
www.renesas.com

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Technology Corp.

website (http://www.renesas.com).

Data Flash Access Library

Type T01, European Release

16 Bit Single-chip Microcontroller
78K0R/Fx3 Series

Installer: RENESAS_FDL_78K0R_T01E_Vx.xxx

R01US0005ED0102
June 25, 2013

16

U
s
e
r M

a
n

u
a
l

R01US0005ED0102 2

User Manual

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however,

is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed

herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular

and careful attention to additional and different information to be disclosed by Renesas Electronics such as that

disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property

rights of third parties by or arising from the use of Renesas Electronics products or technical information described in

this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other

intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or

in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of semiconductor products and application examples. You are fully responsible for the incorporation of

these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no

responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or

information.

5. When exporting the products or technology described in this document, you should comply with the applicable export

control laws and regulations and follow the procedures required by such laws and regulations. You should not use

Renesas Electronics products or the technology described in this document for any purpose relating to military

applications or use by the military, including but not limited to the development of weapons of mass destruction.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose

manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas

Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever

for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High

Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product

before using it in a particular application. You may not use any Renesas Electronics product for any application

categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any

Renesas Electronics product for any application for which it is not intended without the prior written consent of

Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or

third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for

which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas

Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio

and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and

industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster

systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for

life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical

equipment or systems for life support (e.g. artificial life support devices or systems), surgical

implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes

that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas

Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage

range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified

ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products

have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use

conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to

implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire

in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including

but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or

any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please

evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental

compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all

R01US0005ED0102 3

User Manual

applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,

the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your

noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of

Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

R01US0005ED0102 4

User Manual

Table of Contents

Chapter 1 Introduction ... 6

1.1 Components of the EEPROM Emulation System ... 7

1.1.1 Physical flash layer .. 7

1.1.2 Flash access layer ... 7

1.1.3 EEPROM access layer .. 7

1.1.4 Application layer... 7

1.2 Naming Conventions ... 8

Chapter 2 Architecture ... 9

2.1 Data Flash fragmentation .. 9

2.1.1 FDL pool .. 9

2.1.2 EEL pool .. 10

2.1.3 USER pool ... 10

2.2 Address virtualization .. 11

2.3 Access right supervision ... 12

2.4 Request-Response architecture ... 13

2.5 Background operation ... 14

2.5.1 Background operation (Erase) ... 14

2.5.2 Background operation (write) ... 15

2.5.3 Background operation (blank-check/verify) ... 16

2.5.4 No background operation for read command .. 16

2.6 Suspension of block oriented commands (erase) ... 17

Chapter 3 User interface (API) ..18

3.1 Run-time configuration .. 18

3.2 Data types ... 19

3.2.1 Library specific simple type definitions .. 19

3.2.2 Enumeration type “fal_command_t” .. 19

3.2.3 Enumeration type “ fal_status_t” .. 20

3.2.4 Structured type “fal_request_t” .. 20

3.2.5 Structured type “fal_descriptor_t” .. 21

3.3 Functions ... 23

3.3.1 Basic functional workflow ... 23

3.3.2 Interface functions ... 23

Chapter 4 Operation ..30

4.1 Blank-check ... 30

4.2 Internal verify ... 31

4.3 Read .. 32

4.4 Write .. 33

4.5 Erase ... 35

R01US0005ED0102 5

User Manual

Chapter 5 FDL usage by user application ...36

5.1 First steps .. 36

5.2 Special considerations .. 36

5.2.1 Reset consistency .. 36

5.2.2 EEL+FDL or FDL only.. 36

5.3 File structure ... 37

5.3.1 Library for IAR Compiler .. 37

5.3.2 Library for REC Compiler ... 37

5.4 Configuration ... 38

5.4.1 Linker sections ... 38

5.4.2 Descriptor configuration (partitioning of the data flash) ... 38

5.4.3 Request structure .. 38

5.5 General flow .. 39

5.5.1 General flow: Initialization .. 39

5.5.2 General flow: commands except read ... 40

5.5.3 General flow: read command ... 41

5.6 Example of FDL used in operating-systems ... 42

5.7 Example: Simple application ... 43

5.8 Example: Read/Write during background erase ... 44

Chapter 6 Characteristics ..46

6.1 Resource consumption ... 46

6.2 Timings .. 46

6.2.1 Maximum function execution times ... 46

6.2.2 Maximum command execution times .. 46

6.2.3 Typical command execution times .. 47

6.2.4 Interrupt and DMA disable period .. 47

6.3 Cautions .. 48

Data Flash Access Library

R01US0005ED0102 6

User Manual

Chapter 1 Introduction

This user’s manual describes the overall structure, functionality and software
interfaces (API) of the Data Flash Library (FDL) accessing the physical Data
Flash separated and independent from the Code Flash. This library supports
dual operation mode where the content of the Data Flash is accessible (read,
write, erase) during instruction code execution.

The FAL (flash access layer) is a layer of EEPROM emulation system and
encapsulates the low-level access to the physically flash in secure way. In
case of Data Flash this layer is using the FDL. It provides a functional socket
for Renesas EEPROM emulation software, but beside this it offers also direct
access to the user at witch the access priority and access separation is fully
controlled by the library.

Components of the EEPROM emulation system

User application

EEL

EEL-API

FDL-API

FDL flash access layer (FAL)

FDL-POOL (data flash) physical data flash

EEPROM layer

application layer

To boost the flexibility and the real-time characteristics of the library it offers
only fast atomic functionality to read, write and erase the Data Flash memory
at smallest possible granularity. Beside the pure access commands some
maintenance functionality to check the quality of the flash content is also
provided by the library

Figure 1-1

Data Flash Access Library

R01US0005ED0102 7

User Manual

1.1 Components of the EEPROM Emulation System

To achieve a high degree of encapsulation the EEPROM emulation system is
divided into several layers with narrow functional interfaces.

1.1.1 Physical flash layer

The FDL is accessing the Data Flash as a physical media for storing data in
the EEPROM emulation system. The Data Flash is a separate memory that
can be accessed independent of the Code Flash memory. This allows
background access to data stored in the Data Flash during program execution
located in the code flash. The physical Data Flash is mapped by the FDL into a
virtual pool called FDL-Pool below.

1.1.2 Flash access layer

The Data Flash access layer is represented by the flash access library
provided by Renesas. In case of devices incorporating data-flash the FDL is
representing this layer. It offers all atomic functionality to access the FDL pool.
To isolate the data-flash access from the used flash-media this layer (the FDL)
is transforming thy physical addresses into a virtual, linear address-room.

1.1.3 EEPROM access layer

The EEPROM layer allows read/write access to the Data Flash at abstract
level. It is represented by Renesas EEL or alternatively any other, user
specific implementation.

1.1.4 Application layer

The application layer is user’s application software that can use freely all
visible (specified by the API definition) commandos of upper layers. The
EEPROM layer and the flash access layer can be used asynchronously. The
FDL manages the access rights to it in a proper way.

Data Flash Access Library

R01US0005ED0102 8

User Manual

1.2 Naming Conventions

Certain terms, required for the description of the Data Flash Access and
EEPROM emulation library are long and too complicated for good readability
of the document. Therefore, special names and abbreviations will be used in
the course of this document to improve the readability.

