
 APPLICATION NOTE

R01AN2025EJ0123 Rev.1.23 Page 1 of 76

Mar 31, 2018

RX Family

USB Basic Host and Peripheral Driver using Firmware Integration Technology

Introduction

This application note describes the USB basic firmware, which utilizes Firmware Integration Technology (FIT). This

module performs hardware control of USB communication. It is referred to below as the USB-BASIC-F/W FIT

module.

Target Device

RX63N/RX631 Group
RX65N/RX651 Group
RX64M Group
RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

1. Universal Serial Bus Revision 2.0 specification

【http://www.usb.org/developers/docs/】

2. RX63N/RX631 Group User’s Manual: Hardware (Document number. R01UH0041EJ)

3. RX64M Group User’s Manual: Hardware (Document number. R01UH0377EJ)

4. RX71M Group User’s Manual: Hardware (Document number. R01UH0493EJ)

5. RX65N/RX651 User's Manual: Hardware (Document number. R01UH0590EJ)

6. RX65N/RX651-2M User's Manual: Hardware (Document number. R01UH0659EJ)

 Renesas Electronics Website

【http://www.renesas.com/】

 USB Devices Page

【http://www.renesas.com/prod/usb/】

R01AN2025EJ0123

Rev.1.23

Mar 31, 2018

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 2 of 76

Mar 31, 2018

Contents

1. Overview .. 3

2. Peripheral ... 7

3. Host... 14

4. API Functions .. 21

5. Return Value of R_USB_GetEvent Function .. 50

6. Device Class Types ... 54

7. Configuration (r_usb_basic_config.h) .. 55

8. Structures .. 60

9. USB Class Requests ... 64

10. DTC/DMA Transfer .. 68

11. Additional Notes .. 70

12. Creating an Application Program .. 71

13. Program Sample .. 75

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 3 of 76

Mar 31, 2018

1. Overview

The USB-BASIC-F/W FIT module performs USB hardware control. The USB-BASIC-F/W FIT module operates in

combination with one type of sample device class drivers provided by Renesas.

This module supports the following functions.

<Overall>

・ Supporting USB Host or USB Periphral.

・ Device connect/disconnect, suspend/resume, and USB bus reset processing.

・ Control transfer on pipe 0.

・ Data transfer on pipes 1 to 9. (Bulk or Interrupt transfe)

<Host mode>

・ In host mode, enumeration as Low-speed/Full-speed/Hi-speed device (However, operating speed is different by

devices ability.)

・ Transfer error determination and transfer retry.

<Peripheral mode>

・ In peripheral mode, enumeration as USB Host of USB1.1/2.0/3.0.

1.1 Note

1. This application note is not guaranteed to provide USB communication operations. The customer should verify

operations when utilizing the USB device module in a system and confirm the ability to connect to a variety of

different types of devices.

2. The terms “USB0 module” and “USB1 module” used in this document refer to different modules for each MCU.

The following is a reference.

 MCU USB Module Name

USB0 module RX63N/RX631 USBa module

(Start address: 0xA0000) RX65N/RX651 USBb module

 RX64M USBb module

 RX71M USBb module

USB1 module RX63N/RX631 USBa module

(Start address: 0xA0200/0xD0400) RX64M USBA module

 RX71M USBAa module

Note:

 The RX65N/RX651 MCU does not support the USB1 module.

1.2 Limitations

This driver is subject to the following limitations.

1. In USB host mode, the module does not support suspend/resume of the connected hub or devices connected

to the hub’s down ports.

2. In USB host mode, the module does not support suspend during data transfer. Execute suspend only after

confirming that data transfer is complete.

3. Multiconfigurations are not supported.

4. The USB host and USB peripheral modes cannot operate at the same time.

5. DMA/DTC is not supported when using RX63N/RX631.

6. When using the USB hub for DTC/DMA transfer, only the first USB device connected to the USB hub will

be able to send data using DTC/DMA transfer. All subsequent data transfers will be implemented with the

CPU transfer function.

7. This USB driver does not support the error processing when the out of specification values are specified to

the arguments of each function in the driver.

8. In the case of Vendor class, the user can not use the USB Hub.

9. This driver does not support the CPU transfer using D0FIFO/D1FIFO register.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 4 of 76

Mar 31, 2018

1.3 Terms and Abbreviations

APL : Application program

CDP : Charging Downstream Port

DCP : Dedicated Charging Port

HBC : Host Battery Charging control

HCD : Host control driver of USB-BASIC-F/W

HDCD : Host device class driver (device driver and USB class driver)

HUBCD : Hub class sample driver

H/W : Renesas USB deviceRX Family

MGR : Peripheral device state maneger of HCD

PBC : Peripheral Battery Charging control

PCD : Peripheral control driver of USB-BASIC-F/W

PDCD : Peripheral device class driver (device driver and USB class driver)

RSK : Renesas Starter Kits

STD : USB-BASIC-F/W

USB : Universal Serial Bus

USB-BASIC-F/W : USB Basic Host and Peripheral firmware for RX Family

Scheduler : Used to schedule functions, like a simplified OS.

Task : Processing unit

1.4 USB-BASIC-F/W FIT module

User needs to integrate this module to the project using r_bsp. User can control USB H/W by using this module API

after integrating to the project.

1.5 Software Configuration

In peripheral mode, USB-BASIC-F/W comprises the peripheral driver (PCD), and the application (APL). PDCD is

the class driver and not part of the USB-BASIC-F/W. See Table 1-1. In host mode, USB-BASIC-F/W comprises the

host driver (HCD), the manager (MGR), the hub class driver (HUBCD) and the application (APL). HDD and HDCD

are not part of the USB-BASIC-F/W, see Table 1-1

The peripheral driver (PCD) and host driver (HCD) initiate hardware control through the hardware access layer

according to messages from the various tasks or interrupt handler. They also notify the appropriate task when

hardware control ends, of processing results, and of hardware requests.

Manager manages the connection state of USB peripherals and performs enumeration. In addition, manager issues a

message to host driver or hub class driver when the application changes the device state. Hub class driver is sample

program code for managing the states of devices connected to the down ports of the USB hub and performing

enumeration.

The customer will need to make a variety of customizations, for example designating classes, issuing vendor-specific

requests, making settings with regard to the communication speed or program capacity, or making individual settings

that affect the user interface.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 5 of 76

Mar 31, 2018

3 Peripheral Control Driver (PCD)

USB - BASIC - F/W

5 Host Manager

(MGR)

6 HUB Driver

(HUBCD)

H/W

Peripheral Host

1 H/W Access Layer

2 USB Interrupt Handler

4 Host Control Driver (HCD)

7 Device Class Driver (HDCD)

8 Device Driver (HDD)

9 Application (APL)

7 Device Class Driver (PDCD)

9 Application (APL)

S
ch

ed
ul

er
 F

un
ct

io
n

(n
on

-O
S
)

User Programming Layer

Figure 1-1 Task Configuration of USB-BASIC-F/W

Table 1-1 Software function overview

No Module Name Function

1 H/W Access Layer Hardware control

2 USB Interrupt Handler USB interrupt handler

(USB packet transmit/receive end and special signal detection)

3 Peripheral Control Driver

(PCD)

Hardware control in peripheral mode

Peripheral transaction management

4 Host control driver

(HCD)

Hardware control in host mode

Host transaction management

5 Host Manager

(MGR)

Device state management
Enumeration

HCD/HUBCD control message determination

6 HUB Driver

(HUBCD)

HUB down port device state management

HUB down port enumeration

7 Device Class Driver Provided by the customer as appropriate for the system.

8 Device Driver Provided by the customer as appropriate for the system.

9 Application Provided by the customer as appropriate for the system.

1.6 Scheduler Function and Tasks

When using the non-OS version of the source code, a scheduler function manages requests generated by tasks and

hardware according to their relative priority. When multiple task requests are generated with the same priority, they

are executed using a FIFO configuration. To assure commonality with non-OS firmware, requests between tasks are

implemented by transmitting and receiving messages.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 6 of 76

Mar 31, 2018

1.7 Pin Setting

To use the USB FIT module, input/output signals of the peripheral function has to be allocated to pins with the

multi-function pin controller (MPC). Do the pin setting used in thie module before calling R_USB_Open function.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 7 of 76

Mar 31, 2018

2. Peripheral

2.1 Peripheral Control Driver (PCD)

2.1.1 Basic functions

PCD is a program for controlling the hardware. PCD analyzes requests from PDCD (not part of the USB-BASIC-F/W

FIT module) and controls the hardware accordingly. It also sends notification of control results using a user provided

call-back function. PCD also analyzes requests from hardware and notifies PDCD accordingly.

PCD accomplishes the following:

1. Control transfers. (Control Read, Control Write, and control commands without data stage.)

2. Data transfers. (Bulk, interrupt) and result notification.

3. Data transfer suspensions. (All pipes.)

4. USB bus reset signal detection and reset handshake result notifications.

5. Suspend/resume detections.

6. Attach/detach detection using the VBUS interrupt.

7. Hardware control when entering and returning from the clock stopped (low-power sleep mode) state.

2.1.2 Issuing requests to PCD

API functions are used when hardware control requests are issued to the PCD and when performing data transfers.

Refer to chapter 4, API Functions for the API function.

2.1.3 USB requests

This driver supports the following standard requests.

1. GET_STATUS

2. GET_DESCRIPTOR

3. GET_CONFIGURATION

4. GET_INTERFACE

5. CLEAR_FEATURE

6. SET_FEATURE

7. SET_ADDRESS

8. SET_CONFIGURATION

9. SET_INTERFACE

This driver answers requests other than the above with a STALL response.

Note that, refer to chapter 9, USB Class Requests for the processing method when this driver receives the class

request or vendor request.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 8 of 76

Mar 31, 2018

2.2 API Information

This Driver API follows the Renesas API naming standards.

2.2.1 Hardware Requirements

This driver requires your MCU support the following features:

・ USB

2.2.2 Software Requirements

This driver is dependent upon the following packages:

・ r_bsp

・ r_dtc_rx (using DTC transfer)

・ r_dmaca_rx (using DMA transfer)

2.2.3 Operating Confirmation Environment

Table 2-1 shows the operating confirmation environment of this driver.

Table 2-1 Operation Confirmation Environment

Item Contents

Integrated Development

Environment

Renesas Electronics e2 studio V.6.2.0

C compiler Renesas Electronics C/C++ compiler for RX Family V.2.07.00

Compile Option：-lang = c99

Endian Little Endian, Big Endian

USB Driver Revision Number Rev.1.23

Using Board Renesas Starter Kit for RX63N

Renesas Starter Kit for RX64M

Renesas Starter Kit for RX71M

Renesas Starter Kit for RX65N, Renesas Starter Kit for RX65N-2MB

Host Environment The operation of this USB Driver module connected to the following OSes has been
confirmed.

1. Windows® 7

2. Windows® 8.1

3. Windows® 10

2.2.4 Usage of Interrupt Vector

Table 2-2 shows the interrupt vector which this driver uses.

Table 2-2 List of Usage Interrupt Vectors

Device Contents

RX63N

RX631

USBI0 Interrupt (Vector number: 35) / USBR0 Interrupt (Vector number: 90)

USB D0FIFO0 Interrupt (Vector number: 33) / USB D1FIFO0 Interrupt (Vector number: 34)

 USBI1 Interrupt (Vector number: 38) / USBR1 Interrupt (Vector number: 91)

USB D0FIFO1 Interrupt (Vector number: 36) / USB D1FIFO1 Interrupt (Vector number: 37)

RX64M

RX71M

USBI0(GROUPB) Interrupt (Vector number: 189, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 9 of 76

Mar 31, 2018

 USBAR Interrupt (Vector number: 94)

USB D0FIFO2 Interrupt (Vector number: 32) / USB D1FIFO2 Interrupt (Vector number: 33)

RX65N

RX651

USBI0(GROUPB) Interrupt (Vector number: 185, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

2.2.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_if.h.

2.2.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

2.2.7 Compile Setting

For compile settings, refer to chapter 7, Configuration.

2.2.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. RX64M, RX71M, RX65N/RX651

 Checks arguments Does not check arguments

ROM size 19.0K bytes (Note 3) 18.5K bytes (Note 4)

RAM size 9.3K bytes 9.3K bytes

2. RX63N/RX631

 Checks arguments Does not check arguments

ROM size 16.7K bytes (Note 3) 16.1K bytes (Note 4)

RAM size 8.9K bytes 8.9K bytes

Note:

1. ROM/RAM size for BSP is included in the above size.

2. The default option is specified in the compiler optimization option.

3. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

4. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

2.2.9 Argument

For the structure used in the argument of API function, refer to chapter 8, Structures.

2.2.10 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart

Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please

use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 10 of 76

Mar 31, 2018

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your

project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration

Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 11 of 76

Mar 31, 2018

2.3 API (Application Programming Interface)

For the detail of the API function, refer to chapter 4, API Functions.

2.4 Class Request

For the processing method when this driver receives the class request, refer to chapter 9, USB Class Requests.

2.5 Descriptor

2.5.1 String Descriptor

This USB driver requires each string descriptor that is constructed to be registered in the string descriptor table. The

following describes how to register a string descriptor.

1. First construct each string descriptor. Then, define the variable of each string descriptor in uint8_t* type.

Example descriptor construction)

uint8_t smp_str_descriptor0[] {
 0x04, /* Length */
 0x03, /* Descriptor type */
 0x09, 0x04 /* Language ID */
};
uint8_t smp_str_descriptor1[] =
{
 0x10, /* Length */
 0x03, /* Descriptor type */
 'R', 0x00,
 'E', 0x00,
 'N', 0x00,
 'E', 0x00,
 'S', 0x00,
 'A', 0x00,
 'S', 0x00
};
uint8_t smp_str_descriptor2[] =
{
 0x12, /* Length */
 0x03, /* Descriptor type */
 'C', 0x00,
 'D', 0x00,
 'C', 0x00,
 '_', 0x00,
 'D', 0x00,
 'E', 0x00,
 'M', 0x00,
 'O', 0x00
};

2. Set the top address of each string descriptor constructed above in the string descriptor table. Define the variables

of the string descriptor table as uint8_t* type.

Note:

The position set for each string descriptor in the string descriptor table is determined by the index values set in

the descriptor itself (iManufacturer, iConfiguration, etc.).

For example, in the table below, the manufacturer is described in smp_str_descriptor1 and the value of

iManufacturer in the device descriptor is “1”. Therefore, the top address "smp_str_descriptor1" is set at Index

“1” in the string descriptor table.

/* String Descriptor table */
uint8_t *smp_str_table[] =
{

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 12 of 76

Mar 31, 2018

 smp_str_descriptor0, /* Index: 0 */
 smp_str_descriptor1, /* Index: 1 */
 smp_str_descriptor2, /* Index: 2 */
};

3. Set the top address of the string descriptor table in the usb_descriptor_t structure member (p_string). Refer to

chapter 8.4, usb_descriptor_t structure for more details concerning the usb_descriptor_t structure.

4. Set the number of the string descriptor which set in the string descriptor table to usb_descriptor_t structure

member (num_string). In the case of the above example, the value 3 is set to the member (num_string).

2.5.2 Other Descriptors

1. Please construct the device descriptor, configuration descriptor, and qualifier descriptor based on instructions

provided in the Universal Serial Bus Revision 2.0 specification(http://www.usb.org/developers/docs/) Each

descriptor variable should be defined as uint8_t* type.

2. The top address of each descriptor should be registered in the corresponding usb_descriptor_t function member.

For more details, refer to chapter 8.4, usb_descriptor_t structure.

