —
R #i nm RO RO | imm - RO 1100201%iiiiiiii — 1 —
OR B #imm @RO,3BR) (RO+GBR)|imm - (RO 1100111liiiiiiii — 3 —
+ GBR)
TAS. B @Rn If(Rn)is0,1 - T;1 > 0100nnnn00011011 — 3/4* Test
MSB of (Rn) result
TST Rm Rn Rn & Rm; if the result is 0010nnnnmMm1000 — 1 Test
0,1-T result
TST #i mMm RO RO & imm; if the result is 11001000iiiiiiii — 1 Test
0,1-T result
TST.B #i mm @ R0, BR) (RO + GBR) & imm; ifthe 11001100iiiiiiii — 3 Test
resultis0,1 - T result
XOR Rm Rn Rn*Rm - Rn 0010nnnnmmM1010 — 1 —
XOR #imMm RO RO A imm - RO 11001010iiiiiiii — 1 —
XOR B #imm @RO, BR) (RO + GBR)”imm - (RO 11001110iiiiiiii — 3 —

+ GBR)

Note: * Four cycles on the SH3-DSP.

Rev. 4.00 May 15, 2006 page 104 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

7.1.4 Shift Instructions
Table 7.6 Shift Instructions
Instruction Operation Code Privilege Cycles T Bit
ROTL Rn T « Rn « MSB 0100nnnn00000100 — 1 MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — 1 LSB
ROTCL Rn T-RnT 0100nnnn00100100 — 1 MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — 1 LSB
SHAD RmRn Rn20;Rn<<Rm - Rn 0100nnnnmmMMmML100 — 1 —
Rn <0; Rn >>Rm - [MSB-Rn]
SHAL Rn T-Rn-0 0100nnnn00100000 — 1 MSB
SHAR Rn MSB -~ Rn - T 0100nnnn00100001 — 1 LSB
SHLD Rm Rn Rn>0; Rn <<Rm - Rn 0100nnnnmMmMM1101 — 1 —
Rn <0; Rn>>Rm - [0-Rn]
SHLL Rn T-Rn<0 0100nnnn00000000 — 1 MSB
SHLR Rn 0-Rn-T 0100nnnn00000001 — 1 LSB
SHLL2 Rn Rn<<2 5 Rn 0100nnnn00001000 — 1 —
SHLR2 Rn Rn>>2 5 Rn 0100nnnn00001001 — 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — 1 —

Rev. 4.00 May 15, 2006 page 105 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

7.1.5 Branch Instructions

Table 7.7 Branch Instructions

Instruction Operation Code Privilege Cycles T Bit

BF | abel IfT=0,dispx2+PC - PC; 10001011dddddddd — 31* —
if T=1, nop

BF/ S | abel Delayed branch, if T = 0, 10001111dddddddd — 2/1* —
dispx2+PC - PC;if T=1, nop

BT | abel Delayed branch, if T =1, 10001001dddddddd — 31" —
dispx2+PC - PC;if T=0, nop

BT/ S | abel If T=1,dispx2+PC - PC; 10001101dddddddd — 2/1* —
if T=0, nop

BRA | abel Delayed branch, disp x 2 + PC - 1010dddddddddddd — 2 —
PC

BRAF Rn Rn+PC - PC 0000nnnn00100011 — —

BSR | abel Delayed branch, PC - PR, 1011dddddddddddd — —
dispx2+PC - PC

BSRF Rn PC - PR,Rn+PC - PC 0000nnnn00000011 — 2 —

JWP @ Delayed branch, Rn - PC 0100nnnn00101011 — 2 —

JSR @ Delayed branch, PC - PR, 0100nnnn00001011 — 2 —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — 2 —

Note: * One state when it does not branch.

Rev. 4.00 May 15, 2006 page 106 of 558
REJ09B0317-0400

RENESAS

Section 7

Instruction Set

7.1.6 System Control Instructions
Table 7.8 System Control Instructions
Instruction Operation Code Privilege Cycles T Bit
CLRVAC 0 ~ MACH, MACL 0000000000101000 — 1 —
CLRS 0.8 0000000001001000 — 1 —
CLRT 0-T 0000000000001000 — 1 0
LDC Rm SR Rm - SR 0100nMmMMO0001110 v 5 LSB
LDC Rm GBR Rm - GBR 0100MmMmMO00011110 — 173 —
LDC Rm VBR Rm - VBR 0100nMmMM00101110 v 173 —
LDC Rm SSR Rm - SSR 0100MmmMmOD0111110 V 13—
LDC Rm SPC Rm - SPC 0100nMmMM01001110 v 173 —
LDC Rm RO_BANK Rm - RO_BANK 0100MmmMM 0001110 Vv 13—
LDC Rm R1_BANK Rm - R1_BANK 0100MmmMM 0011110 3% —
LDC Rm R2_BANK Rm - R2_BANK 0100nMmMM10101110 v 173 —
LDC Rm R3_BANK Rm - R3_BANK 0100mmMM 0111110 13—
LDC Rm R4_BANK Rm - R4_BANK 0100nmMM11001110 v 173 —
LDC RmR5_BANK Rm - R5_BANK 0100mmmMMM1011110 173 —
LDC Rm R6_BANK Rm - R6_BANK 0100mmM 1101110 13—
LDC RmR7_BANK Rm - R7_BANK 0100mmmmi 1111110 173 —
LDC. L @+, SR (Rm) -~ SR, Rm+4 -~ Rm 0100nmmmD0000111 7 LSB
LDC. L @m+, GBR (Rm) - GBR, Rm+4 . Rm 0100mmmD0010111 — 115% —
LDC. L @m+, VBR (Rm) ~ VBR, Rm+4 ~ Rm 0100nmm00100111 v Vi —
LDC. L @mt, SSR (Rm) - SSR, Rm+4 ~ Rm 0100mmmD0110111 V 115% —
LDC. L @+, SPC (Rm) - SPC, Rm+4 ~ Rm 0100nmmmD1000111 V 1152 —
LDC. L @wm+, RO_BANK (Rm) - RO_BANK, 0100nmMM1.0000111 v Vi —
Rm+4 - Rm
LDC. L @wm+, R1I_BANK (Rm) -~ R1_BANK, 0100nMmMM10010111 v Vi —
Rm+4 - Rm
LDC. L @wm+, R2_BANK (Rm) - R2_BANK, 0100nMmMM10100111 v 1/5%2 —
Rm+4 - Rm
LDC. L @m+, R3_BANK (Rm) - R3_BANK, 0100mmM 0110111 115% —
Rm+4 - Rm
LDC. L @m+, RA_BANK (Rm) — R4_BANK, 0100mmMM 1000111V 115% —
Rm+4 - Rm
LDC. L @m+, R5_BANK (Rm) - R5_BANK, 0100mmm 1010111 Vv 115% —
Rm+4 - Rm

Rev. 4.00 May 15, 2006 page 107 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit
LDC. L @m+, R6_BANK (Rm) - R6_BANK, 0100mmmM 1100111 1/5™?
Rm+4 - Rm
LDC. L @m+, R7_BANK (Rm) — R7_BANK, 0100mmmMi1110111 115% —
Rm+4 - Rm
LDS Rm MACH Rm - MACH 0100nMMMO0001010 — 1 —
LDS Rm MACL Rm -~ MACL 0100MMmMO00011010 — 1 —
LDS RmPR Rm - PR 0100MMM00101010 — 1 —
LDS. L @vm+, MACH (Rm) -~ MACH, Rm+4 0100mMMMO0000110 — 1 —
Rm
LDS. L @m+, MACL (Rm) -~ MACL, Rm+4 _ 0100MMmMO00010110 — 1 —
Rm
LDS. L @+, PR (Rm) ~ PR,Rm+4 -~ Rm 0100mmm00100110 — 1 —
LDTLB PTEH/PTEL - TLB 0000000000111000 v 1 —
NOP No operation 0000000000001001 — 1 —
PREF @wn (Rn) - cache 0000nnnNn10000011 — 1 —
RTE Delayed branch, 0000000000101011 V 4 —
SSR/SPC - SR/IPC
SETS 1.8 0000000001011000 — 1 —
SETT 1.7 0000000000011000 — 1 1
SLEEP Sleep 0000000000011011 v 4% —
STC SR Rn SR - Rn 0000NNNN00000010 v 1 —
STC GBR Rn GBR - Rn 0000nNNN00010010 — 1 —
STC VBR Rn VBR - Rn 0000nNNN00100010 v 1 —
STC SSR Rn SSR - Rn 0000nNNN00110010 v 1 —
STC SPC, Rn SPC - Rn 0000nNNN01000010 v 1 —
STC RO_BANK, Rn RO_BANK . Rn 0000nNNN10000010 v 1 —
STC RI_BANK, Rn R1_BANK - Rn 0000nNNN10010010 Vv 1 —
STC R2_BANK, Rn R2_BANK - Rn 0000nNNN10100010 Vv 1 —
STC R3_BANK, Rn R3_BANK - Rn 0000nnNNN10110010 Vv 1 —
STC R4_BANK, Rn R4_BANK - Rn 0000nnNN11000010 V 1 —
STC R5_BANK, Rn R5_BANK - Rn 0000nnNNN11010010 Vv 1 —
STC R6_BANK, Rn R6_BANK - Rn 0000nnnNn11100010 V 1 —
STC R7_BANK, Rn R7_BANK - Rn 0000nnNNN11110010 Vv 1 —
STC.L SR @Rn Rn—4 - Rn, SR - (Rn) 0100nnnn00000011 v 12 —
STC. L GBR, @Rn Rn—4 _ Rn, GBR - (Rn) 0100nnNN00010011 — 2% —

Rev. 4.00 May 15, 2006 page 108 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit

STC.L VBR, @Rn Rn—4 — Rn, VBR - (Rn) 0100nnnn00100011 v 1/2*

STC.L SSR, @Rn Rn—4 - Rn, SSR - (Rn) 0100nnnn00110011 Vv 1/2*

STC. L SPC, @Rn Rn—4 - Rn, SPC - (Rn) 0100nnnn01000011 v 172 —

STC.L RO_BANK, @Rn Rn—4 _ Rn, 0100nnnn10000011 Vv 2 —
RO_BANK - (Rn)

STC.L RI_BANK, @Rn Rn—4 _ Rn, 0100nnnn10010011 v 2 —
R1_BANK - (Rn)

STC.L R2_BANK, @Rn Rn—4 _ Rn, 0100nnnn10100011 Vv 2 —
R2_BANK - (Rn)

STC.L R3_BANK, @Rn Rn—4 _ Rn, 0100nnnn10110011 Vv 2 —
R3_BANK - (Rn)

STC.L R4_BANK, @Rn Rn—4 _ Rn, 0100nnnn11000011 v 2 —
R4_BANK - (Rn)

STC.L R5_BANK, @Rn Rn—4 _ Rn, 0100nnnn11010011 2 —
R5_BANK — (Rn)

STC.L R6_BANK, @Rn Rn—4 _ Rn, 0100nnnn11100011 Vv 2 —
R6_BANK _ (Rn)

STC.L R7_BANK, @Rn Rn—4 _ Rn, 0100nnnn11110011 Vv 2 —
R7_BANK - (Rn)

STS NACH, Rn MACH - Rn 0000NNNN00001010 — 1 —

STS MACL, Rn MACL - Rn 0000nNNN00011010 — 1 —

STS PR Rn PR - Rn 0000nNNN00101010 — 1 —

STS. L MACH, @Rn Rn—4 - Rn, MACH - (Rn) 0100nnnn00000010 — 1 —

STS.L MACL, @Rn Rn—4 - Rn, MACL - (Rn) 0100nnnn00010010 — 1 —

STS.L PR, @Rn Rn—4 _ Rn, PR - (Rn) 0100nnnN00100010 — 1 —

TRAPA #i nmm PC/SR - SPCISSR, 1100001%iiiiiiii — 6/8" —

#imm<<2 - TRA, 0x160
- EXPEVT VBR + H'0100 -
PC
Notes: The number of execution states before the chip enters the sleep state. This table lists the
minimum execution cycles. In practice, the number of execution cycles increases when the
instruction fetch is in contention with data access or when the destination register of a load
instruction (memory - register) is the same as the register used by the next instruction.
1. Three cycles on the SH3-DSP.
Five cycles on the SH3-DSP.
Number of cycles before transition to sleep state.
Two cycles on the SH3-DSP.
Eight cycles on the SH3-DSP.

ok owbn

Rev. 4.00 May 15, 2006 page 109 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

7.1.7 Floating Point Instructions (SH-3E Only)

Table 7.9 Floating Point Instructions
Instruction Operation Code Privilege Cycles T Bit
FABS FRn |FRn| - FRn 1111nnnn01011101 — 1 —
FADD FRm FRn FRn+FRm - FRn 1111nnnnnmm0000 — 1 —
FCVWP/ EQ FRm FRn FRn == FRm? 1111nnnnmm©0100 — 1 Comparison
10T result
FCVMP/ GT FRm FRn FRn > FRm? 1112innnnmmm0101 — 1 Comparison
1.0 T result
FDI V FRm FRn FRn/FRm - FRn 1111nnnnmm©0011 — 13 —
FLDI O FRn H'00000000 -~ FRn 1111nnnn10001101 — 1 —
FLDI 1 FRn H'3F800000 -~ FRn 1111nnnn10011101 — 1 —_
FLDS FRm FPUL FRm - FPUL 1111nnnn00011101 — 1 —
FLOAT FPUL, FRn (float)FPUL -~ FRn 1111nnnn00101101 — 1 —_
FMAC FRO, FRm FRn FRO x FRm + 1111nnnnmmmmll110 — 1 —
FRn - FRn
FMOV FRm FRn FRm - FRn 1111nnnnnmmm1100 — 1 —
FMOV.S @RO, Rm, FRn (RO +Rm) - FRn 1111nnnnmmmm0110 — 1 —
FMOV. S @Rm+, FRn (Rm) - FRn, Rm+4 1111nnnnmmmi1l001 — 1 —
- Rm
FMOV.S @Rm FRn (Rm) - FRn 1111nnnnnmmm1000 — 1 —
FMOV.S FRm @RO, Rn) FRm - (RO + Rn) 1112innnnmmo0111 — 1 —
FMOV. S FRm @ Rn Rn-4 - Rn, 111innnnmmmil01l — 1 —
FRm - (Rn)
FMOV. S FRm @n FRm - (Rn) 11121nnnnmmm1010 — 1 —
FMUL FRm FRn Fm x FRm - FRn 1111nnnnnmmm©0010 — 1 —
FNEG FRn —-FRn - FRn 1111nnnn01001101 — 1 —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — 13 —
FSTS FPUL, FRn FPUL - FRn 1111nnnn00001101 — 1 —_
FSUB FRm FRn FRn-FRm - FRn 1111nnnnnmmm0001 — 1 —
FTRC FRm FPUL (long)FRm - FPUL 1111nnnn00111101 — 1 —_

Rev. 4.00 May 15, 2006 page 110 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)

Table 7.10 FPU Related CPU Instructions

Instruction Operation Code Privilege Cycles T Bit
LDS Rm FPSCR Rm - FPSCR 0100nnnn01101010 — 1 —_
LDS Rm FPUL Rm - FPUL 0100nnnn01011010 — 1 —
LDS.L @mt , FPSCR @Rm - FPSCR, 0100nnnn01100110 — 1 —_
Rm+4 - Rm
LDS.L @m+ ,FPUL @Rm - FPUL, Rm+4 - Rm 0100nnnn01010110 — 1 —
STS FPSCR, Rn FPSCR - Rn 0000nnNnn01101010 — 1 —
STS FPUL, Rn FPUL - Rn 0000nnNnn01011010 — 1 —
STS.L FPSCR, @ Rn Rn-4 - Rn, FPSCR - @Rn 0100nnnn01100010 — 1 —_
STS. L FPUL, @ Rn Rn-4 - Rn, FPUL - @Rn 0100nnnn01010010 — 1 —

7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)

Several system control instructions have been added to the CPU core instructions to support DSP
functions. The RS, RE, and MOD registers (which support modulo addressing) have been added,
and an RC counter has been added to the SR register. LDC and STC instructions have been added
to access these. LDS and STS instructions have also been added for accessing the DSP registers
DSR, A0, X0, X1, Y0, and Y1.

A SETRC instruction has been added for setting the value of the repeat counter (RC) in the SR
register (bits 16-27). When the operand of the SETRC instruction is immediate, 8 bits of
immediate data are set in bits 16-23 of the SR register and bits 2427 are cleared. When the
operand is a register, the 12 bits 0—11 of the register are set in bits 16-27 of the SR register.

In addition to the new LDC instructions, the LDRE and LDRS instructions have been added for
setting the repeat start address and repeat end address in the RS and RE registers.

Table 7.11 shows the added instructions.

Rev. 4.00 May 15, 2006 page 111 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

Table 7.11 Added CPU Instructions

Instruction Operation Code Cycles T Bit
LDC Rm MOD Rm - MOD 0100mmm©01011110 3 —
LDC Rm RE Rm - RE 0100mMmmm01111110 3 —
LDC Rm RS Rm-RS 0100mmm®©01101110 3 —
LDC. L @m+, MDD (Rm)-MOD,Rm+4 -Rm 0100mmMmD1010111 5 —
LDC. L @mt+, RE (Rm)-RE,Rm+4 .Rm 0100mmm®O01110111 5 —
LDC. L @m+, RS (Rm) - RS,Rm+4 -~ Rm 0100mmMmD1100111 5 —
STC MOD, Rn MOD - Rn 0000nnnn01010010 1 —
STC RE, Rn RE - Rn 0000nnnn01110010 1 —
STC RS, Rn RS-Rn 0000nnnn01100010 1 —
STC.L MDD, @ Rn Rn—4 -.Rn,MOD - (Rn) 0100nnnn01010011 2 —
STC.L RE, @ Rn Rn—4 - Rn,RE - (Rn) 0100nnnn01110011 2 —
STC.L RS, @Rn Rn—4 - Rn,RS - (Rn) 0100nnnn01100011 2 —
LDS Rm DSR Rm - DSR 0100mmMmD1101010 1 —
LDS. L @m+, DSR (Rm)-DSR,Rm+4 ~Rm 0100mMmmMmMD1100110 1 —
LDS Rm A0 Rm - AO 0100mmMmD1110110 1 —
LDS. L @m+, A0 (Rm)-AO0,Rm+4 - Rm 0100mMmmMm©D1100110 1 —
LDS Rm X0 Rm - X0 0100mmMmD1110110 1 —
LDS. L @mt+, X0 (Rm)-X0,Rm+4 . Rm 0100mMmmMm©D1100110 1 —
LDS Rm X1 Rm - X1 0100mmMmD1110110 1 —
LDS. L @mt+, X1 (Rm)-X1,Rm+4 - Rm 0100mmMm©D1100110 1 —
LDS Rm YO Rm-Y0 0100mmm®©01110110 1 —
LDS. L @m+, YO (Rm)- YO,Rm+4 - Rm 0100mmMmD1100110 1 —
LDS Rm Y1 Rm-Y1,Rm+4 - Rm 0100mmm®©01110110 1 —
LDS. L @m+, Y1 (Rm)-Y1,Rm+4 - Rm 0100mmMmD1100110 1 —
STS DSR, Rn DSR-Rn 0000nnnn01101010 1 —
STS.L DSR @ Rn Rn—4 -.Rn,DSR - (Rn) 0100nnnn01100010 1 —
STS A0, Rn AO0-Rn 0000nnnn01111010 1 —
STS.L A0, @ Rn Rn—4 -.Rn,A0 - (Rn) 0100nnnn01110010 1 —
STS X0, Rn X0-Rn 0000nnnn01111010 1 —
STS. L X0, @ Rn Rn—4 -.Rn,X0 - (Rn) 0100nnnn01110010 1 —

Rev. 4.00 May 15, 2006 page 112 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Cycles T Bit
STS X1, Rn X1-Rn 0000nnnn01111010 1 —
STS.L X1, @Rn Rn—4 -.Rn,X1 - (Rn) 0100nnnn01110010 1 —
STS YO0, Rn YO-Rn 0000nnnn10101010 1 —
STS.L YO, @Rn Rn—4 - Rn,Y0 - (Rn) 0100nnnn10100010 1 —
STS Y1, Rn Y1-Rn 0000nnnn10111010 1 —
STS.L Y1, @Rn Rn—4 - Rn,Y1 - (Rn) 0100nnnn10110010 1 —
SETRC Rm Rm[11:0] - RC (SR[27:16]) 0100mMmMmD0010100 3 —
SETRC #i mm imm - RC(SR[23:16]), 10000010iiiiiiii 3 —
zeros - SR[27:24]
LDRS @di sp, pc) disp x2+PC~RS 10001100dddddddd 3 —

LDRE @ di sp, pc)

disp x 2+PC - RE

10001110dddddddd 3 —

7.2 Instruction Set in Alphabetical Order

Table 7.12 alphabetically lists the instruction codes and number of execution cycles for each

instruction.