These abbreviations shall be explained here:

Abbreviations /
Acronyms

Description

Block Smallest erasable unit of a flash macro

Code Flash

Embedded Flash where the application code is stored.
For devices without Data Flash EEPROM emulation
might be implemented on that flash in the so called data
area.

Data Flash
Embedded Flash where mainly the data of the EEPROM
emulation are stored. Beside that also code operation
might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library

EEPROM
emulation

In distinction to a real EEPROM the EEPROM emulation
uses some portion of the flash memory to emulate the
EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.

FAL Flash Access Library (Flash access layer)

FCL Code Flash Library (Code Flash access layer)

FDL Data Flash Library (Data Flash access layer)

Flash

“Flash EPROM” - Electrically erasable and
programmable nonvolatile memory. The difference to
ROM is, that this type of memory can be re-programmed
several times.

Flash Block
A flash block is the smallest erasable unit of the flash
memory.

Flash Macro
A flash comprises of the cell array, the sense amplifier
and the charge pump (CP). For address decoding and
access some additional logic is needed.

NVM
Non volatile memory. All memories that hold the value,
even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...

RAM
“Random access memory” - volatile memory with
random access

ROM
“Read only memory” - nonvolatile memory. The content
of that memory can not be changed.

Serial programming
The onboard programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

Data Flash Access Library

R01US0005ED0102 9

User Manual

Chapter 2 Architecture

This chapter describes the overall architecture of the FDL library.

2.1 Data Flash fragmentation

The physical Data Flash location is fixed to a physical address assigned by the
hardware (e.g. for 78K0R/Fx3: 0xE9800 – 0xED7FF). Just the logical
fragmentation of the Data Flash can be configured within the given range.

Following figure shows the logical fragmentation of physical Data Flash.

Logical fragmentation of physical Data Flash

 Data Flash

FDL pool

USER pool

EEL pool

0xE9800

0xED7FF

Access by

EEL only

Access by

application only

2.1.1 FDL pool

The FDL pool defines the maximum usage of physical Data Flash used by the
FDL. In case of physical Data Flash size of 16KByte it is possible to define the
following sizes for FDL pool configuration: 2KByte, 4KByte, 6KByte, 8KByte,
10KByte, 12KByte, 14KByte, 16KByte. This pool is divided into the EEL and
USER pool which are described below.

Figure 2-1

Data Flash Access Library

R01US0005ED0102 10

User Manual

2.1.2 EEL pool

EEL pool is a part of the FDL pool and is assigned exclusively to Renesas
EEPROM Emulation Library (EEL) only. In case the EEL is not used the whole
FDL pool will be reserved for USER pool.

2.1.3 USER pool

The USER pool is a part of the FDL pool. It can be used exclusively by the
application in a free way. In case of proprietary EEPROM emulation
implementation (user specific) the completely FDL pool has to be configured
as USER-pool.

Data Flash Access Library

R01US0005ED0102 11

User Manual

2.2 Address virtualization

To facilitate the access to the USER pool the physical addresses were
virtualized. The virtualized pool looks like a simple one-dimensional array of
flash-words (4 bytes).

Relationship between physical and virtual pool addresses

USER/EEL

Pool
Data Flash

USER pool

EEL pool

0xED7FF

0xE9800

Block 0

Block 1

Block 2

Block 3

Block 7

Block 6

0xEB000

0xEA000

0xEA800

Block 3

Block 2

0xED000

0xECFFF

0xEC800

0xEAFFF

0xEA7FF

0xE9FFF

0xEB7FF

virtual

word

index

Flash block

and address

transformation

Block 1

Block 0

Block 5

Block 4

0x0000

0x0600

0x0200

0x0400

0x01FF

0x03FF

0x05FF

0x07FF

0xEB800

0xEBFFF

0xEC000

0xEC7FF

Physical

address

Figure 2-2

Data Flash Access Library

R01US0005ED0102 12

User Manual

2.3 Access right supervision

As mentioned before the complete FDL pool is divided into two parts shared
between user and the EEL. The construction of the FDL does not allow user
access to the EEL-pool and vice versa.

FDL pool access supervision

USER pool access

USER

EEL

EEL pool access

0-
(N

-1
)

EEL pool

USER pool

N flash words

0x0000

N-1

FDL pool

FDL

Figure 2-3

Data Flash Access Library

R01US0005ED0102 13

User Manual

2.4 Request-Response architecture

The communication between the requester (user) and the executor (here the
FDL) is a common structured request variable. The requester can specify the
request and pass it to the FDL. After acceptance the progress of the execution
can be checked by polling the request status.

From execution-time point of view the commands of the FDL are divided into
two groups:
- suspendable block-oriented command like block erase taking relatively long
time for its execution
- not-suspedable word-oriented commands like write, read ... taking very short
time for its execution

Depending on the real-time requirements the user can decide if independent,
quasi-parallel execution of block and word commands is required or not. In
such a case two separate request-variables have to be defined and managed
by the application. Please refer to chapter “Operation” for details.

Following figure shows the access from requester and FDL point of view.

Request oriented communication between FDL and its requester

DATA

INDEX

COMMAND

STATUS

Requester

FDL

Figure 2-4

Data Flash Access Library

R01US0005ED0102 14

User Manual

2.5 Background operation

Due to the fact that the Data Flash operates in the background it is possible to
do something else in the meantime. For example the application could prepare
next data for writing into the Data Flash or handle different ISRs. Background
operation is a powerful feature especially in operation systems were each task
could start FAL commands which will be executed in the background during
task switching.

2.5.1 Background operation (Erase)

The erase command is from timing point of view the longest command. As
shown in the figure below, the application has the possibility to execute other
user code during the background operation.

Background operation (Erase)

FAL_Execute(ERASE)

FAL_BUSY

Erase

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDLUSER
Data Flash

hardware

(background)

Figure 2-5

Data Flash Access Library

R01US0005ED0102 15

User Manual

2.5.2 Background operation (write)

During the running write command blank-check/write/verify will be performed
in background. As shown in the figure below, the application has the possibility
to execute other user code during the background operation.

Background operation (write)

FAL_Execute(WRITE)

FAL_BUSY
Blank-

Check

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDL
Data Flash

hardware

(background)

USER

Write

Verify

Figure 2-6

Data Flash Access Library

R01US0005ED0102 16

User Manual

2.5.3 Background operation (blank-check/verify)

Same procedure as for erase the verify or blank-check will be performed in
background.

Background operation (blank-check/verify)

FAL_Execute(BC/VI)

FAL_BUSY

Blank-

Check/

Verify

FAL_Handler()

FAL_BUSY

FAL_Handler()

FAL_OK

FDL
Data Flash

hardware

(background)

USER

2.5.4 No background operation for read command

The read command doesn’t use the background operation. It’s directly finished
after the request acceptance.

No background operation for read command

FAL_Execute(read)

FAL_OK

FDL
Data Flash

hardware

(background)

USER

Figure 2-7

Figure 2-8

Data Flash Access Library

R01US0005ED0102 17

User Manual

2.6 Suspension of block oriented commands (erase)

In cases of systems working under critical real-time conditions, immediately
read/write access to the data is a must. In such cases, separate request
variables must be defined for word command accesses and block command
accesses. Both types of access are managed separately on FDL and
requester side.