2.6 Peripheral Battery Charging (PBC)

This driver supports PBC.

PBC is the H/W control program for the target device that operates the Charging Port Detection (CPD) defined by the

USB Battery Charging Specification (Revision 1.2).

You can get the result of CPD by calling R_USB_GetInformation function. For R_USB_GetInformation function,

refer to chapter 4.11.

Note:

RX63N/RX631 does not support PBC.

http://www.usb.org/developers/docs/

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 13 of 76

Mar 31, 2018

The processing flow of PBC is shown in Figure 2-1.

【Charging Port Detection】

USB State Change
(USB_STS_ATTACH)

BATCHGE = 1

Data Contact Detect

Primary Detection

Result

Secondary Detection

Charging Port

Result

BATCHGE = 0

USB State Charge
(USB_PORTENABLE)

SDP

CDP

【Data Contact Detect】

CNEN=1, IDPSRCE=1, RPDME=1
Software Wait 5[ms]

LNST

Software Wait 11[ms]

LNST

CNEN=0, IDPSRCE=0, RPDME=0

return COMP_SE0

SE0

SE0

not SE0

Timer++
Software Wait 1[ms]

not SE0

Timer > 600
No

Yes

CNEN=0, IDPSRCE=0, RPDME=0

return TIMEOUT

【Primary Detection】

VDPSRCE=1, IDMSINKE=1
Software Wait 42[ms]

Read CHGDETSTS

VDPSRCE=0, IDMSINKE=0
Software Wait 21[ms]

CHGDETSTS

return ChargingPort return SDP

0

1

【Secondary Detection】

VDMSRCE=1, IDPSINKE=1
Software Wait 42[ms]

Read PDDETSTS

VDMSRCE=0, IDPSINKE=0

PDDETSTS

return DCP return CDP

0

1

Figure 2-1 PBC processing flow

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 14 of 76

Mar 31, 2018

3. Host

3.1 Host Control Driver (HCD)

3.1.1 Basic function

HCD is a program for controlling the hardware. The functions of HCD are shown below.

1. Control transfer (Control Read, Control Write, No-data Control) and result notification.

2. Data transfer (bulk, interrupt) and result notification.

3. Data transfer suspension (all pipes).

4. USB communication error detection and automatic transfer retry

5. USB bus reset signal transmission and reset handshake result notification.

6. Suspend signal and resume signal transmission.

7. Attach/detach detection using ATCH and DTCH interrupts.

3.2 Host Manager (MGR)

3.2.1 Basic function

The functions of MGR are shown below.

1. Registration of HDCD.

2. State management for connected devices.

3. Enumeration of connected devices.

4. Searching for endpoint information from descriptors.

3.2.2 USB Standard Requests

MGR enumerates connected devices. The USB standard requests issued by MGR are listed below. The descriptor

information obtained from a device is stored temporarily, and this information can be fetched by using the HCD API

function.

GET_DESCRIPTOR（Device Descriptor）

SET_ADDRESS

GET_DESCRIPTOR（Configuration Descriptor）

SET_CONFIGURATION

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 15 of 76

Mar 31, 2018

3.3 API Information

This Driver API follows the Renesas API naming standards.

3.3.1 Hardware Requirements

This driver requires your MCU support the following features:

・ USB

3.3.2 Software Requirements

This driver is dependent upon the following packages:

・ r_bsp

・ r_dtc_rx (using DTC transfer)

・ r_dmaca_rx (using DMA transfer)

3.3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operation Confirmation Environment

Item Contents

Integrated Development

Environment

Renesas Electronics e2 studio V.6.2.0

C compiler Renesas Electronics C/C++ compiler for RX Family V.2.07.00

Compile Option：-lang = c99

Endian Little Endian, Big Endian

USB Driver Revision Number Rev.1.23

Using Board Renesas Starter Kit for RX63N

Renesas Starter Kit for RX64M

Renesas Starter Kit for RX71M

Renesas Starter Kit for RX65N, Renesas Starter Kit for RX65N-2MB

3.3.4 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents

RX63N

RX631

USBI0 Interrupt (Vector number: 35) / USBR0 Interrupt (Vector number: 90)

USB D0FIFO0 Interrupt (Vector number: 33) / USB D1FIFO0 Interrupt (Vector number: 34)

RX64M

RX71M

USBI0(GROUPB) Interrupt (Vector number: 189, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

 USBAR Interrupt (Vector number: 94)

USB D0FIFO2 Interrupt (Vector number: 32) / USB D1FIFO2 Interrupt (Vector number: 33)

RX65N

RX651

USBI0(GROUPB) Interrupt (Vector number: 185, Group interrupt source number：62)

USB D0FIFO0 Interrupt (Vector number: 34) / USB D1FIFO0 Interrupt (Vector number: 35)

USBR0 Interrupt (Vector number:90)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 16 of 76

Mar 31, 2018

3.3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_if.h.

3.3.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

3.3.7 Compile Setting

For compile settings, refer to chapter 7, Configuration..

3.3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. RX64M, RX71M, RX65N/RX651

 Checks arguments Does not check arguments

ROM size 35.0K bytes (Note 3) 34.5K bytes (Note 4)

RAM size 15.9K bytes 15.9K bytes

2. RX63N/RX631

 Checks arguments Does not check arguments

ROM size 32.2K bytes (Note 3) 31.6K bytes (Note 4)

RAM size 15.5K bytes 15.5K bytes

Note:

1. ROM/RAM size for BSP is included in the above size.

2. The default option is specified in the compiler optimization option.

3. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

4. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to

USB_CFG_PARAM_CHECKING definition in r_usb_basic_config.h file.

3.3.9 Argument

For the structure used in the argument of API function, refer to chapter 8, Structures.

3.3.10 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart

Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please

use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using “Smart Configurator” on e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to

“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 17 of 76

Mar 31, 2018

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your

project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration

Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 18 of 76

Mar 31, 2018

3.4 API (Application Programming Interface)

For the detail of the API function, refer to chapter 4, API Functions.

3.5 Class Request

For the processing method when this driver receives the class request, refer to 9, USB Class Requests.

3.6 How to Set the Target Peripheral List (TPL)

By registering the Vendor ID (VID) and Product ID (PID) in the USB host, USB communication will only be enabled

for the USB device identified with a registered VID and PID.

To register a USB device in the TPL, specify the VID and PID as a set to the macro definitions listed in Table 3-3 in

the configuration file (r_usb_basic_config.h file). The USB driver checks the TPL to make sure the VID and PID of

the connected USB device are registered. If registration is confirmed, USB communication with the USB device is

enabled. If the VID and PID are not registered in the TPL, USB communication is disabled.

If it is not necessary to register VID and PID in TPL, specify USB_NOVENDOR and USB_NOPRODUCT for the

TPL definitions listed in Table 3-3. When USB_NOVENDOR and USB_NOPRODUCT are specified, the USB driver

performs on TPL registration check, and this prevents situations from occurring in which USB communication is

prevented because of the check.

Table 3-3 TPL Definition

Macro definition name Description

USB_TPL_CNT Specify the number of USB devices to be supported.

USB_TPL Specify a VID/PID set for each USB device to be supported. (Always

specify in the order of VID first, PID second.)

USB_HUB_TPL_CNT Specify the number of USB hubs to be supported.

USB_HUB_TPL Specify a VID/PID set for each USB hub to be supported. (Always specify

in the order of VID first, PID second.)

== How to specify VID/PID in USB_TPL / USB_HUB_TP ==

#define USB_TPL 0x0011, 0x0022, 0x0033, 0x0044, 0x0055, 0x0066

 VID PID VID PID VID PID

#define USB_HUB_TPL 0x1111, 0x2222, 0x3333, 0x4444

 VID PID VID PID

Example 1) Register 3 USB devices and 2 USB hubs in the TPL

#define USB_CFG_TPLCNT 3

#define USB_CFG_TPL 0x0011, 0x0022, 0x0033, 0x0044, 0x0055, 0x0066

#define USB_CFG_HUB_TPLCNT 2

#define USB_HUB_TPL 0x1111, 0x2222, 0x3333, 0x4444

Example 2) Register 3 USB devices (no USB hubs) in the TPL

#define USB_CFG_TPLCNT 3

#define USB_CFG_TPL 0x0011, 0x0022, 0x0033, 0x0044, 0x0055, 0x0066

#define USB_CFG_HUB_TPLCNT 1

#define USB_CFG_HUB_TPL USB_NOVENDOR,USB_NOPRODUCT

Example 3) VID and PID registration not required

#define USB_CFG_TPLCNT 1

#define USB_CFG_TPL USB_NOVENDOR,USB_NOPRODUCT

#define USB_CFG_HUB_TPLCNT 1

USB device 1 USB device 2 USB device 3

USB Hub1 USB Hub2

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 19 of 76

Mar 31, 2018

#define USB_CFG_HUB_TPL USB_NOVENDOR,USB_NOPRODUCT

Note:

1. Set USB_CFG_TPLCNT and USB_CFG_HUB_TPLCNT to 1, even if USB_NOVENDOR and

USB_NOPRODUCT are specified for the TPL definitions in Table 3-3.

2. For the configuration file (r_usb_basic_config.h), refer to chapter 7.

3.7 Allocation of Device Addresses

In USB Host mode, the USB driver allocates device addresses to the connected USB devices.

1. When a USB Hub is used

Device address value 1 is allocated to a USB Hub, and device address values 2 and thereafter are allocated to USB

devices connected to the Hub.

2. When a USB Hub is not used

Device address value 1 is allocated to the USB device.

Note:

Device addresses are allocated in USB module units. For example, in the case of an MCU that supports multiple

USBs such as RX64M, if both the USB0 module and the USB1 module are connected to USB devices, device

address value 1 is allocated to each USB device.

3.8 Host Battery Charging (HBC)

This driver supports HBC.

HBC is the H/W control program for the target device that operates the CDP or the DCP as defined by the USB

Battery Charging Specification Revision 1.2.

Processing is executed as follows according to the timing of this driver. Refer to Figure 3-1.

VBUS is driven

Attach processing

Detach processing

Moreover, processing is executed in coordination with the PDDETINT interrupt.

There is no necessity for control from the upper layer.

You can get the result of Change Port Detection (CPD) by calling R_USB_GetInformation function. For

R_USB_GetInformation function, refer to chapter.

Note:

RX63N/RX631 does not support HBC.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 20 of 76

Mar 31, 2018

The processing flow of HBC is shown Figure 3-1.

VBUS Drive

DCP Build

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

DRPD=0,
BATCHGE=1, DCPMODE=1

1 0

return

PDDETINT Interrupt

PDDETSTS

VDMSRCE = 1 VDMSRCE = 0

1 0

return

Cut chattering

VDMSRCE == 0 VDMSRCE == 1

Yes Yes

No No

ATTACH Process

BATCHGE=0, IDPSINKE=0,
PDDETINT=0, PDDEINTE=0

return

DETACH Process

BATCHGE=1, IDPSINKE=1,
PDDETINT=0, PDDEINTE=1

return

Figure 3-1 HBC processing flow

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 21 of 76

Mar 31, 2018

4. API Functions

Table 4-1 provides a list of API functions. These APIs can be used in common for all the classes. Use the APIs below

in application programs.

Table 4-1 List of API Functions

API Description

R_USB_Open() (Note1) Start the USB module

R_USB_Close() (Note1) Stop the USB module

R_USB_GetVersion() Get the driver version

R_USB_Read() (Note1) Request USB data read

R_USB_Write() (Note1) Request USB data write

R_USB_Stop() (Note1) Stop USB data read/write processing

R_USB_Suspend() (Note1) Request suspend

R_USB_Resume() (Note1) Request resume

R_USB_GetEvent() (Note1) Return USB-related completed events

R_USB_VbusSetting() (Note1) Sets VBUS supply start/stop.

R_USB_GetInformation() Get information on USB device.

R_USB_PipeRead() (Note1) Request data read from specified pipe

R_USB_PipeWrite() (Note1) Request data write to specified pipe

R_USB_PipeStop() (Note1) Stop USB data read/write processing to specified pipe

R_USB_GetUsePipe() Get pipe number

R_USB_GetPipeInfo() Get pipe information

Note:

1. If the API of (Note 1) is executed on the same USB module by interrupt handling etc while the API of (Note 1)

is executing, this USB driver may not work properly.

2. The class-specific API function other than the above API is supported in Host Mass Storage Class. Refer to the

document (Document number: R01AN2026) for the class-specific API.

3. The class-specific API function other than the above API is supported in Host Human Interface Device Class.

Refer to the document (Document number: R01AN2028) for the class-specific API.

4. When USB_CFG_DISABLE is specified to USB_CFG_PARAM_CHECKING definition, the return value

USB_ERR_PARA is not returned since this driver does not check the argument. Refer to chapter 7,

Configuration for USB_CFG_PARAM_CHECKING definition.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 22 of 76

Mar 31, 2018

4.1 R_USB_Open

Power on the USB module and initialize the USB driver. (This is a function to be used first
when using the USB module.)

Format

usb_err_t R_USB_Open(usb_ctrl_t *p_ctrl, usb_cfg_t *p_cfg)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

p_cfg Pointer to usb_cfg_t structure area

Return Value

USB_SUCCESS Success
USB_ERR_PARA Parameter error
USB_ERR_BUSY Specified USB module now in use

Description

This function applies power to the USB module specified in the argument (p_ctrl).

Reentrant

This API is only reentrant for different USB module.

Note

1. For details concerning the usb_ctrl_t structure, see chapter 8.1, usb_ctrl_t structure, and for the usb_cfg_t

structure, see chapter 8.3, usb_cfg_t structure.

2. Specify the number of the module (USB_IP0/USB_IP1) to be started up in member (module) of the usb_ctrl_t

structure. Specify “USB_IP0” to start up the USB0 module and “USB_IP1” to start up the USB1 module. If

something other than USB_IP0 or USB_IP1 is assigned to the member (module), then USB_ERR_PARA will

be the return value.

3. If the MCU being used only supports one USB module, then do not assign USB_IP1 to t the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

4. Assign the device class type (see chapter 6, Device Class Types) to the member (type) of the usb_ctrl_t

structure. Does not assign USB_HCDCC and USB_PCDCC to this member (type).

5. In the usb_cfg_t structure member (usb_mode), specify “USB_HOST” to start up USB host operations and

“USB_PERI” to start up USB peripheral operations If these settings are not supported by the USB module,

USB_ERR_PARA will be returned.

6. Specify the USB speed (USB_HS / USB_FS) in the usb_ctrl_t structure member (usb_speed). If the speed set

in the member is not supported by the USB module, USB_ERR_PARA will be returned.

7. Assign a pointer to the usb_descriptor_t structure to the member (p_usb_reg) of the usb_cfg_t structure. This

assignment is only effective if “USB_PERI” is assigned to the member (usb_mode). If “USB_HOST” is

assigned, then assignment to the member (p_usb_reg) is ignored.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 23 of 76

Mar 31, 2018

Examples

1. In the case of USB Host mode

void usb_host_application(void)

{

 usb_err_t err;

 usb_ctrl_t ctrl;

 usb_cfg_t cfg;
 :

 ctrl.module = USB_IP0;

 ctrl.type = USB_HCDC;

 cfg.usb_mode = USB_HOST;

 cfg.usb_speed = USB_HS;

 err = R_USB_Open(&ctrl, &cfg); /* Start USB module */

 if (USB_SUCCESS != err)

 {
 :

 }
 :

}

2. In the case of USB Peripheral

usb_descriptor_t smp_descriptor =
{

g_device,
g_config_f,
g_config_h,
g_qualifier,
g_string

};
void usb_peri_application(void)
{
 usb_err_t err;
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;
 :
 ctrl.module = USB_IP1;
 ctrl.type = USB_PCDC;
 cfg.usb_mode = USB_PERI;
 cfg.usb_speed = USB_HS;
 cfg.p_usb_reg = &smp_descriptor;
 err = R_USB_Open(&ctrl, &cfg); /* Start USB module */
 if (USB_SUCCESS != err)
 {
 :
 }
 :
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 24 of 76

Mar 31, 2018

4.2 R_USB_Close

Power off USB module.