Table 7.12 Instruction Set Listed Alphabetically

Instruction Operation Code Privilege Cycles T Bit

ADD #i mm Rn Rn +imm - Rn Olllnnnniiiiiiii — 1 —

ADD Rm Rn Rn+Rm - Rn 0011lnnnnmmmil00 — 1 —

ADDC Rm Rn Rn+Rm+T - Rn, 001lnnnnnmmmill0 — 1 Carry
Carry - T

ADDV Rm Rn Rn +Rm - Rn, 001innnnnmmil1ll — 1 Overflow
Overflow - T

AND #imm RO RO & imm - RO 1100100%iiiiiiii — 1 —

AND Rm Rn Rn & Rm - Rn 0010nnnnmmm1001 — 1 —

AND. B #i nm @RO, GBR) (RO+GBR)&imm 1100110%1iiiiiiii — 3 —
- (RO + GBR)

BF | abel If T=0,disp+PC -~ 10001011dddddddd — 3 —
PC; if T=1, nop

BF/S | abel If T=0,disp+PC -~ 10001111dddddddd — 2% —
PC; if T=1, nop

BRA | abel Delayed branch, disp 1010dddddddddddd — 2 —

+PC _ PC

Rev. 4.00 May 15, 2006 page 113 of 558
REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit
BRAE Rn Delayed branch, Rn 0000nnnn00100011 — 2 —
+PC - PC
BSR | abel Delayed branch, PC 1011dddddddddddd — 2 —
- PR, disp + PC -
PC
BSRF Rn Delayed branch, PC 0000nnnn00000011 — 2 —
- PR,Rn+PC -
PC
BT | abel If T=1,disp+PC -~ 10001001dddddddd — 31—
PC; if T=0, nop
BT/S | abel If T=1,disp+PC -~ 10001101dddddddd — bl —
PC; if T=0, nop
CLRVAC 0 - MACH, MACL 0000000000101000 — 1 —
CLRS 0-S 0000000001001000 — 1 —
CLRT 0-T 0000000000001000 — 1 0
CVP/ EQ #i mm RO IfRO=imm,1 - T 10001000iiiiiiii — 1 Comparison
result
CVP/ EQ Rm Rn IfRn=Rm,1 - T 0011nnnnmmm0000 — 1 Comparison
result
CVP/ GE Rm Rn If Rn 2 Rm with 0011nnnnmmMmO011 — 1 Comparison
signed data, 1 - T result
CVMP/ GT Rm Rn If Rn > Rm with 001lnnnnnmmoO111 — 1 Comparison
signed data, 1 - T result
CVW/ H Rm Rn If Rn > Rm with 0011nnnnmmm0110 — 1 Comparison
unsigned data, result
CVMP/ HS Rm Rn If Rn = Rm with 0011nnnnnmMmMmO010 — 1 Comparison
unsigned data, 1 - result
T
CVWP/ PL Rn IfRn>0,1 - T 0100nnnn00010101 — 1 Comparison
result
CWP/ PZ Rn IfRn=0,1-T 0100nnnn00010001 — 1 Comparison
result
CVWP/ STRRm Rn If Rn and Rm have 0010nnnnnmMMm1100 — 1 Comparison
an equivalent byte, 1 result
- T
DI VOS RmRn MSB of Rn - Q, 0010nnnnmmMmO111 — 1 Calculation
MSB of Rm - M, M result
A Q d T
DI VOU 0 - MQIT 0000000000011001 — 1 0

Rev. 4.00 May 15, 2006 page 114 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit

Dl V1 Rm Rn Single-step division 0011nnnnmMmmm0100 — 1 Calculation
(Rn/Rm) result

DMULS. L Rm Rn Signed operation of 0011innnnmmmmill0l — 2 —
Rn x Rm — MACH, (to 5)"
MACL

DMULU. L Rm Rn Unsigned operation 0011nnnnmmOD101 — 2 —
of Rn x Rm - (to 5)*'
MACH, MACL

DT Rn Rn-1 - Rn, when 0100nnnn00010000 — 1 Comparison
Rnis0,1 - T. result
When Rn is nonzero,
0-T

EXTS. B Rm Rn A byte in Rmis sign- 0110nnnnnmmml110 — 1 —
extended - Rn

EXTS. WRm Rn A word in Rmis sign- 0110nnnnmmmml11l — 1 —
extended - Rn

EXTU. B Rm Rn A byte in Rmis zero- 0110nnnnnmMmm1100 — 1 —
extended - Rn

EXTU. WRmM Rn A word in Rm is 0110nnnnnmmmill01 — 1 —
zero-extended - Rn

FABS FRn™ |FRn| - FRn 1111nnnn01011101 — 1 —

FADD FRm, FRn™ FRn+FRm - FRn 1111nnnnmmmo0000 — 1 —

FCMP/ EQFRm , FRn™® (FRn == FRm)? 1111nnnnnmm0100 — 1 Comparison
1.0 T result

FCMP/ GT FRm , FRn™® (FRn > FRm) ? 1111nnnnnmmo0101 — 1 Comparison
1.0 T result

FDIV FRm, FRn™ FRn /FRm - FRn 1111nnnnnmmo011 — 13 —

FLDIO FRn™ H'00000000 -~ FRn 1111nnnn10001101 — 1 —

FLDI1 FRn™ H'3F800000 - FRn 1111nnnn10011101 — 1 —

FLDS FRm, FPUL™ FRm - FPUL 1111nnnn00011101 — 1 —

FLOAT FPUL, FRn™* (float)FPUL -~ FRn 1111nnnn00101101 — 1 —

FMAC FRO, FRm FRn™® FROxFRm+FRn - 11llnnnnmmmll10 — 1 —
FRn

FMOV FRm, FRn™ FRm - FRn 1111nnnnnmmil00 — 1 —

FMOV. S @RO, R, FRn™® (RO +Rm) - FRn 1111nnnnmmm0110 — 1 —

FMOV. S @m+, FRn™ (Rm) = FRn,Rm+4 1111nnnnmmril001 — 1 —
=Rm

FMOV. S @m FRn™ (Rm) - FRn 1111nnnnmmml000 — 1 —

Rev. 4.00

RENESAS

May 15, 2006 page 115 of 558
REJ09B0317-0400

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit
FMOV. S FRm @RO, Rn) ** (FRm) -~ (RO+Rn) 111lnnnnnmm0111 — 1 —
FMOV. S FRm @ Rn* *? Rn-4 - Rn, FRm -~ 111lnnnnmmmrloll — 1 —
(Rn)
FMOV. S FRm @n™? FRm - (Rn) 1111nnnnmmrl010 — 1 —
FMJLL FRm FRn™ FRnxFRm - FRn 111lnnnnmmm0010 — 1 —
FNEG FRn™ —FRn - FRn 1111nnnn01001101 — 1 —
FSQRT FRn™ vFRn - FRn 1111nnnn01101101 — 13 —
FSTS FPUL, FRn™* FPUL - FRn 1111nnnn00001101 — 1 —
FSUB FRm FRn™* FRn—FRm - FRn 111lnnnnmmm0001 — 1 —
FTRC FRm FPUL™* (long)FRm - FPUL 1111nnnn00111101 — 1 —
IWP @n Delayed branch, 0100nnnn00101011 — 2 —
Rn - PC
JSR @un Delayed branch, 0100nnnn00001011 — 2 -
PC -~ PR,Rn - PC
LDC Rm GBR Rm - GBR 0100MmmMM00011110 — 3% —
LDC RmSR Rm - SR 0100mMmMM00001110 v 5 LSB
LDC Rm VBR Rm - VBR 0100MMM00101110 V 3% —
LDC Rm SSR Rm - SSR 0100mmm00111110 V 3% —
LDC Rm SPC Rm - SPC 0100mMmMM01001110 V 3% —
LDC Rm MOD*® Rm- MOD 0100mmMm01011110 V 3 —
LDC Rm RE™® Rm- RE 0100mMmM01101110 V 3 —
LDC RmRS* Rm- RS 0100mMmMM01101110 V 3 —
LDC Rm RO_BANK Rm - RO_BANK 0100mMMMM0001110 V 3% —
LDC Rm RL_BANK Rm - R1_BANK 0100MmmMM10011110 V 113% —
LDC Rm R2_BANK Rm - R2_BANK 0100mmMMi0101110 V 13% —
LDC Rm R3_BANK Rm - R3_BANK 0100mmMm10111110 V 113% —
LDC Rm R4_BANK Rm - R4_BANK 0100mmm11001110 V 3% —
LDC Rm R5_BANK Rm - R5_BANK 0100mmMM 1011110 V 3% —
LDC Rm R6_BANK Rm - R6_BANK 0100mmmi1101110 V 3% —
LDC Rm R7_BANK Rm - R7_BANK 0100mmMM1111110 V 3% —
LDC. L @, GBR (Rm) -~ GBR,Rm+ 0100mmm00010111 — /5% —
4 - Rm
LDC.L @, SR (Rm) -~ SR,Rm+4 0100mmmD0000111 V 7 LSB

- Rm

Rev. 4.00 May 15, 2006 page 116 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Operation Code Privilege Cycles T Bit

LDC.L @m+, VBR (Rm) -~ VBR,Rm+ 0100nmmmD0100111 V 1/5*°
4 - Rm

LDC.L @+, SSR (Rm) -~ SSR,Rm+ 0100mmm00110111 V 1/5™
4 - Rm

LDC. L @m+, SPC (Rm) -~ SPC,Rm+ 0100mmm01000111 V 1/5*°
4 - Rm

LDC. L @m-, MOD* (Rm) - MOD,Rm + 0100mmMmD1010111 V 5
4 - Rm

LDC.L @+, RE™ (Rm) -~ RERm+4 0100mmm01110111 V 5
- Rm

LDC.L @+, RS*™ (Rm) - RSRm+4 0100mmmD1100111 V 5
- Rm

LDC.L @+, RO_BANK (Rm) - RO_BANK, 0100mmmi0000111 V 1/5*°
Rm+4 - Rm

LDC.L @+, RlL_BANK (Rm) - R1_BANK, 0100mmmi0010111 V 1/5*°
Rm+4 - Rm

LDC.L @+, R2_BANK (Rm) — R2_ BANK, 0100mmmmi0100111 V 1/5%°
Rm+4 - Rm

LDC.L @R+, R3_BANK (Rm) — R3_BANK, 0100mmmi0110111 V 1/5%°
Rm+4 - Rm

LDC.L @R+, R4_BANK (Rm) — R4 _BANK, 0100mmmmi1000111 V 1/5%°
Rm+4 - Rm

LDC.L @+, R5_BANK (Rm) — R5 BANK, 0100mmmmi1010111 V 1/5%°
Rm+4 - Rm

LDC.L @+, R6_BANK (Rm) - R6_BANK, 0100mmm11100111 V 1/5%°
Rm+4 - Rm

LDC.L @+, R7_BANK (Rm) -~ R7_BANK, 0100mmml1110111 V 1/5%°
Rm+4 - Rm

LDRE @disp, PO™* dispx2+PC - RE 10001110dddddddd — 3

LDRS @disp, PO™ dispx2+PC - RS 10001100dddddddd — 3

LDS Rm FPSCR*® Rm - FPSCR 0100nnnn01101010 — 1

LDS Rm FPUL™? Rm - FPUL 0100nnnn01011010 — 1

LDS Rm MACH Rm - MACH 0100mMmmMMD0001010 — 1

LDS Rm MACL Rm - MACL 0100mMmmMMD0011010 — 1

LDS Rm PR Rm - PR 0100mMmmMMD0101010 — 1

LDS Rm A0™*® Rm - DSR 0100mMmmMD1101010 — 1

LDS Rm DSR* Rm - A0 0100nMMM01111010 — 1

LDS Rm X0*° Rm - X0 0100mMmmMM10001010 — 1

Instruction Set

Rev. 4.00 May 15, 2006 page 117 of 558
REJ09B0317-0400
RENESAS

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

LDS Rm Xx1*° Rm - X1 0100mMmmMM10011010 — 1

LDS Rm Y0™*° Rm - YO 0100mMmM10101010 — 1

LDS Rm Y1*° Rm - Y1 0100mMmmMM10111010 — 1

LDS.L @m+ , FPSCR® @Rm - FPSCR, 0100nnnn01100110 — 1
Rm+4 - Rn

LDS.L @m+ ,FPUL™ @Rm - FPUL, 0100nnnn01010110 — 1
Rm+4 - Rn

LDS. L @, MACH (Rm) — MACH, 0100mMmmMMD0000110 — 1
Rm+4 - Rm

LDS. L @+, MACL (Rm) — MACL, 0100mMmmMMD0010110 — 1
Rm+4 - Rm

LDS. L @m+, PR (Rm) - PR, 0100mMmmMMD0100110 — 1
Rm+4 - Rm

LDS.L @wm, DSR* (Rm) - DSR, 0100MmMMD1100110 — 1
Rm+4 - Rm

LDS.L @m+, A0™ (Rm) - A0, 0100MmMM01110110 — 1
Rm+4 - Rm

LDS. L @+, X0*° (Rm) - X0, 0100nMMM10000110 — 1
Rm+4 - Rm

LDS. L @ m+, X1* (Rm) - X1, 0100nMmMM10010110 — 1
Rm+4 - Rm

LDS.L @+, YO* (Rm) - YO0, 0100nMmmMM10100110 — 1
Rm+4 - Rm

LDS. L @+, Y1* (Rm) - Y1, 0100nMmMM10110110 — 1
Rm+4 - Rm

LDTLB PTEH/PTEL - TLB 0000000000111000 V 1

MAC. L @ m+, @n+ Signed operation of 0000nnnnmMMML111 — 2
(Rn) x (Rm) + MAC (to 5)*
- MAC

MAC. W @mt, @n+ Signed operation of ~ 0100nnnnmMMM1111 — 2
(Rn) x (Rm) + MAC (to 5)*
- MAC

MOV #i mm Rn #imm - Sign 1110nnnniiiiiiii — 1
extension - Rn

MOV Rm Rn Rm - Rn 0110nnnnmMmmMmo0011 — 1

M. B @di sp, GBR), RO (disp + GBR) - Sign 11000100dddddddd — 1
extension —» RO

MWV.B @disp, R, R0 (disp+Rm) - Sign 10000100nmmmdddd — 1

extension - RO

Rev. 4.00 May 15, 2006 page 118 of 558
REJ09B0317-0400

RENESAS

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

MWV.B @RO, RM, Rn (RO + Rm) - Sign 0000nNNNMMML100 — 1 —
extension - Rn

MV. B @Rmt+, Rn (Rm) - Sign 0110nnnnnmm0100 — 1 —
extension -~ Rn, Rm
+1 - Rm

MOV. B @m Rn (Rm) - Sign 0110nnnNMMmMD000 — 1 —
extension - Rn

MOV.B RO, @disp, BR) RO - (disp+GBR) 11000000dddddddd — 1 —

MWV.B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd — 1 —

MOV. B Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmmMmMO0100 — 1 —

MOV.B Rm @Rn Rn-1 - Rn, Rm - 0010nnnnMMO100 — 1 —
(Rn)

MOV. B Rm @un Rm - (Rn) 0010nnNnnMMMOD000 — 1 —

MWV.L @disp, GBR), RO (disp + GBR) —~ RO 11000110dddddddd — 1 —

MV.L @disp, PO, Rn (disp+PC) ~ Rn 1101nnnndddddddd — 1 —

MWV.L @disp, R),Rn (disp+Rm) - Rn 0101lnnnnmmmmdddd — 1 —

MOV.L @RO,RT, Rn (RO +Rm) - Rn 0000nnnNNNMML110 — 1 —

MOV.L @Rm+, Rn (Rm) - Rn, 0110nnnnnmm®0110 — 1 —
Rm+4 - Rm

MOV.L @Rm Rn (Rm) - Rn 0110nnnnnmmMmo0010 — 1 —

MOV.L RO, @disp, GBR) RO - (disp+GBR) 11000010dddddddd — 1 —

MWV.L Rm @disp, Rn) Rm - (disp + Rn) 0001nnnnmmmdddd — 1 —

MOV.L Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnmmMmMO0110 — 1 —

MOV.L Rm @Rn Rn—4 - Rn, Rm - 0010nnnnmmm0110 — 1 —
(Rn)

MOV.L Rm @un Rm - (Rn) 0010nnnnMmMO010 — 1 —

MOV. W @di sp, GBR), RO (disp + GBR) - Sign 11000101dddddddd — 1 —
extension - RO

MV. W @disp, PO, Rn (disp +PC) - Sign 1001nnnndddddddd — 1 —
extension - Rn

MV. W @disp, Rm, RO (disp+Rm) - Sign 10000101mmndddd — 1 —
extension - RO

MV. W @ RO, R1), Rn (RO +Rm) - Sign 0000nnnnMMMML101 — 1 —
extension - Rn

MOV. W @Rm+, Rn (Rm) - Sign o110nnnnnmmo0101 — 1 —

extension -~ Rn, Rm
+2 - Rm

Rev. 4.00

RENESAS

May 15, 2006 page 119 of 558

REJ09B0317-0400

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

MV. W @m Rn (Rm) - Sign 0110nnnnmMmmMO001 — 1 —
extension - Rn

MV. W RO, @di sp, GBR) RO - (disp+ GBR) 11000001dddddddd — 1 —

MOV. W RO, @di sp, Rn) RO - (disp + Rn) 10000001nnnndddd — 1 —

MOV. W Rm @ RO, Rn) Rm - (RO + Rn) 0000nnnnnMMMO101 — 1 —

MOV. W Rm @Rn Rn-2 - Rn,Rm - 0010nnnnmmm0101 — 1 —
(Rn)

MOV. W Rm @n Rm - (Rn) 0010nnnnmmm0001 — 1 —

MVA @disp, PC), R0 disp+PC - RO 11000111dddddddd — 1 —

MNVT Rn T - Rn 0000nnnn00101001 — 1 —

MUL.L RmRn Rn xRm - MAC 0000nnnnmMMMO111 — 2 —

(to 5)*

MULS. WRm Rn Signed operation of 0010nnnnmmMM111l — 1 —
Rn xRm - MAC (to 3)*

MULU. WRm Rn Unsigned operation 0010nnnnnmMmMmM1110 — 1 —
of Rn xRm — MAC (to 3)™

NEG Rm Rn 0-Rm - Rn 0110nnnnmmMMm1011 — 1 —

NEGC RmRn 0-Rm-T - Rn, 0110nnnnmMmmMM1010 — 1 Borrow
Borrow - T

NOP No operation 0000000000001001 — 1 —

NOT Rm Rn ~Rm - Rn 0110nnnnmmm0111 — 1 —

R #i mm RO RO | imm - RO 1100101%iiiiiiii — 1 —

oR Rm Rn Rn|Rm - Rn 0010nnnnmmmml011 — 1 —

OR B #imm @RO, BR) (RO + GBR)|imm - 1100111liiiiiiii — 3 —
(RO + GBR)

PREF @ (Rn) - cache 0000nnNN10000011 — 12% —

ROTCL Rn T<RnT 0100nnnn00100100 — 1 MSB

ROTCR Rn T-Rn-T 0100nnnn00100101 — 1 LSB

ROTL Rn T « Rn « MSB 0100nnnn00000100 — 1 MSB

ROTR Rn LSB - Rn - T 0100nnnn00000101 — 1 LSB

RTE Delayed branch, 0000000000101011 V¥ 4 —
SSR/SPC - SR/PC

RTS Delayed branch, PR 0000000000001011 — 2 —

- PC

Rev. 4.00 May 15, 2006 page 120 of 558
REJ09B0317-0400

RENESAS

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit
SETRC Rm'™® 12 lower bits of Rm 0100nmmMM00010100 — 3 —

~ RC (SR bits 27 to

16), repeat control

flag — RF1, RFO
SETRC #i mm"™® imm - RC (SRbits ~ 10000010iiiiiiii — 3 —

23 to 16), repeat

control flag - RF1,

RFO
SETS 1.8 0000000001011000 — 1 —
SETT 1T 0000000000011000 — 1 1
SHAD RmRn Rn>0; Rn<<Rm - 0100nnnnmmmil100 — 1 —

Rn

Rn<0; Rn>>Rm -

(MSB-)Rn
SHAL Rn T-Rn<0 0100nnnNn00100000 — 1 MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — 1 LSB
SHLD RmRn Rn>0; Rn<<Rm - 0100nnnnmmmil101 — 1 —

Rn

Rn<0; Rn>>Rm -

(0-)Rn
SHLL Rn T-Rn-0 0100nnnn00000000 — 1 MSB
SHLL2 Rn Rn<<2 - Rn 0100nnnNn00001000 — 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnNn00101000 — 1 —
SHLR Rn 0-Rn-T 0100nnnNn00000001 — 1 LSB
SHLR2 Rn Rn>>2 - Rn 0100nnnNn00001001 — 1 —
SHLR8 Rn Rn>>8 _, Rn 0100nnnn00011001 — 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — 1 —
SLEEP Sleep 0000000000011011 Vv 4 —
STC GBR, Rn GBR - Rn 0000nNNN00010010 — 1 —
STC SR, Rn SR - Rn 0000nnnNN00000010 ¥ 1 —
STC VBR, Rn VBR - Rn 0000nNNn00100010 V 1 —
STC SSR, Rn SSR - Rn 0000nNNn00110010 Vv 1 —
STC SPC, Rn SPC - Rn 0000nNNn01000010 V 1 —
STC MOD, Rn*® MOD - Rn 0000nNNN01010010 — 1 —