The suspension and resumption of the running block command (erase) is
managed automatically according to the following rules

- word commands cannot be suspended
- each block command can be suspended by any word command
- User requested block command does always suspend running block
commands of the EEL
- EEL requested block commands cannot suspend running user block
command

In other words:

- word commands have always higher priority than block commands
- user access have always higher priority than EEL (running in background)

The following table shows dependencies between running and requested
commands of EEL or user.

Block command suspension rules

command acceptance
running command

WCMD
(eel)

WCMD
(user)

BCMD
(eel)

BCMD
(user)

requested
command

WCMD
(eel) rejected rejected

suspend/
resume***

suspend/
resume

WCMD
(user) rejected rejected

suspend/
resume

suspend/
resume***

BCMD
(eel) rejected rejected rejected rejected

BCMD
(user) rejected rejected

suspend/
resume rejected

Agenda:
WCMD = word command
BCMD = block command,
rejected = requested command is rejected
suspend = running block command is suspended

*** when the address of the WCMD refers to the block addressed by BCMD
the WCMD will be rejected too.

Table 1

Data Flash Access Library

R01US0005ED0102 18

User Manual

Chapter 3 User interface (API)

3.1 Run-time configuration

During runtime the configuration of the FDL can be changed dynamically. To
be able to do it more than one descriptor constant has to be defined by the
user in advance. Depends on the application mode different descriptors can be
chosen for the FAL_Init(...) function.

/* */

/* some code */

/* */

/* load standard descriptor */

my_status=FAL_Init(&fal_descriptor_str);

/* */

/* some code */

/* */

FAL_Close(); /* close USER part of the FAL pool */

EEL_Close(); /* close EEL part of the FAL pool */

 /* - but only if necessary, means */

 /* if EEL used in system */

/* load alternative descriptor */

my_status=FAL_Init(&fal_descr_2_str);

/* */

/* some code */

/* */

Note: Before changing FAL pool configuration by using of different FAL pool-
descriptor the user has to close the FAL (USER part of the pool) in any case.
In case that the EEL is active in the system, the EEL part of the FAL-pool has
to be closed by using EEL_Close() too.

Data Flash Access Library

R01US0005ED0102 19

User Manual

3.2 Data types

This chapter describes all data definitions used by the FDL.

3.2.1 Library specific simple type definitions

This type defines simple numerical type used by the library

typedef unsigned char fal_u08;

typedef unsigned int fal_u16;

typedef unsigned long int fal_u32;

3.2.2 Enumeration type “fal_command_t”

This type defines all codes of available commands

typedef enum {

 FAL_CMD_UNDEFINED = (0x00),

 FAL_CMD_BLANKCHECK_WORD = (0x00 | 0x01),

 FAL_CMD_IVERIFY_WORD = (0x00 | 0x02),

 FAL_CMD_READ_WORD = (0x00 | 0x03),

 FAL_CMD_WRITE_WORD = (0x00 | 0x04),

 FAL_CMD_ERASE_BLOCK = (0x00 | 0x05),

 } fal_command_t;

Code value description:

FAL_CMD_UNDEFINED - default value
FAL_CMD_BLANKCHECK_WORD - blank-check of 1 Data Flash word
FAL_CMD_IVERIFY_WORD - verify of 1 Data Flash word
FAL_CMD_READ_WORD - read 1 Data Flash word
FAL_CMD_WRITE_WORD - write 1 Data Flash word
FAL_CMD_ERASE_BLOCK - erases 1 Data Flash block

Data Flash Access Library

R01US0005ED0102 20

User Manual

3.2.3 Enumeration type “ fal_status_t”

This enumeration type defines all possible status- and error-codes can be
generated during data-flash access via the FDL. The FAL_OK and FAL_BUSY
status are returned to the requester during normal operation. Other codes
signalize problems.

typedef enum {

 /* operation related status --------------*/

 FAL_OK = (0x00),

 FAL_BUSY = (0x00 | 0x01),

 /* run-time error related status ---------*/

 FAL_ERR_PROTECTION = (0x10 | 0x00),

 FAL_ERR_BLANKCHECK = (0x10 | 0x01),

 FAL_ERR_VERIFY = (0x10 | 0x02),

 FAL_ERR_WRITE = (0x10 | 0x03),

 FAL_ERR_ERASE = (0x10 | 0x04),

 /* configuration error related status ----*/

 FAL_ERR_PARAMETER = (0x20 | 0x00),

 FAL_ERR_CONFIGURATION = (0x20 | 0x01),

 FAL_ERR_INITIALIZATION = (0x20 | 0x02),

 FAL_ERR_COMMAND = (0x20 | 0x03),

 FAL_ERR_REJECTED = (0x20 | 0x04)

 } fal_status_t;

Status value Description

FAL_OK default value, ready, no error detected

FAL_BUSY request is accepted and is being processed

FAL_ERR_PROTECTION access outside permitted pool area

FAL_ERR_BLANKCHECK specified flash-word is not blank

FAL_ERR_VERIFY specified flash-word could not be verified

FAL_ERR_WRITE write is failed

FAL_ERR_ERASE block erase is failed

FAL_ERR_PARAMETER
not relevant for the FDL (defined for future
improvements)

FAL_ERR_CONFIGURATION Wrong values configured in descriptor

FAL_ERR_INITIALIZATION FDL not initialized or not opened

FAL_ERR_COMMAND wrong command code used

FAL_ERR_REJECTED when FDL busy with another request

3.2.4 Structured type “fal_request_t”

This type is used for definition of request variables and used for information
exchange between the application and the FDL. A request variable is passed
to the FDL to initiate a command and can be used by the requester (EEL,
application...) to check the status of its execution.

/* FAL request type (base type for any FAL access) */

typedef struct {

 fal_u32 data_u32;

 fal_u16 index_u16;

 fal_command_t command_enu;

 fal_status_t status_enu;

 } fal_request_t;

Data Flash Access Library

R01US0005ED0102 21

User Manual

Struct member Description

data_u32
32-bit buffer for data exchange during read/write
access

index_u16 virtual word index within the targeted pool

command_enu command code

status_enu request status code (feedback)

3.2.5 Structured type “fal_descriptor_t”

This type defines the structure of the FDL descriptor. It contains all
characteristics of the FDL. It is used in the fdl_descriptor.c file for definition of
the ROM constant fal_descriptor_str.

Based on configuration data inside the fdl_descriptor.h the initialization data of
descriptor constant is generated automatically in the fdl_descriptor.c.