Format

usb_err_t R_USB_Close(usb_ctrl_t *p_ctrl)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

Return Value

USB_SUCCESS Success
USB_ERR_PARA Parameter error
USB_ERR_NOT_OPEN USB module is not open.
USB_ERR_NG USB module close processing failed.

Description

This function terminates power to the USB module specified in argument (p_ctrl). USB0 module stops when

USB_IP0 is specified to the member (module), USB1 module stops when USB_IP1 is specified to the member

(module).

Reentrant

This API is only reentrant for different USB module.

Note

1. Specify the number of the USB module (USB_IP0/USB_IP1) to be stopped in the usb_ctrl_t structure member

(module). If something other than USB_IP0 or USB_IP1 is assigned to the member (module), then

USB_ERR_PARA will be the return value.

2. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

Example

void usr_application(void)

{

 usb_err_t err;

 usb_ctrl_t ctrl;

 :

 ctrl.module = USB_IP0

 err = R_USB_Close(&ctrl);

 if (USB_SUCCESS != err)

{

 :

 }

 :

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 25 of 76

Mar 31, 2018

4.3 R_USB_GetVersion

Return API version number

Format

usb_err_t R_USB_GetVersion()

Arguments

－ －

Return Value

Version number

Description

The version number of the USB driver is returned.

Reentrant

This API is reentrant.

Note

--

Example

void usr_application(void)

{

 uint32_t version;

 ：

 version = R_USB_GetVersion();

 ：

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 26 of 76

Mar 31, 2018

4.4 R_USB_Read

USB data read request

Format

usb_err_t R_USB_Read(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores read data
size Read request size

Return Value

USB_SUCCESS Successfully completed (Data read request completed)
USB_ERR_PARA Parameter error
USB_ERR_BUSY Data receive request already in process for USB device with same device address.
USB_ERR_NG Other error

Description

1. Bulk/interrupt data transfer

Requests USB data read (bulk/interrupt transfer).

The read data is stored in the area specified by argument (p_buf).

After data read is completed, confirm the operation by checking the return value

(USB_STS_READ_COMPLETE) of the R_USB_GetEvent function. The received data size is set in member

(size) of the usb_ctrl_t structure. To figure out the size of the data when a read is complete, check the return

value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function, and then refer to the member (size) of

the usb_crtl_t structure.

2. Control data transfer

Refer to chapter 9, USB Class Requests for details.

Reentrant

This API is only reentrant for different USB module.

Note

1. This API only performs data read request processing. An application program does not wait for data read

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data read request was performed to

the USB driver, not that the data read processing has completed. The completion of the data read can be

checked by reading the return value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function.

3. When the read data is n times the maximum packet size and does not meet the read request size, the USB

driver assumes the data transfer is still in process and USB_STS_READ_COMPLETE is not set as the return

value of the R_USB_GetEvent function.

4. Before calling this API, assign the device class type (see chapter 6, Device Class Types) to the member (type)

of the usb_ctrl_t structure. In USB Host mode, in order to identify the USB device to be accessed, assign the

USB module number (USB_IP0 or USB_IP1) to the member (module), and assign the device address to the

member (address). If something other than USB_IP0 or USB_IP1 is assigned to the member (module) or if an

unsupported device class type is assigned to the member (type), then USB_ERR_PARA will be the return

value.

5. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

6. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf). Allocate the area of

the following size when using DTC/DMA transer.

(1). When USB_CFG_CNTMDON is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h

(When using USBA/USBAa module.)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 27 of 76

Mar 31, 2018

Allocate the area more than n times FIFO buffer size. For FIFO buffer size, refer to the chapter 11.4,

Reference or Change of PIPEBUF Register

(2). When USB_CFG_CNTMDOFF is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h.

Allocate the area n times the max packet size.

7. The size of area assigned to the second argument (p_buf) must be at least as large as the size specified for the

third argument (size).

8. If 0 (zero) is assigned to one of the arguments, USB_ERR_PARA will be the return value.

9. In USB Host mode it is not possible to repeatedly call the R_USB_Read function with the same values

assigned to the member (type) of the usb_crtl_t structure. If the R_USB_Read function is called repeatedly,

then USB_ERR_BUSY will be the return value. To call the R_USB_Read function more than once with the

same values assigned to the members (type), first check the USB_STS_READ_COMPLETE return value from

the R_USB_GetEvent function, and then call the R_USB_Read function.

10. In USB Peripheral mode it is not possible to repeatedly call the R_USB_Read function with the same value

assigned to the member (type) of the usb_crtl_t structure. If the R_USB_Read function is called repeatedly,

then USB_ERR_BUSY will be the return value. To call the R_USB_Read function more than once with the

same value assigned to the member (type) , first check the USB_STS_READ_COMPLETE return value from

the R_USB_GetEvent function, and then call the R_USB_Read function.

11. In Vendor Class, use the R_USB_PipeRead function.

12. If this API is called after assigning USB_PCDCC, USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to

the member (type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

13. In Host Mass Storage Class, to access storage media, use the FAT (File Allocation Table) API rather than this

API.

14. In the USB device is in the CONFIGURED state, this API can be called. If this API is called when the USB

device is in other than the CONFIGURED state, then USB_ERR_NG will be the return value.

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_WRITE_COMPLETE:

 :

 ctrl.module = USB_IP1

 ctrl.adderss = adr;

 ctrl.type = USB_HCDC;

 R_USB_Read(&ctrl, g_buf, DATA_LEN);

 :

 break;

 case USB_STS_READ_COMPLETE:

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 28 of 76

Mar 31, 2018

4.5 R_USB_Write

USB data write request

Format

usb_err_t R_USB_Write(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area
p_buf Pointer to area that stores write data
size Write size

Return Value

USB_SUCCESS Successfully completed (Data write request completed)
USB_ERR_PARA Parameter error
USB_ERR_BUSY Data write request already in process for USB device with same device address.
USB_ERR_NG Other error

Description

1. Bulk/Interrupt data transfer

Requests USB data write (bulk/interrupt transfer).

Stores write data in area specified by argument (p_buf).

Set the device class type in usb_ctrl_t structure member (type).

Confirm after data write is completed by checking the return value (USB_STS_WRITE_COMPLETE) of the

R_USB_GetEvent function.

To request the transmission of a NULL packet, assign USB_NULL(0) to the third argument (size).

2. Control data transfer

Refer to chapter 9, USB Class Requests for details.

Reentrant

This API is only reentrant for different USB module.

Note

1. This API only performs data write request processing. An application program does not wait for data write

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data write request was performed to

the USB driver, not that the data write processing has completed. The completion of the data write can be

checked by reading the return value (USB_STS_WRITE_COMPLETE) of the R_USB_GetEvent function.

3. Before calling this API, assign the device class type (see chapter 6, Device Class Types) to the member (type) of

the usb_ctrl_t structure. In USB Host mode, in order to identify the USB device to be accessed, assign the USB

module number (USB_IP0 or USB_IP1) to the member (module), and assign the device address to the member

(address). If something other than USB_IP0 or USB_IP1 is assigned to the member (module) or if an

unsupported device class type is assigned to the member (type), then USB_ERR_PARA will be the return value.

4. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

5. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

6. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

7. If a value other than 0 (zero) is set for the argument (size) and USB_NULL is assigned to the argument (p_buf),

then USB_ERR_PARA will be the return value.

8. In USB Host mode it is not possible to repeatedly call the R_USB_Write function with the same values assigned

to the member (address) of the usb_crtl_t structure. If the R_USB_Write function is called repeatedly, then

USB_ERR_BUSY will be the return value. To call the R_USB_Write function more than once with the same

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 29 of 76

Mar 31, 2018

values assigned to the members (address), first check the USB_STS_WRITE_COMPLETE return value from the

R_USB_GetEvent function, and then call the R_USB_Write function.

9. In USB Peripheral mode it is not possible to repeatedly call the R_USB_Write function with the same value

assigned to the member (type) of the usb_crtl_t structure. If the R_USB_Write function is called repeatedly, then

USB_ERR_BUSY will be the return value. To call the R_USB_Write function more than once with the same

value assigned to the member (type), first check the USB_STS_WRITE_COMPLETE return value from the

R_USB_GetEvent function, and then call the R_USB_Write function.

10. In Vendor Class, use the R_USB_PipeWrite function.

11. If this API is called after assigning USB_HCDCC, USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to

the member (type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

12. In Host Mass Storage Class, to access storage media, use the FAT (File Allocation Table) API rather than this

API.

13. This API can be called when the USB device is in the configured state. When the API is called in any other state,

USB_ERR_NG is returned.

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_READ_COMPLETE:

 :

 ctrl.module = USB_IP0;

 ctrl.address = adr;

 ctrl.type = USB_HCDC;

 R_USB_Write(&ctrl, g_buf, size);

 :

 break;

 case USB_STS_WRITE_COMPLETE:

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 30 of 76

Mar 31, 2018

4.6 R_USB_Stop

USB data read/write stop request

Format

usb_err_t R_USB_Stop(usb_ctrl_t *p_ctrl, uint16_t type)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

type Receive (USB_READ) or send (USB_WRITE)

Return Value

USB_SUCCESS Successfully completed (stop completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description

This function is used to request a data read/write transfer be terminated when a data read/write transfer is

performing.

To stop a data read, set USB_READ as the argument (type); to stop a data write, specify USB_WRITE as the

argument (type).

Reentrant

This API is only reentrant for different USB module.

Note

1. Before calling this API, assign the device class type to the member (type) of the usb_ctrl_t structure. In USB

Host mode, in order to identify the USB device to be accessed, assign the USB module number (USB_IP0 or

USB_IP1) to the member (module), and assign the device address to the the member (address). If something

other than USB_IP0 or USB_IP1 is assigned to the member (module) or if an unsupported device class type is

assigned to the member (type), then USB_ERR_PARA will be the return value.

2. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

3. If USB_NULL is assigned to the argument (p_ctrl), then USB_ERR_PARA will be the return value.

4. If USB_HCDCC is assigned to the member (type) and USB_WRITE is assigned to the 2nd argment (type), then

USB_ERR_PARA will be the return value.

5. If USB_PCDCC is assigned to the member (type) and USB_READ is assigned to the 2nd argment (type), then

USB_ERR_PARA will be the return value.

6. If something other than USB_READ or USB_WRITE is assigned to the third argument (type), then

USB_ERR_PARA will be the return value.

7. In USB Host mode, USB_ERR_NG will be the return value when this API can not stop the data read/write

request.

8. When the R_USB_GetEvent function is called after a data read/write stopping has been completed, the return

value USB_STS_READ_COMPLETE/USB_STS_WRITE_COMPLETE is returned.

9. If this API is called after assigning USB_HMSC, USB_PMSC, USB_HVND or USB_PVND to the member

(type) of the usb_crtl_t structure, then USB_ERR_PARA will be the return value.

10. In Vendor Class, use the R_USB_PipeStop function.

11. Do not use this API for the Host Mass Storage Class.

12. This API can be called when the USB device is in the configured state. When the API is called in any other

state, USB_ERR_NG is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 31 of 76

Mar 31, 2018

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_DETACH:

 :

 ctrl.module = USB_IP1;

 ctrl.address = adr;

 ctrl.type = USB_HCDC;

 R_USB_Stop(&ctrl, USB_READ); /* Receive stop */

 R_USB_Stop(&ctrl, USB_WRITE); /* Send stop */

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 32 of 76

Mar 31, 2018

4.7 R_USB_Suspend

Suspend signal transmission

Format

usb_err_t R_USB_Suspend(usb_ctrl_t *p_ctrl)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

Return Value

USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_BUSY During a suspend request to the specified USB module, or when the USB

module is already in the suspended state
USB_ERR_NG Other error

Description

Sends a SUSPEND signal from the USB module assigned to the member (module) of the usb_crtl_t structure.

Reentrant

This API is only reentrant for different USB module.

Note

1. This API only performs a Suspend signal transmission. An application program does not wait for Suspend signal

transmission completion by using this API.

2. This API can only be used in USB host mode. If this API is used in USB Peripheral mode, then USB_ERR_NG

will be the return value.

3. This API does not support the Selective Suspend function.

4. Assign the USB module to which a SUSPEND signal is transmitted to the member (module) of the usb_ctrl_t

structure. USB_IP0 or USB_IP1 should be assigned to the member (module). If something other than USB_IP0

or USB_IP1 is assigned to the member (module) or if an unsupported device class type is assigned to the

member (type), then USB_ERR_PARA will be the return value.

5. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

6. This API can be called when the USB device is in the configured state. When the API is called in any other state,

USB_ERR_NG is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 33 of 76

Mar 31, 2018

Example

void usb_host_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_NONE:
 :
 ctrl.module = USB_IP0;
 R_USB_Suspend(&ctrl);
 break;
 case USB_STS_SUSPEND:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 34 of 76

Mar 31, 2018

4.8 R_USB_Resume

Resume signal transmission

Format

usb_err_t R_USB_Resume(usb_ctrl_t *p_ctrl)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

Return Value

USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_BUSY Resume already requested for same device address

(USB host mode only)
USB_ERR_NOT_SUSPEND USB device is not in the SUSPEND state.

Description

This function sends a RESUME signal from the USB module assigned to the member (module) of the usb_ctrl_t

structure.

After the resume request is completed, confirm the operation with the return value (USB_STS_RESUME) of the

R_USB_GetEvent function

Reentrant

This API is only reentrant for different USB module.

Note

1. This API only performs a Resume signal transmission request. An application program does not wait for

Resume signal transmission completion by using this API.

2. Please call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

3. This API can be used for RemoteWakeup only with HID Class in USB Peripheral mode. In this case, the USB

module number is not required to be assigned to the member (module) of the usb_ctrl_t structure. If the

peripheral device class other than USB_PHID is assigned to the member (type) of the usb_ctrl_t structure, then

USB_ERR_PARA will be the return value.

4. Assign the USB module to which the RESUME signal is transmitted to the member (module) of the usb_ctrl_t

structure. USB_IP0 or USB_IP1 should be assigned to the member (module). If the MCU being used only

supports one USB module, then do not assign USB_IP1 to the member (module). If USB_IP1 is assigned, then

USB_ERR_PARA will be the return value.

5. This API can be called when the USB device is in the suspend state. When the API is called in any other state,

USB_ERR_NOT_SUSPEND is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 35 of 76

Mar 31, 2018

Example

1. In the case of USB Host mode

void usb_host_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_NONE:

 :

 ctrl.module = USB_IP0;

 R_USB_Resume(&ctrl);

 :

 break;

 case USB_STS_RESUME:

 :

 break;

 :

 }

 }

}

2. In the case of HID device(USB Peripheral)

void usb_peri_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_NONE:

 :

 R_USB_Resume(&ctrl);

 :

 break;

 case USB_STS_RESUME:

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 36 of 76

Mar 31, 2018

4.9 R_USB_GetEvent

Get completed USB-related events

Format

usb_err_t R_USB_GetEvent(usb_ctrl_t *p_ctrl)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

Return Value

-- Value of completed USB-related events

Description

This function obtains completed USB-related events.