Rev. 4.00

RENESAS

May 15, 2006 page 121 of 558

REJ09B0317-0400

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

STC RE, Rn™*® RE - Rn 0000nNNN01110010 — 1 —

STC RS, Rn™*° RS - Rn 0000nNNN01100010 — 1 —

STC RO_BANK, Rn RO_BANK- Rn 0000nnNN10000010 v 1 —

STC RL_BANK, Rn R1_BANK- Rn 0000nNNN10010010 V 1 —

STC R2_BANK, Rn R2_BANK- Rn 0000nnNN10100010 V 1 —

STC R3_BANK, Rn R3_BANK- Rn 0000nnNNN10110010 V 1 —

STC R4_BANK, Rn R4_BANK- Rn 0000nnNN11000010 V 1 —

STC R5_BANK, Rn R5 BANK- Rn 0000nnNNN11010010 V 1 —

STC R6_BANK, Rn R6_BANK- Rn 0000nNNN11100010 V 1 —

STC R7_BANK, Rn R7_BANK- Rn 0000nnNN11110010 V 1 —

STC.L GBR @Rn Rn—4 - Rn, 0100nnnn00010011 — 1/2%¢ —
GBR - (Rn)

STC.L SR @Rn Rn—4 -~ Rn, SR -~ 0100nnnn00000011 V 2% —
(Rn)

STC.L VBR @Rn Rn—4 - Rn, 0100nnNnn00100011 V 12" —
VBR - (Rn)

STC.L SSR @Rn Rn—4 - Rn, 0100nnnn00110011 V 12" —
SSR - (Rn)

STC.L SPC, @Rn Rn—4 - Rn, 0100nnnn01000011 V 12" —
SPC - (Rn)

STC.L MDD, @Rn™® Rn—4 - Rn, MOD - 0100nnnn01010011 V 2 —
(Rn)

STC.L RE, @Rn™ Rn—4 - Rn, RE - 0100nnnn01110011 V 2 —
(Rn)

STC.L RS, @Rn™ Rn—4 - Rn, RS - 0100nnnn01100011 V 2 —
(Rn)

STC.L RO_BANK, @Rn Rn—-4 - Rn, 0100nnnn10000011 Vv 2 —
RO_BANK - (Rn)

STC.L RL_BANK, @Rn Rn—-4 - Rn, 0100nnnn10010011 V 2 —
R1_BANK - (Rn)

STC.L R2_BANK, @Rn Rn—4 - Rn, 0100nnnn10100011 V 2 —
R2_BANK - (Rn)

STC.L R3_BANK, @Rn Rn—4 - Rn, 0100nnnn10110011 V 2 —
R3_BANK - (Rn)

STC.L R4_BANK, @Rn Rn—-4 - Rn, 0100nnnn11000011 V 2 —
R4_BANK - (Rn)

STC.L R5_BANK, @Rn Rn—4 - Rn, 0100nnnn11010011 V 2 —

R5_BANK - (Rn)

Rev. 4.00 May 15, 2006 page 122 of 558
REJ09B0317-0400

RENESAS

Section 7

Instruction Set

Instruction Operation Code Privilege Cycles T Bit

STC.L R6_BANK, @Rn Rn—4 - Rn, 0100nnnNn11100011 V 2 —
R6_BANK - (Rn)

STC.L R7_BANK, @Rn Rn—4 - Rn, 0100nnnn11110011 V 2 —
R7_BANK - (Rn)

STS FPSCR, Rn™® FPSCR - Rn 0000nNNN01101010 — 1 —

STS FPUL, Rn™ FPUL - Rn 0000nNNN01011010 — 1 —

STS MACH, Rn MACH - Rn 0000nNNN00001010 — 1 —

STS MACL, Rn MACL - Rn 0000nnnNn00011010 — 1 —

STS PR, Rn PR - Rn 0000nNNN00101010 — 1 —

STS DSR, Rn™® DSR - Rn 0000nNNN01101010 — 1 —

STS A0, Rn™® A0 - Rn 0000nNNN01111010 — 1 —

STS X0, Rn™*® X0 - Rn 0000nNNN10001010 — 1 —

STS X1, Rn™*® X1 - Rn 0000nNNN10011010 — 1 —

STS Y0, Rn™*® Y0 - Rn 0000nNNN10101010 — 1 —

STS Y1, Rn™*® Y1 -~ Rn 0000nNNN10111010 — 1 —

STS.L FPSCR @Rn™ Rn4 - Rn, 0100nnnn01100010 — 1 —
FPSCR - @Rn

STS.L FPUL, @ Rn™® Rn-4 - Rn, 0100nnnn01010010 — 1 —
FPUL - @Rn

STS.L NMACH, @Rn Rn-4 - Rn, MACH 0100nnnn00000010 — 1 —
- (Rn)

STS.L NACL, @Rn Rn-4 - Rn, MACL 0100nnnn00010010 — 1 —
- (Rn)

STS.L PR @Rn Rn—4 - Rn, PR ~ 0100nnnn00100010 — 1 —
(Rn)

STS.L DSR @Rn™® Rn—4 - Rn,DSR - 0100nnnn01100010 — 1 —
(Rn)

STS.L A0, @Rn™ Rn—4 - Rn, A0 - 0100nnnn01110010 — 1 —
(Rn)

STS.L X0, @ Rn™® Rn—4 - Rn, X0 - 0100nnnn10000010 — 1 —
(Rn)

STS.L X1, @Rn™ Rn—4 - Rn, X1 - 0100nnnn10010010 — 1 —
(Rn)

STS.L Y0, @Rn™ Rn—4 - Rn, YO - 0100nnnn10100010 — 1 —
(Rn)

STS.L Y1, @Rn™ Rn—4 - Rn, Y1 - 0100nnnn10110010 — 1 —

(Rn)

Rev. 4.00

RENESAS

May 15, 2006 page 123 of 558

REJ09B0317-0400

Section 7 Instruction Set

Instruction Operation Code Privilege Cycles T Bit
SUB Rm Rn Rn-Rm - Rn 0011nnnnnmmmi000 — 1 —
SUBC RmRn Rn-Rm-T - Rn, 0011nnnnmmMm1010 — 1 Borrow
Borrow - T
SUBV Rm Rn Rn-Rm - Rn, 0011lnnnnnmmml011l — 1 Under-
Underflow - T flow
SWAP. B Rm Rn Rm - Swap thetwo 0110nnnnnmmL000 — 1 —
lowest-order bytes -
Rn
SWAP. WRm Rn Rm - Swap two 0110nnnnnmmMm1001 — 1 —
consecutive words —
Rn
TAS.B @n If(Rn)is0,1 -~ T;1 0100nnnn00011011 — 3/4*" Testresult
~ MSB of (Rn)
TRAPA #i nm PC/SR - SPC/SSR, 1100001liiiiiiii — 6/8*° —
(#imm) <<2 _ TRA
VBR + H'0100 - PC
TST #i mm RO RO & imm; if the 11001000iiiiiiii — 1 Test result
resultis0,1 - T
TST Rm Rn Rn & Rm; if the result 0010nnnnMMMML000 — 1 Test result
is0,1-T
TST.B #i nm @RO, GBR) (RO + GBR) & imm; 11001100iiiiiiii — 3 Test result
if the resultis 0, 1 -
T
XOR #i mm RO RO A imm - RO 11001010iiiiiiii — 1 —
XOR Rm Rn RnARm - Rn 0010nnnnmmml010 — 1 —
XOR. B #i mm @RO, GBR) (RO +GBR)"imm - 11001110iiiiiiii — 3 —
(RO + GBR)
XTRCT Rm Rn Rm: Middle 32 bits of 0010nnnnmmMmmL101 — 1 —
Rn - Rn
Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.
2. One state when it does not branch.
3. Indicates floating point instructions and FPU related CPU instructions. These
instructions can only be used with the SH-3E.
4. Three cycles on the SH3-DSP.
5. Five cycles on the SH3-DSP.
6. Two cycles on the SH3-DSP.
7. Four cycles on the SH3-DSP.
8. Eight cycles on the SH3-DSP.
9. CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.

Rev. 4.00 May 15, 2006 page 124 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)
Table 7.13 shows the DSP data transfer instructions by category.

Table 7.13 DSP Data Transfer Instruction Categories

Instruction Operation No. of
Category Types Code Function Instructions
Double data transfer 4 NOPX X memory no operation 14
instructions MOVX X memory data transfer
NOPY Y memory no operation
MOVY Y memory data transfer
Single data transfer 1 MOVS Single data transfer 16
instructions
Total 5 Total 30

The data transfer instructions are divided into two groups, double data transfers and single data
transfers. Double data transfers are combined with DSP operation instructions to create DSP
parallel processing instructions. Parallel processing instructions are 32 bits long and include a
double data transfer instruction in field A. Double data transfers that are not parallel processing
instructions and single data transfer instructions are 16 bits long.

In double data transfers, X memory and Y memory can be accessed simultaneously in parallel.
One instruction is specified each for the respective X and Y memory data accesses. The Ax
pointer is used for accessing X memory; the Ay pointer is used for accessing Y memory. Double
data transfers can only access X and Y memory.

Single data transfers can be accessed from any area. In single data transfers, the Ax pointer and
two other pointers are used as the As pointer.

Rev. 4.00 May 15, 2006 page 125 of 558
REJ09B0317-0400
RENESAS

Section 7

Instruction Set

7.3.1

Double Data Transfer Instructions (X Memory Data)

Table 7.14 Double Data Transfer Instructions (X Memory Data)

Instruction Operation Code Cycles T Bit

NOPX No Operation 1111000* 0* 0* 00* * 1 —

MOVX. W @x, Dx (AX) > MSW of Dx,0-LSW of = 111100A*D*0*01** 1 —
Dx

MOVX. W @\x+, Dx (Ax) - MSW of Dx,0 -~LSW of =~ 111100A* D*0* 10** 1 —
Dx,Ax+2 - Ax

MOVX. W @\x+l x, Dx (Ax) > MSW of Dx,0 ~LSW of 111100A*D*0*11** 1 —
Dx,Ax+Ix - Ax

MOVX. W Da, @\x MSW of Da - (Ax) 111100A*D*1*01** 1 —

MOVX. W Da, @\x+ MSW of Da - (Ax),Ax+2 - Ax 111100A*D*1*10** 1 —

MOVX. W Da, @\x+l x MSW of Da - (Ax),Ax+Ix - Ax 111100A*D*1*11** 1 —

7.3.2 Double Data Transfer Instructions (Y Memory Data)

Table 7.15 Double Data Transfer Instructions (Y Memory Data)

Instruction Operation Code Cycles T Bit

NOPY No Operation 111100*0*0*0**00 1 —

MOVY. W @y, Dy (Ay)~MSW of Dy,0.LSW of 111100*A*D*0**01 1 —
Dy

MOVY. W @y +, Dy (Ay)~MSW of Dy,0LSW of 111100*A*D*0**10 1 —
Dy, Ay+2 -, Ay

MOVY. W @y+ly, Dy (Ay)—MSW of Dy,0LSW of 111100*A*D*0**11 1 —
Dy, Ay+ly - Ay

MOVY. W Da, @y MSW of Da - (Ay) 111100* A*D*1**01 1 —

MOVY. W Da, @y+ MSW of Da—(Ay)Ay+2 Ay 111100*A*D*1**10 1 —

MOVY. W Da, @y+ly MSW of Da- (Ay),Ay+ly~Ay 111100*A*D*1**11 1 —

Rev. 4.00 May 15, 2006 page 126 of 558

REJ09B0317-0400

RENESAS

Section 7 Instruction Set

7.3.3 Single Data Transfer Instructions

Table 7.16 Single Data Transfer Instructions

Instruction Operation Code Cycles T Bit
MOVS. W @ As, Ds As—2 - As,(As) - MSW of 111101AADDDDO000 1 —
Ds,0 - LSW of Ds
MOVS. W @As, Ds (As) -~ MSW of Ds,0 - LSW of 111101AADDDD0100 1 —
Ds
MOVS. W @\s+, Ds (As) - MSW of Ds,0 - LSW of 111101AADDDD1000 1 —
Ds, As+2 - As
MOVS. W @As+l x, Ds (As)-MSW of Ds,0 - LSW of 111101AADDDD1100 1 —
Ds, As+Ix - As
MOVS. W Ds, @ As As-2 . As,MSW of Ds . (As)* 111101AADDDD0O001 1 —
MOVS. W Ds, @\s MSW of Ds - (As)* 111101AADDDD0101 1 —
MOVS. W Ds, @As+ MSW of Ds - (As),As+2 - As™ 111101AADDDD1001 1 —
MOVS. W Ds, @s+ls MSW of Ds — (As),As+ls - As* 111101AADDDD1101 1 —
MOVS. L @ As, Ds As—4 - As,(As)-Ds 111101AADDDD0010 1 —
MOVS. L @\s, Ds (As)-Ds 111101AADDDD0110 1 —
MOVS. L @As+, Ds (As)—Ds,As+4 - As 111101AADDDD1010 1 —
MOVS. L @\s+ls, Ds (As)-Ds,As+ls - As 111101AADDDD1110 1 —
MOVS. L Ds, @ As As—4 - As,Ds - (As) 111101AADDDD0011 1 —
MOVS. L Ds, @\s Ds - (As) 111101AADDDDO111 1 —
MOVS. L Ds, @As+ Ds - (As),As+4 - As 111101AADDDD1011 1 —
MOVS. L Ds, @\s+ls Ds—(As),As+ls—As 111101AADDDD1111 1 —

Note: *When guard bit registers AOG and A1G are specified for the source operand Ds, data is
output to the LDBJ[7:0] bus and the sign bit is output to the top bits [31:8].

Rev. 4.00 May 15, 2006 page 127 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

Table 7.17 lists the correspondence between DSP data transfer operands and registers. CPU core
registers are used as pointer addresses to indicate memory addresses.

Table 7.17 Correspondence between DSP Data Transfer Operands and Registers

SuperH (CPU Core) Registers

R4 R5
R2 R3 (Ax0) (Ax1) R6 R7 R8 R9
Operand RO R1 (As2) (As3) (As0) (Ax0) (Ay0) (Ay1) (Ix) (ly)

Ax — — — — Yes Yes — — — —

Ix (Is) — — — — — — — — Yes —

Dx — — — — — — — — — —

Ay — — — — — — Yes Yes — —

ly — — — — — — — — — Yes

Dy - - - = = = = = = =

Da — — — — — — — — — —

As — — Yes Yes Yes Yes — — — —

Ds — — — — — — — — — —

DSP Registers

Operand X0 X1 YO0 Y1 MO M1 A0 A1 AOG A1G

Ax — — — — — — — — — —

Ix (Is) — — — — — — — — — —

Dx Yes Yes — — — — — — _ _

Ay — — — — — — — — — —

ly - - - = = = = = = =

Dy — — Yes Yes — — — — — —

Da — — — — — — Yes Yes — —

As — — — — — — — — — —

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes indicates that the register can be set.

Rev. 4.00 May 15, 2006 page 128 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

7.4 DSP Operation Instruction Set (SH3-DSP Only)

DSP operation instructions are digital signal processing instructions that are processed by the DSP
unit. Their instruction code is 32 bits long. Multiple instructions can be processed in parallel. The
instruction code is divided into two fields, A and B. Field A specifies a parallel data transfer
instruction and field B specifies a single or double data operation instruction. Instructions can be
specified independently, and their execution is independent and in parallel. Parallel data transfer
instructions specified in field A are exactly the same as double data transfer instructions.

The data operation instructions of field B are of three types: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instructions.
Table 7.18 shows the format of DSP operation instructions. The operands are selected
independently from the DSP register. Table 7.19 shows the correspondence of DSP operation
instruction operands and registers.

Table 7.18 Instruction Formats for DSP Operation Instructions

Classification Instruction Forms Instruction
Double data operation instructions ALUop. Sx, Sy, Du PADD PMULS,
(6 operands) M.Top. Se, Sf, Dy PSUB PMULS
Conditional single 3 operands ALUop. Sx, Sy, Dz PADD, PAND, POCR,
data operation DCT ALUop. Sx, Sy, Dz PSHA, PSHL, PSUB,
instructions ' ' ' PXOR
DCF ALUop. Sx, Sy, Dz
2 operands ALUop. Sx, Dz PCOPY, PDEC,
DCT ALUop. Sx, Dz PDVSB, PINC, PLDS,
PSTS, PNEG
DCF ALUop. Sx, Dz
ALUop. Sy, Dz
DCT ALUop. Sy, Dz
DCF ALUop. Sy, Dz
1 operand ALUop. Dz PCLR, PSHA #i mm
DCT ALUop. Dz PSHL #i mm
DCF ALUop. Dz
Unconditional 3 operands ALUop. Sx, Sy, Du PADDC, PSUBC,
single data M.Top. Se, Sf, Dy PWADD, PWSB, PMULS
operation ! !
instructions 2 operands ALUop. Sx, Dz PCWP, PABS, PRND

ALUop. Sy, Dz

Rev. 4.00 May 15, 2006 page 129 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

Table 7.19 Correspondence between DSP Operation Instruction Operands and Registers

ALU and BPU Instructions Multiplication Instructions
Register Sx Sy Dz Du Se Sf Dg
A0 Yes — Yes Yes — — Yes
A1l Yes — Yes Yes Yes Yes Yes
MO — Yes Yes — — — Yes
M1 — Yes Yes — — — Yes
X0 Yes — Yes Yes Yes Yes —
X1 Yes — Yes — Yes — —
YO — Yes Yes Yes Yes Yes —
Y1 — Yes Yes — — Yes —

When writing parallel instructions, first write the field B instruction, then the field A instruction.
The following is an example of a parallel processing program.

PADD AO, M), AO PMJLSXO0, YO, M MOVX. W @4+, X0 MOVY. W @R6+, YO[;]
DCF PI NC X1, Al MOVX. W A0, @R5+R8 MOVY. W@R7+, YOI ;]
PCVP X1, M MOVX. W @r4 [NOPY][; 1]

Text in brackets ([]) can be omitted. The no operation instructions NOPX and NOPY can be
omitted. Semicolons (;) are used to demarcate instruction lines, but can be omitted. If semicolons
are used, the space after the semicolon can be used for comments.

The individual status codes (DC, N, Z, V, GT) of the DSR register is always updated by
unconditional ALU operation instructions and shift operation instructions. Conditional instructions
do not update the status codes, even if the conditions have been met. Multiplication instructions
also do not update the status codes. DC bit definitions are determined by the specifications of the
CS bits in the DSR register.

Table 7.20 shows the DSP operation instructions by category.