/* FAL descriptor type */

typedef struct {

 fal_u32 fal_pool_first_addr_u32;

 fal_u32 eel_pool_first_addr_u32;

 fal_u32 user_pool_first_addr_u32;

 fal_u32 fal_pool_last_addr_u32;

 fal_u32 eel_pool_last_addr_u32;

 fal_u32 user_pool_last_addr_u32;

 fal_u16 fal_pool_first_block_u16;

 fal_u16 eel_pool_first_block_u16;

 fal_u16 user_pool_first_block_u16;

 fal_u16 fal_pool_last_block_u16;

 fal_u16 eel_pool_last_block_u16;

 fal_u16 user_pool_last_block_u16;

 fal_u16 fal_first_widx_u16;

 fal_u16 eel_first_widx_u16;

 fal_u16 user_first_widx_u16;

 fal_u16 fal_last_widx_u16;

 fal_u16 eel_last_widx_u16;

 fal_u16 user_last_widx_u16;

 fal_u16 fal_pool_wsize_u16;

 fal_u16 eel_pool_wsize_u16;

 fal_u16 user_pool_wsize_u16;

 fal_u16 block_size_u16;

 fal_u16 block_wsize_u16;

 fal_u08 fal_pool_size_u08;

 fal_u08 eel_pool_size_u08;

 fal_u08 user_pool_size_u08;

 fal_u08 fx_MHz_u08;

 } fal_descriptor_t;

Data Flash Access Library

R01US0005ED0102 22

User Manual

Struct member Description

fal_pool_first_addr_u32 first physical address of the FAL pool

eel_pool_first_addr_u32 first physical address of the EEL pool

user_pool_first_addr_u32 first physical address of the USER pool

fal_pool_last_addr_u32 last physical address of the FAL pool

eel_pool_last_addr_u32 last physical address of the EEL pool

user_pool_last_addr_u32 last physical address of the USER pool

fal_pool_first_block_u16 first virtual block of the FAL pool

eel_pool_first_block_u16 first virtual block of the EEL pool

user_pool_first_block_u16 first virtual block of the USER pool

fal_pool_last_block_u16 last virtual block of the FAL pool

eel_pool_last_block_u16 last virtual block of the EEL pool

user_pool_last_block_u16 last virtual block of the USER pool

fal_first_widx_u16 first virtual word-index inside the FAL pool

eel_first_widx_u16 first virtual word-index inside the EEL pool

user_first_widx_u16 first virtual word-index inside the USER pool

fal_last_widx_u16 last virtual word-index inside the FAL pool

eel_last_widx_u16 last virtual word-index inside the EEL pool

user_last_widx_u16 last virtual word-index inside the USER pool

fal_pool_wsize_u16 size of the FAL pool expressed in words

eel_pool_wsize_u16 size of the EEL pool expressed in words

user_pool_wsize_u16 size of the USER pool expressed in words

block_size_u16 size of one Data Flash block expressed in bytes

block_wsize_u16
size of one Data Flash block expressed in
words

fal_pool_size_u08
size of the FAL pool expressed in blocks
(Note 1)

eel_pool_size_u08
size of the EEL pool expressed in blocks
(Note 2, 3)

user_pool_size_u08
size of the USER pool expressed in blocks
(Note 2, 3)

fx_MHz_u08 not relevant for the FDL

Note 1: the maximal number of fal_pool_size_u08 is 0x08 (fixed to
 78K0R/Fx3, 8x2KByte blocks)
Note 2: the sum of eel_pool_size_u08 and user_pool_size_u08 must not
 exceed fal_pool_size_u08.
Note 3: both descriptor configuration conditions will be checked by
 FAL_Init(...)

Data Flash Access Library

R01US0005ED0102 23

User Manual

3.3 Functions

Due to the request oriented interface of the FDL the functional interface is very
narrow. Beside the initialization function and some administrative function the
whole flash access is concentrated to two functions only: FAL_Execute(...)
and FAL_Handler().

3.3.1 Basic functional workflow

To be able to use the FDL (execute pool-related commands) in a proper way
the requester has to follow a specific startup and shutdown procedure.

Figure 3-1 Basic workflow flow

Power OFF

closed

opened

busy

FAL_Open() FAL_Close()

 FAL_Init()

FAL_Execute(CMD)

where CMD =

READ_WORD,

WRITE_WORD,

BLANKCHECK_WORD,

IVERIFY_WORD,

ERASE_BLOCK

status = NOT busy

 OFF

ON

FAL_Handler()

3.3.2 Interface functions

The interface functions create the functional software interface of the library.
They are prototyped in the header file fdl.h.

Data Flash Access Library

R01US0005ED0102 24

User Manual

3.3.2.1 FAL_Init

Description

Initialization of all internal data.

Interface (REC version)

fal_status_t __far FAL_Init(const __far fal_descriptor_t*

 descriptor_pstr);

Interface (IAR version)

__far_func fal_status_t FAL_Init(const __far fal_descriptor_t

 __far* descriptor_pstr);

Pre-condition

None

Post-condition

Initialization is done.

Argument

Argument Type Description

descriptor_pstr fal_descriptor

Pointer to the descriptor (describing the
FDL configuration). The virtualization of
the data-flash address-room is done
based on that descriptor. The user can
use different descriptors to switch
between different FDL-pool
configurations.

Return types/values

Argument Type Description

fal_status fal_status_t

FAL_ERR_CONFIGURATION
when descriptor data are not plausible.
FAL_OK when descriptor correct and
initialization successful.

Usage

fal_status_t my_status;

my_status = FAL_Init(&fal_descriptor_str);

if(my_status == FAL_OK)

{

 /* FDL can be used /

}

else

{

 / error handler */

}

Data Flash Access Library

R01US0005ED0102 25

User Manual

3.3.2.2 FAL_Open

Description

This function must be used by the application to activate the data-flash.

Interface (REC version)

void __far FAL_Open(void);

Interface (IAR version)

__far_func void FAL_Open(void);

Pre-condition

FAL_Open() does not check any precondition, but FAL_Init(...) has to be
executed successfully already.

Post-condition

Data flash clock is switched on.

Argument

Argument Type Description

None

Return types/values

Argument Type Description

None

Usage

FAL_Open();

Data Flash Access Library

R01US0005ED0102 26

User Manual

3.3.2.3 FAL_Close

Description

This function deactivates the data flash.

Interface (REC version)

void __far FAL_Close(void);

Interface (IAR version)

__far_func void FAL_Open(void);

Pre-condition

None

Post-condition

Data flash clock is switched off. In case of FAL and EEL usage both
FAL_Close and EEL_Close must be called for switching off the Data Flash.

Argument

Argument Type Description

None

Return types/values

Argument Type Description

None

Usage

FAL_Close();

Data Flash Access Library

R01US0005ED0102 27

User Manual

3.3.2.4 FAL_Execute

Description

This is the main function of the FDL the application can use to initiate
execution of any command. Please refer to the chapter “Operation” for
detailed explanation of each command.

Interface (REC version)

void __far FAL_Execute(__near fal_request_t* request_pstr);

Interface (IAR version)

__far_func void FAL_Execute(__near fal_request_t __near*

 request_pstr);

Pre-condition

FAL_Init() executed successfully with status FAL_OK.

FAL_Open() executed already.

Post-condition

None

Argument

Argument Type Description

request_pstr fal_request_t This argument defines the command
which should be executed by FDL. It is a
request variable which is used for bi-
directional information exchange before
and during execution between FDL and
the application.