In USB host mode, the device address value of the USB device that completed an event is specified in the usb_ctrl_t

structure member (address) specified by the event’s argument. In USB peripheral mode, USB_NULL is specified in

member (address).

Reentrant

This API is not reentrant.

Note

1. Please call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

2. Refer to chapter 5, Return Value of R_USB_GetEvent Function" for details on the completed event value

used as the API return value.

3. If there is no completed event when calling this API, then USB_STS_NONE will be the return value.

4. Please call this API in the main loop of the user application program.

Example

void usb_host_application(void)
{
 usb_ctrl_t ctrl;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 break;
 :
 }
 }
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 37 of 76

Mar 31, 2018

4.10 R_USB_VbusSetting

VBUS Supply Start/Stop Specification

Format

usb_err_t R_USB_VbusSetting(usb_ctrl_t *p_ctrl, uint16_t state)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

state VBUS supply start/stop specification

Return Value

USB_SUCCESS Successful completion (VBUS supply start/stop completed)
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description

Specifies starting or stopping the VBUS supply.

Reentrant

This API is only reentrant for different USB module.

Note

1. For information on setting the VBUS output of the power source IC for the USB Host to either Low Assert or

High Assert, see the setting of the USB_CFG_VBUS definition described in chapter 7, Configuration

(r_usb_basic_config.h).

2. Assign the module number (USB_IP0/USB_IP1) to specify starting or stopping the VBUS supply to the

member (module) of the first argument (p_ctrl). If ”USB_IP0” is assigned, setting is applied to the USB0

module. If ”USB_IP1” is assigned, setting is applied to the USB1 module. If something other than USB_IP0 or

USB_IP1 is assigned to the member (module), then USB_ERR_PARA will be the return value.

3. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

4. Assign "USB_ON" or "USB_OFF" to the second argument. Assign "USB_ON" in order to start the VBUS

supply, and assign "USB_OFF" in order to stop the VBUS supply. If the value other than USB_ON or

USB_OFF is assigned, then USB_ERR_PARA will be the return value.

5. This API is processed only in USB Host mode. If this API is called in USB Peripheral mode, then

USB_ERR_NG will be the return value.

Example

void usb_host_application(void)

{

 usb_ctrl_t ctrl;

 ：

 ：

 ctrl.module = USB_IP0;

 R_USB_VbusSetting(&ctrl, USB_ON); /* Start VBUS supply */

 ：

 ：

 ctrl.module = USB_IP0;

 R_USB_VbusSetting(&ctrl, USB_OFF); /* Stop VBUS supply */

 ：

 ：

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 38 of 76

Mar 31, 2018

4.11 R_USB_GetInformation

Get USB device information

Format

usb_err_t R_USB_GetInformation(usb_ctrl_t *p_ctrl, usb_info_t *p_info)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

p_info Pointer to usb_info_t structure area

Return Value

USB_SUCCESS Successful completion (VBUS supply start/stop completed)

USB_ERR_PARA Parameter error

Description

This function obtains completed USB-related events.

For information to be obtained, see chpater 8.6, usb_info_t structure.

Reentrant

This API is reentrant.

Note

1. Call this API after calling the R_USB_Open function (and before calling the R_USB_Close function).

2. In USB Host mode, in order to identify the USB device to obtain information, assign the USB module number

(USB_IP0/USB_IP1) to the member (module), and assign the device address to the member (address). If

something other than USB_IP0 or USB_IP1 is assigned to the member (module), then USB_ERR_PARA will be

the return value.

3. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

4. In USB Peripheral mode, assign USB_NULL to the first arugument (p_ctrl).

5. In USB Host mode, do not assign USB_NULL to the first arugument (p_ctrl). If USB_NULL is assigned, then

USB_ERR_PARA will be the return value.

6. Do not assign USB_NULL to the second arugument (p_info). If USB_NULL is assigned, then USB_ERR_PARA

will be the return value.

Example

1. In the case of USB Host mode

void usb_host_application(void)
{
 usb_ctrl_t ctrl;
 usb_info_t info;

 ：

 ctrl.module = USB_IP0;
 ctrl.address = adr;
 R_USB_GetInformation(&ctrl, &info);

 ：

}

2. In the case of USB Peripheral mode

void usb_peri_application(void)
{

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 39 of 76

Mar 31, 2018

 usb_ctrl_t ctrl;
 usb_info_t info;

 ：

 R_USB_GetInformation((usb_ctrl_t *)USB_NULL, &info);

 ：

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 40 of 76

Mar 31, 2018

4.12 R_USB_PipeRead

Request data read via specified pipe

Format

usb_err_t R_USB_PipeRead(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

p_buf Pointer to area that stores data

size Read request size

Return Value

USB_SUCCESS Successfully completed

USB_ERR_PARA Parameter error

USB_ERR_BUSY Specifed pipe now handling data receive/send request

USB_ERR_NG Other error

Description

This function requests a data read (bulk/interrupt transfer) via the pipe specified in the argument.

The read data is stored in the area specified in the argument (p_buf).

After the data read is completed, confirm the operation with the R_USB_GetEvent function return value

(USB_STS_READ_COMPLETE). To figure out the size of the data when a read is complete, check the return

value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function, and then refer to the member (size) of

the usb_crtl_t structure.

Reentrant

This API is reentrant for different USB PIPE

Note

1. This API only performs data read request processing. An application program does not wait for data read

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data read request was performed to

the USB driver, not that the data read processing has completed. The completion of the data read can be

checked by reading the return value (USB_STS_READ_COMPLETE) of the R_USB_GetEvent function.

3. When the read data is n times the max packet size and does not meet the read request size, the USB driver

assumes the data transfer is still in process and USB_STS_READ_COMPLETE is not set as the return value of

the R_USB_GetEvent function.

4. Before calling this API, assign the PIPE number (USB_PIPE1 to USB_PIPE9) to be used to the member (pipe)

of the usb_ctrl_t structure. In USB Host mode, in order to identify the USB device to be accessed, assign the

USB module number (USB_IP0 or USB_IP1) to the member (module), and assign the device address to the

member (address). If something other than USB_IP0 or USB_IP1 is assigned to the member (module), then

USB_ERR_PARA will be the return value.

5. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

6. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t

structure, then USB_ERR_PARA will be the return value.

7. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

8. The size of area assigned to the second argument (p_buf) must be at least as large as the size specified for the

third argument (size). Allocate the area of the following size when using DTC/DMA transer.

(1). When USB_CFG_CNTMDON is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h

(When using USBA/USBAa module.)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 41 of 76

Mar 31, 2018

Allocate the area more than n times FIFO buffer size. For FIFO buffer size, refer to the chapter 11.4,

Reference or Change of PIPEBUF Register

(2). When USB_CFG_CNTMDOFF is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h.

Allocate the area n times the max packet size.

9. If 0 (zero) is assigned to one of the arguments, then USB_ERR_PARA will be the return value.

10. It is not possible to repeatedly call the R_USB_PipeRead function with the same value assigned to the member

(pipe) of the usb_crtl_t structure. If the R_USB_PipeRead function is called repeatedly, then USB_ERR_BUSY

will be the return value. To call the R_USB_PipeRead function more than once with the same value assigned

to the member (pipe), first check the USB_STS_READ_COMPLETE return value from the R_USB_GetEvent

function, and then call the R_USB_PipeRead function.

11. In CDC/HID Class, to perform a Bulk/Interrupt transfer, use the R_USB_Read function rather than this API.

With Host Mass Storage Class, to perform data access to the MSC device, use the FAT (File Allocation Table)

API rather than this API.

12. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is

assigned to the member (type), it is ignored.

13. To transfer the data for a Control transfer, use the R_USB_Read function rather than this API.

14. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API

is used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or

USB_CFG_PVND_USE definition, refer to chapter 7, Configuration.

15. This API can be called when the USB device is in the configured state. When the API is called in any other

state, USB_ERR_NG is returned.

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_WRITE_COMPLETE:

 :

 ctrl.module = USB_IP1;

 ctrl.pipe = USB_PIPE1;

 R_USB_PipeRead(&ctrl, buf, size);

 :

 break;

 case USB_STS_READ_COMPLETE:

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 42 of 76

Mar 31, 2018

4.13 R_USB_PipeWrite

Request data write to specified pipe

Format

usb_err_t R_USB_PipeWrite(usb_ctrl_t *p_ctrl, uint8_t *p_buf, uint32_t size)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

p_buf Pointer to area that stores data

size Write request size

Return Value

USB_SUCCESS Successfully completed

USB_ERR_PARA Parameter error

USB_ERR_BUSY Specifed pipe now handling data receive/send request

USB_ERR_NG Other error

Description

This function requests a data write (bulk/interrupt transfer).

The write data is stored in the area specified in the argument (p_buf).

After data write is completed, confirm the operation with the return value (USB_STS_WRITE_COMPLETE) of the

R_USB_GetEvent function.

To request the transmission of a NULL packet, assign USB_NULL (0) to the third argument (size).

Reentrant

This API is reentrant for different USB PIPE

Note

1. This API only performs data write request processing. An application program does not wait for data write

completion by using this API.

2. When USB_SUCCESS is returned for the return value, it only means that a data write request was performed

to the USB driver, not that the data write processing has completed. The completion of the data write can be

checked by reading the return value (USB_STS_WRITE_COMPLETE) of the R_USB_GetEvent function.

3. Before calling this API, assign the PIPE number (USB_PIPE1 to USB_PIPE9) to be used to the member (pipe)

of the usb_ctrl_t structure. In USB Host mode, in order to identify the USB device to be accessed, assign the

USB module number (USB_IP0 or USB_IP1) to the member (module), and assign the device address to the

member (address). If something other than USB_IP0 or USB_IP1 is assigned to the member (module), then

USB_ERR_PARA will be the return value.

4. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module).

If USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

5. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t

structure, then USB_ERR_PARA will be the return value.

6. Do not assign a pointer to the auto variable (stack) area to the second argument (p_buf).

7. If 0 (zero) is assigned to the argument (p_ctrl or p_buf), then USB_ERR_PARA will be the return value.

8. It is not possible to repeatedly call the R_USB_PipeWrite function with the same value assigned to the member

(pipe) of the usb_crtl_t structure. If the R_USB_PipeWrite function is called repeatedly, then USB_ERR_BUSY

will be the return value. To call the R_USB_PipeWrite function more than once with the same value assigned

to the member (pipe), first check the USB_STS_WRITE_COMPLETE return value from the R_USB_GetEvent

function, and then call the R_USB_PipeWrite function.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 43 of 76

Mar 31, 2018

9. In CDC/HID Class, to perform a Bulk/Interrupt transfer, use the R_USB_Write function rather than this API.

In Host Mass Storage Class, to perform data access to the MSC device, use the FAT (File Allocation Table)

API rather than this API.

10. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is

assigned to the member (type), it is ignored.

11. To transfer the data for a Control transfer, use the R_USB_Write function rather than this API.

12. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API

is used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or

USB_CFG_PVND_USE definition, refer to chapter 7, Configuration.

13. This API can be called when the USB device is in the configured state. When the API is called in any other

state, USB_ERR_NG is returned.

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_READ_COMPLETE:

 :

 ctrl.moudle = USB_IP0;

 ctrl.pipe = USB_PIPE2;

 R_USB_PipeWrite(&ctrl, g_buf, size);

 :

 break;

 case USB_STS_WRITE_COMPLETE:

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 44 of 76

Mar 31, 2018

4.14 R_USB_PipeStop

Stop data read/write via specified pipe

Format

usb_err_t R_USB_PipeStop(usb_ctrl_t *p_ctrl)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area

Return Value

USB_SUCCESS Successfully completed (stop request completed)
USB_ERR_PARA Parameter error
USB_ERR_BUSY Stop request already in process for USB device with same device address.
USB_ERR_NG Other error

Description

This function is used to terminate a data read/write operation.

Reentrant

This API is reentrant for different USB PIPE

Note

1. Before calling this API, specify the selected pipe number (USB_PIPE0 to USB_PIPE9) in the usb_ctrl_t

member (pipe). When using two USB modules in the USB host mode, also specify the number of the selected

USB module (USB_IP0/USB_IP1) in the member (module). If something other than USB_IP0 or USB_IP1 is

assigned to the member (module), then USB_ERR_PARA will be the return value. In USB Peripheral mode, no

assignment to the members (address and module) is required. If assignment is performed, it is ignored.

2. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

3. If something other than USB_PIPE1 through USB_PIPE9 is assigned to the member (pipe) of the usb_ctrl_t

structure, then USB_ERR_PARA will be the return value.

4. In USB Host mode, USB_ERR_NG will be the return value when this API can not stop the data read/write

request.

5. When the R_USB_GetEvent function is called after a data read/write stopping has been completed, the return

value USB_STS_READ_COMPLETE/USB_STS_WRITE_COMPLETE is returned.

6. Assign nothing to the member (type) of the usb_ ctrl_t structure. Even if the device class type or something is

assigned to the member (type), it is ignored.

7. Enable one of USB_CFG_HVND_USB or USB_CFG_PVND_USE definition when using this API. If this API is

used when these definitions are not enabled, USB_ERR_NG is returned. For USB_CFG_HVND_USB or

USB_CFG_PVND_USE definition, refer to chapter 7, Configuration.

8. This API can be called when the USB device is in the configured state. When the API is called in any other state,

USB_ERR_NG is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 45 of 76

Mar 31, 2018

Example

void usb_application(void)

{

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_DETACH:

 :

 ctrl.module = USB_IP0;

 ctrl.pipe = USB_PIPE1;

 R_USB_PipeStop(&ctrl);

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 46 of 76

Mar 31, 2018

4.15 R_USB_GetUsePipe

Get used pipe number from bit map

Format

usb_err_t R_USB_GetUsePipe(usb_ctrl_t *p_ctrl, uint16_t *p_pipe)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area
p_pipe Pointer to area that stores the selected pipe number (bit map information)

Return Value

USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description

Get the selected pipe number (number of the pipe that has completed initalization) via bit map information. The bit

map information is stored in the area specified in argument (p_pipe). Based on the information (module member

and address member) assigned to the usb_ctrl_t structure, obtains the PIPE information of that USB device.

The relationship between the pipe number specified in the bit map information and the bit position is shown

below.

PIPE1PIPE2PIPE3PIPE4PIPE5PIPE6PIPE7PIPE8

0:Not used, 1: Used

PIPE0---- PIPE9------

10/10/10/10/10/10/10/10/10/100000

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

--

0

For example, when PIPE1, PIPE2, and PIPE8 are used, the value “0x0107” is set in the area specified in argument

(p_pipe).

Reentrant

This API is reentrant.

Note

1. In USB Host mode, before calling this API, assign the device address of the USB device whose Pipe

information is to be obtained, and the USB module number (USB_IP0/USB_IP1) connected to that USB device,

to the module (address and module) of the usb_ctrl_t structure. If something other than USB_IP0 or USB_IP1 is

assigned to the member (module), then USB_ERR_PARA will be the return value.

2. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

3. In USB Peripheral mode, assign USB_NULL to the first argument (p_ctrl). In USB Host mode, does not assigne

USB_NULL to the first argument (p_ctrl). f USB_NULL is assigned, then USB_ERR_PARA will be the return

value.