Rev. 4.00 May 15, 2006 page 130 of 558
REJ09B0317-0400
RENESAS

Section 7 Instruction Set

Table 7.20 DSP Operation Instruction Categories

Instruction Operation No. of
Classification Types Code Function Instructions
ALU ALU fixed 11 PABS Absolute value operation 28
arithmetic decimal point PADD Addition

operation operation

instructions instructions PADD Addition and signed

PMULS multiplication
PADDC Addition with carry
PCLR Clear

PCMP Compare

PCOPY Copy

PNEG Invert sign

PSUB Subtraction

PSUB Subtraction and signed
PMULS multiplication

PSUBC Subtraction with borrow

ALU integer 2 PDEC Decrement 12
operation PINC Increment
instructions
MSB detection 1 PDMSB MSB detection 6
instruction
Rounding 1 PRND Rounding 2
operation
instruction
ALU logical operation 3 PAND Logical AND
instructions POR Logical OR 9
PXOR Logical exclusive OR
Fixed decimal point 1 PMULS Signed multiplication 1
multiplication instruction
Shift Arithmetic shift 1 PSHA Arithmetic shift 4
operation
instruction
Logical shift 1 PSHL Logical shift 4
operation
instruction
System control instructions 2 PLDS System register load 12
PSTS Store from system register
Total 23 Total 78

Rev. 4.00 May 15, 2006 page 131 of 558
REJ09B0317-0400
RENESAS

Section 7

Instruction Set

7.4.1

ALU Fixed Decimal Point Operation Instructions

ALU Arithmetic Operation Instructions

Table 7.21 ALU Fixed Decimal Point Operation Instructions
Instruction Operation Code Cycles DC Bit
PABS Sx, Dz If Sx=0,Sx - Dz 111110*****xxkkx 1 Update
If Sx<0,0— Sx- Dz 10001000xx00zzzz
PABS Sy, Dz If Sy=0,Sy - Dz 111110*****xkkkx 1 Update
If Sy<0,0-Sy - Dz 1010100000yyzzzz
PADD Sx, Sy, Dz Sx+Sy - Dz 111110*****xkkkx 1 Update
10110001xxyyzzzz
DCT PADD Sx, Sy, Dz if DC=1,Sx+Sy-Dzif O,nop 11111Q*********% 1 —
10110010xxyyzzzz
DCF PADD Sx, Sy, Dz if DC=0,Sx+Sy-Dzif 1,nop 11111Q*********x 1 —
10110011xxyyzzzz
PADD Sx, Sy, Du Sx+Sy-Du 111110****xxkknx 1 Update
PMULS Se, Sf, Dg MSW of Se x MSW of Ollleeff xxyygguu
Sf-Dg
PADDC Sx, Sy, Dz Sx+Sy+DC - Dz 111110*****xxkkx 1 Update
10110000xxyyzzzz
PCLR Dz H'00000000 - Dz 111110*****xxkkx 1 Update
100011010000zzzz
DCT PCLR Dz if DC=1,H'00000000 - Dz 111110*****xxkkx 1 —
if 0,nop 100011100000zzzz
DCF PCLR Dz if DC=0,H'00000000 - Dz 111110*****xxkkx 1 —
if 1,nop 100011110000zzzz
PCWP Sx, Sy Sx-Sy 111110*****xxkkx 1 Update
10000100xxyy0000
PCOPY Sx, Dz Sx-Dz 111110*****xkkkx 1 Update
11011001xx00zzzz
PCOPY Sy, Dz Sy-Dz 111770Q*******xxx 1 Update
1111100100yyzzzz

Rev. 4.00 May 15, 2006 page 132 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

Instruction Operation Code Cycles DC Bit
DCT PCOPY Sx, Dz if DC=1,Sx- Dz if 0,nop 111170*******xxx 1 —
11011010xx00zzzz
DCT PCOPY Sy, Dz if DC=1,Sy-Dzif O,nop 111170*******xxx 1 —
1111101000yyzzzz
DCF PCOPY Sx, Dz if DC=0,Sx- Dz if 1,nop 111770Q*******xxx 1 —
11011011xx00zzzz
DCF PCOPY Sy, Dz if DC=0,Sy- Dz if 1,nop 111170*******xxx 1 —
1111101100yyzzzz
PNEG Sx, Dz 0-Sx-Dz 111170*******xxx 1 Update
11001001xx00zzzz
PNEG Sy, Dz 0-Sy-Dz 111170*******xxx 1 Update
1110100100yyzzzz
DCT PNEG Sx, Dz if DC=1,0-Sx- Dz 111170Q*******xxx 1 —
if 0,nop 11001010xx00zzzz
DCT PNEG Sy, Dz if DC=1,0-Sy - Dz 111170*******xxx 1 —
if 0,nop 1110101000yyzzzz
DCF PNEG Sx, Dz if DC=0,0-Sx- Dz 111720*x****xrxxx 1 —
if 1,nop 11001011xx00zzzz
DCF PNEG Sy, Dz if DC=0,0-Sy - Dz 111720*x****xxxxx 1 —
if 1,nop 1110101100yyzzzz
PSUB Sx, Sy, Dz Sx-Sy - Dz 111720******khrx 1 Update
10100001xxyyzzzz
DCT PSUB Sx, Sy, Dz if DC=1,Sx-Sy Dz if O,nop 111110Q*********x* 1 —
10100010xxyyzzzz
DCF PSUB Sx, Sy, Dz if DC=0,Sx-Sy Dz if 1,nop 111110*********x* 1 —
10100011xxyyzzzz
PSUB Sx, Sy, Du Sx-Sy-Du 111700******khrx 1 Update
PMULS Se, Sf, Dg MSW of Se x MSW of 0110eef f xxyygguu
Sf-Dg
PSUBC Sx, Sy, Dz Sx-Sy-DC - Dz 111720******khrx 1 Update
10100000xxyyzzzz

Rev. 4.00 May 15, 2006 page 133 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

ALU Integer Operation Instructions

Table 7.22 ALU Integer Operation Instructions

Instruction Operation Code Cycles DC Bit
PDEC Sx, Dz MSW of Sx—1 - MSW of 111170*******xxx 1 Update
Dz, clear LSW of Dz 10001001xx00zzzz
PDEC Sy, Dz MSW of Sy —1 - MSW of 111110*****xxkkx 1 Update
Dz, clear LSW of Dz 10101001xx00zzzz
DCT PDEC Sx, Dz IfDC=1, MSW of Sx—1 - 111120*x****xrxxx 1 —
MSW of Dz, clear LSW of Dz; 10001010xx002227
if 0, nop

DCT PDEC Sy, Dz IfDC=1, MSW of Sy—-1 - 111720**x****xrxxx 1 —
MSW of Dz, clear LSW of Dz; 10101010xx002222
if 0, nop

DCF PDEC Sx, Dz If DC=0, MSW of Sx—1 - 111170Q*******xxx 1 —
MSW of Dz, clear LSW of Dz; 10001011xx00222z2
if 1, nop

DCF PDEC Sy, Dz IfDC=0, MSW of Sy—1 - 111170Q**x*****xxx 1 —
MSW of Dz, clear LSW of Dz; 10101011xx00z22z2
if 1, nop

PI NC Sx, Dz MSW of Sx + 1 -~ MSW of 111770*******xxx 1 Update
Dz, clear LSW of Dz 10011001xx00zzzz

PI NC Sy, Dz MSW of Sy + 1 -~ MSW of 111170*******xxx 1 Update
Dz, clear LSW of Dz 1011100100yyzzz7

DCT PI NC Sx, Dz IfDC=1, MSW of Sx+1 - 111720**x****xxxxx 1 —
MSW of Dz, clear LSW of Dz; 10011010xx002227
if 0, nop

DCT PINC Sy,Dz IfDC=1, MSW of Sy +1 - 111720**x****xxxxx 1 —
MSW of Dz, clear LSW of Dz; 1011101000yyzzzz
if 0, nop

DCF PINC Sx, Dz If DC=0, MSW of Sx +1 - 111720**x****xrxxx 1 —
MSW of Dz, clear LSW of Dz; 10011011xx00z222
if 1, nop

DCF PI NC Sy, Dz IfDC=0, MSW of Sy +1 - 111170Q**x*****xxx 1 —
MSW of Dz, clear LSW of Dz; 1011101100yyzzzz

if 1, nop

Rev. 4.00 May 15, 2006 page 134 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

MSB Detection Instructions

Table 7.23 MSB Detection Instructions

Instruction Operation Code Cycles DC Bit
PDVSB Sx, Dz Sx data MSB position — 111110%***x**xxx* 1 Update
MSW of Dz, clear LSW 10011101xx002222

of Dz

PDVSB Sy, Dz Sy data MSB position - 111210*****xkrk* 1 Update
MSW of Dz, clear LSW 1011110100yyzzzz
of Dz

DCT PDMBSB Sx, Dz If DC=1, Sx data MSB 111210******kknx 1 —
position — MSW of Dz, 10011110xx00zzzz
clear LSW of Dz; if 0, nop

DCT PDVBB Sy, Dz If DC=1, Sy data MSB 111110Q***Hwkkkks 1 —
position ~ MSW of Dz, 1011111000yyzzzz
clear LSW of Dz; if 0, nop

DCF PDVBB Sx, Dz If DC=0, Sx data MSB 111110****wkkkns 1 —
position — MSW of Dz, 10011111xx002227
clear LSW of Dz; if 1, nop

DCF PDVBSB Sy, Dz If DC=0, Sy data MSB 1121210***x**kknx 1 —
position — MSW of Dz, 1011111100yyzzzz
clear LSW of Dz; if 1, nop

Rounding Operation Instructions

Table 7.24 Rounding Operation Instructions

Instruction Operation Code Cycles DC Bit

PRND Sx, Dz Sx+H'00008000 - Dz 111110Q****kkkkns 1 Update
clear LSW of Dz 10011000xx00zzzz

PRND Sy, Dz Sy+H'00008000 - Dz 111110Q****wkkkns 1 Update
clear LSW of Dz 1011100000yyzzzz

Rev. 4.00 May 15, 2006 page 135 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

7.4.2

Table 7.25 ALU Logical Operation Instructions

ALU Logical Operation Instructions

Instruction Operation Code Cycles DC Bit

PAND Sx, Sy, Dz Sx & Sy - Dz, clear LSW 112110 ***x**xxs 1 Update
of Dz 10010101xXxyyzzzz

DCT PAND Sx, Sy, Dz 1If DC=1,Sx & Sy - Dz, 112110 ***x**xxk 1 —
clear LSW of Dz; if 0, nop 10010110xxyyzzzz

DCF PAND Sx, Sy, Dz 1f DC=0, Sx & Sy - Dz, 112110 ***x**xxk 1 —
clear LSW of Dz; if 1, nop 10010111xxyyzzzz

POR Sx, Sy, Dz Sx | Sy - Dz, clear LSW 112110 ***x*kxxk 1 Update
of Dz 10110101xxyyzzzz

DCT POR Sx, Sy,Dz IfDC=1, Sx| Sy - Dz, 1121110*******xxx —
clear LSW of Dz; if 0, nop 10110110xxyyzz22

DCF POR Sx, Sy,Dz IfDC=0, Sx | Sy - Dz, 1121110*******xxx —
clear LSW of Dz; if 1, nop 10110111xxyyzzz2

PXOR Sx, Sy, Dz Sx Sy - Dz, clear LSW 112110****xx*xxx 1 Update
of Dz 10100101xxyyzzzz

DCT PXOR Sx, Sy, Dz IfDC=1,Sx " Sy - Dz, 1121110*******xxx —
clear LSW of Dz; if 0, nop 10100110xxyyzz22

DCF PXOR Sx, Sy, Dz If DC=0, Sx A Sy - Dz, 1121110***x***%xx —
clear LSW of Dz; if 1, nop 10100111xxyyzzz2

7.4.3 Fixed Decimal Point Multiplication Instructions

Table 7.26 Fixed Decimal Point Multiplication Instructions

Instruction Operation Code Cycles DC Bit

PMULS Se, Sf, Dg MSW of Se x MSW of 111200**xxxwskxx 1 —
Sf-Dg 0100eef f 0000gg00

Rev. 4.00 May 15, 2006 page 136 of 558

REJ09B0317-0400

RENESAS

Section 7

Instruction Set

7.4.4

Shift Operation Instructions

Arithmetic Shift Instructions

Table 7.27 Arithmetic Shift Instructions

Instruction Operation Code Cycles DC Bit
PSHA Sx, Sy, Dz if Sy=0,Sx<<Sy - Dz 111100% % **xxxxxx 4 Update
if Sy<0,Sx>>Sy - Dz 10010001xxyyzzzz
DCT PSHA Sx, Sy, Dz if DC=1 & Sy=0,Sx<<Sy Dz 111110Q*********x% 1 —
if DC=1 & Sy<0,Sx>>Sy Dz 10010010xxyyzzzz
if DC=0,nop
DCF PSHA Sx, Sy, Dz if DC=0 & Sy=0,Sx<<Sy Dz 111110Q*****=*=xx** 1 —
if DC=0 & Sy<0,Sx>>Sy Dz 10010011xxyyzzzz
if DC=1,nop
PSHA #i nm Dz if imm=0,Dz<<imm - Dz 111110Q*****kwknx 4 Update
if imm<0,Dz>>imm - Dz 00000iiiiiiizzzz

Rev. 4.00 May 15, 2006 page 137 of 558

RENESAS

REJ09B0317-0400

Section 7 Instruction Set

Logical Shift Operation Instructions

Table 7.28 Logical Shift Operation Instructions

Instruction Operation Code Cycles DC Bit
PSHL Sx, Sy, Dz if Sy=0,Sx<<Sy - Dz, 111100******%xkx 1 Update
clear LSW of Dz 10000001xxyyzzzz
if Sy<0,Sx>>Sy - Dz,
clear LSW of Dz
DCT PSHL Sx, Sy, Dz ifDC=1& 111110%*****xxxx* 1 —
Sy=0,Sx<<8y - Dz, clear 10000010xxyyzzzz
LSW of Dz
if DC=1 &
Sy<0,Sx>>Sy - Dz, clear
LSW of Dz
if DC=0,nop
DCF PSHL Sx, Sy, Dz if DC=0 & 111110%*****xxxx* 1 —
Sy20,Sx<<8y - Dz, clear 10000011xxyyzzzz
LSW of Dz
if DC=0 &
Sy<0,Sx>>Sy - Dz, clear
LSW of Dz
if DC=1,nop
PSHL #i nmm Dz if imm=0,Dz<<imm - Dz, 111110* ***x*kkxk 1 Update
clear LSW of Dz 00010iiiiiiizzzz

if imm<0,Dz>>imm - Dz,
clear LSW of Dz

Rev. 4.00 May 15, 2006 page 138 of 558
REJ09B0317-0400
RENESAS

Section 7

Instruction Set

7.4.5

System Control Instructions

Table 7.29 System Control Instructions

Instruction Operation Code Cycles DC Bit
PLDS Dz, MACH Dz - MACH 111220%****xxxxx 1 —
111011010000zzzz
PLDS Dz, MACL Dz - MACL 111220%****xxxxx 1 —
111111010000zzzz
DCT PLDS Dz, MACH if DC=1,Dz-MACH 111220%****xxxxx 1 —
if 0,nop 111011100000zzzz
DCT PLDS Dz, MACL if DC=1,Dz—MACL 111220%****xxxxx 1 —
if 0,nop 111111100000zzzz
DCF PLDS Dz, MACH if DC=0,Dz - MACH 111220******xxx 1 —
if 1,nop 111011110000zzzz
DCF PLDS Dz, MACL if DC=0,Dz-MACL 111220%*****xxx 1 —
if 1,nop 111111110000zzzz
PSTS MACH, Dz MACH - Dz 111220%*****xxx 1 —
110011010000zzzz
PSTS MACL, Dz MACL - Dz 111220%*****xxx 1 —
110111010000zzzz
DCT PSTS MACH, Dz if DC=1,MACH -. Dz 111220%*****xxx 1 —
if 0,nop 110011100000zzzz
DCT PSTS MACL, Dz if DC=1,MACL - Dz 111220%*****xxx 1 —
if 0,nop 110111100000zzzz
DCF PSTS MACH, Dz if DC=0,MACH -. Dz 111220%*****xxx 1 —
if 1,nop 110011110000zzzz
DCF PSTS MACL, Dz if DC=0,MACL - Dz 111220%*****xxx 1 —
if 1,nop 110111110000zzzz

Rev. 4.00 May 15, 2006 page 139 of 558

RENESAS

REJ09B0317-0400

Section 7

Instruction Set

7.4.6

NOPX and NOPY Instruction Code

When there is no data transfer instruction to be processed in parallel with the DSP operation
instruction, a NOPX or NOPY instruction can be written as the data transfer instruction or the
instruction can be omitted. The operation code is the same in either case. Table 7.30 shows the
NOPX and NOPY instruction code.

Table 7.30 Sample NOPX and NOPY Instruction Code

Instruction Code
PADD X0, YO, A0 MOVX. W@R4+, X0 MOVY.W @R6+R9, YO 1111100010110000
1000000010100000
PADD X0, YO, A0 NOPX MOVY. W @R6+R9, YO 1111100000110000
1000000010100000
PADD X0, YO, A0 NOPX NOPY 1111100000000000
PADD X0, YO, A0 NOPX 1000000010100000
PADD X0, YO, A0
MOVX. W @4+, X0 MOVY.W @R6+R9, YO 1111000010110000
MOVX. W @4+, X0 NOPY 1111000010000000
MOVS. W @4+, X0 1111011010000000
NOPX MOVY. W @R6+R9, YO 1111000000110000
MOVY. W @R6+R9, YO
NOPX NOPY 1111000000000000
NOP 0000000000001001

Rev. 4.00 May 15, 2006 page 140 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

Section 8 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
8.1. The actual descriptions begin at section 8.2.

8.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit
Assembler input format; A brief Displayed in order Number of The value of
imm and disp are numbers, description of MSB ~ LSB cycles when T bit after the
expressions, or symbols operation there is no instruction is
wait state executed

Note: Section 8.2 contains an description of CPU instructions common to the SH-3, SH-3E, and
SH3-DSP, section 8.3 covers floating point instructions that can only be used with the SH-
3E, and section 8.4 covers DSP data transfer instructions that can only be used with the
SH3-DSP.

The number of execution cycles required for floating point instructions is determined by the
latency and pitch values. "Latency" refers to the number of cycles required to generate the
result value for the operation, and "pitch" indicates the number of wait cycles required
before execution of the next instruction can begin. The latency and pitch values are the
same for most CPU instructions, indicating that they each require one execution cycle.

Description: Description of operation
Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

* Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsi gned char Read_Byte(unsigned | ong Addr);
unsi gned short Read_Word(unsigned | ong Addr);
unsi gned | ong Read_Long(unsi gned | ong Addr);

Rev. 4.00 May 15, 2006 page 141 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

* Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsi gned char Wite_Byte(unsigned | ong Addr, unsigned |ong Data);
unsi gned short Wite_Wrd(unsigned | ong Addr, unsigned |ong Data);
unsigned long Wite_Long(unsigned | ong Addr, unsigned |ong Data);

» Starts execution from the slot instruction located at an address (Addr — 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as having illegal slots (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF
Del ay_Sl ot (unsi gned | ong Addr);
* List registers:

unsi gned long R 16];

unsi gned | ong SR, GBR, VBR;
unsi gned | ong MACH, MACL, PR;
unsi gned | ong PC;

e Definition of SR structures:

struct SRO {
unsi gned | ong dunmmyO: 4;
unsi gned | ong RCO: 12;
unsi gned | ong dumyl: 4;
unsi gned | ong DWYO0: 1;
unsi gned | ong DIVX0: 1;
unsi gned | ong MD: 1;
unsi gned | ong Q: 1;
unsi gned | ong 1 0: 4
unsi gned | ong RF10: 1;
unsi gned | ong RFOO: 1;
unsi gned | ong S0: 1;
unsi gned | ong TO: 1;

I

Rev. 4.00 May 15, 2006 page 142 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

¢ Definition of bits in SR:

#defi ne
#def i ne
#defi ne
#def i ne

M ((*(struct
Q ((*(struct
S ((*(struct
T ((*(struct

SRO *)(&SR)). VD)
SRO *) (&SR)) . Q)
SRO *)(&SR)) . S0)
SRO *)(&SR)) . TO)

#defi ne
#defi ne

RFL ((*(struct SRO *)(&SR)).RF10)
RFO ((*(struct SRO *)(&SR)).RF00)

Error display function:

Error(char *er);

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org
.data.w
.data. |

. sdat a
.align 2
.align 4
.arepeat 16
.arepeat 32
. aendr

Location counter set

Securing integer word data
Securing integer longword data
Securing string data

2-byte boundary alignment
2-byte boundary alignment
16-repeat expansion

32-repeat expansion

End of repeat expansion of specified number

Notes: The SH series cross assembler version 1.0 does not support the conditional assembler

functions.

1. For the following addressing modes involving displacement (disp), the assembler
descriptors in this manual indicate values before scaling ((1, (2, (3, (4) to match the
operand size. This is done to clarify the operation of the LSI device. Refer to the
applicable assembler notation rules for the actual assembler descriptors.

@(disp: 4, Rn);

Register indirect with displacement

@(disp: 8, GBR); GBR indirect with displacement

@(disp: 8, PC);

PC relative with displacement

Rev. 4.00 May 15, 2006 page 143 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

disp: 8, disp: 12; PC relative

2. Of the 16 bits of the instruction code, codes not assigned as instructions or privileged
instructions in the user mode (excluding instructions that access GBR) are treated as
general invalid instructions and invalid instruction exception processing is performed.

Example: H'FFFF [general invalid instruction]

3. If the instruction following a delayed branching instruction such as BRA and BT/S is a
general invalid instruction or a PC overwrite instruction (branching instruction, etc.)
(such instructions are referred to as "slot invalid instructions"), slot invalid instruction
exception processing is performed.

4. Inthe SH3-DSP, if a general invalid instruction, a PC overwrite instruction (branching
instruction, etc.), or an instruction (SETRC, LDRS, LDRE, LDC) that overwrites the
SR, RS, or RE register is contained within a repeating program (loop) consisting of
three or fewer instructions or within the final three instructions of a repeating program
(loop) consisting of four or more instructions, invalid instruction exception processing
is performed. For details, refer to section 5.12, DSP Repeat (Loop) Control.