Return types/values

Argument Type Description

None

Usage

__near fal_request_t my_fal_WCMD_request_str;

my_fal_WCMD_request.data_u32 = 0x12345678;

my_fal_WCMD_request.index_u16 = 0x0123;

my_fal_WCMD_request.command_enu = FAL_CMD_WRITE_WORD;

/* command initiation */

do {

 FAL_Execute(&my_fal_WCMD_request);

 FAL_Handler(); /* proceed background process */

} while (my_fal_WCMD_request.status_enu == FAL_ERR_REJECTED);

/* command execution */

do {

 FAL_Handler();

} while (my_fal_WCMD_request.status_enu == FAL_BUSY);

if(my_fal_WCMD_request.status_enu != FAL_OK) error_handler();

Data Flash Access Library

R01US0005ED0102 28

User Manual

3.3.2.5 FAL_Handler

Description

This function is used by the application to proceed the execution of a
command running in the background. In case of the FDL the functionality of
the Handler is reduce to simple status polling of the sequencer. In case any
background command was suspended in the past, the FAL_Handler takes
care for the resume-process.

Interface (REC version)

void __far FAL_Handler(void);

Interface (IAR version)

__far_func void FAL_Handler(void);

Pre-condition

FAL_Init() executed successfully with status FAL_OK.

FAL_Open() executed already.

Post-condition

In case of finished command the status is written to the request structure.

Argument

Argument Type Description

None

Return types/values

Argument Type Description

None

Usage

/* infinite scheduler loop */

do {

 /* proceed potential command execution */

 FAL_Handler();

 /* 20ms time slize (potential FAL requester) */

 MyTask_A(20);

 /* 10ms time slize (potential FAL requester) */

 MyTask_B(10);

 /* 40ms time slize (potential FAL requester) */

 MyTask_C(40);

 /* 10ms time slize (potential FAL requester) */

 MyTask_D(10);

} while (true);

Data Flash Access Library

R01US0005ED0102 29

User Manual

3.3.2.6 FAL_GetVersionString

Description

This function provides the internal version information of the used library.

Interface (REC version)

__far fal_u08* __far FAL_GetVersionString(void);

Interface (IAR version)

__far_func fal_u08 __far* FAL_GetVersionString(void);

Pre-condition

None

Post-condition

None

Argument

Argument Type Description

None

Return types/values

Argument Type Description

 fal_u08 __far*
Pointer to the first character of a zero
terminated version string.

Usage (REC version)

__far const fal_u08 *my_version_string;

my_version_string = FAL_GetVersionString();

Usage (IAR version)

fal_u08 __far* my_version_string;

my_version_string = FAL_GetVersionString();

Data Flash Access Library

R01US0005ED0102 30

User Manual

Chapter 4 Operation

4.1 Blank-check

The blank-check operation can be used to check if all bits within the addressed
pool-word are still “erased”. The user can use blank-check command freely.
The blank-check command is initiated by FAL_Execute() and must be
continued by FAL_Handler() as long as command is not finished (request-
status updated).

Status of FAL_CMD_BLANKCHECK_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning
FDL not initialized or
not opened

reason
wrong handling on user
side

remedy
Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning
request cannot be
accepted

reason
word index is outside
the corresponding pool

remedy
set correct word index
and try again

FAL_ERR_REJECTED normal

meaning
FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_BLANKCHECK normal

meaning
specified flash-word is
not blank

reason
any bit in the flash
word addressed by
word index isn’t erased

remedy
nothing, free
interpretation at
requester side

FAL_BUSY normal

meaning
request is being
processed

reason
request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning
request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 2

Data Flash Access Library

R01US0005ED0102 31

User Manual

4.2 Internal verify

The internal verify operation can be used to check if all bits (0’s and 1’s) are
electronically correct written. Inconsistent and weak data caused by
asynchronous RESET can be detected by using the verify command. The user
can uses verify freely to check the quality of user data. The verify command is
initiated by FAL_Execute() and must be continued by FAL_Handler() as long
as command is not finished (request-status updated).

Status of FAL_CMD_IVERIFY_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning
FDL not initialized or
not opened

reason
wrong handling on user
side

remedy
Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning
request cannot be
accepted

reason
word index is outside
the corresponding pool

remedy
set correct word index
and try again

FAL_ERR_REJECTED normal

meaning
FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_VERIFY normal

meaning
specified flash-word in
pool could not be
verified

reason
any bit in the
addressed flash word
isn’t electrically correct

remedy
nothing, free
interpretation at
requester side

FAL_BUSY normal

meaning
request is being
processed

reason
request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning
request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 3

Data Flash Access Library

R01US0005ED0102 32

User Manual

4.3 Read

The read operation can be used to read the content of the addressed pool-
word. It is initiated and finished directly by FAL_Execute(). FAL_Handler() is
not needed in that case.

Status of FAL_CMD_READ_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning
FDL not initialized or
not opened

reason
wrong handling on user
side

remedy
Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning
FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_OK normal

meaning
request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Caution:
During the execution of a read command the DMAs (via the SFR
DMCALL.DWAITALL) and interrupts are disabled for a short period (see
Section 6.2.4).
The reason for this originates from the following situation: In case a Data
Flash Read access is performed exactly at the same time while any DMA
transfer is triggered, there is a possibility for an internal bus conflict
between CPU bus and Data Flash bus. Such kind of bus conflict can
cause a wrong data to be read from the Data Flash. (See also Customer
Notification R01TU0003ED0103.)

Table 4

Data Flash Access Library

R01US0005ED0102 33

User Manual

4.4 Write

The write operation writes 32-bit data into passed word index. To protect
existing flash data against accidental overwrite 1-word blank-check is
executed in advance. After that the write-command is initiated. In case of
successfully finished writing the quality of data will be checked via internal
verify.

Status of FAL_CMD_WRITE_WORD command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning
FDL not initialized or
not opened

reason
wrong handling on user
side

remedy
Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning
request cannot be
accepted

reason
word index is outside
the corresponding pool

remedy
set correct word index
and try again

FAL_ERR_REJECTED normal

meaning
FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_BLANKCHECK normal

meaning

specified flash-word in
pool is not blank, write
was not performed, the
content of flash-word
remains untouched

reason
overwriting of non-
erased flash words is
not allowed

remedy
erase the block before
writing again into this
block

FAL_ERR_WRITE normal

meaning

flash word addressed
by word index couldn’t
be written correctly
after performing the
max. number of retries

reason flash problems

remedy
erase the block and try
to write again into this
block

FAL_ERR_VERIFY normal

meaning
after writing the data
the flash word could
not be verified

reason flash problems

remedy erase the block and try

Table 5

Data Flash Access Library

R01US0005ED0102 34

User Manual

to write again into this
block

FAL_BUSY normal

meaning
request is being
processed

reason
request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning
request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Data Flash Access Library

R01US0005ED0102 35

User Manual

4.5 Erase

The erase operation can be used to erase one block of the related pool. After
starting the erase-command the hardware is checking if the addressed block is
already blank to avoid unnecessary erase cycles. After that the erase-
command is initiated. The max. number of erase retries is 19.

