To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMSs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, anc
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and morereliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may |lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as a reference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, agorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate al information as a total system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice
or system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of aproduct contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under alicense from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

-
»
@
ﬁ\
»
<
)
>
-
o

LENESAS

HI7750/4 Renesas Industrial
Realtime Operating System
Configuration Guide

Renesas Microcomputer
Development Environment
System

Renesas Electronics Rev.1.0 2003.03

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 03/03, page ii of vi
:{ENESAS

Preface

This guide describes how to configure systems using HI7750/4.

To execute application programs registered as tasks on HI7750/4, the Solution Engine®, the
product of Hitachi ULSI Systems Co., Ltd., shall be used as a target board and the HDI of the
E10A emulator as a debugger in the initial debug stage. For details about HI7750/4, see the
HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) User’s Manual (hereinafter referred to as the
HI7000/4 Series User’s Manual). To create application programs and link them with HI7750/4,
you should use the SuperH™ RISC engine C/C++ compiler package (hereinafter referred to as the
SHC/C++ compiler) and the Hitachi Embedded Workshop (HEW), which is an integrated
development tool, supplied with the SuperH™ RISC engine C/C++ compiler package.

This guide describes how to change, add and configure programs before executing the start task on
multitasking operating system using the above target board, emulator, and compiler.

Related manuals

e HI7000/4 Series (HI7000/4, HI7700/4, HI7750/4) Hitachi Industrial Realtime Operating
System User’s Manual

e SuperH RISC engine C/C++ Compiler SH-1, SH-2, SH-2E, SH-3, SH3E, SH-4 User’s Manual
e SuperH RISC engine C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual

e H Series Linkage Editor, Librarian, and Object Converter User’s Manual

e Hitachi Embedded Workshop 2 HEW Debugger User’s Manual

e SH7750 Solution Engine™ (MS7750SEO1) Overview

e The hardware manual and programming manual of the SuperH microcomputer used

Pentium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the
United States and other countries.

Microsoft® Windows® 95 operating system, Microsoft® Windows NT® operating system and
the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries.

The abbreviation LITRON stands for "Micro Industrial TRON". TRON, in turn, stands for "The
Real-time Operating system Nucleus."

Solution Engine® is a registered trademark of Hitachi ULSI Systems Co., Ltd. in Japan.

Other mentioned company and product names are trademarks or registered trademarks of their
respective companies.

Rev. 1.0, 03/03, page iii of vi
:{ENESAS

Rev. 1.0, 03/03, page iv of vi
RRENESAS

Contents

Section 1 INtroduCHiON........cccuiiiiiiiiiiiiiiiiiiiiice e 1
Lol OVEIVIBW .ottt ettt ettt st st et a et sae e 1
1.2 System COonfigurationcc.cocceeierienierieniieiieeeeeese ettt et 1
L3 PIEIEQUISIIES ..c.uveieeiieiieitieiteeit ettt sttt et s e s e s re et e e s s saeesneeane 2
Section 2 Creating Application Programs............ccoeceeeviiiiiniiiennieennieenieeeeenn 5
2.1 Creating CPU Initialization ROULINEc.cccoveiiiiiiiiniiniiniiiniceecteeeceeee e 6
2.2 Creating TasKs......ooieriiiieiieieeteet ettt ettt sttt et ettt st 11
2.2, 1 MaIN TASK .eeeiiiiiiieeiee ettt st 12
2.2.2 LED TaSK ...ccoiiiiiiiiriieiieeceenest ettt s 14
2.3 Creating an Interrupt Handlercoocooiiiiiiiiiiiiceeeeeeeee e 14
2.3.1 Creating Initialization Module...........c..coocerviiiiiniiniiniiiieeeeeeee e 17
2.3.2 Creating Interrupt Handler............cocooviiiiiniiniiniiiiiieeeceeeeeeeseeeee 19
Section 3 CONfIUIALIONccecuvieeiiieeiiieeiee et eeiee et e e e e eareeeareeenneees 21
3.1 Starting CONFIGUIALOToccuiiiiiiieiieieeie ettt et 22
3.2 Interrupt Mask Level. ..ot 22
3.3 ReZISErING TaSK ..eooviiiiiiiiiiiiieteetee ettt st 23
3.4 Registering Interrupt Handlercc.ooiiiiiiiiiiiiniiiceeeeee e 25
3.5 Registering Initialization ROULINEccceevuiiiiiriiniiniiiiiienicieeececee et 28
3.6 Registering Event Flag Information............ccccoociiiiniiiiiiiiiiiiiicececcccneeeeeeee 31
3.7 Creating Configuration FIles..........ccocceiiiiiiiniiiiiiiiiecceceere e 33
3.8 Building the Executable File by HEW ..ot 33
3.8.1 Starting HEW ..ottt 34
3.8.2 Defining Configuration File.........c.cccoceiiiiiniiniiniiiiiiieiceeseeieeeeeeresiens 35
3.8.3 Changing a Linkage Addressc..coveerieniriiniinieniienieeceee et 37
384 BUIIde ittt sttt 41
3.9 Disabling Parameter Check FUNCHON........c..cocooiiiiiiiiiiiiiiiiiciceccceeeeee e 42
Section 4 Downloading and Executing Application Programs......................... 43
4.1 Initializing SOIUtiON ENGINEcocuiiiiiiiiiiiiiiiiic ittt 43
4.2 Downloading Application Programc..ccccccoceeriiniiniiiiiniiinienieceneee et 45
4.3 Executing Application Program............cccccocenieiiiiiiiiniiniieeeeee e 46