Rev. 4.00 May 15, 2006 page 144 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2 Instruction Description (Listing and Description of Instructions
Common to the SH-3, SH-3E and SH3-DSP)

8.2.1 ADD (Add Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADD Rm Rn Rm +Rn - Rn 0011nnnnnmmmll100 1 —
ADD #i mm Rn Rn +imm - Rn Ollinnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long mlong n) /* ADD RmRn */

{
R n] +=R(n ;
PC+=2;
H
ADDI (long i,long n) /* ADD #i nm Rn */
{
if ((i&x80)==0) R n]+=(0x000000FF & (long)i);
el se R n] +=(OxFFFFFFOO | (long)i);
PC+=2;
}
Examples:
ADD RO, R1 ; Before execution RO = H'7FFFFFFF, R1 =H'00000001

; After execution R1 =H'80000000

ADD #H 01, R2 ; Before execution R2=H'00000000
; After execution R2 =H'00000001

ADD #H FE, R3 ; Before execution R3 =H'00000001
; After execution R3 = HFFFFFFFF

Rev. 4.00 May 15, 2006 page 145 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.2 ADDC (Add with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADDC Rm Rn Rn+Rm+T - Rn,carry -~ T 0011nnnnnmmmi110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long mlong n) /* ADDC Rm Rn */

{
unsi gned | ong tnpoO, t npl;
tmpl=Rn] +R(ni ;
t mpO=R{ n] ;
RIn] =t np1+T;
if (tmpO>tnpl) T=1,;
el se T=0;
if (tmpl>R[n]) T=1,;
PC+=2;
}
Examples:
CLRT ; RO:R1 (64 bits) + R2:R3 (64 bits) = RO:R1 (64 bits)
ADDC R3, Rl ; Before execution T =0, R1=H'00000001, R3 = HFFFFFFFF
; After execution T=1, R1=H'0000000
ADDC R2, RO ; Before execution T =1, RO =H'00000000, R2 = H'00000000

; After execution T =0, R0O=H'00000001

Rev. 4.00 May 15, 2006 page 146 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.3 ADDYV (Add with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit
ADDV Rm Rn Rn + Rm - Rn, overflow - T 0011nnnnmmmil111l 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bitis setto 1.

Operation:

ADDV(|l ong mlong n) /*ADDV Rm Rn */
{

| ong dest, src, ans;

if ((long)R n]>=0) dest=0;

el se dest=1;

if ((long) RmM>=0) src=0;

el se src=1;

src+=dest ;

REn] +=R(ni

if ((long)R n]>=0) ans=0;

el se ans=1;

ans+=dest ;

if (src==0 || src==2) {
if (ans==1) T=1;

el se T=0;
}
el se T=0;
PC+=2;
}
Examples:
ADDV RO, RL ; Before execution RO = H'00000001, R1 = H7FFFFFFE, T=0
. After execution R1=H'7FFFFFFF, T=0
ADDV RO, RL ; Before execution RO = H'00000002, R1 = H7FFFFFFE, T =0

; After execution R1=H'80000000, T =1

Rev. 4.00 May 15, 2006 page 147 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

8.24 AND (AND Logical): Logic Operation Instruction

Format Abstract Code

AND RmRn Rn & Rm - Rn 0010nnnnmMmmmiL001

AND #i nm RO RO & imm - RO 11001002iiiiiiii

AND. B #i nm @ R0, BR) (RO + GBR) & imm - 11002110%iiiiiiii
(RO + GBR)

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate

data.

Note: After AND #imm, RO is executed and the upper 24 bits of RO are always cleared to 0.

Operation:

AND(| ong m | ong n)
{

/* AND Rm Rn */

/* AND #imm RO */

R[0] &=(0x000000FF & (1ong)i);

/* AND.B #i nm @R0, GBR) */

temp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp&=(0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);

R n] &R nj
PC+=2;
}
ANDI (1 ong i)
{
PC+=2;
}
ANDM | ong i)
{
| ong tenp;
PC+=2,
}

Rev. 4.00 May 15, 2006 page 148 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

Examples:
AND RO, R1 ; Before execution RO =H'AAAAAAAA, R1 =H'55555555
; After execution R1 =H'00000000
AND #H OF, RO ; Before execution RO = H'FFFFFFFF

; After execution RO =H'0000000F

AND. B #H 80, @ RO, GBBR) ; Before execution @(R0,GBR)=H'A5
; After execution @(RO,GBR) =H'80

Rev. 4.00 May 15, 2006 page 149 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.5 BF (Branch if False): Branch Instruction

Format Abstract Code Cycle T Bit

BF | abel When T =0, disp x2 + PC - PC; 10001011dddddddd 3/1 —
When T =1, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle. If this instruction is located
in a delayed slot immediately following a delayed branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BF(long d)/* BF disp */

{
| ong disp;
if ((d&0x80)==0) di sp=(0x000000FF & (1ong)d);
el se di sp=(0OxFFFFFFOO | (long)d);
if (T==0) PC=PC+(disp<<l) +4;
el se PC+=2;
}
Example:
CLRT ; T is always cleared to 0
BT TRCGET_T ; Does not branch, because T =0
BF TRGET_F ; Branches to TRGET _F, because T =0
NOP
NOP ;. « The PC location is used to calculate the branch destination
; address of the BF instruction
TRCGET_F: ; « Branch destination of the BF instruction

Rev. 4.00 May 15, 2006 page 150 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BF |abel WhenT=0,dispx2+PC - PC; 10001111dddddddd 2/1 —
When T =1, nop

Description: Reads the T bit, and if T = 1, BF executes the next instruction. If T = 0, it branches
after executing the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.

Rev. 4.00 May 15, 2006 page 151 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

BFS(long d) /* BFS disp */

{
| ong disp;
unsi gned | ong tenp;
t enp=PC;
if ((d&0x80)==0) di sp=(0x000000FF & (1ong)d);
el se di sp=(0xFFFFFFOO0 | (1ong)d);
if (T==0) {
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}
Examples:
SETT ; Tis always 1
BF/ S TARGET_F ; Does not branch, because T = 1
NOP
BT/ S TARGET_T ; Branches to TARGET, because T = 1
ADD RO, R1 ; Executed before branch.
NOP ; « The PC location is used to calculate the branch destination
; address of the BT/S instruction
TRCGET_T: ; « Branch destination of the BT/S instruction
Note: In delayed branching, the branching operation itself takes place after the slot instruction

has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 152 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.7 BRA (Branch): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
BRA | abel dispx2+PC - PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is —
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

BRA(long d) /* BRA disp */
{

unsi gned | ong tenp;

| ong disp;

i f ((d&0x800)==0) di sp=(0x00000FFF & d);
el se di sp=(0xFFFFFO00 | d);

t emp=PC;

PC=PC+(di sp<<1) +4;

Del ay_Sl ot (t enp+2);

Rev. 4.00 May 15, 2006 page 153 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:

BRA TRGET ; Branches to TRGET
ADD RO, R1 ; Executes ADD before branching

NOP ; « The PC location is used to calculate the branch destination
; address of the BRA instruction

TRCGET: . « Branch destination of the BRA instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 154 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.8 BRAF (Branch Far): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
BRAF Rm Rm+PC - PC 0000nnnn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction. If this instruction is located in a delayed slot immediately following a delayed branch
instruction, it is acknowledged as an illegal slot instruction.

Operation:

BRAF(l ong m) /* BRAF Rm*/

{
unsi gned | ong tenp;
t emp=PC;
PC+=R[n ;
Del ay_Sl ot (t enp+2) ;
}
Examples:

MOV. L #(TARGET- BSRF_PC), RO ; Sets displacement.

BRAF TRGET ; Branches to TARGET
ADD RO, R1 ; Executes ADD before branching
BRAF_PC. ; « The PC location is used to calculate the
: branch destination address of the BRAF
; instruction
NOP
TARGET: ; « Branch destination of the BRAF instruction

Rev. 4.00 May 15, 2006 page 155 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 156 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.9 BSR (Branch to Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle TBit
BSR | abel PC - PR, dispx2+PC - PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is —4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
TecOoVer.

Rev. 4.00 May 15, 2006 page 157 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

BSR(long d) /* BSR disp */

{
| ong disp;
i f ((d&0x800)==0) di sp=(0x00000FFF & d);
el se di sp=(0xFFFFFO00 | d);
PR=PC,
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (PR+2) ;
}
Examples:
BSR TRGET ; Branches to TRGET
MOV R3, R4 ; Executes the MOV instruction before branching
ADD RO, R1 ;. « The PC location is used to calculate the branch destination
; address of the BSR instruction (return address for when the
; subroutine procedure is completed (PR data))
TRCGET: ; « Procedure entrance
MV R2,R3
RTS : Returns to the above ADD instruction
MOV #1,RO ; Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 158 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
BSRF Rm PC -~ PR,Rm+PC - PC 0000nnnn00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
Tecover.

Operation:

BSRF(long m) /* BSRF Rm */

{

PR=PC,

PC+=R[n ;

Del ay_Sl ot (PR+2) ;
}

Rev. 4.00 May 15, 2006 page 159 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:
MOV. L #(TARGET- BSRF_PC), RO ; Sets displacement.
BRSF @r0 ; Branches to TARGET
MOV R3, R4 ; Executes the MOV instruction before
; branching
BSRF_PC: ; « The PC location is used to calculate the
; branch destination with BSRF.
ADD RO, R1
TARGET: ; « Procedure entrance
MV R2,R3
RTS ; Returns to the above ADD instruction
MoV #1, RO ; Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 160 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.11 BT (Branch if True): Branch Instruction

Format Abstract Code Cycle T Bit

BT | abel When T =1, disp x2 + PC - PC; 10001001dddddddd 3/1 —
When T = 0, nop

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T =0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle. If this instruction is
located in a delayed slot immediately following a delayed branch instruction, it is acknowledged
as an illegal slot instruction.

Operation:

BT(long d)/* BT disp */

{
| ong disp;
if ((d&0x80)==0) di sp=(0x000000FF & (1ong)d);
el se di sp=(0xFFFFFFOO0 | (long)d);
if (T==1) PC=PC+(disp<<l) +4;
el se PC+=2;
}
Examples:
SETT ; Tis always 1
BF TRGET_F ; Does not branch, because T =1
BT TRGET_T ; Branchesto TRGET T, because T =1
NOP
NOP : « The PC location is used to calculate the branch destination
; address of the BT instruction
TRCGET_T: ; « Branch destination of the BT instruction

Rev. 4.00 May 15, 2006 page 161 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction

Format Abstract Code Cycle T Bit

BT/S | abel When T=1,dispx2+PC - PC; 10001101dddddddd 2/1 —
When T = 0, nop

Description: Reads the T bit, and if T = 1, BT/S branches after the following instruction executes.
If T = 0, BT/S executes the next instruction. The branch destination is an address specified by PC
+ displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is —256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT/S with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.

Rev. 4.00 May 15, 2006 page 162 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

BTS(long d) [/* BTS disp */

{
| ong disp;
unsigned |ong tenp;
t emp=PC;
if ((d&0x80)==0) di sp=(0x000000FF & (1ong)d);
el se di sp=(OxFFFFFFOO | (long)d);
if (T==1) {
PC=PC+(di sp<<1) +4;
Del ay_Sl ot (t enp+2) ;
}
el se PC+=2;
}
Examples:
SETT ; Tis always 1
BF/ S TARGET_F ; Does not branch, because T = 1
NOP
BT/ S TARGET_T ; Branches to TARGET, because T =1
ADD RO, R1 ; Executes before branching.
NOP ; « The PC location is used to calculate the branch destination
; address of the BT/S instruction
TARGET_T: ; « Branch destination of the BT/S instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 163 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.13 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code Cycle

T Bit

CLRVAC 0 - MACH, MACL 0000000000101000 1

Description: Clears the MACH and MACL registers.
Operation:

CLRVAC() /* CLRVAC */
{

MACH=0;

MACL=0;

PC+=2;
}

Examples:

CLRVAC ; Initializes the MAC register
MAC. W @RO+, @R1+ ; Multiply and accumulate operation
MAC. W @RO+, @R1+

Rev. 4.00 May 15, 2006 page 164 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

8.2.14 CLRS (Clear S Bit): System Control Instruction

Format Abstract Code

Cycle TBit

CLRS 0-S 0000000001001000

1 —

Description: Clears the S bit.
Operation:

CLRS() /* CLRS */
{

S=0;

PC+=2;
}

Examples:

CLRS ; Before execution S=1

; After execution S=0

Rev. 4.00 May 15,

RENESAS

2006 page 165 of 558
REJ09B0317-0400

Section 8 Instruction Descriptions

8.2.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code

Cycle

T Bit

CLRT 0-T 0000000000001000

1

0

Description: Clears the T bit.
Operation:

CLRT() /* CLRT */
{

T=0;

PC+=2;
}

Examples:

CLRT ; Before execution T=1

; After execution T=0

Rev. 4.00 May 15, 2006 page 166 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
Format Abstract Code Cycle T Bit
CWP/ EQ RmRn WhenRn=Rm,1 - T 0011nnnnmmmm0000 1 Comparison
result
CMP/GE RmRn When signed and Rn > 0011nnnnmMmmm®D011 1 Comparison
Rm,1 - T result
CW/ GT RmRn When signed and Rn > 0011lnnnnmmmo0111 1 Comparison
Rm,1 - T result
CVP/ HI Rm Rn When unsigned and Rn > 001lnnnnnmmm0110 1 Comparison
Rm,1 - T result
CMP/HS RmRn When unsigned and Rn > 0011nnnnmmm0010 1 Comparison
Rm,1 - T result
CMP/PL Rn WhenRn>0,1 - T 0100nnnn00010101 1 Comparison
result
CWP/ PZ Rn WhenRn=0,1 - T 0100nnnn00010001 1 Comparison
result
CWP/ STR Rm Rn When a byte in Rn equals 0010nnnnnmmmi100 1 Comparison
abyteinRm,1 - T result
CW/EQ # mmRO When RO =imm,1 - T 10001000iiiiiiii 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied, and the Rn
data does not change. The nine conditions in table 8.1 can be specified. Conditions PZ and PL are
the results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with RO by using condition EQ. Here, RO data does not change. Table 8.1 shows the
mnemonics for the conditions.

Rev. 4.00 May 15, 2006 page 167 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

Table 8.1 CMP Mnemonics

Mnemonics Condition

CW/ EQ RmRn IfRNn=Rm, T=1

CMWP/ GE Rm Rn If Rn = Rm with signed data, T =1
CWP/ GT Rm Rn If Rn > Rm with signed data, T =1
CVP/ HI Rm Rn If Rn > Rm with unsigned data, T = 1
CMP/ HS Rm Rn If Rn = Rm with unsigned data, T = 1
CW/PL Rn IfRn>0,T=1

CW/PZ Rn IfRn=0,T=1

CWP/ STR Rm Rn If a byte in Rn equals a byte in Rm, T =1
CW/ EQ #imm RO If RO =imm, T =1

Operation:

CMPEQ(| ong m | ong n) /* CVP_EQ Rm Rn */
{

if (RIn]==R[nj) T=1;

el se T=0;

PC+=2,
}

CMPGE(l ong m | ong n) /[* CVMP_CGE Rm Rn */
{

if ((long)Rin]>=(long)RIn) T=1;

el se T=0;

PC+=2;
}

CWMPGT(l ong m | ong n) /* CMP_GT RmRn */
{

if ((1ong)RIn]>(long)Rnj) T=1;

el se T=0;

PC+=2;
}

CWPHI (1 ong m | ong n) /* CVWP_H RmRn */
{

Rev. 4.00 May 15, 2006 page 168 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

if ((unsigned I ong)RIn]>(unsigned long) RIni) T=1,
el se T=0;
PC+=2,

CMPHS(1 ong m | ong n) /* CMP_HS Rm Rn */

{
if ((unsigned long)RIn]>=(unsigned long) Rfm) T=1;
el se T=0;
PC+=2;
}
CMPPL(| ong n) /* CVMP_PL Rn */
{
if ((long)Rfn]>0) T=1;
el se T=0;
PC+=2;
}
CWPPZ(long n) /* CMP_PZ Rn */
{
if ((long) R n]>=0) T=1,;
el se T=0;
PC+=2;
}
CWMPSTR(long mlong n) /* CMP_STR Rm Rn */
{

unsi gned | ong tenp;
long HH, HL, LH, LL;

temp=R[n] *R[n{;

HH=(t enp&XFF000000) >>12;

HL=(t enp&X00FF0000) >>8;

LH=(t enp&x0000FF00) >>4; LL=t enp&x000000FF;
HH=HHREHL &&L HE&L L ;

if (HH==0) T=1;

Rev. 4.00 May 15, 2006 page 169 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

el se T=0;
PC+=2;

}

CWPI M long i) /* CWMP_EQ #imm RO */

{
| ong i nm
if ((i&0x80)==0) i m¥r(0x000000FF & (long i));
el se i mm=(OXFFFFFFOO | (long i));
if (RR0]==imm T=1;
el se T=0;
PC+=2,

}

Examples:

CVP/ GE RO, R1 ; RO =H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; Does not branch because T = 0
CMP/ HS RO, R1 ; RO =H'"7FFFFFFF, R1 = H'80000000
BT TRCGET_T ; Branches because T =1
CW/ STR R2, R3 ; R2=“ABCD”, R3 =“XYCZ”
BT TRCGET_T ; Branches because T =1

Rev. 4.00 May 15, 2006 page 170 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DIVOS RmRn MSBofRn - Q, 0010nnnnmmD111 1 Calculation
MSBof Rm - M, M*Q - T result

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DI VOS(l ong m 1 ong n) /* DIVOS Rm Rn */

{
i f ((R[n]&x80000000)==0) Q=0;
el se Q=1;
i f ((R[M &x80000000) ==0) M=O0;
el se Me1;
T=! (Me=Q) ;
PC+=2;

}

Examples: See DIV1.

Rev. 4.00 May 15, 2006 page 171 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

Dl VOU 0 - MIQ/T 0000000000011001 1 0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIVOU() /* DIVOU */

{
MeQ=T=0;
PC+=2;

}

Example: See DIV1.

Rev. 4.00 May 15, 2006 page 172 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DIV1I RmRn 1 step division (Rn + Rm) 0011nnnnmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(remainder) = (dividend) — (divisor) X (quotient)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIVOS or DIVOU. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.

Rev. 4.00 May 15, 2006 page 173 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

DI V1(long mlong n) /* DIV1I RmRn */
{

unsi gned | ong t npO;

unsi gned char ol d_g, t np1;

ol d_g=Q@Q
Q=(unsi gned char) ((0x80000000 & R[n])!=0);
Rl n] <<=1;
R[n] | =(unsi gned | ong) T;
switch(ol d_q){
case 0:switch(M/{
case 0:tnmp0=R[n];
R n]-=R(ni;
tmp1=(R[n] >t np0) ;
switch(Q{
case 0: Q=t np1;
br eak;
case 1: Q=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnmpO0=R[n];
R n] +=R(n ;
tmp1=(R[n] <t mp0) ;
switch(Q{
case 0: Q=(unsigned char) (tnpl==0);
br eak;
case 1: Q=t np1l;

br eak;
}
br eak;
}
br eak;

Rev. 4.00 May 15, 2006 page 174 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

case l:switch(M{
case 0:tnmpO0=R[n];
R n] +=R(n ;
tmpl=(R[n] <t p0) ;
switch(Q{
case 0: Q=t np1;
br eak;
case 1: Q=(unsigned char) (tnpl==0);
br eak;
}
br eak;
case 1:tnmp0=R[n];
R n]-=R(ni;
tmp1=(R[n] >t np0) ;
switch(Q{
case 0: Q=(unsigned char) (tnpl==0);
br eak;
case 1: Q=t np1l;
br eak;

}

br eak;
}
br eak;
}
T=(F=M;
PC+=2;

Rev. 4.00 May 15, 2006 page 175 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Example 1:
; R1 (32 bits) / RO (16 bits) = R1 (16 bits):Unsigned
SHLL16 RO ; Upper 16 bits = divisor, lower 16 bits = 0
TST RO, RO ; Zero division check
BT ZERO DI V
CMP/ HS RO, R1 ; Overflow check
BT OVER DI V
Dl VOU ; Flag initialization
.arepeat 16
Dl V1 RO, R1 ; Repeat 16 times
. aendr
ROTCL R1
EXTU. W Rl, R2 ; R1 = Quotient
Example 2:

; R1:R2 (64 bits)/RO (32 bits) = R2 (32 bits): Unsigned

TST RO, RO ; Zero division check
BT ZERO DI V

CVP/ HS RO, R1 ; Overflow check
BT OVER DI V

Dl VOU ; Flag initialization
.arepeat 32

ROTCL R2 ; Repeat 32 times

Dl V1 RO, R1

. aendr

ROTCL R2 ; R2 = Quotient

Rev. 4.00 May 15, 2006 page 176 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Example 3:

SHLL16
EXTS. W
XOR
MOV
ROTCL
SUBC

DI VOS

. ar epeat
Dl v1

. aendr
EXTS. W
ROTCL
ADDC

EXTS. W

Example 4:

MoV
ROTCL
SUBC
XOR
SUBC

DI VOS

. ar epeat
ROTCL

Dl vi

. aendr
ROTCL
ADDC

R1, R1
R2, R2
R1, R3

R2, R1
RO, R1
16

RO, R1

R1, R1

R2, R1

R1, R1

R2, R3

R1, R1
R3, R3
R3, R2

RO, R1
32
R2
RO, R1

; R1 (16 bits)/RO (16 bits) = R1 (16 bits): Signed
; Upper 16 bits = divisor, lower 16 bits = 0

; Sign-extends the dividend to 32 bits

yR2=0

; Decrements if the dividend is negative

; Flag initialization

; Repeat 16 times

; R1 = quotient (ones complement)

; Increments and takes the twos complement if the MSB of the

; quotient is 1

; R1 = quotient (two’s complement)

: R2 (32 bits) / RO (32 bits) = R2 (32 bits): Signed

; Sign-extends the dividend to 64 bits (R1:R2)
yR3=0

; Decrements and takes the ones complement if the dividend is

; negative

; Flag initialization

; Repeat 32 times

; R2 = Quotient (one’s complement)

; Increments and takes the two’s complement if the MSB of the

; quotient is 1. R2 = Quotient (two’s complement)

Rev. 4.00 May 15, 2006 page 177 of 558

RENESAS

REJ09B0317-0400

Section 8 Instruction Descriptions

8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULS. L Rm Rn With sign, Rn xRm - MACH, 001innnnmmmill0l 2 (to5) —
MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long mlong n)/* DMIUS.L Rm Rn */

{
unsigned |ong RnL, RnH, Rnl, RnH, ResO, Res1, Res2;
unsigned |ong tenpO,tenpl,tenp2,tenp3;
| ong tenpm tenpn, f nLni;

tempn=(long) R n];

tempne(long) RN ;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

if ((long)(RIN]”"R[mM)<0) fnLnlL=-1;
el se fnLnL=0;

templ=(unsi gned | ong)tenpn;
tenp2=(unsi gned | ong) tenpm

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RnL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0x0000FFFF;

t enpO=RnL* RnL,;
t enpl=RntH* RnL;
t enp2=RnL* RnH,

Rev. 4.00 May 15, 2006 page 178 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

t enp3=Rnt* RnH,;

Res2=0
Res1=t enpl+t enp2,;
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

if (fnLnli<0) {
Res2=~Res?2;
i f (Res0==0)
Res2++;
el se
Res0=(~Res0) +1;

}
MACH=Res2;
MACL=ResO;
PC+=2;
}
Examples:
DMULS RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH, RO ; Operation result (top)
STS MACL, RO ; Operation result (bottom)

Rev. 4.00 May 15, 2006 page 179 of 558

RENESAS

REJ09B0317-0400

Section 8 Instruction Descriptions

8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DMULU. L Rm Rn Without sign, Rn xRm - 0011nnnnmmm0101 2 (to 5) —
MACH, MACL

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmetic
operation.