Status of FAL_CMD_ERASE_BLOCK command

Status Class Background and Handling

FAL_ERR_INITIALIZATION heavy

meaning
FDL not initialized or
not opened

reason
wrong handling on user
side

remedy
Initialize and open FDL
before using it

FAL_ERR_PROTECTION heavy

meaning
request cannot be
accepted

reason
block number outside
the corresponding pool

remedy
correct block number
and try again

FAL_ERR_REJECTED normal

meaning
FDL driver cannot
accept the request

reason

FDL driver is busy with
an other word
command or block
command (in case of
same block).

remedy
Call FAL_Handler as
long as request isn’t
accepted.

FAL_ERR_ERASE fatal

meaning
specified flash block
could not be erased

reason internal flash problems

remedy
do not use this block
anymore

FAL_BUSY normal

meaning
request is being
processed

reason
request checked and
accepted

remedy
nothing, call
FAL_Handler until
status changes

FAL_OK normal

meaning
request was finished
regular

reason
no problems during
command execution
happens

remedy nothing

Table 6

Data Flash Access Library

R01US0005ED0102 36

User Manual

Chapter 5 FDL usage by user application

5.1 First steps

It is very important to have theoretic background about the Data Flash and the
FDL in order to successfully implement the library into the user application.
Therefore it is important to read this user manual in advance especially
subchapter “Cautions” of chapter “Characteristics”.

5.2 Special considerations

5.2.1 Reset consistency

During the execution of FDL commands a reset could occur and the data could
be damaged. In such cases it should be considered whether to uses two
variables for same data and so on. In other words please consider such reset
scenarios to avoid invalid data. The EEL provided by Renesas Electronics is
designed to avoid read of invalid data cause by such reset scenarios. The
following chapter describes the applications where the EEL should be used.

5.2.2 EEL+FDL or FDL only

Depending on the security level of the application, write frequency of variables
and variables count it should be considered whether to uses the EEL+FDL or
the FDL only.

5.2.2.1 FDL only

By using the FDL only the application has to take care about all reset
scenarios and writing flow of different variables with different sizes.

Application scenarios

- Programming of initial or calibration data
- user specific EEPROM emulation

5.2.2.2 EEL+FDL

The duo of EEL and FDL allows the user to uses the EEL for high write
frequency of different variables with different sizes in a secure way and
additionally the USER pool is available for free usage.

Application scenarios

- Programming of initial or calibration data
- Large count of variables and high write frequency by using the EEL
- Secure data handling completely handled by EEL

Data Flash Access Library

R01US0005ED0102 37

User Manual

5.3 File structure

5.3.1 Library for IAR Compiler

[root] FDL library

fdl_info.txt Library release notes

[root]\[lib]

fdl.h FDL interface definition

fdl_types.h FDL types definition

fdl.r26 Pre-compiled library

[root]\[smp][C]

fdl_descriptor.c Descriptor calculation part

fdl_descriptor.h Pool configuration part

fdl_sample_linker_file.xcl Sample Linker file

5.3.2 Library for REC Compiler

[root]

fdl_info.txt Library release notes

[root]\[lib] FDL library

fdl.h FDL interface definition (Compiler)
fdl.inc FDL interface definition (Assembler)

fdl_types.h FDL types definition

fdl.lib Pre-compiled library

[root]\[smp][C] Sample folder for C-Compiler projects

fdl_descriptor.c Descriptor calculation part

fdl_descriptor.h Pool configuration part

fdl_sample_linker_file.dr Sample Linker file

[root]\[smp][asm] Sample folder for Assembler projects

fdl_descriptor.asm Descriptor calculation part

fdl_descriptor.inc Pool configuration part

fdl_sample_linker_file.dr Sample Linker file

Data Flash Access Library

R01US0005ED0102 38

User Manual

5.4 Configuration

5.4.1 Linker sections

Following segments are defined by the library and must be configured via the
linker description file.

FAL_CODE Segment for library code.
Can be located anywhere in the code flash.

FAL_CNST Segment for library constants like descriptor.
 Can be located anywhere in the code flash.

FAL_DATA Segment for library data.
 Must be located inside the SADDR RAM

NOTE: FAL_CODE and FAL_CNST segments must be located anywhere in
 the Code Flash but inside the same 64 KByte page.

5.4.2 Descriptor configuration (partitioning of the data flash)

Before the FDL can be used the FDL pool and it’s partitioning has to be
configured first. The descriptor is defining the physical/virtual addresses and
parameter of the pool which will be automatically calculated by using the
FAL_POOL_SIZE and EEL_POOL_SIZE definition.

Because the physical starting address of the data flash is fixed by the
hardware the user can only determine the total size of the pool expressed in
blocks. Also the physical size of the pool is limited by the hardware and must
not be defined by the user. Also the physical size of a flash block is a
predefined constant determined by the used hardware.

The first configuration parameter is FAL_POOL_SIZE. The minimum value is 0
and means any access to the FDL-pool is closed. The maximum value in case
of 78K0R/Fx3 is 8 (means 8 blocks = 16 Kbytes).

The other configuration parameter is EEL_POOL_SIZE, the size of the EEL-
pool within the FDL-pool used exclusively for Renesas EEPROM emulation
library only. The minimum size of the EEL-pool is 0. This means the complete
FDL pool is occupied by the user for storing data. But also when a proprietary
EEPROM emulation is implemented by the user the complete pool has to be
reserved for it by specifying EEL_POOL_SIZE=0. The maximum size of the
EEL-pool is FAL_POOL_SIZE.

Notes:

- The USER pool and EEL pool are complementary. This means: the USER
pool is always the remaining none-EEL-pool (in other words
USER_POOL_SIZE = FAL_POOL_SIZE – EEL_POOL_SIZE).

- The virtual address 0 of the user-pool corresponds with the successor of the
last EEL-pool word.

5.4.3 Request structure

Depending on the user application architecture more than one request variable
could be necessary. For example if an immediate write is necessary during
running erase. In such a case two request variables (one for write and one for

Data Flash Access Library

R01US0005ED0102 39

User Manual

erase) are necessary. Please take care that each request variable is located
on an even address.

5.5 General flow

5.5.1 General flow: Initialization

The following figure illustrates the initialization flow.

Initialization flow

FAL_Init

FAL_Open

FAL_OK

status?

Error handler

FAL_ERR_CONFIGURATION

FAL_Close

Execute any FAL

commands

Figure 5-1

Data Flash Access Library

R01US0005ED0102 40

User Manual

5.5.2 General flow: commands except read

After initialization of the environment the application can uses the commands
provided by the library. The following figure illustrates the general flow of
command (except read command) execution.

 FAL command execution (except read command)

Error handler

fill request

CMD

FAL_Execute(CMD)

status?

FAL_Handler()

FAL_ERR_REJECTED

FAL_Handler()

FAL_BUSY

status?

FAL_OK

FAL_BUSY

OTHER

OTHER

................

................

In case the requested command is rejected the application has to call the
FAL_Handler() for finishing/suspend the background command and try to
execute the command again.

Figure 5-2

Data Flash Access Library

R01US0005ED0102 41

User Manual

5.5.3 General flow: read command

The difference between the read command and other commands
(erase/write/verify/blank-check) is that the read command will be completed
directly during FAL_Execute() function. That means no additionally
FAL_Handler() calls are required.

FAL read command execution

Error handler

fill request

CMD(read)

FAL_Execute(CMD)

status?