4. Bit map information b0(PIPE0) is always set to "1".

5. This API can be called when the USB device is in the configured state. When the API is called in any other

state, USB_ERR_NG is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 47 of 76

Mar 31, 2018

Example

1. In the case of USB Host mode

void usb_application(void)

{

 uint16_t usepipe;

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_CONFIGURED:

 :

 ctrl.module = USB_IP0;

 ctrl.address = adr;

 R_USB_GetUsePipe(&ctrl, &usepipe);

 :

 break;

 :

 }

 }

}

2. In the case of USB Peripheral mode

void usb_application(void)

{

 uint16_t usepipe;

 usb_ctrl_t ctrl;

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_CONFIGURED:

 :

 R_USB_GetUsePipe((usb_ctrl_t *)USB_NULL, &usepipe);

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 48 of 76

Mar 31, 2018

4.16 R_USB_GetPipeInfo

Get pipe information for specified pipe

Format

usb_err_t R_USB_GetPipeInfo(usb_ctrl_t *p_ctrl, usb_pipe_t *p_info)

Arguments

p_ctrl Pointer to usb_ctrl_t structure area
p_info Pointer to usb_pipe_t structure area

Return Value

USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description

This function gets the following pipe information regarding the pipe specified in the argument (p_ctrl) member

(pipe): endpoint number, transfer type, transfer direction and maximum packet size. The obtained pipe

information is stored in the area specified in the argument (p_info).

Reentrant

This API is reentrant.

Note

1. Before calling this API, specify the pipe number (USB_PIPE1 to USB_PIPE9) in the usb_ctrl_t structure

member (pipe). When using two USB modules in the USB host mode, also specify the USB module number in

the member (module).

2. In USB Host mode, before calling this API, assign the device address of the USB device whose Pipe

information is to be obtained, and the USB module number (USB_IP0/USB_IP1) connected to that USB device,

to the members (address and module) of the usb_ctrl_t structure. If something other than USB_IP0 or USB_IP1

is assigned to the member (module), then USB_ERR_PARA will be the return value.

3. If the MCU being used only supports one USB module, then do not assign USB_IP1 to the member (module). If

USB_IP1 is assigned, then USB_ERR_PARA will be the return value.

4. In USB Peripheral mode, no assignment to the members (address and module) is required.

5. Refer to chapter 8.5, usb_pipe_t structure for details on the usb_pipe_t structure.

6. This function can be called when the USB device is in the configured state. When the API is called in any other

state, USB_ERR_NG is returned.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 49 of 76

Mar 31, 2018

Example

void usb_host_application(void)

{

 usb_pipe_t info;

 usb_ctrl_t ctrl;

 :

 while (1)

 {

 switch (R_USB_GetEvent(&ctrl))

 {

 :

 case USB_STS_CONFIGURED:

 :

 ctrl.pipe = USB_PIPE3;

 ctrl.module = USB_IP1;

 ctrl.address= address;

 R_USB_GetPipeInfo(&ctrl, &info);

 :

 break;

 :

 }

 }

}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 50 of 76

Mar 31, 2018

5. Return Value of R_USB_GetEvent Function

The return values for the R_USB_GetEvent function are listed below. Make sure you describe a program in the

application program to be triggered by each return value from the R_USB_GetEvent function.

Return Value Description Host Peri

USB_STS_DEFAULT USB device has transitioned to default state. × ○

USB_STS_CONFIGURED USB device has transitioned to configured state. ○ ○

USB_STS_SUSPEND USB device has transitioned to suspend state. × ○

USB_STS_RESUME USB device has returned from suspend state. ○ ○

USB_STS_DETACH USB device has been detached from USB host. ○ ○

USB_STS_REQUEST USB device received USB request (Setup). × ○

USB_STS_REQUEST_COMPLETE USB request data transfer/receive is complete; device

has transitioned to status stage.

○ ○

USB_STS_READ_COMPLETE USB data read processing is complete. ○ ○

USB_STS_WRITE_COMPLETE USB data write processing is complete. ○ ○

USB_STS_BC Attachment of USB device that supports battery

charging function detected.

○ ×

USB_STS_OVERCURRENT Overcurrent detected. ○ ×

USB_STS_NOT_SUPPORT Unsupported USB device has been connected. ○ ×

USB_STS_NONE No USB-related events. ○ ○

5.1 USB_STS_DEFAULT

When the R_USB_GetEvent function is called after the USB device has transitioned to the default state, the function

sends USB_STS_DEFAULT as the return value.

5.2 USB_STS_CONFIGURED

When the R_USB_GetEvent function is called after the USB device has transitioned to the configured state, the

function sends USB_STS_CONFIGURED as the return value. In USB host mode, information is also set in the

following usb_ctrl_t structure member.

module : The module number of the USB module that has transitioned to the Configured

state (USB Host mode only).

type : Device class type (USB host mode only) when USB device has transitioned to

configured state.

address : Device address (USB host mode only) when USB device has transitioned to

configured state.

5.3 USB_STS_SUSPEND

When the R_USB_GetEvent function is called after the USB device has transitioned to the suspend state, the function

sends USB_STS_SUSPEND as the return value.

5.4 USB_STS_RESUME

When the R_USB_GetEvent function is called after USB device in the suspend state resumes by the resume signal,

the function sends USB_STS_RESUME as the return value.

Note:

In USB host mode, when the R_USB_GetEvent function is called after resuming by RemoteWakeUp signal from HID

device, the function sends USB_STS_RESUME as the return value.

5.5 USB_STS_DETACH

When the R_USB_GetEvent function is called after the USB device has been detached from the USB host, the

function sends USB_STS_DETACH as the return value. In USB host mode, information is also set in the following

usb_ctrl_t structure member.

module : USB module number of detached USB module (in USB host mode only)

address : Device address of the detached USB device (in USB host mode only)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 51 of 76

Mar 31, 2018

5.6 USB_STS_REQUEST

When the R_USB_GetEvent function is called after the USB device has received a USB request (Setup), the function

sends USB_STS_REQUEST as the return value. Information is also set in the following usb_ctrl_t structure member.

setup : Received USB request information (8 bytes)

Note:

1. When a request has been received for support of the no-data control status stage, even if the R_USB_GetEvent

function is called, USB_STS_REQUEST_COMPLETE is sent as the return value instead of

USB_STS_REQUEST.

2. For more details on USB request information (8 bytes) stored in member (setup), refer to chapter 8.2,

usb_setup_t structure.

5.7 USB_STS_REQUEST_COMPLETE

After the status stage of a control transfer is complete and transition to the idle stage has occurred, if the

R_USB_GetEvent function is called, then USB_STS_REQUEST_COMPLETE will be the return value. In addition to

this, the following member of the usb_ctrl_t structure also has information.

module : USB module number of completed the request (in USB host mode only)

address : Device address of USB device of completed the request (in USB host mode only)

status : Sets either USB_ACK / USB_STALL

Note:

When a request has been received for support of the no-data control status stage, USB request information (8 bytes) is

stored in the usb_ctrl_t structure member (setup). For more details on USB request information (8 bytes) stored in

member (setup), refer to chapter 8.2, usb_setup_t structure.

5.8 USB_STS_READ_COMPLETE

When the R_USB_GetEvent function is called after a data read has been completed in the R_USB_Read function,

USB_STS_READ_COMPLETE is sent as the return value. Information is also set in the following usb_ctrl_t structure

member.

module : USB module number of completed data read (in USB host mode only)

address : Device address of USB device of completed data read (in USB host mode only)

type : Device class type of completed data read (only set when using R_USB_Read function)

size : Size of read data

pipe : Pipe number of completed data read

status : Read completion error information

Note:

1. In USB host mode, device address of USB device of completed data read is set in the member (address) and the

USB module number (USB_IP0 / USB_IP1) of the connected USB device is set in the member (module).

2. In the case of the R_USB_PipeRead function, the member (pipe) has the PIPE number (USB_PIPE1 to

USB_PIPE9) for which data read is completed. In the case of the R_USB_Read function, USB_NULL is set to

the member (pipe).

3. For details on device class type, refer to chapter 6, Device Class Types.

4. The member (status) has the read completion error information. The error information set to this member is as

follows.

USB_SUCCESS : Data read successfully completed

USB_ERR_OVER : Received data size over

USB_ERR_SHORT : Received data size short

USB_ERR_NG : Data reception failed

(1). Even if the reception request size is less than MaxPacketSize × n, if MaxPacketSize × n bytes of data are

received, then USB_ERR_OVER is set.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 52 of 76

Mar 31, 2018

For example, if MaxPacketSize is 64 bytes, the specified reception request size is 510 bytes (less than

MaxPacketSize × n), and the actual received data size is 512 bytes (MaxPacketSize × n), then

USB_ERR_OVER is set.

(2). If the reception request size is less than MaxPacketSize × n and the actual received data size is less than this

reception request size, then USB_ERR_SHORT is set.

For example, if MaxPacketSize is 64 bytes, the specified reception request size is 510 bytes, and the actual

received data size is 509 bytes, then USB_ERR_SHORT is set.

(3). The read data size is set in the member size when the read completion error information is USB_SUCCESS

or USB_ERR_SHORT.

5.9 USB_STS_WRITE_COMPLETE

When the R_USB_GetEvent function is called after a data write has been completed in the R_USB_Write function,

USB_STS_WRITE_COMPLETE is sent as the return value. Information is also set in the following usb_ctrl_t

structure member.

module : USB module number of completed data write (in USB host mode only)

address : Device address of USB device of completed data write (in USB host mode only)

type : Device class type of completed data write (only set when using R_USB_Write

function)

pipe : Pipe number of completed data write

status : Write completion error information

Note:

1. For R_USB_Write function: class type is set in the usb_ctrl_t structure member (type) and USB_NULL is set in

the member (pipe).

2. In the case of R_USB_PipeWrite function, the member (pipe) has the PIPE number (USB_PIPE1 to

USB_PIPE9) for which data write has been completed. In the case of the R_USB_Write function, USB_NULL is

set to the member (pipe).

3. For details on device class type, refer to chapter 6, Device Class Types.

4. The member (status) has the write completion error information. The error information set to this member is as

follows.

USB_SUCCESS : Data write successfully completed

USB_ERR_NG : Data transmission failed

5.10 USB_STS_BC

If the R_USB_GetEvent function is called after connecting to the USB device/USB Host that supports the Battery

Charging function is detected, then USB_STS_BC will be the return value. Information is also set in the following

usb_ctrl_t structure member.

module : USB module which USB device supports Battery Charging function is connected to

(USB Host mode only)

5.11 USB_STS_OVERCURRENT

In USB Host mode, if the R_USB_GetEvent function is called after overcurrent is detected, then USB_STS_

OVERCURRENT will be the return value. Information is also set in the following usb_ctrl_t structure member.

module : USB module number of detected overcurrent (USB_IP0 / USB_IP1

5.12 USB_STS_NOT_SUPPORT

In USB Host mode, if the R_USB_GetEvent function is called after an unsupported USB device is connected, then

USB_STS_NOT_SUPPORT will be the return value.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 53 of 76

Mar 31, 2018

5.13 USB_STS_NONE

When the R_USB_GetEvent function is called in the “no USB-related event” status, USB_STS_NONE is sent as the

return value. Information is also set in the following usb_ctrl_t structure member.

status : USB device status

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 54 of 76

Mar 31, 2018

6. Device Class Types

The device class types assigned to the member(type) of the usb_ctrl_t and usb_info_t structures are as follows. Please

specify the device class supported by your system.

Device class type Description

USB_HCDC Host Communication Device Class

USB_HCDCC Host Communication Device Class (Control Class)

USB_HHID Host Human Interface Device Class

USB_HMSC Host Mass Storage Device Class

USB_PCDC Peripheral Communication Device Class

USB_PCDCC Peripheral Communication Device Class (Control Class)

USB_PHID Peripheral Human Interface Device Class

USB_PMSC Peripheral Mass Storage Device Class

USB_HVNDR Host Vendor Class

USB_PVNDR Peripheral Vendor Class

Note:

1. Host Communication Device Class: When transmitting data in a bulk transfer, specify USB_HCDC in the

usb_ctrl_t structure member (type). When transmitting data in an interrupt transfer, specify USB_HCDC in the

usb_ctrl_t structure member (type).

2. Peripheral Communication Device Class: When transmitting data in a bulk transfer, specify USB_PCDC in the

usb_ctrl_t structure member (type). When transmitting data in an interrupt transfer, specify USB_PCDCC in the

usb_ctrl_t structure member (type).

3. For an application program, do not assign USB_HMSC, USB_PMSC, USB_HVND, and USB_PVND to the

member (type) of the usb_ctrl_t structure.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 55 of 76

Mar 31, 2018

7. Configuration (r_usb_basic_config.h)

7.1 USB Host and Peripheral Common Configurations

Perform settings for the definitions below in both USB Host and USB Peripheral modes.

1. USB operating mode setting

Set the operating mode (Host/Peripheral) of the USB module for the definition of USB_CFG_MODE.

(1). USB Host mode

Set USB_CFG_HOST for the definition of USB_CFG_MODE.

#define USB_CFG_MODE USB_CFG_HOST

(2). USB Peripheral mode

Set USB_CFG_PERI for the definition of USB_CFG_MODE.

#define USB_CFG_MODE USB_CFG_PERI

2. Argument check setting

Specify whether to perform argument checking for all of the APIs listed in chapter 4, API Functions.

#define USB_CFG_PARAM_CHECKING USB_CFG_ENABLE // Checks arguments.

#define USB_CFG_PARAM_CHECKING USB_CFG_DISABLE // Does not check

arguments.

3. Device class setting

Enable the definition of the USB driver to be used among the definitions below.

 #define USB_CFG_HCDC_USE // Host Communication Device Class

 #define USB_CFG_HHID_USE // Host Human Interface Device Class

 #define USB_CFG_HMSC_USE // Host Mass Storage Class

 #define USB_CFG_HVNDR_USE // Host Vendor Class

 #define USB_CFG_PCDC_USE // Peripheral Communication Device Class

 #define USB_CFG_PHID_USE // Peripheral Human Interface Device Class

 #define USB_CFG_PMSC_USE // Peripheral Mass Storage Class

 #define USB_CFG_PVNDR_USE // Peripheral Vendor Class

4. DTC use setting

 Specify whether to use the DTC.

#define USB_CFG_DTC USB_CFG_ENABLE // Uses DTC

#define USB_CFG_DTC USB_CFG_DISABLE // Does not use DTC

Note:

If USB_CFG_ENABLE is set for the definition of USB_CFG_DTC, be sure to set USB_CFG_DISABLE for the

definition of USB_CFG_DMA in 5 below.

5. DMA use setting

Specify whether to use the DMA.

#define USB_CFG_DMA USB_CFG_ENABLE // Uses DMA.

#define USB_CFG_DMA USB_CFG_DISABLE // Does not use DMA.

Note:

(1). If USB_CFG_ENABLE is set for the definition of USB_CFG_DMA, be sure to set USB_CFG_DISABLE

for the definition of USB_CFG_DTC in 4 above.

(2). If USB_CFG_ENABLE is set for the definition of USB_CFG_DMA, set the DMA Channel number for the

definition in 6 below.