Operation:

DMULU(l ong mlong n)/* DMJULU. L RmRn */

{
unsigned |ong RnL, RnH, Rnl, RnH, ResO, Res1, Res2;
unsigned |ong tenpO,tenpl,tenp2,tenp3;

RnL=R[n] &0x0000FFFF;
RnH=(R n] >>16) &x0000FFFF;

R1L=R] n] &0x0000FFFF;
RH=(R[nj >>16) &0x0000FFFF;

t enpO=RnL* RnL,;
t enpl=RmH* RnL;
t enp2=RnL* RnH,
t enp3=Rnt* RnH,;

Res2=0
Res1=t enpl+t enp2,
if (Resl<tenpl) Res2+=0x00010000;

t enpl=(Res1<<16) &0xFFFF0000;
ResO=t enpO+t enp1l;
i f (ResO<tenp0) Res2++;

Rev. 4.00 May 15, 2006 page 180 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

MACH=Res2;

MACL=ResO;

PC+=2;
}

Examples:
DMULU RO, R1 ; Before execution RO = HFFFFFFFE, R1 = H'00005555
; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH, RO ; Operation result (top)
STS MACL, RO ; Operation result (bottom)

Rev. 4.00 May 15, 2006 page 181 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.22 DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code Cycle T Bit
DT Rn Rn-1 5 Rn; 0100nnnn00010000 1 Comparison
When Rnis 0,1 - T, result

when Rn is nonzero,0 - T

Description: Decrements the contents of general register Rn by 1 and compares the results to 0
(zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n)/* DT Rn */

{
RIn]--;
if (Rn]==0) T=1;
el se T=0;
PC+=2;
}
Example:
MoV #4, RS ; Sets the number of loops.
LOOP:
ADD RO, R1
DT RS ; Decrements the RS value and checks whether it has become 0.
BF LOCP ; Branches to LOOP is T=0. (In this example, loops 4 times.)

Rev. 4.00 May 15, 2006 page 182 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit
EXTS. B Rm Rn Sign-extend Rm from byte -~ Rn 0110nnnnmmm1110 1 —
EXTS.W Rm Rn Sign-extend Rm from word - Rn 0110nnnnmmmi111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(l ong m 1 ong n) /* EXTS.B Rm Rn */

{
RIn] =R ;
i f ((R[n &x00000080)==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;
PC+=2;
}
EXTSW I ong mlong n) [* EXTS. WRm Rn */
{
REn] =R ;
i f ((R[n]&x00008000)==0) R[n] &0x0000FFFF;
el se R[n]| =0xFFFF0000;
PC+=2;
}
Examples:
EXTS.B RO, Rl ; Before execution RO =H'00000080
; After execution R1 = H'FFFFFF80
EXTS. W RO, R1 ; Before execution RO =H'00008000

; After execution R1 = H'FFFF8000

Rev. 4.00 May 15, 2006 page 183 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTU. B Rm Rn Zero-extend Rm from byte -~ Rn 0110nnnnnmmmi100 1 —

EXTU W RmRn Zero-extend Rm fromword -~ Rn 0110nnnnnmmil101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, Os are written in bits 8 to 31 of Rn. If word length is specified, Os are written in bits 16
to 31 of Rn.

Operation:

EXTUB(l ong mlong n)/* EXTU. B RmRn */

{
RIn] =R ni;
R[n] &0x000000FF;
PC+=2,

}

EXTUWN Il ong mlong n)/* EXTU WRmRn */

{
RIn] =R ni;
R[n] & 0x0000FFFF;
PC+=2;

}

Examples:

EXTU. B RO, Rl ; Before execution RO =H'FFFFFF80
; After execution R1=H'00000080
EXTU W RO, Rl ; Before execution RO =H'FFFF8000
; After execution R1=H'00008000

Rev. 4.00 May 15, 2006 page 184 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.25 JMP (Jump): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
JMP @Rm Rm - PC 0100nnnn00101011 2 —

Description: Branches unconditionally after executing the instruction following this JMP
instruction. The branch destination is an address specified by the 32-bit data in general register Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

JMP(long m) /* JVP @m */

{
unsi gned | ong tenp;
t emp=PC;
PC=R[ni +4;
Del ay_Sl ot (t enp+2) ;
}
Examples:
MOV. L JMP_TABLE, RO ; Address of RO =TRGET
JMP @ro ; Branches to TRGET
MoV RO, R1 ; Executes MOV before branching
.align 4
JWP_TABLE: .data.l TRCGET ; Jump table
TRCGET: ADD #1, R1 ; « Branch destination

Rev. 4.00 May 15, 2006 page 185 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 186 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.26 JSR (Jump to Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
JSR @Rm PC -~ Rm,Rm - PC 0100nnnn00001011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this JSR instruction. The PC value is stored in the PR. The jump destination
is an address specified by the 32-bit data in general register Rn. The PC points to the starting
address of the second instruction after JSR. The JSR instruction and RTS instruction are used for
subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

Operation:

JSR(long m /* JSR @m */

{

PR=PC;

PC=R[m +4;

Del ay_Sl ot (PR+2) ;
}

Rev. 4.00 May 15, 2006 page 187 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:
MOV. L JSR _TABLE, RO ; Address of RO = TRGET
JSR @0 ; Branches to TRGET
XOR Rl, R1 ; Executes XOR before branching
ADD RO, R1 ; « Return address for when the subroutine
; procedure is completed (PR data)
align 4

JSR TABLE: .data.l TRCGET ; Jump table

TRGET: NOP ; « Procedure entrance
MoV R2, R3
RTS : Returns to the above ADD instruction
MoV #70, R1 ; Executes MOV before RTS

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 188 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only)
Format Abstract Code Cycle T Bit
LDC Rm SR Rm - SR 0100mmMmD0001110 5 LSB
LDC Rm GBR Rm - GBR 0100mmMm00011110 1 —
LDC Rm VBR Rm - VBR 0100mMmMm00101110 1 —
LDC Rm SSR Rm - SSR 0100mmMm00111110 1 —
LDC Rm SPC Rm - SPC 0100mmMm01001110 1 —
LDC Rm MD* Rm - MOD 0100mmm01011110 3 —
LDC Rm RE* Rm - RE 0100mmMm01111110 3 —
LDC RmRS* Rm - RS 0100mmm01101110 3 —
LDC Rm RO_BANK Rm - RO_BANK 0100mmmL0001110 1 —
LDC Rm R1_BANK Rm - R1_BANK 0100mmMm10011110 1 —
LDC Rm R2_BANK Rm - R2_BANK 0100mmm0101110 1 —
LDC Rm R3_BANK Rm - R3_BANK 0100mmm10111110 1 —
LDC Rm R4_BANK Rm - R4_BANK 0100mmmL1001110 1 —
LDC Rm R5_BANK Rm - R5_BANK 0100mMmM11011110 1 —
LDC Rm R6_BANK Rm - R6_BANK 0100mmmi1101110 1 —
LDC Rm R7_BANK Rm - R7_BANK 0100mMmM11111110 1 —
LDC. L @Rm+, SR (Rm) - SR,Rm+4 - Rm 0100mmMmMD0000111 7 LSB
LDC. L @Rm+, GBR (Rm) - GBR,Rm +4 . Rm 0100mmMm00010111 1 —
LDC. L @Rm+, VBR (Rm) - VBR,Rm+4 - Rm 0100mMmMmD0100111 1 —
LDC. L @Rm+, SSR (Rm) - SSR,Rm+4 -, Rm 0100mmMm00110111 1 —
LDC. L @rm+, SPC (Rm) -~ SPC,Rm+4 - Rm 0100mMmmm01000111 1 —
LDC.L @m+, MoD* (Rm) -~ MOD,Rm+4 - Rm 0100mmm01010111 5 —
LDC.L @rm+, RE* (Rm) - RE,Rm+4 - Rm 0100mmMmM®OD1110111 5 —
LDC. L @+, RS* (Rm) -~ RS, Rm+4 - Rm 0100mmm01100111 5 —
LDC. L @ m+, RO_BANK (Rm) - RO_BANK, 0100mMmMm10000111 1 —
Rm+4 - Rm
LDC. L @m+, R1_BANK (Rm) — R1_BANK, 0100mMmmMM10010111 1 —
Rm+4 - Rm
LDC. L @m+-, R2_BANK (Rm) - R2_BANK, 0100mmMm10100111 1 —
Rm+4 - Rm
LDC. L @m+, R3_BANK (Rm) - R3_BANK, 0100mmm10110111 1 —
Rm+4 - Rm

Note: * SH3-DSP only.

Rev. 4.00 May 15, 2006 page 189 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Format Abstract Code Cycle T Bit

LDC. L @rm+, RA_BANK (Rm) - R4_BANK, 0100mMmMm11000111 1 —
Rm+4 - Rm

LDC. L @m+, R5_BANK (Rm) - R5_BANK, 0100mmMm11010111 1 —
Rm+4 - Rm

LDC. L @rm+, R6_BANK (Rm) - R6_BANK, 0100mmMm11100111 1 —
Rm+4 - Rm

LDC. L @rm+, R7_BANK (Rm) —» R7_BANK, 0100mMmMm11110111 1 —
Rm+4 - Rm

Notes: 1. Three cycles on the SH3-DSP.
2. Five cycles on the SH3-DSP.

Description: Stores source operand in control registers SR, GBR, VBR, SSR, SPC, MOD, RE,
and RS, or RO BANK to R7 BANK. LDC and LDC.L, except for LDC Rm, GBR and LDC.L
@RM+, GBR, are privileged instructions and can be used in privileged mode only. If used in user
mode, they can cause illegal instruction exceptions. Note that LDC Rm, GBR and LDC.L @RM+,
GBR can be used in user mode.

The Rm BANK operand is designated by the RB bit of the SR register. When the value of the RB
bitis 1, the RO BANKI1 to R7 BANKI registers and the R8 to R15 registers are used as the Rn
operand, and the RO BANKO to R7 BANKO registers are used as the Rm BANK operand. When
the value of the RB bit is 0, the RO BANKO to R7 BANKO registers and the R8 to R15 registers
are used as the Rn operand, and the RO BANK1 to R7 BANKI registers are used as the

Rm_ BANK operand.

If the LDC Rm, SR instruction or LDC.L @RM-+, SR instruction is located in a delayed slot
immediately following a delayed branch instruction, it is acknowledged as an illegal slot
instruction.

Rev. 4.00 May 15, 2006 page 190 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

LDCSR(1 ong) /* LDC Rm SR */
{

SR=R[n] &0x0FFFOFFF;

PC+=2;
}

LDCGBR(| ong m /* LDC Rm GBR */
{

GBR=R[n{ ;

PC+=2;
}

LDCVBR(long n) /* LDC Rm VBR */
{

VBR=R[n ;

PC+=2;
}

LDCSSR(| ong m /* LDC Rm SSR */
{

SSR=R[n] &0x700003F3;

PC+=2;
}

LDCSPC(| ong m /* LDC Rm SPC */
{

SPC=R[n ;

PC+=2;
}

LDCRn_BANK(long nm) /* LDC Rm Rn_BANK */
{ /* n=0-7, */
Rn_BANK=R[ni ;
PC+=2;
}

LDCVBR(long m) /* LDC.L @, SR */

Rev. 4.00 May 15, 2006 page 191 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

{
SR=Read_Long(R M) &Ox0FFFOFFF;
Rl m +=4;
PC+=2;

}

LDCMEBR(long m /* LDC. L @m+, GBR */
{

GBR=Read_Long(R[M) ;

Rl mM +=4;

PC+=2;
}

LDCWBR(long n) /* LDC.L @m+, VBR */
{

VBR=Read_Long(R[n]);

Rl +=4;

PC+=2;
}

LDCVBSR(long m /* LDC. L @ m+, SSR */
{

SSR=Read_Long(R n]) &x700003F3;

Rl M +=4;

PC+=2;
}

LDCVBPC(l ong n) /* LDC.L @m+, SPC */

{
SPC=Read_Long(R M) ;
Rl m +=4;
PC+=2;

}

LDCMRn_BANK(1 ong m) /* LDC.L @m+, Rn_BANK */
[* n=0-7 */

Rn_BANK=Read_Long(R[n{);

Rev. 4.00 May 15, 2006 page 192 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Rl n +=4;
PC+=2;
}

LDCMOD(| ong m) /* LDC Rm MOD */
{

MOD=R[n{ ;

PC+=2;
}

LDCRE(l ong m) /* LDC Rm RE */
{

RE=R[] ;

PC+=2,
}

LDCRS(long m) /* LDC Rm RS */
{

RS=R[n ;

PC+=2;
}

LDCVWOD(long m /* LDC. L @ m+, MOD */
{

MOD=Read_Long(R[M) ;

REn +=4;

PC+=2,
}

LDCVRE(l ong m) /* LDC.L @, RE */

{
RE=Read_Long(R[)

Rl ni +=4;
PC+=2;

}

LDCVRS(long m) /* LDC.L @, RS */
{

Rev. 4.00 May 15, 2006 page 193 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

RS=Read_Long(R[n);
R m +=4;
PC+=2;

}

Examples:

LDC RO, SR ; Before execution

; After execution

LDC. L @Rr15+, GBR ; Before execution

; After execution

RO = H'FFFFFFFF, SR = H'00000000
SR =H'700003F3

R15=H'10000000, @R 15 + H'12345678,
GBR =H'EDCBA987
R15=H'10000004, GBR = @H'10000000

Rev. 4.00 May 15, 2006 page 194 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit
LDRE @di sp, PO dispx2+PC - RE 10001110dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat end register RE. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: The effective address value designated for the RE reregister is different from the actual
repeat end address. Refer to table 8.23, RS and RE Design Rule, for more information.
When this instruction is arranged immediately after the delayed branch instruction, PC
becomes the "first address +2" of the branch destination.

Operation:

LDRE(I ong d) /* LDRE @disp, PC) */

{
| ong disp;
i f ((d&0x80)==0) di sp=(0x000000FF & (1 ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
RE=PC+(di sp<<1);
PC+=2;
}

Rev. 4.00 May 15, 2006 page 195 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Example:

LDRS STA ; Set repeat start address to RS.
LDRE END ; Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;

STA: inst.A

inst.B ;

END: inst.C ;

inst.E

Rev. 4.00 May 15, 2006 page 196 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit
LDRS @di sp, PO dispx2+PC -~ RS 10001100dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat start register RS. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is —256 to +254 bytes.

Note: When the instructions of the repeat (loop) program are below 3, the effective address value
designated for the RS register is different from the actual repeat start address. Refer to
Table 8.23. "RS and RE setting rule", for more information. If this instruction is arranged
immediately after the delayed branch instruction, the PC becomes "the first address +2" of
the branch destination.

Operation:

LDRS(l ong d) /* LDRS @disp, PC) */

{
| ong disp;
i f ((d&0x80)==0) di sp=(0x000000FF & (1 ong)d);
el se di sp=(O0xFFFFFFOO0 | (long)d);
RS=PC+(di sp<<1);
PC+=2,
}

Rev. 4.00 May 15, 2006 page 197 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Example:

LDRS STA ; Set repeat start address to RS.
LDRE END ; Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;

STA: inst.A

inst.B ;

END: inst.C ;

inst.D

Rev. 4.00 May 15, 2006 page 198 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

8.2.30 LDS (Load to System Register): System Control Instruction

Format Abstract Code Cycle T Bit
LDS Rm MACH Rm - MACH 0100mMmmMmMD0001010 1 —
LDS Rm MACL Rm - MACL 0100mMmMmD0011010 1 —
LDS Rm PR Rm - PR 0100mMmmMmMD0101010 1 —
LDS Rm DSR* Rm - DSR 0100mmmMD1101010 1 —
LDS Rm A0* Rm - AO 0100mmMm01111010 1 —
LDS Rm X0* Rm - X0 0100mMmmM10001010 1 —
LDS Rm X1* Rm - X1 0100mmMmM10011010 1 —
LDS Rm YO* Rm - YO 0100mMmMmM10101010 1 —
LDS Rm Y1* Rm - Y1 0100mmMm10111010 1 —
LDS. L @m+, MVACH (Rm) - MACH,Rm+4 -~ Rm 0100mmm00000110 1 —
LDS.L @m+, MACL (Rm) - MACL,Rm+4 -~ Rm 0100mmm00010110 1 —
LDS. L @mt, PR (Rm) - PR, Rm+4 - Rm 0100mMmmMmMD0100110 1 —
LDS.L @m+, DSR* (Rm) -~ DSR,Rm+4 _ Rm 0100mMmmMmD1100110 1 —
LDS.L @rm+, A0* (Rm) - AO,Rm+4 -~ Rm 0100mMmmMmMD1110110 1 —
LDS. L @m+, X0* (Rm) - X0,Rm+4 - Rm 0100nnnn10000110 1 —
LDS.L @rmt, X1* (Rm) - X1,Rm+4 - Rm 0100nnnn10010110 1 —
LDS.L @rmt, YO* (Rm) - YO,Rm+4 - Rm 0100nnnn10100110 1 —
LDS. L @m+, Y1* (Rm) - Y1, Rm+4 - Rm 0100nnnn10110110 1 —

Note: * SH3-DSP only.