FAL_Handler()

FAL_ERR_REJECTED

FAL_OK

OTHER

................

................

In case the requested command is rejected the application has to call the
FAL_Handler() for finishing/suspend the background command and try to
execute the command again.

Figure 5-3

Data Flash Access Library

R01US0005ED0102 42

User Manual

5.6 Example of FDL used in operating-systems

The possibility of background operation and request-response structure of the
FDL allows the user to uses the FDL in an efficient way in operating systems.

Note: Please read the chapter “Characteristics->Cautions” carefully
before using the FDL in such operating systems.

The following figure illustrates a sample operating system where the FDL is
used for Data Flash access.

FDL used in an operating system

Task 1 (each 50ms)

if(req1.status != FAL_BUSY)

FAL_Execute(req1)

Task 2 (each 100ms)

if(req2.status != FAL_BUSY)

FAL_Execute(req2)

 Task 3 (emergency task)

 do{

 FAL_Execute(req_et)

 FAL_Handler();

 } while(req_et.status == rejected);

 while(req_et.status == FAL_BUSY)

 FAL_Handler()

IDLE Task (each 2ms)

FAL_Handler()

operating system

This sample operating system shows three different task types which are
described below.

Task 1 and Task 2

This task type is a requesting task like Task 1 and 2. Such tasks just start any
FDL command via the FAL_Execute function and assume that it will be
finished in the background via the IDLE task.

IDLE task
The IDLE task will be used by the application for continuing any running FAL
command. That means the FAL_Handler must be called inside of such a task.

Emergency task
The difference between this task type and the requesting type (Task 1 and

Figure 5-4

Data Flash Access Library

R01US0005ED0102 43

User Manual

Task 2) is that this task performs any FAL commands completely without
waiting in the background. Such task can be used in case of voltage drop
where important data must be saved before the device is off.

5.7 Example: Simple application

The following sample shows how to use each command in a simple way.

 extern __far const fal_descriptor_t fal_descriptor_str;

 fal_status_t my_fal_status_enu;

 __near fal_request_t request;

 /* initialization */

 my_fal_status_enu = FAL_Init(

 (__far fal_descriptor_t*)&fal_descriptor_str);

 if(my_fal_status_enu != FAL_OK) ErrorHandler();

 FAL_Open();

 /* erase block 0 */

 request.index_u16 = 0x0000;

 request.command_enu = FAL_CMD_ERASE_BLOCK;

 FAL_Execute(&request);

 while(request.status_enu == FAL_BUSY) FAL_Handler();

 if(request.status_enu != FAL_OK) ErrorHandler();

 /* write patter 0x12345678 into the widx = 0 */

 request.index_u16 = 0x0000;

 request.data_u32 = 0x12345678;

 request.command_enu = FAL_CMD_WRITE_WORD;

 FAL_Execute(&request);

 while(request.status_enu == FAL_BUSY) FAL_Handler();

 if(request.status_enu != FAL_OK) ErrorHandler();

 /* read value of widx = 0 */

 request.index_u16 = 0x0000;

 request.command_enu = FAL_CMD_READ_WORD;

 FAL_Execute(&request);

 if(request.status_enu != FAL_OK) ErrorHandler();

 /* check whether the written pattern is correct */

 if(request.data_u32 != 0x12345678) ErrorHandler();

 /* blank check widx = 0 */

 request.index_u16 = 0x0000;

 request.command_enu = FAL_CMD_BLANKCHECK_WORD;

 FAL_Execute(&request);

 while(request.status_enu == FAL_BUSY) FAL_Handler();

 if(request.status_enu != FAL_ERR_BLANKCHECK) ErrorHandler();

 /* verify widx = 0 */

 request.index_u16 = 0x0000;

 request.command_enu = FAL_CMD_IVERIFY_WORD;

 FAL_Execute(&request);

 while(request.status_enu == FAL_BUSY) FAL_Handler();

if(request.status_enu != FAL_OK) ErrorHandler();

FAL_Close();

Data Flash Access Library

R01US0005ED0102 44

User Manual

5.8 Example: Read/Write during background erase

The FDL allows background erase operation, therefore during that time read-
and write-access to data located in another block of the addressed pool is
possible. To be able to use foreground read/write operation a separate request
variable has to be declared for that purpose. Read and write commands do
always suspend the erase process running in the background. Exception is
when the word command tries to access the same block as the running erase
in background. In such a case the FAL_Handler() has to be called until the
running erase command is finished. Please refer to the detailed explanation of
command suspension to chapter “Suspension of block oriented commands
(erase)”.

fal_request_t my_BCMD_req, my_WCMD_req;

fal_u32 my_data_u32;

void erase_state_0(void)

{

 /* specify the BCMD parameter */

 my_BCMD_req.index_u16 = 4;

 my_BCMD_req.command_enu = FAL_CMD_ERASE_BLOCK;

 FAL_Execute(&my_BCMD_req);

 /* if erase-request accepted goto next state 1 */

 /* if erase-request rejected remain in state 0 */

 /* if erase-request error occurs goto error-state */

 if(my_BCMD_req.status_enu == FAL_BUSY;)

 next_state = erase_state_1;

 else

 {

 if (my_BCMD_req.status_enu != FAL_ERR_REJECTED)

 next_state = erase_state_err;

 }

}

/* block erase is running in background here */

void erase_state_1(void)

{

 /* if read during erase needed, read immediately */

 if(emergency_read==TRUE)

 {

 do {

 my_WCMD_req.index_u16 = 234;

 my_WCMD_req.command_enu = FAL_CMD_READ_WORD;

 FAL_Execute(&my_WCMD_req);

 FAL_Handler(); /* enforce eventually blocking command */

 } while((my_WCMD_req.status_enu==FAL_ERR_REJECTED));

 /* read-request accepted -> read the data directly */

 if (my_WCMD_req.status_enu==FAL_OK)

 my_data_u32 = my_WCMD_req.data_u32;

 else

 {

 /* in case of error, goto error-state */

 next_state = erase_state_err;

 }

 } /* ########### NEXT PAGE -----> ############### */

Data Flash Access Library

R01US0005ED0102 45

User Manual

 /* if write during erase needed, read immediately */

 if(emergency_write==TRUE)

 {

 do {

 my_data_u32 = 0x12345678;

 my_WCMD_req.data_u32 = my_data_u32;

 my_WCMD_req.index_u16 = 234;

 my_WCMD_req.command_enu = FAL_CMD_WRITE_WORD;

 FAL_Execute(&my_WCMD_req);

 FAL_Handler();/* enforce eventually blocking command */

 } while((my_WCMD_req.status_enu==FAL_ERR_REJECTED));

 /* enforce execution of the write-request */

 do {

 FAL_Handler();

 } while((my_WCMD_req.status_enu==FAL_BUSY));

 /* if error during write -> goto error-state */

 if (my_WCMD_req.status_enu!=FAL_OK)

 next_state = erase_state_err;

 }

 /* proceed the BCMD execution */

 FAL_Handler();

 /* erase-request finished -> goto state 2 */

 if(my_BCMD_req.status_enu==FAL_OK))

 next_state = erase_state_2;

 else

 {

 /* in case of error, goto error-state */

 next_state = erase_state_err;

 }

}

Data Flash Access Library

R01US0005ED0102 46

User Manual

Chapter 6 Characteristics

6.1 Resource consumption

Resource consumption

 REC Compiler IAR Compiler

Max. code size
(code flash)

1715 bytes 1749 bytes

Constants (code flash) 62 bytes 62 bytes

Internal data
(SADDR RAM)

2 bytes 2 bytes

Max. stack (RAM) 40 bytes 40 bytes

All values are based on FDL version V1.10.