6. DMA Channel setting

If USB_CFG_ENABLE is set in 5 above, set the DMA Channel number to be used.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 56 of 76

Mar 31, 2018

#define USB_CFG_USB0_DMA_TX DMA Channel number // Transmission setting for

USB0 module

#define USB_CFG_USB0_DMA_RX DMA Channel number // Transmission setting for

USB0 module

#define USB_CFG_USB1_DMA_TX DMA Channel number // Transmission setting for

USB1 module

#define USB_CFG_USB1_DMA_RX DMA Channel number // Transmission setting for

USB1 module

Note:

(1). Set one of the DMA channel numbers from USB_CFG_CH0 to USB_CFG_CH7. Do not set the same DMA

Channel number.

(2). If DMA transfer is not used, set USB_CFG_NOUSE as the DMA Channel number.

(3). Be sure to specify the different DMA channel number to DMA sending and receiving when usng USB Host

Mass Storage classs.

The following is the spcifying example.

a. When using the DMA transfer for DMA sending and receiving by using USB0 module

#define USB_CFG_USB0_DMA_TX USB_CFG_CH0

#define USB_CFG_USB0_DMA_RX USB_CFG_CH3

Note:

Be sure to specify USB PIPE1 and USB PIPE2 for DMA transfer.

b. When using DMA for data sending and not using DMA for data receiving using USB1 module

#define USB_CFG_USB1_DMA_TX USB_CFG_CH0

Note:

Specify the one of USB PIPE1 or USB PIPE2 for the sending USB PIPE (DMA transfer) and specify the

one of USB_PIPE3, USB_PIPE4 or USB_PIPE5 for the receiving USB PIPE.

c. When using DMA for data sending and not using DMA for data receiving using USB0 module, and,

when using DMA for data receiving and not using DMA for data sending using USB1 module.

#define USB_CFG_USB0_DMA_TX USB_CFG_CH1

#define USB_CFG_USB1_DMA_RX USB_CFG_CH2

Note:

a) In USB0 module, specify the one of USB PIPE1 or USB PIPE2 for the sending USB PIPE (DMA

transfer) and specify the one of USB_PIPE3, USB_PIPE4 or USB_PIPE5 for the receiving USB

PIPE.

b) In USB1 module, specify the one of USB PIPE1 or USB PIPE2 for the receiving USB PIPE (DMA

transfer) and specify the one of USB_PIPE3, USB_PIPE4 or USB_PIPE5 for the sending USB PIPE.

7. Setting Battery Charging (BC) function

Set the Battery Charging function to be enabled or disabled as the following definition. Set USB_CFG_ENABLE

as the definition below in order to use the Battery Charging function.

#define USB_CFG_BC USB_CFG_ENABLE // Uses BC function.

#define USB_CFG_BC USB_CFG_DISABLE // Does not use BC function.

Note:

In the case of a USB module other than USBAa/USBA module, this definition is ignored.

8. PLL clock frequency setting

Set the PLL clock source frequency for the definition below.

#define USB_CFG_CLKSEL USB_CFG_24MHZ // Set to 24 MHz

#define USB_CFG_CLKSEL USB_CFG_20MHZ // Set to 20 MHz

#define USB_CFG_CLKSEL USB_CFG_OTHER // Set to other than 24/20 MHz

Note:

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 57 of 76

Mar 31, 2018

a. In the case of a USB module other than USBAa/USBA module, this definition is ignored.

b. The USBAa or USBA module is a USB module used in the RX71M or RX64M.

c. To input a clock other than a 24-MHz or 20-MHz clock to the XTAL pin, set USB_CFG_OTHER for the

definition of USB_CFG_CLKSEL. If USB_CFG_OTHER is set, the USBAa/USBA module operates in

Classic (CL) only mode. For information on CL only mode, refer to the RX71M/RX64M hardware

manual.

9. CPU bus wait setting

Assign the value to be set for the BUSWAIT register in the USBAa/USBA module as the definition of

USB_CFG_BUSWAIT.

#define USB_CFG_BUSWAIT 7 // Set to 7 wait cycles

Note:

(1). For the calculation of the value to be set for USB_CFG_BUSWAIT, refer to the chapter of the BUSWAIT

register in the RX71M/RX64M hardware manual.

(2). With regard to the USB module other than the USBAa/USBA module, this definition is ignored.

(3). The USBAa or USBA module is a USB module used in the RX71M or RX64M.

10. Interrupt Priority Level setting

Assign the interrupt priority level of the interrupt related to USB for USB_CFG_INTERRUPT_PRIORITY

definition.

#define USB_CFG_INTERRUPT_PRIORITY 3 // 1(low) – 15(high)

7.2 Settings in USB Host Mode

 To make a USB module to work as a USB Host, set the definitions below according to the system to be used.

1. Setting power source IC for USB Host

Set the VBUS output of the power source IC for the USB Host being used to either Low Assert or High Assert.

For Low Assert, set USB_CFG_LOW as the definition below, and for High Assert, set USB_CFG_HIGH as the

definition below.

#define USB_CFG_VBUS USB_CFG_HIGH // High Assert

#define USB_CFG_VBUS USB_CFG_LOW // Low Assert

2. Setting USB port operation when using Battery Charging (BC) function

Set the Dedicated Charging Port (DCP) to be enabled or disabled as the following definition. If the BC function is

being implemented as the Dedicated Charging Port (DCP), then set USB_CFG_ENABLE as the definition below.

If USB_CFG_DISABLE is set, the BC function is implemented as the Charging Downstream Port (CDP).

#define USB_CFG_DCP USB_CFG_ENABLE // DCP enabled.

#define USB_CFG_DCP USB_CFG_DISABLE // DCP disabled.

Note:

If USB_CFG_ENABLE is set for this definition, then set USB_CFG_ENABLE for the definition of USB_CFG_BC

in above.

3. Setting Compliance Test mode

Set Compliance Test support for the USB Embedded Host to be enabled or disabled as the following definition.

To perform the Compliance Test, set USB_CFG_ENABLE as the definition below. When not performing the

Compliance Test, set USB_CFG_DISABLE as the definition below.

#define USB_CFG_COMPLIANCE USB_CFG_ENABLE // Compliance Test supported.

#define USB_CFG_COMPLIANCE USB_CFG_DISABLE // Compliance Test not supported.

4. Setting a Targeted Peripheral List (TPL)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 58 of 76

Mar 31, 2018

Set the number of the USB devices and the VID and PID pairs for the USB device to be connected as necessary as

the following definition. For a method to set the TPL, see chapter 3.6, How to Set the Target Peripheral List

(TPL).

#define USB_CFG_TPLCNT Number of the USB devices to be connected.

#define USB_CFG_TPL Set the VID and PID pairs for the USB device to be

connected.

5. Setting a Targeted Peripheral List (TPL) for USB Hub

Set the number of the USB Hubs and the VID and PID pairs for the USB Hubs to be connected as the
following definition. For a method to set the TPL, see chapter 3.6, How to Set the Target Peripheral List

(TPL).

#define USB_CFG_HUB_TPLCNT Set the number of the USB Hubs to be connected.

#define USB_CFG_HUB_TPL Set the VID and PID pairs for the USB Hub to be

connected.

6. Setting Hi-speed Embedded Host Electrical Test

Set Hi-speed Embedded Host Electrical Test support to be enabled or disabled as the following definition. To

perform the Hi-speed Embedded Host Electrical Test, set USB_CFG_ENABLE as the definition below.

#define USB_CFG_ELECTRICAL USB_CFG_ENABLE // HS Electrical Test supported

#define USB_CFG_ELECTRICAL USB_CFG_DISABLE // HS Electrical Test not supported

Note:

(1). If USB_CFG_ENABLE is set for this definition, then set USB_CFG_ENABLE for the definition of

USB_CFG_COMPLIANCE in 3 above.

(2). In the case of a USB module other than USBAa module, this definition is ignored.

7.3 Settings in USB Peripheral Mode

To make a USB module to work as a USB Peripheral, set the definitions below according to the system to be used.

1. USB module selection setting

Set the USB module number to be used for the definition of USB_CFG_USE_USBIP.

#define USB_CFG_USE_USBIP USB_CFG_IP0 // Uses USB0 module

#define USB_CFG_USE_USBIP USB_CFG_IP1 // Uses USB1 module

Note:

If the MCU being used only supports one USB module, then set USB_CFG_IP0 for the definition of

USB_CFG_USE_USBIP.

2. Setting class request

Set whether the received class request is supported. If USB_CFG_ENABLE (supported) is set, then the USB driver

will notify the reception of the class request to the application program. If USB_CFG_DISABLE (not supported) is

set, then the USB driver will respond a STALL to the class request.

#define USB_CFG_CLASS_REQUEST USB_CFG_ENABLE // Supported

#define USB_CFG_CLASS_REQUEST USB_CFG_DISABLE // Not supported

Note:

a. Check the return value (USB_STS_REQUEST) of R_USB_GetEvent function when confirming whether USB

driver receive the class request or not.

b. Even if USB_CFG_DISABLE is set, USB driver return the value "1" to GetMaxLun class request of Mass

storage class.

3. Setting power saving function

Set the power saving function to be enabled or disabled as the definition below. If USB_CFG_ENABLE is set as

the definition below, then when there is a transition to suspend state or detach state, the USB driver will transition

the MCU to power saving mode.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 59 of 76

Mar 31, 2018

#define USB_CFG_LPW USB_CFG_ENABLE // Power saving function enabled.

#define USB_CFG_LPW USB_CFG_DISABLE // Power saving function disabled.

7.4 Other Definitions

In addition to the above, the following definitions 1 through 2 are also provided in r_usb_basic_config.h.

Recommended values have been set for these definitions, so only change them when necessary.

1. DBLB bit setting

Set or clear the DBLB bit in the pipe configuration register (PIPECFG) of the USB module using the
following definition.

#define USB_CFG_DBLB USB_CFG_DBLBON // DBLB bit set.

#define USB_CFG_DBLB USB_CFG_DBLBOFF // DBLB bit cleared.

2. CNTMD bit setting (USBA/USBAa module only)

Set or clear the CNTMD bit in the pipe configuration register (PIPECFG) of the USB module using the following

definition.

#define USB_CFG_CNTMD USB_CFG_CNTMDON // CNTMD bit set.

#define USB_CFG_CNTMD USB_CFG_CNTMDOFF // CNTMD bit cleared.

 Note:

(1). The setting of the DBLB and CNTMD bits above is performed for all the pipes being used. Therefore, in this

configuration, it is not possible to perform the pipe-specific settings for these bits.

(2). For details on the pipe configuration register (PIPECFG), refer to the MCU hardware manual.

(3). Be sure to set SHTNAK bit.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 60 of 76

Mar 31, 2018

8. Structures

This chapter describes the structures used in the application program.

8.1 usb_ctrl_t structure

The usb_ctrl_t structure is used for USB data transmission and other operations. The usb_ctrl_t structure can be used

in all APIs listed in Table 4-1, excluding R_USB_GetVersion.

typdef struct usb_ctrl {

 uint8_t module; /* Note 1 */

 uint8_t address; /* Note 2 */

 uint8_t pipe; /* Note 3 */

 uint8_t type; /* Note 4 */

 uint16_t status; /* Note 5 */

 uint32_t size; /* Note 6 */

 usb_set_up setup; /* Note 7 */

} usb_ctrl_t;

Note:

1. Member (module) is used to specify the USB module number.

2. Member (address) is used to specify the USB device address.

3. Member (pipe) is used to specify the USB module pipe number. For example, specify the pipe number when

using the R_USB_PipeRead function or R_USB_PipeWrite function.

4. Member (type) is used to specify the device class type.

5. The USB device state or the result of a USB request command is stored in the member (status). The USB

driver sets in this member. Therefore, except when initializing the usb_crtl_t structure area or processing an

ACK/STALL response to a vendor class request, the application program should not write into this member.

For processing an ACK/STALL response to a vendor class request, see 9.2.5, Processing ACK/STALL

Response to Class Request.

6. Member (size) is used to set the size of data that is read. The USB driver sets this member. Therefore, the

application program should not write into this member.

7. Member (setup) is used to set the information about a class request.

8.2 usb_setup_t structure

The usb_setup_t structure is used when sending or receiving a USB class request. To send a class request to a USB

device (in USB Host mode), assign to the members of the usb_setup_t structure the information for the class request

to be sent. To obtain class request information from the USB Host (in USB Peripheral mode), refer to the members of

the usb_setup_t structure.

typedef struct usb_setup {

 uint16_t type /* Note 1 */

 uint16_t value; /* Note 2 */

 uint16_t index; /* Note 3 */

 uint16_t length; /* Note 4 */

} usb_setup_t;

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 61 of 76

Mar 31, 2018

Note:

1. In USB Host mode, the value assigned to the member (type) is set to the USBREQ register, and in USB

Peripheral mode, the value of the USBREQ register is set to the member (type).

2. In USB Host mode, the value assigned to the member (value) is set to the USBVAL register, and in USB

Peripheral mode, the value of the USBVAL register is set to the member (value).

3. In USB Host mode, the value assigned to the member (index) is set to the USBINDX register, and in USB

Peripheral mode, the value of the USBINDX register is set to the member (index).

4. In USB Host mode, the value assigned to the member (length) is set to the USBLENG register, and in USB

Peripheral mode, the value of the USBLENG register is set to the member (length).

5. For information on the USBREQ, USBVAL, USBINDX, and USBLENG registers, refer to the MCU user’s

manual.

8.3 usb_cfg_t structure

The usb_cfg_t structure is used to register essential information such as settings to indicate use of USB host or USB

peripheral as the USB module and to specify USB speed. This structure can only be used for the R_USB_Open

function listed in Table 4-1.

typdef struct usb_cfg {

 uint8_t usb_mode; /* Note 1 */

 uint8_t usb_speed; /* Note 2 */

 usb_descriptor_t *p_usb_reg; /* Note 3 */

} usb_cfg_t;

Note:

1. Specify whether to use USB host or USB peripheral mode as the USB module in member (usb_mode). To select

USB host, set USB_HOST; to select USB peripheral, set USB_PERI in the member.

2. Specify the USB speed for USB module operations. Set “USB_HS” to select Hi-speed, “USB_FS” to select

Full-speed.

3. Specify the usb_descriptor_t type pointer for the USB device in member (p_usb_reg). Refer to chapter 8.4,

usb_descriptor_t structure for details on the usb_descriptor_t type. This member can only be set in USB

peripheral mode. Even if it is set in USB host mode, the settings will be ignored.

8.4 usb_descriptor_t structure

The usb_descriptor_t structure stores descriptor information such as device descriptor and configuration descriptor.

The descriptor information set in this structure is sent to the USB host as response data to a standard request during

enumeration of the USB host. This structure is specified in the R_USB_Open function argument.

typdef struct usb_descriptor {

 uint8_t *p_device; /* Note 1 */

 uint8_t *p_config_f; /* Note 2 */

 uint8_t *p_config_h; /* Note 3 */

 uint8_t *p_qualifier; /* Note 4 */

 uint8_t **p_string; /* Note 5 */

 uint8_t num_string; /* Note 6 */

} usb_descriptor_t;

Note:

1. Specify the top address of the area that stores the device descriptor in the member (p_device).

2. Specify the top address of the area that stores the Full-speed configuration descriptor in the member (p_config_f).

Even when using Hi-speed, make sure you specify the top address of the area that stores the Full-speed

configuration descriptor in this member.

3. Specify the top address of the area that stores the Hi-speed configuration descriptor in the member (p_config_h).

For Full-speed, specify USB_NULL to this member.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 62 of 76

Mar 31, 2018

4. Specify the top address of the area that stores the qualifier descriptor in the member (p_qualifier). For Full-speed,

specify USB_NULL to this member.

5. Specify the top address of the string descriptor table in the member (p_string). In the string descriptor table,

specify the top address of the areas that store each string descriptor.