Description: Stores the source operand into the system registers MACH, MACL, PR, DSR, A0,

X0, X1, Y0, or Y1.
Operation:

LDSMACH(| ong m

{
MACH=R[] ;

/* LDS Rm MACH */

i f ((MACHEOXx00000200) ==0) MACH&=0Xx000003FF;
el se MACH| =0xFFFFFCOO;

PC+=2,

Rev. 4.00 May 15, 2006 page 199 of 558

RENESAS

REJ09B0317-0400

Section 8 Instruction Descriptions

LDSMACL(I ong m /* LDS Rm MACL */
{

MACL=R[] ;

PC+=2;
}

LDSPR(| ong m) /* LDS Rm PR */
{

PR=R[n ;

PC+=2;
}

LDSMVACH(| ong m) /* LDS.L @m+, MACH */
{
MACH=Read_Long(R[M);
i f ((MACH&0x00000200) ==0) MACH&=0x000003FF;
el se MACH| =0OxFFFFFCOO0;
Rl m +=4;
PC+=2;
}

LDSMVACL(| ong m /* LDS.L @m+, MACL */
{

MACL=Read_Long(R[M);

Rl mM +=4;

PC+=2;
}

LDSMPR(long n) /* LDS.L @m+, PR */
{

PR=Read_Long(R[n1);

R +=4;

PC+=2;
}

LDSDSR(| ong m /* LDS Rm DSR */

{
DSR=R[nj &0x0000000F;

Rev. 4.00 May 15, 2006 page 200 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

PC+=2,
}

LDSAO(| ong m) /* LDS Rm A0 */
{

AO=R{ ni ;

i f ((A0&0x80000000) ==0) A0G=0x00;

el se AOG=0xFF;

PC+=2;
}

LDSX0(1 ong) /* LDS Rm X0 */
{

X0=R{n{ ;

PC+=2;
}

LDSX1(l ong m /* LDS Rm X1 */
{

X1=R{n{;

PC+=2;
}

LDSYO(l ong m /* LDS Rm YO */
{

YO=R{] ;

PC+=2,
}

LDSY1(l ong m) /* LDS Rm Y1 */
{

Y1=R{ni;

PC+=2;
}

LDSMDSR(| ong m) /* LDS.L @m#, DSR */

{
DSR=Read_Long(R[nj) &0x0000000F;

Rev. 4.00 May 15, 2006 page 201 of 558
REJ09B0317-0400
RENESAS

Section 8

Instruction Descriptions

/* LDS. L @m+, A0 */

i f((A0&0x80000000)==0) A0G=0x00;

R m +=4;
PC+=2;
}
LDSMAO(| ong m)
{
A0=Read_Long(R[n{);
el se AOG=0xFF;
R m +=4;
PC+=2;
}
LDSMXO(| ong m)
{
X0=Read_Long(R[n{);
RO +=4;
PC+=2;
}
LDSMX1(| ong m
{
X1=Read_Long(R[n);
RO +=4;
PC+=2;
}
LDSMYO(| ong m)
{
YO=Read_Long(R[) ;
R M +=4;
PC+=2;
}
LDSMY1(l ong m
{

Y1=Read_Long(R[ni);
Rl n +=4;

/*

/*

/*

/*

LDS. L @mt, X0

LDS. L @mt, X1

LDS. L @rmt, YO

LDS. L @mt, Y1

*/

*/

*/

Rev. 4.00 May 15, 2006 page 202 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

PC+=2;
}
Examples:
LDS RO, PR ; Before execution RO =H'12345678, PR = H'00000000
; After execution PR =H'12345678
LDS. L @R15+, MACL ; Before execution R15 =H'10000000

; After execution R15 =H'10000004, MACL = @H'10000000

Rev. 4.00 May 15, 2006 page 203 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.231 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit
LDTLB PTEH/PTEL - TLB 0000000000111000 1 —

Description: Loads PTEH/PTEL registers to the translation lookaside buffer (TLB). The TLB is
indexed by the virtual address held in the PTEH register. The loaded set is designated by the
MMUCR.RC (MMUCR is an MMU control register and RC is a two bit field for a counter).
LDTLB is a privileged instruction and can be used in privileged mode only. If used in user mode,
it causes an illegal instruction exception.

Note: As LDTLB is for loading PTEH and PTEL to the TLB, the instruction should be issued
when MMU is off (MMUCR.AT = 0) or should be placed in the P1 or P2 space with MMU
enabled (see the MMU section of the applicable hardware manual for details). If the instruction is
issued in an exception handler, it should be at least two instructions prior to an RTE instruction
that terminates the handler.

Operation:

LDTLB() /*LDTLB*/

{
TLB_t ag=PTEH,
TLB_dat a=PTEL;
PC+=2;
}
Examples:
MOV L @0, R1 ; Load upper bits of page table entry to R1
MV L RL, @R ; Load R1 to PTEH, R2 is PTEH address (H'FFFFFFFO0)
MOV L @R3, R4 ; Load lower bits of page table entry to R4
MV L R4, @R5 ; Load R4 to PTEL, RS is PTEL address (H'FFFFFFF4)
LDTLB ; Load PTEH and PTEL registers to TLB

Rev. 4.00 May 15, 2006 page 204 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit
MAC. L @R+, @+ Signed operation, (Rn) x (Rm) + 0000nnnnnmmm111 2 (to5) —
MAC - MAC

Rn+4 - Rn,Rm+4 -~ Rm

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Every time an operand is read, RM and Rn are
incremented by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to between H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long mlong n) /* MAC. L @mt, @n+*/

{
unsi gned | ong RnL, RnH, RrL, RnH, ResO0, Res1, Res2;
unsi gned | ong tenpO, tenpl,tenp2,tenps;
| ong tenpm tenpn, f nLnL;

tenpn=(1 ong) Read_Long(R[n]);
Rl n] +=4;
tempn=(1l ong) Read_Long(R[M) ;
R +=4;

if ((long)(tenpn™tenpn)<0) fnLnml=-1;
el se fnLnL=0;

if (tenpn<0) tenpn=0-tenpn;

if (tenpnx0) tenpm=0-tenpm

tenmpl=(unsi gned | ong)tenpn;
tenmp2=(unsi gned | ong) tenpm

Rev. 4.00 May 15, 2006 page 205 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

RnL=t enp1&0x0000FFFF;
RnH=(t enp1>>16) &0x0000FFFF;
RL=t enp2&0x0000FFFF;

RH=(t enp2>>16) &0x0000FFFF;

t enpO=RnL* RnL;
t empl=RmH* RnL;
t enp2=RnL* RnH,;
t emp3=RmH* RnH,

Res2=0
Resl=t enpl+t enp2;
if (Resl<tenpl) Res2+=0x00010000;

t enmpl=(Res1<<16) &0xFFFF000O0;
ResO=t enpO+t enp1l;
i f (ResO<tenpO) Res2++;

Res2=Res2+((Res1>>16) &0x0000FFFF) +t enp3;

i f(fnLnx0){
Res2=~Res2;
i f (Res0==0) Res2++;
el se ResO=(~ResO0) +1;
}
i f(S==1){
Res0=MACL+ResO;
if (MACL>Res0) Res2++;
Res2+=(MACH&Ox0000FFFF) ;

i £ (((I ong) Res2<0) &&(Res2<0xFFFF8000)) {
Res2=0x00008000;
Res0=0x00000000;

Rev. 4.00 May 15, 2006 page 206 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

i f (((1 ong) Res2>0) &&(Res2>0x00007FFF)) {
Res2=0x00007FFF;
Res0=0x FFFFFFFF;

b
MACH={ Res2;
MACL=ResO;
}
el se {
Res0=MACL+ResO;
i f (MACL>ResO) Res2++;
Res2+=MACH
MACH=Res2;
MACL=ResO;
}
PC+=2;
}
Examples:
MOVA TBLM RO ; Table address
MoV RO, R1
MOVA TBLN, RO ; Table address
CLRVAC ; MAC register initialization
MAC. L @R0+, @R1+
MAC. L @RO+, @R1L+
STS MACL, RO ; Store result into RO
align 2
TBLM .data.l H 1234ABCD
.data.l H 5678EF01
TBLN .data.l H 0123ABCD
.data.l H 4567DEFO

Rev. 4.00 May 15, 2006 page 207 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction

Format Abstract Code Cycle T Bit
MAC. W @+, @n+ With sign, (Rn) x (Rm) + MAC - 0100nnnnmmmi111 2 (to 5) —
MAC

MAC @, @n+ Rn+2 - Rn,Rm+2 - Rm

Description: Multiplies with sign 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to the contents of the MAC register, and the
final result is stored in the MAC register.

Each time an operand is read, Rm and Rn are each incremented by 2.

When the S bit is cleared to 0, the 64-bit result of the 16-bit (16-bit + 64-bit = 64-bit multiply and
accumulate calculation is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the 16-bit (16-bit + 32-bit = 32-bit multiply and accumulate calculation
involves addition to the MAC register using a saturation operation. For the saturation operation,
only the MACL register is enabled, and the result is limited to between H'80000000 (minimum)
and H'7FFFFFFF (maximum). If an overflow occurs, the LSB of the MACH register is set to 1. If
the overflow is in the negative direction, H'80000000 (the minimum value) is stored in the MACL
register, and if the overflow is in the positive direction, H'7FFFFFFF (the maximum value) is
stored in the MACL register.

Note: The normal number of cycles for execution is 3; however, succeeding instructions can be
executed in two cycles.

Operation:

MACW I ong mlong n) /* MAC W @mt, @n+*/
{

| ong tenpm t enpn, dest, src, ans;

unsi gned | ong tenpl;

tempn=(1 ong) Read_Word(R[n]);

Rl n] +=2;

tenpme(| ong) Read_Word(R[ni) ;

R +=2;

t enpl =MACL;

tempme((1 ong) (short)tempn*(l ong) (short)tenmpm;

i f ((long) VACL>=0) dest =0;

Rev. 4.00 May 15, 2006 page 208 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

el se dest =1;
if ((long)tenmpne=0 {

src=0;
t empn=0;
}
el se {
src=1;
t enpn=0xFFFFFFFF;
}
src+=dest ;
MACL+=t enrpm

if ((long) MACL>=0) ans=0;
el se ans=1;
ans+=dest ;
if (S==1) {
if (ans==1) {
if (src==0 || src==2) MACH =0x00000001;
i f (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
el se {
MACH+=t enpn;
if (tenpl >MACL) MACH+=1;
i f ((MACH&0x00000200) ==0) MACH&=0x000003FF;
el se MACH| =OxFFFFFCOO;

}
PC#+=2;

Rev. 4.00 May 15, 2006 page 209 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:

TBLM .data.w

TBLN .data.w

TBLM RO
RO, R1
TBLN, RO

H 1234
H 5678
H 0123
H 4567

; Table address

; Table address

; MAC register initialization

; Store result into RO

Rev. 4.00 May 15, 2006 page 210 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.34 MOV (Move Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOV Rm Rn Rm - Rn 0110nnnnmmmo0011 1 —
MOV. B Rm @n Rm - (Rn) 0010nnNnnmMmmmMD000 1 —
MOV. W Rm @Rn Rm - (Rn) 0010nnnnmmm©0001 1 —
MOV.L Rm @Rn Rm - (Rn) 0010nnnnmmmmOD010 1 —
MOV.B @Rm Rn (Rm) - sign extension — Rn 0110nnnnmmmm©D000 1 —
MOV. W @Rm Rn (Rm) - sign extension - Rn 0110nnnnmmm©0001 1 —
MOV.L @Rm Rn (Rm) - Rn 0110nnnnmmm©0010 1 —
MOV. B Rm @Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnmMmmmO100 1 —
MOV. W Rm @-Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnmmo0101 1 —
MOV.L Rm @-Rn Rn-4 - Rn,Rm - (Rn) 0010nnnnmMmmMmm®D110 1 —
MOV. B @Rmt, Rn (Rm) - sign extension — Rn, 0110nnnnmm®©0100 1 —
Rm+1 - Rm
MOV. W @R+, Rn (Rm) - sign extension - Rn, 0110nnnnmm®0101 1 —
Rm+2 - Rm
MOV. L @Rmt+, Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmm®D110 1 —
MOV.B Rm @RO, Rn) Rm - (RO + Rn) 0000NnNNNMMMO100 1 —
MOV.W Rm @RO, Rn) Rm - (RO + Rn) 0ooOnnnnmmmO0101 1 —
MOV.L Rm @RO,Rn) Rm - (RO + Rn) 0ooonnnnMmmMMO110 1 —
MWV.B @RO, R, Rn (RO + Rm) - sign extension -~ 0000nnnnmmm1100 1 —
Rn
MOV. W @RO, Rm, Rn (RO +Rm) - sign extension - 0000nnnnmm1101 1 —
Rn
MOV.L @RO,RmM,Rn (RO+Rm) - Rn 000Onnnnmmm1110 1 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

Rev. 4.00 May 15, 2006 page 211 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

MV(Iong mlong n) /* MOV RmRn */
{

R n] =R ;

PC+=2;
}

MOVBS(1 ong m | ong n) /* MOV.B Rm @n */
{

Wite_Byte(Rn],R ni);

PC+=2;
}

MOWAS(1 ong m | ong n) /[* MOV. WRm @ */
{

Wite_Word(Rn],RIM);

PC+=2,
}

MOVLS(l ong m | ong n) /* MOV.L Rm @n */
{

Wite Long(RIn],Rn);

PC+=2;
}

MOVBL(1 ong m | ong n) /* MOV.B @m Rn */
{

R n] =(1 ong) Read_Byte(R ni);

i f ((R[n]&x80)==0) R[n] &0x000000FF;

el se R[n] | =0xFFFFFFOO;

PC+=2;
}

MOWAL(1 ong m | ong n) [* MOV.W@m Rn */
{

R n] =(1 ong) Read_Word(R[) ;

i f ((R[n] &x8000) ==0) R[] n] &0x0000FFFF;

Rev. 4.00 May 15, 2006 page 212 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

el se R[n] | =0xFFFF0000;

PC+=2;
}
MOVLL(l ong m 1 ong n) /* MOV.L @mRn */
{
R[n] =Read_Long(R[N) ;
PC+=2;
}
MOVBM | ong m | ong n) /* MOV.B Rm @Rn */
{
Wite Byte(R[n]-1,R[n);
R n] —=1;
PC+=2;
}
MOWWM | ong m | ong n) /* MOV. WRm @Rn */
{
Wite Wrd(R[n]-2,R[n);
R n] —=2;
PC+=2;
}
MOVLM | ong m | ong n) /* MOV.L Rm @Rn */
{
Wite_Long(Rn]-4,R ni);
Rl n] —=4;
PC+=2;
}
MOVBP(l ong mlong n)/* MOV.B @m+, Rn */
{

R n] =(1 ong) Read_Byte(R ni);

i f ((R[n]&x80)==0) R[n] &0x000000FF;
el se R[n] | =0xFFFFFFOO;

if (nl=m R mM+=1;

PC+=2;

Rev. 4.00 May 15, 2006 page 213 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

}

MOWWP(1 ong m | ong n) [* MOV. W @m+, Rn */
{
R n] =(1 ong) Read_Word(R[ni) ;
i f ((R[n] &x8000)==0) R[n] &x0000FFFF;
el se R[n] | =0xFFFF0000;
if (nl=m R mM+=2;
PC+=2;
}

MOVLP(l ong m 1 ong n) /[* MOV.L @m+, Rn */
{

R[n] =Read_Long(R[N) ;

if (n'=m R[nj+=4;

PC+=2,
}

MOVBSO(| ong m | ong n) /* MOV.B Rm @RO, Rn) */
{

Wite Byte(RIn]+R[0], R ni);

PC+=2;
}

MOVWS0(| ong m | ong n) /* MOV. WRm @RO, Rn) */
{

Wite Word(R n]+R[0], R n);

PC+=2;
}

MOVLSO(long mlong n) /* MOV.L Rm @RO, Rn) */
{

Wite Long(R[n]+R[0], R n);

PC+=2;
}

MOVBLO(long mlong n) /* MW.B @RO,RM,Rn */
{

Rev. 4.00 May 15, 2006 page 214 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

R{n] =(I ong) Read_Byte(R{ n{ +R[0]) ;

i f ((R[n] &x80)==0) R[n] &x000000FF;
el se R[n] | =OxFFFFFFOO;
PC+=2;

}

MOVWALO(| ong m | ong n)

{

R n] =(1 ong) Read_Word(R[M +R[0]) ;

/* MOV. W @RO, Rm), Rn */

i f ((R n] &x8000)==0) R n] &x0000FFFF;
el se R[n] | =0xFFFF0000;
PC+=2;

}

MOVLLO(l ong m | ong n)

{

/* MOV.L @RO, Rm),Rn */

R{n] =Read_Long(R m +R(0]) ;
PC+=2,

}

Examples:

MoV

MOV. W

MOV. B

MOV. W

MOV. L

MOV. B

MOV. W

RO, R1

RO, @rl

@r0, R1

RO, @R1

@R0+, R1

Rl, @ RO, R2)

@RO,R2),R1

; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution
; After execution
; Before execution

; After execution

RO = H'FFFFFFFF, R1 = H'00000000
R1 = H'FFFFFFFF

RO = H'FFFF7F80

@R1 = H'7F80

@RO = H'80, R1 = H'00000000

R1 = H'FFFFFF80

RO = H'AAAAAAAA, R1 = HFFFF7F80
R1 = HFFFF7FTE, @R1 = H'AAAA

RO = H'12345670

RO = H'12345674, R1 = @H'12345670
R2 = H'00000004, RO = H'10000000

R1 = @H'10000004

R2 = H'00000004, RO = H'10000000

R1 = @H'10000004

Rev. 4.00 May 15, 2006 page 215 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.35 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MoV #i mm Rn imm - sign 1110nnnniiiiiiii 1 —
extension — Rn

MV. W @di sp, PC), Rn (disp x 2 + PC) - sign 1001nnnndddddddd 1 —
extension - Rn

MWV.L @disp, PC), Rn (disp x4+ PC) - Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Rev. 4.00 May 15, 2006 page 216 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

MVI (1l ong i,long n) [* MOV #immRn */

{
if ((i&x80)==0) R n]=(0x000000FF & (long)i);
el se R n] =(OxFFFFFFOO | (long)i);
PC+=2;

}

MOVW (1 ong d, | ong n) [* MOV. W @disp, PC), Rn */

{
| ong disp;
di sp=(0x000000FF & (I ong)d);
R[n] =(1 ong) Read_Wor d(PC+(di sp<<1));
i f ((R[n] &x8000)==0) R[] n] &0x0000FFFF;
el se R[n] | =0xFFFF0000;
PC+=2;
}
MOVLI (1 ong d, | ong n) /[* MOW.L @disp, PO,Rn */
{
| ong disp;
di sp=(0x000000FF & (long)d);
R[n] =Read_Long((PC&OXFFFFFFFC) +(di sp<<2));
PC+=2;
}

Rev. 4.00 May 15, 2006 page 217 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

Examples:
Address
1000 MOV
1002 MOV. W
1004 ADD
1006 TST
1008 MOVT
100A BRA
100C MOV. L
100E IMWM .data.w
1010 .data.w
1012 NEXT JMP
1014 CWP/ EQ

.align

1018 .data.l

#H 80, R1
I MM R2
#-1, RO
RO, RO

R13

NEXT

@4, PC), R3
H 9ABC

H 1234

@3
#0, RO

4
H 12345678

; R1 = H'FFFFFF80
; R2 =H'FFFF9ABC, IMM means @(H'08,PC)

; « PC location used for address calculation for
; the MOV. W instruction

; Delayed branch instruction
; R3=H'12345678

; Branch destination of the BRA instruction

; « PC location used for address calculation for
; the MOV L instruction

Rev. 4.00 May 15, 2006 page 218 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.236 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B @disp, BBR), R0 (disp + GBR) - sign 11000100dddddddd 1 —
extension - RO

MOV. W @disp, GBBR), R0 (disp x2 + GBR) - sign 11000101dddddddd 1 —
extension - RO

MOV.L @disp, GBR), R0 (disp x4 +GBR) ~ R0 11000110dddddddd
MOV. B RO, @di sp, GBR) RO — (disp + GBR) 11000000dddddddd
MOV. W RO, @di sp, GBR) RO — (disp x2+ GBR) 11000001dddddddd
MOV.L RO, @disp, GBR) RO — (disp x4 + GBR) 11000010dddddddd

Al Al al

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but only
the RO register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. RO cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 8.1 will give
better results.

MOV.B @(12, GBR), RO MOV.B @(12, GBR), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 8.1 Using R0 after MOV

Rev. 4.00 May 15, 2006 page 219 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

MOVBLG | ong d) /* MOV.B @disp, GBBR), RO */
{
| ong disp;

di sp=(0x000000FF & (long)d);
R[0] =(1 ong) Read_Byt e(GBR+di sp) ;
i f ((R[0] &x80)==0) R[0] &0x000000FF;
el se R[0] | =0xFFFFFFOO;
PC+=2;
}

MOWALGE | ong d) /[* MOV. W @disp, GBR), RO */
{
| ong disp;

di sp=(0x000000FF & (long)d);
R[0] =(1 ong) Read_Wor d(GBBR+(di sp<<1));
i f ((R[0] &x8000) ==0) R[0] &=0x0000FFFF;
el se R 0] | =0OxFFFF0000;
PC+=2;
}

MOVLLG long d) /* MOV.L @disp, GBBR), RO */
{
| ong di sp;

di sp=(0x000000FF & (long)d);
R[0] =Read_Long(GBR+(di sp<<2));
PC+=2;

}

MOVBSG(I ong d) /* MOV.B RO, @disp, GBR) */
{
| ong di sp;

Rev. 4.00 May 15, 2006 page 220 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

di sp=(0x000000FF & (long)d);
Wite_Byte(GBR+di sp, R 0]);

PC+=2,
}
MOWAEG(| ong d) /* MOV. WRO, @di sp, GBBR) */
{
| ong disp;
di sp=(0x000000FF & (long)d);
Wite Word(GBR+(di sp<<l),R0]);
PC+=2;
}
MOVLSGE | ong d) /* MOV.L RO, @disp, GBBR) */
{
| ong disp;
di sp=(0x000000FF & (long)d);
Wite_Long(@BR+(di sp<<2),R0]);
PC+=2;
}
Examples:
MWV.L @2,GBR), R0 ; Before execution @(GBR + 8) =H'12345670
; After execution RO = @H'12345670
MWV. B RO, @1, GBR) ; Before execution RO = H'FFFF7F80

; After execution @(GBR + 1) = HFFFF7F80

Rev. 4.00 May 15, 2006 page 221 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.37 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV. B RO, @di sp, Rn) RO - (disp + Rn) 10000000nnnndddd 1 —

MOV. W RO, @di sp, Rn) RO - (disp x 2 + Rn) 10000001nnnndddd 1

MV.L Rm @di sp, Rn) Rm - (disp x4 + Rn) 0001nnnnmmmdddd 1 —
1

MV.B @disp, R, RO (disp + Rm) - sign 10000100mmmdddd
extension - RO

MOV. W @disp, Rm,R0 (dispx2+Rm) - sign 10000101mmmdddd 1 —
extension - RO

MOV.L @disp,RM,Rn (dispx4+Rm) - Rn 0101nnnnmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the RO register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementioned
@(R0O,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in
the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always RO. RO cannot be
accessed by the next instruction until the load instruction is finished. The instruction order in
figure 8.2 will give better results.