6.2 Timings

The following timings have been measured on the uPD78F1845 device and
FDL version V1.10.

6.2.1 Maximum function execution times

Function Maximum function execution time

FAL_Init 1476/fclk + 14µs

FAL_Open 28/fclk + 89µs

FAL_Close 270/fclk + 13µs

FAL_Execute 1172/fclk + 14µs

FAL_Handler 864/fclk + 3µs

FAL_GetVersionString 14/fclk

6.2.2 Maximum command execution times

Command

Maximum command execution time

2 MHz 4 MHz 8 MHz 16 MHz 24 MHz

Read (1 word) 230µs 116µs 58µs 29µs 20µs

Blank check
(1 word)

677µs 339µs 171µs 105µs 70µs

Write (1 word) 2372µs 1595µs 1210µs 1067µs 987µs

Verify (1 word) 684µs 342µs 173µs 105µs 82µs

Erase (1 block) 285473µs 285194µs 285020µs 284932µs 284915µs

Data Flash Access Library

R01US0005ED0102 47

User Manual

6.2.3 Typical command execution times

Command

Typical command execution times

2 MHz 4 MHz 8 MHz 16 MHz 24 MHz

Read (1 word) 191µs 96µs 48µs 24µs 16µs

Blank check
(1 word)

564µs 282µs 142µs 87µs 58µs

Write (1 word) 1295µs 705µs 383µs 250µs 196µs

Verify (1 word) 570µs 285µs 144µs 87µs 68µs

Erase (1 block) 12695µs 12408µs 12262µs 12190µs 12176µs

6.2.4 Interrupt and DMA disable period

The following table shows the interrupt and DMA disable period for each FAL
function/command.

Function/command
Max. interrupt disable

period (cycles)
Max. DMA disable

period (cycles)

FAL_Init 27 0

FAL_Open 0 0

FAL_Close 27 0

Blank-check command
(1 word)

27 0

Verify command (1 word) 27 0

Read command (1 word) 30 20

Write command (1 word) 27 0

Erase command (1 block) 27 0

Data Flash Access Library

R01US0005ED0102 48

User Manual

6.3 Cautions

Following cautions must be considered before developing of an application.

 Library code and constants must be located completely in the same 64k
flash page.

 Initialization by FAL_Init must be performed before execution
FAL_Handler/FAL_Execute functions.

 Do not read data flash directly (means without FAL) during command
execution of FAL

 Each request variable must be located from an even address

 All functions are not re-entrant. That means don’t call FAL functions inside
the ISRs while any FAL function is already running.

 Task switches, context changes and synchronization between FDL
functions

All FDL functions depend on FDL global available information and are
able to modify this. In order to avoid synchronization problems, it is
necessary that at any time only one FDL function is executed. So, it is not
allowed to start an FDL function, then switch to another task context and
execute another FDL function while the last one has not finished.

Example of not allowed sequence:
- Task 1: Start an FDL operation with FDL_Execute
- Interrupt the function execution and switch to task 2, executing
FDL_Handler function.
- Return to task 1 and finish FDL_Execute function

 After execution of FAL_Close or FAL_Init function all requested/running
commands will be aborted and cannot be resumed. Please take care that
all running commands are finished before calling this functions.

 It is not possible to modify the Data Flash parallel to modification of the
Code Flash

 Suspension of word commands like read, write, verify, and blank-check is
not possible

 During the execution of any FAL function, the interrupts may be disabled
for a short period of time (see also Section 6.2.4).

 During the execution of the read command the DMA operation will be
disabled for short period (see also Section 6.2.4).

Data Flash Access Library

R01US0005ED0102 49

User Manual

Revision history

This is a first release of the user’s manual.

Chapter Page Description

all

Rev. 1.01:
Initial document

4.3
6.1
6.2
6.3

32
46
46-47
48

Rev. 1.02:
Caution added
Resource consumption updated
Timing measurements updated
Cautions regarding interrupt and DMA disable
times added

Data Flash Access Library

R01US0005ED0102 50

User Manual

Data Flash Access Library

	Table of Contents
	Chapter 1 Introduction
	1.1 Components of the EEPROM Emulation System
	1.1.1 Physical flash layer
	1.1.2 Flash access layer
	1.1.3 EEPROM access layer
	1.1.4 Application layer

	1.2 Naming Conventions

	Chapter 2 Architecture
	2.1 Data Flash fragmentation
	2.1.1 FDL pool
	2.1.2 EEL pool
	2.1.3 USER pool

	2.2 Address virtualization
	2.3 Access right supervision
	2.4 Request-Response architecture
	2.5 Background operation
	2.5.1 Background operation (Erase)
	2.5.2 Background operation (write)
	2.5.3 Background operation (blank-check/verify)
	2.5.4 No background operation for read command

	2.6 Suspension of block oriented commands (erase)

	Chapter 3 User interface (API)
	3.1 Run-time configuration
	3.2 Data types
	3.2.1 Library specific simple type definitions
	3.2.2 Enumeration type “fal_command_t”
	3.2.3 Enumeration type “ fal_status_t”
	3.2.4 Structured type “fal_request_t”
	3.2.5 Structured type “fal_descriptor_t”

	3.3 Functions
	3.3.1 Basic functional workflow
	3.3.2 Interface functions
	3.3.2.1 FAL_Init
	3.3.2.2 FAL_Open
	3.3.2.3 FAL_Close
	3.3.2.4 FAL_Execute
	3.3.2.5 FAL_Handler
	3.3.2.6 FAL_GetVersionString

	Chapter 4 Operation
	4.1 Blank-check
	4.2 Internal verify
	4.3 Read
	4.4 Write
	4.5 Erase

	Chapter 5 FDL usage by user application
	5.1 First steps
	5.2 Special considerations
	5.2.1 Reset consistency
	5.2.2 EEL+FDL or FDL only
	5.2.2.1 FDL only
	5.2.2.2 EEL+FDL

	5.3 File structure
	5.3.1 Library for IAR Compiler
	5.3.2 Library for REC Compiler

	5.4 Configuration
	5.4.1 Linker sections
	5.4.2 Descriptor configuration (partitioning of the data flash)
	5.4.3 Request structure

	5.5 General flow
	5.5.1 General flow: Initialization
	5.5.2 General flow: commands except read
	5.5.3 General flow: read command

	5.6 Example of FDL used in operating-systems
	5.7 Example: Simple application
	5.8 Example: Read/Write during background erase

	Chapter 6 Characteristics
	6.1 Resource consumption
	6.2 Timings
	6.2.1 Maximum function execution times
	6.2.2 Maximum command execution times
	6.2.3 Typical command execution times
	6.2.4 Interrupt and DMA disable period

	6.3 Cautions