Ex. 1) Full-speed Ex. 2) Hi-speed

usb_descriptor_t usb_descriptor =

{

 smp_device,

 smp_config_f,

 USB_NULL,

 USB_NULL,

 smp_string,

 3,

};

usb_descriptor_t usb_descriptor =

{

 smp_device,

 smp_config_f,

 smp_config_h,

 smp_qualifier,

 smp_string,

 3,

};

6. Specify the number of the string descriptor which set in the string descriptor table to the member (num_string).

8.5 usb_pipe_t structure

The USB driver sets information about the USB pipe (PIPE1 to PIPE9) in the usb_pipe_t structure. Use the

R_USB_GetPipeInfo function to reference the pipe information set in the structure.

typdef struct usb_pipe {

 uint8_t ep; /* Note 1 */

 uint8_t type; /* Note 2 */

 uint16_t mxps; /* Note 3 */

} usb_pipe_t;

Note:

1. The endpoint number is set in member (ep). The direction (IN/OUT) is set in the highest bit. When the highest

bit is “1”, the direction is IN, when “0”, the direction is OUT.

2. The transfer type (bulk/interrupt) is set in member (type). For a Bulk transfer, "USB_BULK" is set, and for an

Interrupt transfer, "USB_INT" is set.

3. The maximum packet size is set in member (mxps).

8.6 usb_info_t structure

The following information on the USB device is set for the usb_info_t structure by calling the

R_USB_GetInformation function.

typedef struct usb_info {

 uint8_t type; /* Note 1 */

 uint8_t speed; /* Note 2 */

 uint8_t status; /* Note 3 */

 uint8_t port; /* Note 4 */

} usb_info_t;

Note:

1. In USB Host mode, the device class type of the connected USB device is set for the member (type). If the USB

device is not connected, then USB_NOT_CONNECT is set. In USB Peripheral mode, the supporting device class

type is set for the member (type). For information on the device class types, see 6, Device Class Types. (In the

case of PCDC, USB_PCDC is set in this member(type))

2. The USB speed (USB_HS/USB_FS/USB_LS) is set for the member (speed). In USB Host mode, if no USB

device is connected, then USB_NOT_CONNECT is set.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 63 of 76

Mar 31, 2018

3. One of the following states of the USB device is set for the member (status).

USB_STS_DEFAULT : Default state

USB_STS_ADDRESS : Address state (USB Peripheral only)

USB_STS_CONFIGURED : Configured state

USB_STS_SUSPEND : Suspend state

USB_STS_DETACH : Detach state

4. The following information of the Battery Charging (BC) function of the device conected to the port is set to the

member (port).

USB_SDP : Standard Downstream Port

USB_CDP : Charging Downstream Port

USB_DCP : Dedicated Charging Port (USB Peripheral only)

8.7 usb_compliance_t structure

This structure is used when running the USB compliance test. The structure specifies the following USB-related

information:

typedef struct usb_compliance {

 usb_ct_status_t status; /* Note 1 */

 uint16_t vid; /* Note 2 */

 uint16_t pid; /* Note 3 */

} usb_compliance_t;

Note:

1. The member status can be set to the following values to indicate the status of the connected USB device:

USB_CT_ATTACH : USB device attach detected

USB_CT_DETACH : USB device detach detected

USB_CT_TPL : Attach detected of USB device listed in TPL

USB_CT_NOTTPL : Attach detected of USB device not listed in TPL

USB_CT_HUB : USB hub connection detected

USB_CT_OVRCUR : Overcurrent detected

USB_CT_NORES : No response to control read transfer

USB_CT_SETUP_ERR : Setup transaction error occurred

2. The member vid is set to a value indicating the vendor ID of the connected USB device.

3. The member pid is set to a value indicating the product ID of the connected USB device.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 64 of 76

Mar 31, 2018

9. USB Class Requests

This chapter describes how to process USB class requests. As standard requests are processed by the USB driver, they

do not need to be included in the application program.

9.1 USB Host operations

9.1.1 USB request (setup) transfer

A USB request is sent to the USB device using the R_USB_Write function. The following describes the transfer

procedure.

1. Set USB_REQUEST in the usb_ctrl_t structure member (type).

2. Set the USB request (setup: 8 bytes) in the usb_ctrl_t structure member (setup) area. Refer to chapter 8.2,

usb_setup_t structure for details on how to set member (setup).

3. If the request supports the control write data stage, store the transfer data in a buffer. If the request supports the

control read data stage, reserve a buffer to store the data received from the USB device. Note: do not reserve

the auto-variable (stack) area of the buffer.

4. Specify the data buffer top address in the second argument of the R_USB_Write function, and the data size in

the third argument. If the request supports no-data control status stage, specify USB_NULL for both the second

and third arguments.

5. Call the R_USB_Write function.

9.1.2 USB request completion

Confirm the completion of a USB request with the return value (USB_STS_REQUEST_COMPLETE) of the

R_USB_GetEvent function. For a request that supports the control read data stage, the received data is stored in the

area specified in the second argument of the R_USB_Write function.

Confirm the USB request results from the usb_ctrl_t structure member (status), which is set as follows.

status Description

USB_ACK Successfully completed

USB_STALL Stalled

9.1.3 USB request processing example

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 /* Request setting processing to ctrl.setup */
 :
 /* For request that supports control write data stage, set transfer data in g_buf area. */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* Send USB request (Setup stage). */
 break;
 case USB_STS_REQUEST_COMPLETE: /* USB request completed. */
 if(USB_ACK == ctrl.status) /* Confirm results of USB request. */
 {
 /* For request that supports control read data stage, store receive data in g_buf area. */
 :
 }
 break;
 }
}

9.2 USB Peripheral operations

9.2.1 USB request (Setup)

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 65 of 76

Mar 31, 2018

Confirm receipt of the USB request (Setup) sent by the USB host with the return value (USB_STS_REQUEST) of the

R_USB_GetEvent function. The contents of the USB request (Setup: 8 bytes) are stored in the usb_ctrl_t structure

member (setup) area. Refer to chapter 8.2, usb_setup_t structure for a description of the settings for member

(setup).

Note:

The return value of the R_USB_GetEvent function when a request that supports the no-data control status stage is

received is USB_STS_REQUEST_COMPLETE, not USB_STS_REQUEST.

9.2.2 USB request data

The R_USB_Read function is used to receive data in the data stage and the R_USB_Write function is used to send

data to the USB host. The following describes the receive and send procedures.

1. Receive procedure

(1). Set the USB_REQUEST in the usb_ctrl_t structure member (type).

(2). In the R_USB_Read function, specify the pointer to area that stores data in the second argument, and the

requested data size in the third argument.

(3). Call the R_USB_Read function.

Note:

Confirm receipt of the request data with the return value (USB_STS_REQUEST_COMPLETE) of the

R_USB_GetEvent function.

2. Send procedure

(1). Set USB_REQUEST in the usb_ctrl_t structure member (type).

(2). Store the data from the data stage in a buffer. In the R_USB_Write function, specify the top address of the

buffer in the second argument, and the transfer data size in the third argument.

(3). Call the R_USB_Write function.

Note:

Confirm receipt of the request data with the return value (USB_STS_WRITE_COMPLETE) of the

R_USB_GetEvent function. You can also confirm whether the usb_ctrl_t structure member (type) has been set to

USB_REQUEST.

9.2.3 USB request results

For each class, if USB_CFG_ENABLE is set as the definition of the class request setting (example:

USB_CFG_PCDC_REQUEST) in the configuration file (example: r_usb_pcdc_config.h), then this USB driver will

always respond with an ACK to a received class request.

Note:

For a vendor class request, the USB driver does not respond with an ACK or STALL. An application program must

respond with an ACK or STALL to the vendor class request. For how to respond with an ACK or STALL, see 9.2.5,

Processing ACK/STALL Response to Class Request.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 66 of 76

Mar 31, 2018

9.2.4 Example USB request processing description

1. Request that supports control read data stage

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing*/
 :
 /* data setup processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Write(&ctrl, g_buf, size); /* data (data stage) send request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 if(USB_ACK == ctrl.status) /* Confirm USB request results */
 {
 :
 }
 break;
 }
}

2. Request that supports control write data stage

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_REQUEST: /* Receive USB request */
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST;
 R_USB_Read(&ctrl, g_buf, size); /* data (data stage) receive request */
 break;
 case USB_STS_REQUEST_COMPLETE:
 :
 break;
 }
}

3. Request that supports no-data control status stage

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_REQUEST_COMPLETE:
 /* ctrl.setup analysis processing */
 :
 break;
 }
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 67 of 76

Mar 31, 2018

9.2.5 Processing ACK/STALL Response to Class Request

When it is necessary to respond with ACK or STALL to a class request, assign USB_REQUEST to the member(type)

of the usb_ctrl_t structure, and either USB_ACK or USB_STALL to the member (status), and call the R_USB_Write

function. Assign USB_NULL to both the second and third arguments of the R_USB_Write function. The completion

of transmission of ACK/STALL can be checked by reading the USB_STS_REQUEST_COMPLETE return value of

the R_USB_GetEvent function. At this time, check also that USB_REQUEST has been set for the member (type) of

the usb_ctrl_t structure.

1. Example of processing STALL response

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_REQUEST:
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST:
 ctrl.status = USB_STALL;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 if(USB_REQUEST == ctrl.type)
 {
 :
 }
 break;
 }
}

2. Example of processing ACK response

void usr_application (void)
{
 usb_ctrl_t ctrl;
 switch(R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_REQUEST:
 /* ctrl.setup analysis processing */
 :
 ctrl.type = USB_REQUEST:
 ctrl.status = USB_ACK;
 R_USB_Write(&ctrl, (uint8_t *)USB_NULL, (uint32_t)USB_NULL);
 break;
 case USB_STS_REQUEST_COMPLETE:
 if(USB_REQUEST == ctrl.type)
 {
 :
 }
 break;
 }
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 68 of 76

Mar 31, 2018

10. DTC/DMA Transfer

10.1 Basic Specification

The specifications of the DTC/DMA transfer sample program code included in USB-BASIC-F/W are listed below.

USB Pipe 1 and Pipe2 can used DTC/DMA access.

Table10-1 shows DTC/DMA Setting Specifications.

Table10-1 DTC/DMA Setting Specifications

Setting Description

FIFO port used D0FIFO and D1FIFO port

Transfer mode Block transfer mode

Chain transfer Disabled

Address mode Full address mode

Read skip Disabled

Access bit width (MBW) 4-byte transfer: 32-bit width (when using USBA/USBAa module only)

2-byte transfer: 16-bit width (when using USBb module only)

USB transfer type BULK transfer

Transfer end Receive direction: BRDY interrupt

Transmit direction: D0FIFO/D1FIFO interrupt, BEMP interrupt

10.2 Notes

10.2.1 DTC transfer

Refer to "Special Note" described in the chapter "R_DTC_Open" in the application note "RX Family DTC module"

(Document No. R01AN1819).

10.2.2 Data Reception Buffer Size

The user needs to allocate the buffer area for the following size to store the receiving data.

(1). When USB_CFG_CNTMDON is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h (When

using USBA/USBAa module.)

Allocate the area more than n times FIFO buffer size. For FIFO buffer size, refer to the chapter 11.4,

Reference or Change of PIPEBUF Register

(2). When USB_CFG_CNTMDOFF is specified for USB_CFG_CNTMD definition in r_usb_basic_config.h.

Allocate the area n times the max packet size.

10.2.3 USB Pipe

USB pipe which is used by DMA/DTC transfer is only PIPE1 and PIPE2. This driver does not work properly when

USB pipe except PIPE1 and PIPE2 is used for DMA/DTC transfer. When data transfer is performed by combining

DMA/DTC transfer and CPU transfer, use PIPE1 or PIPE2 for DTM/DTC transfer and use PIPE3, PIPE4 or PIPE5

for CPU transfer.

10.2.4 Initialization Function for DMA/DTC transfer

Call the following DMA/DTC transfer initialization function in the user application program.

Transfer Type Initialization Function

DTC R_DTC_Open

DMA R_DMACA_Init
R_DMACA_Open

Note:

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 69 of 76

Mar 31, 2018

Specify the following definition to the argument in R_DMACA_Open function. For the defail of the following

definition, refer to chapter 7, Configuration (r_usb_basic_config.h).

USB_CFG_USB0_DMA_TX, USB_CFG_USB0_DMA_RX

USB_CFG_USB1_DMA_TX, USB_CFG_USB1_DMA_RX

Example)

R_DMACA_Init();
R_DMACA_Open(USB_CFG_USB1_DMA_TX);
R_DMACA_Open(USB_CFG_USB1_DMA_RX);

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 70 of 76

Mar 31, 2018

11. Additional Notes

11.1 Vendor ID

Be sure to use the user’s own Vendor ID for the one to be provided in the Device Descriptor.

11.2 Compliance Test

In order to run the USB Compliance Test it is necessary to display USB device–related information on a display

device such as an LCD. When the USB_CFG_COMPLIANCE definition in the configuration file

(r_usb_basic_config.h) is set to USB_CFG_ENABLE, the USB driver calls the function (usb_compliance_disp)

indicated below. This function should be defined within the application program, and the function should contain

processing for displaying USB device–related information, etc.

Function name : void usb_compliance_disp(usb_compliance_t *);

Argument : usb_compliance_t * Pointer to structure for storing USB information

Note:

1. The USB driver sets the USB device–related information in an area indicated by an argument, and the

usb_compliance_disp function is called.

2. For information on the usb_compliance_t structure, refer to 8.7, usb_compliance_t structure.

3. When the USB_CFG_COMPLIANCE definition in r_usb_basic_config.h is set to USB_CFG_ENABLE, it is

necessary to register the vendor ID and product ID in the TPL definitions for USB devices and USB hubs. For

information on TPL definitions, refer to 10, Target Peripheral List (TPL) Settings.

4. For a program sample of the usb_compliance_disp function, see 13.1, usb_compliance_disp function.

11.3 Hi-speed Embedded Host Electrical Test

The USB Protocol and Electrical Test Tool is required in order to run the Hi-speed embedded host electrical test. To

run the test, define USB_CFG_ELECTRICAL in the r_usb_basic_config.h file as USB_CFG_ENABLE. For

information on this definition, refer to chapter 7, Configuration (r_usb_basic_config.h).

11.4 Reference or Change of PIPEBUF Register

Recommended values are set to the BUFSIZE and BUFNMB bits of the PIPEBUF register that are supported by the

USBA and USBAa modules. When refering or changing to these bits, refer or change the following variables in the

USB driver.

Device Class File Name Variable Name

Host Communication Device Class r_usb_hcdc_driver.c g_usb_hcdc_eptbl

Host Human I/F Device Class r_usb_hhid_driver.c g_usb_hhid_eptbl

Host Mass Storage Class r_usb_hmsc_driver.c g_usb_hmsc_eptbl

Peripheral Communication Device Class

Peripheral Human I/F Device Class

Periphral Mass Storage Class

r_usb_peptable.c g_usb_eptbl

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 71 of 76

Mar 31, 2018

12. Creating an Application Program

This chapter explains how to create an application program using the API functions described throughout this

document. Please make sure you use the API functions described here when developing your application program.

12.1 Configuration

Set each configuration file (header file) in the r_config folder to meet the specifications and requirements of your

system. Please refer to chapter 7, Configuration about setting of the configuration file.

12.2 Descriptor Creation

For USB peripheral operations, your will need to create descriptors to meet your system specifications. Register the

created descriptors in the usb_descriptor_t function members. USB host operations do not require creation of special

descriptors.