MOV.B @(2, R1), RO MOV.B @(2, R1), RO

AND #80, RO ><: ADD #20, R1
ADD #20, R1 AND #80, RO

Figure 8.2 Using R0 after MOV

Rev. 4.00 May 15, 2006 page 222 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

MOVBS4(long d,long n) /* MOV.B RO, @disp, Rn) */

{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite_Byte(R[n]+disp, RRO0]);
PC+=2;
}
MOWS4(1 ong d,long n) /* MOV.WRO, @di sp, Rn) */
{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite Word(R[n] +(disp<<1l),R0]);
PC+=2;
}

MOVLS4(long mlong d, | ong n)
/* MW.L Rm @disp, Rn) */

{
| ong disp;
di sp=(0x0000000F & (long)d);
Wite_Long(R[n] +(disp<<2),Rim);
PC+=2;

}

MOVBL4(long mlong d) /* MOV.B @disp, R1), R0 */

{
| ong disp;

di sp=(0x0000000F & (long)d);

R[0] =Read_Byt e(Rl m] +di sp) ;
i f ((R[0]&0x80)==0) R[0] &=0x000000FF;

Rev. 4.00 May 15, 2006 page 223 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

el se R 0] | =OxFFFFFFOO;
PC+=2;
}

MOWL4(long mlong d) /* MOV.W@disp, R), R0 */

{
| ong disp;

di sp=(0x0000000F & (long)d);
R[0] =Read_Wor d(R[m +(di sp<<1));
i f ((R[0] &x8000) ==0) R[0] &=0x0000FFFF;
el se R 0] | =0OxFFFF0000;
PC+=2;
}

MVLL4(long mlong d,long n)
/* MOV.L @disp, Rm,Rn */

{
| ong disp;
di sp=(0x0000000F & (long)d);
R[n] =Read_Long(R m +(di sp<<2));
PC+=2;
}
Examples:

MV.L @2,R0),Rl ; Before execution @(RO + 8) = H'12345670
; After execution R1 = @H'12345670

MOV. L RO, @H 3C, Rl) ; Before execution RO = HFFFF7F80
; After execution @(R1 + 60) = HFFFF7F80

Rev. 4.00 May 15, 2006 page 224 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.38 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code Cycle T Bit
MOVA @di sp, PC), RO disp x4 + PC - RO 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0O. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV A instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(l ong d) /* MOVA @disp, PO), RO */

{
| ong disp;
di sp=(0x000000FF & (Il ong)d);
R[0] =(PC&OXFFFFFFFC) +(di sp<<2);
PC+=2;
}
Examples:

Address .org H 1006

1006 MOVA STR, RO ; Address of STR — RO
1008 MOV.B @RO, R1 ; RI=“X"” PC location after correcting the lowest
; two bits
100A ADD R4, R5 ; « Original PC location for address calculation for
; the MOVA instruction
.align 4

100C STR .sdata “XYZP12”

2002 BRA TRGET ; Delayed branch instruction
2004 MWVA @O0, PC), RO ; Address of TRGET +2 — RO
2006 NOP

Rev. 4.00 May 15, 2006 page 225 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.39 MOVT (Move T Bit): Data Transfer Instruction
Format Abstract Code Cycle T Bit
MWVT Rn T - Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T =1, 1 is stored in Rn, and
when T =0, 0 is stored in Rn.

/*

MOVT Rn */

R[n] =(0x00000001 & SR);

Operation:
MOVT(1 ong n)
{

PC+=2;

}

Examples:
XOR R2, R2
CWP/ PZ R2
MOVT RO
CLRT
MOVT R1L

i R2=0
; T=

;RO=1
;T=0
yR1I=0

Rev. 4.00 May 15, 2006 page 226 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.40 MUL.L (Multiply Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit
MJL.L RmRn Rn xRm - MACL 0000nnnnmMmM0111 2 (to 5) —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MJLL(l ong mlong n) /* MJI.L RmRn */

{
MACL=R[n] *R[n{ ;
PC+=2;
}
Examples:
MJULL RO, R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555

; After execution MACL = H'FFFF5556
STS MACL, RO ; Operation result

Rev. 4.00 May 15, 2006 page 227 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MJULS. W Rm Rn Signed operation, Rn xRm - MACL 0010nnnnmmmi111 1 (o 3) —
MULS Rm Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MJULS(l ong mlong n) /* MILS RmRn */

{
MACL=((l ong) (short)R[n]*(long) (short)R[mM);
PC+=2;
}
Examples:
MJULS RO, R1 : Before execution RO = H'FFFFFFFE, R1 = H'00005555

; After execution MACL = H'FFFF5556
STS MACL, RO ; Operation result

Rev. 4.00 May 15, 2006 page 228 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MJLU. W Rm Rn Unsigned, Rn xRm - MACL 0010nnnnnmmmi110 1(to3) —
MULU Rm Rn

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MJULU(l ong mlong n) /* MJU Rm Rn */
{
MACL=((unsi gned | ong) (unsi gned short) R n]
*(unsi gned | ong) (unsi gned short)R[N});
PC+=2;
}

Examples:

MJULU RO, Rl ; Before execution RO =H'00000002, R1 = HFFFFAAAA
; After execution MACL =H'00015554
STS MACL, RO ; Operation result

Rev. 4.00 May 15, 2006 page 229 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.43 NEG (Negate): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEG Rm Rn 0-Rm - Rn 0110nnnnmmml0l1 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long mlong n) /* NEG RmRn */

{
R n] =0- R nj;
PC+=2;
}
Examples:

NEG RO, Rl ; Before execution RO =H'00000001
; After execution R1 = HFFFFFFFF

Rev. 4.00 May 15, 2006 page 230 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.44 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit
NEGC Rm Rn 0-Rm-T - Rn,Borrow -~ T 0110nnnnmmmi010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(1 ong mlong n) /* NEGC Rm Rn */

{
unsi gned | ong tenp;
tenp=0-R{ ni;
Rl n] =tenp-T,;
if (O<temp) T=1,;
el se T=0;
if (tenp<R[n]) T=1;
PC+=2,

}

Examples:
CLRT ; Sign inversion of R1 and RO (64 bits)

NEGC R1, Rl ; Before execution R1=H'00000001, T=0
; After execution R1 = H'FFFFFFFF, T=1

NEGC RO, RO ; Before execution RO =H'00000000, T=1
. After execution RO = HFFFFFFFF, T =1

Rev. 4.00 May 15, 2006 page 231 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.45 NOP (No Operation): System Control Instruction

Format Abstract Code

Cycle

T Bit

NOP No operation 0000000000001001

1

Description: Increments the PC to execute the next instruction.
Operation:

NOP() /* NOP */

{
PC+=2;
}
Examples:
NOP ; Executes in one cycle

Rev. 4.00 May 15, 2006 page 232 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code Cycle T Bit
NOT Rm Rn Rm - Rn 0110nnnnmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long mlong n) /* NOT RmRn */

{
R n] =~R[ni;
PC+=2;
}
Examples:

NOT RO, R1 ; Before execution RO =HAAAAAAAA
; After execution R1 =H'55555555

Rev. 4.00 May 15, 2006 page 233 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.47 OR (OR Logical) Logic Operation Instruction

Format Abstract Code Cycle T Bit

OR Rm Rn Rn|Rm - Rn 0010nnnnmmm1011 1 —

oR #i mm RO RO | imm - RO 1100101%iiiiiiii 1 —

OR B #imm @RO, BR) (RO+GBR)|imm - (RO+ 1100111liiiiiiii 3 —
GBR)

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register RO can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long mlong n) /* OR RmRn */

{
REn] | =R(ni;
PC+=2,

}

CRi(long i) /* OR# M RO */

{
R{ 0] | =(0x000000FF & (long)i);
PC+=2;

}

OCRMlong i) [/* ORB #imm @R0O, BR) */

{
| ong tenp;
temp=(1 ong) Read_Byt e(GBBR+R[0]) ;
t enp| =(0x000000FF & (long)i);
Wite_Byte(GBR+R 0], tenp);
PC+=2;

}

Rev. 4.00 May 15, 2006 page 234 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:
R RO, R1 ; Before execution RO =H'AAAAS5555, R1 =H'55550000
; After execution R1 =H'FFFF5555
OR #H FO, RO ; Before execution RO = H'00000008

; After execution RO =H'000000F8

OR B #H 50, @RO, GBR) ; Before execution @(R0,GBR) =H'A5
; After execution @(RO,GBR) =H'F5

Rev. 4.00 May 15, 2006 page 235 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.48 PREF (Prefetch Data to the Cache)

Format

Abstract Code Cycle T Bit

PREF @n

(Rn &Oxfffffff0) -~ Cache 0000nnnn10000011 1 —
(Rn &Oxfffffff0+4) - Cache
(Rn &Oxfffffff0+8) - Cache
(Rn &Oxfffffff0+C) - Cache

Description: Loads data to cache on software prefetching. 16-byte data containing the data
pointed by Rn (Cache 1 line) is loaded to the cache. Address Rn should be on longword boundary.

No address related error is detected in this instruction. In case of an error, the instruction operates

as NOP.

The destination is on-chip cache, therefore this instruction functions as an NOP instruction in
effect, that is, it never changes registers or processor status.

Operation:

PREF(1 ong n) [/*PREF*/

{
PC+=2;
}
Examples:

MOV. L
PREF
.align 4

SOFT_PF: .data.l
.data. 1
.data. 1
.data.1

SOFT_PF, Rl ; Address of R1is SOFT_PF
@1 ; Load data from SOFT_PF to on-chip cache

H 12345678
H 9ABCDEFO
H AAAA5555
H 5555AAAA

Rev. 4.00 May 15, 2006 page 236 of 558

REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code Cycle T Bit
ROTCL Rn T-Rn T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8.3).

MSB LSB

ROTCL - ﬁ

Figure 8.3 Rotate with Carry Left
Operation:

ROTCL(long n) /* ROTCL Rn */

{
I ong tenp;
i f ((R[n] &x80000000)==0) tenp=0;
el se temp=1;
R n] <<=1;
if (T==1) R[n]|=0x00000001;
el se R n] & O0xFFFFFFFE;
if (tenp==1) T=1,
el se T=0;
PC+=2;

}

Examples:
ROTCL RO ; Before execution RO = H'80000000, T=0

; After execution RO =H'00000000, T=1

Rev. 4.00 May 15, 2006 page 237 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8.4).

MSB LSB

ROTCR ﬂ |_>

Figure 8.4 Rotate with Carry Right
Operation:

ROTCR(l ong n) /* ROTCR Rn */
{
| ong tenp;

i f ((R[n] &x00000001)==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &0x7FFFFFFF;
if (tenp==1) T=1;
el se T=0;
PC+=2;
}

Examples:

ROTCR RO ; Before execution RO =H'00000001, T=1
; After execution RO =H'80000000, T=1

Rev. 4.00 May 15, 2006 page 238 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.51 ROTL (Rotate Left): Shift Instruction

Format Abstract Code Cycle T Bit
ROTL Rn T « Rn -« MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 8.5). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

ROTL ;._‘

Figure 8.5 Rotate Left
Operation:

ROTL(long n) /* ROTL Rn */

{
i f ((R[n] &x80000000)==0) T=0;
el se T=1;
R[n] <<=1;
if (T==1) R n]|=0x00000001;
el se R[n] &0xFFFFFFFE;
PC+=2;

}

Examples:
ROTL RO ; Before execution RO = H'80000000, T =0

; After execution RO =H'00000001, T=1

Rev. 4.00 May 15, 2006 page 239 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.52 ROTR (Rotate Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 8.6). The bit that is shifted out of the operand is transferred to the T bit.

MSB LSB

-

Figure 8.6 Rotate Right
Operation:

ROTR(l1 ong n) /* ROTR Rn */

{
i f ((R n]&x00000001)==0) T=0;
el se T=1;
R n] >>=1;
if (T==1) R[n]|=0x80000000;
el se R n] &=0x7FFFFFFF;
PC+=2,

}

Examples:
ROTR RO ; Before execution RO =H'00000001, T=0

; After execution RO =H'80000000, T=1

Rev. 4.00 May 15, 2006 page 240 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only)
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
RTE SSR - SR, SPC - PC 0000000000101011 4 —

Description: Returns from an exception routine. The PC and SR values are loaded from SPC and
SSR. The program continues from the address specified by the loaded PC value. RTE is a
privileged instruction and can be used in privileged mode only. If used in user mode, it causes an
illegal instruction exception.

Note: Since this is a delayed branch instruction, the instruction after RTE is executed before
branching.

No interrupts are accepted between this instruction and the one immediately following it. If the
instruction immediately following is a branch instruction, it is acknowledged as an illegal slot
instruction.

If this instruction is located in a delayed slot immediately following a delayed branch instruction,
it is acknowledged as an illegal slot instruction.

An instruction executed in a delayed slot immediately following this instruction uses the SR
restored by this instruction.

Make sure that an instruction executed in a delayed slot immediately following this instruction
does not cause an exception. Also, an instruction that manipulates the MD and BL bits of the SR
register, as well as the instruction following it, should be used with the multiplier disabled or with
fixed physical address space (P1 and P2).

Rev. 4.00 May 15, 2006 page 241 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

RTE() /* RTE */

{
unsi gned | ong tenp;
t emp=PC;
PC=SPC;,
SR=SSR,
Del ay_Sl ot (t enp+2) ;

}

Examples:
RTE ; Returns to the original routine

ADD #8, R15 ; Executes ADD before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 242 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.54 RTS (Return from Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code Cycle T Bit
RTS PR - PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction. An instruction restoring the PR should be prior to an
RTS instruction. That restoring instruction should not be the delay slot of the RTS.

Operation:

RTS() /* RTS */

{
unsi gned | ong tenp;
t enp=PC;
PC=PR+4;
Del ay_Sl ot (t enp+2) ;
}

Rev. 4.00 May 15, 2006 page 243 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Examples:
MOV. L TABLE, R3 ; R3 = Address of TRGET
JSR @3 : Branches to TRGET
NOP ; Executes NOP before branching
ADD RO, R1 ; « Return address for when the subroutine
; procedure is completed (PR data)

TABLE: .data.l TRGET ; Jump table

TRGET: MOV R1, RO ; « Procedure entrance
RTS ; PR data — PC
\o. #12, RO ; Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.

Rev. 4.00 May 15, 2006 page 244 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction (SH3-DSP Only)

Format Abstract Code Cycle T Bit

SETRC Rm LSW of Rm - RC (MSW of SR), 0100nmmmD0010100 3 —
Repeat control flag - RF1, RFO

SETRC #i nm imm - RC (MSW of SR), 10000010iiiiiiii 3 —

Repeat control flag - RF1, RFO

Description: Sets the repeat count to the SR register’s RC counter. When the operand is a register,
the bottom 12 bits are used as the repeat count. When the operand is an immediate data value, 8
bits are used as the repeat count. Set repeat control flags to RF1, RF0 bits of the SR register. Use
of the SETRC instruction is subject to any limitations. Refer to section 5.12, DSP Repeat (Loop)

Control, for more information.
Operation:

SETRC(1 ong m) /* SETRC Rm */
{
| ong tenp;

temp=(R[n] & OxO00000FFF) <<16;
SR&=0xFOOOFFF3;
SR| =t enp;
RF1=Repeat _Control _Fl agl;
RFO=Repeat _Control _Fl ag0;
PC+=2;

}

SETRCI (1 ong i) /*
{

SETRC #i mm */

| ong tenp;

tenp=((long)i & OxO000000FF) <<16;
SR&=0xFOOOFFFF;

SR| =t enp;

RF1=Repeat _Control _Fl agl;
RFO=Repeat _Control _Fl agO0;

Rev. 4.00 May 15, 2006 page 245 of 558
REJ09B0317-0400

RENESAS

Section 8 Instruction Descriptions

PC+=2;

SETRC #imm SETRC Rn

7 0 31 12 11 0

imm Rn’ ‘ 12 bits ‘

/ Repeat control flag / Repeat control flag
31 27 23 16 15 3‘20/ 31 27 16 15 3‘20/

SR ’ ‘ 0 ‘ 8 bits ‘ sr| | 12bis |
1<imm <255 1 <Rm[11:0] <4095
Figure 8.7 SETRC Instruction
Example:
LDRS STA ; Set repeat start address to RS.
LDRE END ; Set repeat end address to RE.
SETRC #32 ; Repeat 32 times from inst.A to inst.C.
inst.0 ;
STA: inst.A ;
inst.B ;
END: inst.C ;
inst.D ;

Rev. 4.00 May 15, 2006 page 246 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.56 SETS (Set S Bit): System Control Instruction

Format Abstract Code Cycle T Bit
SETS 1-8 0000000001011000 1 —

Description: Sets the S bit to 1.
Operation:

SETT() /* SETS */

{
S=1,;
PC+=2;
}
Examples:

SETS ; Before execution S=0

; After execution

Rev. 4.00 May 15, 2006 page 247 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.57 SETT (Set T Bit): System Control Instruction

Format Abstract Code

Cycle

T Bit

SETT 1T 0000000000011000

1

1

Description: Sets the T bitto 1.
Operation:

SETT() /* SETT */

{
T=1;
PC+=2;
}
Examples:

SETT ; Before execution T=0

; After execution T=1

Rev. 4.00 May 15, 2006 page 248 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction

Format Abstract Code Cycle T Bit
SHAD Rm Rn Rn << Rm - Rn (Rm =0) 0100nnnnmmMM1L100 2 —
Rn>>Rm - [MSB - Rn]

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and the number of bits to be shifted.

» If'the value of the Rm register is positive, the shift is to the left, if it is negative the shift is to
the right.

* The number of bits to be shifted is indicated by the five lower bits (bits 4 to 0) of the Rm
register. If the value is negative (MSB = 1), the Rm register is indicated with a complement of
2. The magnitude of left shift may be 0 to 31, and the magnitude of right shift may be 1 to 32.

MSB LSB
Rm=0
— o
MSB LSB
Rm<0 |

Figure 8.8 Shift Arithmetic Dynamically

Rev. 4.00 May 15, 2006 page 249 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

Operation:

SHAD(| ong m n) /* SHAD Rm Rn */

{
| ong cont, sgn;
sgn = R n] &0x80000000;
cnt = R[nj &0x0000001F;
if (sgn==0) R{n]<<=cnt;
el se R n] =(signed long) R n]>>((~cnt+1) & Ox1F); /*shift

arithnetic right*/

PC+=2;

}

Examples:

SHAD R1, R2 ; Before execution RI1 =H'FFFFFFEC, R2 =H'80180000
; After execution R1 =H'FFFFFFEC, R2 = HFFFFF801

SHAD R3, R4 ; Before execution R3 =H'00000014, R4 = HFFFFF801
; After execution R3 =H'00000014, R4 = H'80100000

Rev. 4.00 May 15, 2006 page 250 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code Cycle T Bit
SHAL Rn T-Rn<0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8.9).

MSB LSB
SHAL le—0

Figure 8.9 Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn(Sane as SHLL) */

{
i f ((R[n]&x80000000) ==0) T=0;
el se T=1,
R{n] <<=1;
PC+=2,

}

Examples:
SHAL RO ; Before execution RO =H'80000001, T=0

; After execution RO =H'00000002, T=1

Rev. 4.00 May 15, 2006 page 251 of 558
REJ09B0317-0400
RENESAS

Section 8 Instruction Descriptions

8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8.10).

MSB LSB

SHAR Ij‘

Figure 8.10 Shift Arithmetic Right
Operation:

SHAR(long n) /* SHAR Rn */

{
| ong tenp;
i f ((R[n]&x00000001)==0) T=0;
el se T=1;
i f ((R[n] &x80000000)==0) tenp=0;
el se tenp=1;
R n] >>=1;
if (tenp==1) R[n]|=0x80000000;
el se R[n] &0x7FFFFFFF;
PC+=2;

}

Examples:
SHAR RO ; Before execution RO = H'80000001, T=0

; After execution RO =H'C0000000, T=1

Rev. 4.00