12.3 Application Program Creation

12.3.1 Include

 Make sure you include the following files in your application program.

1. r_usb_basic_if.h (Inclusion is obligatory.)

2. r_usb_xxxxx_if.h (I/F file provided for the USB device class to be used)

3. Include a header file for FAT when creating the application program for Host Mass Storage Class.

4. Include any other driver-related header files that are used within the application program.

12.3.2 Initialization

1. MCU pin settings

USB input/output pin settings are necessary to use the USB controller. The following is a list of USB pins that

need to be set. Set the following pins as necessary.

Table12-1 USB I/O Pin Settings for USB Peripheral Operation

Pin Name I/O Function

USB_VBUS input VBUS pin for USB communication

USB_DPUPE output Pull-up resistor control signal pin

Table12-2 USB I/O Pin Settings for USB Host Operation

Pin Name I/O Function

USB_VBUSEN output VBUS output enabled pin for USB communication

USB_OVRCURA input Overcurrent detection pin for USB communication

Note:

(1). Please refer to the corresponding MCU user’s manual for the pin settings in ports used for your

application program.

(2). USB_DPUPE pin is supported by RX63N/RX631 only.

(3). Make setting to DPRPD and DRPD pin as necessary when using RX63N/RX631.

2. DTC/DMA-related initialization

Call the DTC/DMA initialization fucntion when using the DTC/DMA transfer.

Tranfer Function

DTC R_DTC_Open

DMA R_DMACA_Init
R_DMACA_Open

Note:

(1). The setting for DTC/DMA transfer is needed when using DTC/DMA transfer. Refer to chpater 7,

Configuration (r_usb_basic_config.h).

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 72 of 76

Mar 31, 2018

(2). You need to specify the using DMA channel number to the argument for R_DMACA_Open function when

using DMA transfer. Be sure to specify one of the following definitions for the argument.

DMA Channel Number Description

USB_CFG_USB0_DMA_TX Transmission setting for USB0 module

USB_CFG_USB0_DMA_RX Reception setting for USB0 module

USB_CFG_USB1_DMA_TX Transmission setting for USB1 module

USB_CFG_USB1_DMA_RX Reception setting for USB1 module

Example 1) DMA trasnmission setting of USB0 module.

R_DMACA_Open(USB_CFG_USB0_DMA_TX);

(Specify one of USB PIPE3 to USB PIPE5 for the reception USB pipe.)

Example 2) DMA reception setting of USB1 module.

R_DMACA_Open(USB_CFG_USB1_DMA_RX);

(Specify one of USB PIPE3 to USB PIPE5 for the reception USB pipe.)

Example 3) DMA transmission/reception setting of USB1 module.

R_DMACA_Open(USB_CFG_USB1_DMA_TX);

R_DMACA_Open(USB_CFG_USB1_DMA_RX);

(Don't specify USB pipe other than USB PIPE1 adn USB PIPE2.)

(3). You can use USB PIPE1 and PIPE2 when using DMA/DTC transfer. This driver does not support

DMA/DTC transfer when using USB PIPE3 to PIPE5.

(4). Specify the using USB pipe number in each USB class configuration.

3. USB-related initialization

Call the R_USB_Open function to initialize the USB module (hardware) and USB driver software used for your

application program.

12.3.3 Descriptor Creation

For USB peripheral operations please create descriptors to meet your system specifications. Refer to chapter 2.5,

Descriptor for more details about descriptors. USB host operations do not require creation of special descriptors.

12.3.4 Main routine

Please describe the main routine in the main loop format. Make sure you call the R_USB_GetEvent function in the

main loop. The USB-related completed events are obtained from the return value of the R_USB_GetEvent function.

Also make sure your application program has a routine for each return value. The routine is triggered by the

corresponding return value

12.3.5 Application program description example (CPU transfer)

#include "r_usb_basic_if.h"
#include "r_usb_pcdc_if.h"

void usb_peri_application(void)
{
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;

 /* MCU pin setting */
 usb_pin_setting();

 /* Initialization processing */
 ctrl.module = USB_IP1; /* Specify the selected USB module */
 cfg.usb_mode = USB_PERI; /* Specify either USB host or USB peri */
 cfg.usb_speed = USB_HS; /* Specify the USB speed */
 cfg.p_usb_reg = &smp_descriptor; /* Specify the top address of the descriptor table */

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 73 of 76

Mar 31, 2018

 R_USB_Open(&ctrl, &cfg);

 /* main routine */
 while(1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 case USB_STS_CONFIGURED:
 case USB_STS_WRITE_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Read(&ctrl, g_buf, 64);
 break;
 case USB_STS_READ_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Write(&ctrl, g_buf, ctrl.size);
 break;
 default:
 break;
 }
 }
}

12.3.6 Application program description example (DMA transfer)

#include "r_usb_basic_if.h"
#include "r_usb_pcdc_if.h"

void usb_peri_application(void)
{
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;

 /* MCU pin setting */
 usb_pin_setting();

 /* DMA initialization processing */
 R_DMACA_Init();
 R_DMACA_Open(USB_CFG_USB0_DMA_TX);
 R_DMACA_Open(USB_CFG_USB0_DMA_RX);

 /* Initialization processing */
 ctrl.module = USB_IP0; /* Specify the selected USB module */
 cfg.usb_mode = USB_PERI; /* Specify either USB host or USB peri */
 cfg.usb_speed = USB_HS; /* Specify the USB speed */
 cfg.p_usb_reg = &smp_descriptor; /* Specify the top address of the descriptor table */
 R_USB_Open(&ctrl, &cfg);

 /* main routine */
 while(1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 case USB_STS_CONFIGURED:
 case USB_STS_WRITE_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Read(&ctrl, g_buf, 64);
 break;
 case USB_STS_READ_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Write(&ctrl, g_buf, ctrl.size);

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 74 of 76

Mar 31, 2018

 break;
 default:
 break;
 }
 }
}

12.3.7 Application program description example (DTC transfer)

#include "r_usb_basic_if.h"
#include "r_usb_pcdc_if.h"

void usb_peri_application(void)
{
 usb_ctrl_t ctrl;
 usb_cfg_t cfg;

 /* MCU pin setting */
 usb_pin_setting();

 /* DTC initialization processing */
 R_DTC_Open();

 /* Initialization processing */
 ctrl.module = USB_IP0; /* Specify the selected USB module */
 cfg.usb_mode = USB_PERI; /* Specify either USB host or USB peri */
 cfg.usb_speed = USB_HS; /* Specify the USB speed */
 cfg.p_usb_reg = &smp_descriptor; /* Specify the top address of the descriptor table */
 R_USB_Open(&ctrl, &cfg);

 /* main routine */
 while(1)
 {
 switch(R_USB_GetEvent(&ctrl))
 {
 case USB_STS_CONFIGURED:
 case USB_STS_WRITE_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Read(&ctrl, g_buf, 64);
 break;
 case USB_STS_READ_COMPLETE:
 ctrl.type = USB_PCDC;
 R_USB_Write(&ctrl, g_buf, ctrl.size);
 break;
 default:
 break;
 }
 }
}

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 75 of 76

Mar 31, 2018

13. Program Sample

13.1 usb_compliance_disp function

void usb_compliance_disp (usb_compliance_t *p_info)
{
 uint8_t disp_data[32];

 disp_data = (usb_comp_disp_t*)param;

 switch(p_info->status)
 {
 case USB_CT_ATTACH: /* Device Attach Detection */
 display("ATTACH ");
 break;

 case USB_CT_DETACH: /* Device Detach Detection */
 display("DETTACH");
 break;

 case USB_CT_TPL: /* TPL device connect */
 sprintf(disp_data,"TPL PID:%04x VID:%04x",p_info->pid, p_info->vid);
 display(disp_data);
 break;

 case USB_CT_NOTTPL: /* Not TPL device connect */
 sprintf(disp_data,"NOTPL PID:%04x VID:%04x",p_info->pid, p_info->vid);
 display(disp_data);
 break;

 case USB_CT_HUB: /* USB Hub connect */
 display("Hub");
 break;

 case USB_CT_NOTRESP: /* Response Time out for Control Read Transfer */
 display("Not response");
 break;

 default:
 break;
 }

Note:

The display function in the above function displays character strings on a display device. It must be provided by

the customer.

RX Family USB Basic Host and Peripheral Driver using Firmware Integration Technology

R01AN2025EJ0123 Rev.1.23 Page 76 of 76

Mar 31, 2018

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description

Page Summary

1.00 Aug 1, 2014 — First edition issued

1.10 Dec 26, 2014 — RX71M is added in Target Device.

The multiple connecting of USB deive is supported in Host mode.

1.11 Sep 30, 2015 — RX63N and RX631 are added in Target Device.

1.20 Sep 30, 2016 — 1. RX65N and RX651 are added in Target Device.

2. Supporting DMA transfer.

3. Supporting USB Host and Peripheral Interface Driver application note

(Document No.R01AN3293EJ)

1.21 Mar 31, 2017 — 1. Supported Technical Update (Document number. TN-RX*-A172A/E)

2. The following chapters are added in this document.

(1). 2.5 Descriptor
(2). 3.6 How to Set the Target Peripheral List (TPL)
(3). 3.7 Allocation of Device Addresses
(4). 5. Return Value of R_USB_GetEvent Function
(5). 6. Device Class Types
(6). 7. Configuration
(7). 8. Structures
(8). 9. USB Class Requests
(9). 11. Additional Notes
(10). 13. Program Sample

3. The following chapters are deleted.

 "Hub Class", "non-OS Scheduler"

1.22 Sep 30, 2017 — Supporting RX65N/RX651-2M

1.23 Mar 31, 2018 — 1. Supporting Smart Configurator.

2. Adding the member (num_string) in usb_descriptor_t structure.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.

For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as

well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the

vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur

due to the false recognition of the pin state as an input signal become possible. Unused pins

should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings

and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of

pins are not guaranteed from the moment when power is supplied until the reset process is

completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset

function are not guaranteed from the moment when power is supplied until the power

reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock

signal. Moreover, when switching to a clock signal produced with an external resonator (or

by an external oscillator) while program execution is in progress, wait until the target clock

signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same

group but having a different part number may differ in terms of the internal memory capacity,

layout pattern, and other factors, which can affect the ranges of electrical characteristics,

such as characteristic values, operating margins, immunity to noise, and amount of radiated

noise. When changing to a product with a different part number, implement a

system-evaluation test for the given product.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.

Colophon 7.0

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

	1. Overview
	1.1 Note
	1.2 Limitations
	1.3 Terms and Abbreviations
	1.4 USB-BASIC-F/W FIT module
	1.5 Software Configuration
	1.6 Scheduler Function and Tasks
	1.7 Pin Setting

	2. Peripheral
	2.1 Peripheral Control Driver (PCD)
	2.1.1 Basic functions
	2.1.2 Issuing requests to PCD
	2.1.3 USB requests

	2.2 API Information
	2.2.1 Hardware Requirements
	2.2.2 Software Requirements
	2.2.3 Operating Confirmation Environment
	2.2.4 Usage of Interrupt Vector
	2.2.5 Header Files
	2.2.6 Integer Types
	2.2.7 Compile Setting
	2.2.8 ROM / RAM Size
	2.2.9 Argument
	2.2.10 Adding the FIT Module to Your Project

	2.3 API (Application Programming Interface)
	2.4 Class Request
	2.5 Descriptor
	2.5.1 String Descriptor
	2.5.2 Other Descriptors

	2.6 Peripheral Battery Charging (PBC)

	3. Host
	3.1 Host Control Driver (HCD)
	3.1.1 Basic function

	3.2 Host Manager (MGR)
	3.2.1 Basic function
	3.2.2 USB Standard Requests

	3.3 API Information
	3.3.1 Hardware Requirements
	3.3.2 Software Requirements
	3.3.3 Operating Confirmation Environment
	3.3.4 Usage of Interrupt Vector
	3.3.5 Header Files
	3.3.6 Integer Types
	3.3.7 Compile Setting
	3.3.8 ROM / RAM Size
	3.3.9 Argument
	3.3.10 Adding the FIT Module to Your Project

	3.4 API (Application Programming Interface)
	3.5 Class Request
	3.6 How to Set the Target Peripheral List (TPL)
	3.7 Allocation of Device Addresses
	3.8 Host Battery Charging (HBC)

	4. API Functions
	4.1 R_USB_Open
	4.2 R_USB_Close
	4.3 R_USB_GetVersion
	4.4 R_USB_Read
	4.5 R_USB_Write
	4.6 R_USB_Stop
	4.7 R_USB_Suspend
	4.8 R_USB_Resume
	4.9 R_USB_GetEvent
	4.10 R_USB_VbusSetting
	4.11 R_USB_GetInformation
	4.12 R_USB_PipeRead
	4.13 R_USB_PipeWrite
	4.14 R_USB_PipeStop
	4.15 R_USB_GetUsePipe
	4.16 R_USB_GetPipeInfo

	5. Return Value of R_USB_GetEvent Function
	5.1 USB_STS_DEFAULT
	5.2 USB_STS_CONFIGURED
	5.3 USB_STS_SUSPEND
	5.4 USB_STS_RESUME
	5.5 USB_STS_DETACH
	5.6 USB_STS_REQUEST
	5.7 USB_STS_REQUEST_COMPLETE
	5.8 USB_STS_READ_COMPLETE
	5.9 USB_STS_WRITE_COMPLETE
	5.10 USB_STS_BC
	5.11 USB_STS_OVERCURRENT
	5.12 USB_STS_NOT_SUPPORT
	5.13 USB_STS_NONE

	6. Device Class Types
	7. Configuration (r_usb_basic_config.h)
	7.1 USB Host and Peripheral Common Configurations
	7.2 Settings in USB Host Mode
	7.3 Settings in USB Peripheral Mode
	7.4 Other Definitions

	8. Structures
	8.1 usb_ctrl_t structure
	8.2 usb_setup_t structure
	8.3 usb_cfg_t structure
	8.4 usb_descriptor_t structure
	8.5 usb_pipe_t structure
	8.6 usb_info_t structure
	8.7 usb_compliance_t structure

	9. USB Class Requests
	9.1 USB Host operations
	9.1.1 USB request (setup) transfer
	9.1.2 USB request completion
	9.1.3 USB request processing example

	9.2 USB Peripheral operations
	9.2.1 USB request (Setup)
	9.2.2 USB request data
	9.2.3 USB request results
	9.2.4 Example USB request processing description
	9.2.5 Processing ACK/STALL Response to Class Request

	10. DTC/DMA Transfer
	10.1 Basic Specification
	10.2 Notes
	10.2.1 DTC transfer
	10.2.2 Data Reception Buffer Size
	10.2.3 USB Pipe
	10.2.4 Initialization Function for DMA/DTC transfer

	11. Additional Notes
	11.1 Vendor ID
	11.2 Compliance Test
	11.3 Hi-speed Embedded Host Electrical Test
	11.4 Reference or Change of PIPEBUF Register

	12. Creating an Application Program
	12.1 Configuration
	12.2 Descriptor Creation
	12.3 Application Program Creation
	12.3.1 Include
	12.3.2 Initialization
	12.3.3 Descriptor Creation
	12.3.4 Main routine
	12.3.5 Application program description example (CPU transfer)
	12.3.6 Application program description example (DMA transfer)
	12.3.7 Application program description example (DTC transfer)

	13. Program Sample
	13.1 usb_compliance_disp function