Rev. 1.0, 03/03, page v of vi
:{ENESAS

Rev. 1.0, 03/03, page vi of vi
RRENESAS

Section 1 Introduction

11 Overview
Follow the procedure below to run application programs on HI7750/4:

1. Create application programs.

2. Use the configurator to register the application programs to HI7750/4.

3. Build the executable file using HEW.

4. Install the application programs to the target board, and download and execute them.

This guide describes the above procedure to run the programs on the target board by using a
sample program.

12 System Configuration

This guide describes how to create sample programs of tasks and an interrupt handler and how to
run the programs on the target board.

Figure 1.1 shows an example of a hardware configuration.

/. \ -])

/ . Z N ‘\ To the PCMCIA slot
|

L

SuperH™ Solution Engine®
(MS7750SE01)

Figure 1.1 Hardware Configuration Example

Table 1.1 lists software configuration.

Rev. 1.0, 03/03, page 1 of 48
:{ENESAS

Tablel.l Software Configuration

Program Description Type Remarks

CPU initialization routine Sets the bus controller. Non-task
Initializes the hardware.

Main task Initializes the environment. Task

Waits for an event after initialization by setting
the wai_flg flag.

Cancels the wait status by setting the event flag
of the timer interrupt handler and starts the LED
task (sta_tsk).

LED task Started by the main task to turn the LED on Task
when it is off or turn it off when it is on, and then
terminates.

Timer interrupt handler ~ Started by the timer interrupt every one second Non-task
and sets the main task event flag (set_flg).

13 Prerequisites
Table 1.2 lists hardware and software required to run the application programs on HI7750/4.

Table1.2 Required Hardware and Software

Product Name Product Type Manufacturer

Windows® personal computer — Any manufacturer*’

SuperH™ Solution Engine® MS7750SEO1 Hitachi ULSI Systems Co., Ltd.
E10A emulator HS7750KCMO1H Hitachi, Ltd.

SuperH™ RISC engine C/C++ compiler ~ P0700CAS6-MWR Hitachi, Ltd. **

HI7750/4 HS0700ITI41SRE Hitachi, Ltd. *°

Notes: 1. Hardware environment: PC/AT compatible machine with 486DX2/66 MHz or more
(Pentium® or later recommended)

Operating system: Windows®2000, WindowNT®4.0, Windows®98, Windows®95
CD-ROM drive
PCMCIA card slot

Memory: 32 Mbytes or more (For Windows®2000 and WindowNT®4.0, memory with 64
Mbytes or more is recommended.)

Free space required on the hard disk: 8 Mbytes or more

2. Version. 6.0 AR2 of the compiler shall be used. You may also use the compilers from
Hitachi ULSI Systems Co., Ltd. or Hitachi Software Engineering Co., Ltd.
HI7750/4 with evaluation license (object) shall be used. You may also use HI7750/4
with mass-production license.

Rev. 1.0, 03/03, page 2 of 48
:{ENESAS

The HDI of the E10A emulator, SuperH™ RISC engine C/C++ compiler package, and HI7750/4
(for SHCV6) must have been installed in the Windows® personal computer beforehand. The
SH7750 is a target CPU assumed in this manual.

Figure 1.2 shows the folder structure of HI7750/4 that you have just installed.

BN Exploring - My Documents

J File Edit Yiew Go Favortes Tools Help |
@ . = | o % 2 =) X -
Back Eanverd Up Cut Copy FPaste Undo Delete Properties Wiews
JAddress Iﬁ Wy Docurments j

All Folders x
=01 Hi7750-4 Al
EH:I config
1 english
=1 infa
{:I anglish
@ japanese
=0 kemel
&1 for_shch
21 hios
(1 Hihead
- Hilib
-0 Hisys
221 Hiuser
(1 ohj_big
{1 ohj_litle
1 sh77EN
-1 sh7781
27 Tutarial
=1 Manuals
21 english v

Figurel1.2 Folder Structure of HI17750/4

The install drive is “D” in this guide, but you may use a desired drive for installing HI7750/4. An
install folder is represented as the install folder “folder name” in this manual.

Rev. 1.0, 03/03, page 3 of 48
:{ENESAS

Rev. 1.0, 03/03, page 4 of 48
RRENESAS

Section 2 Creating Application Programs

This section describes how to create application programs that run on HI7750/4. Figure 2.1 shows
the relationship among application programs. (The programs in the heavy-outline boxes are
created in this guide.)

CPU initialization routine
Reset start ---»

' HI7750/4 kernel

v
CPU initialization Kernel ¥ Timer
Initialization .- 1" |

routine call <. _ TMU1 initialization

Task execution | ~~~_ [

'
'
'
'
!
' L 8 . AT I X
' ! initialization routine -~ linitialization routind
'
'
'
'
'
'
'

Started by an interrupt - - > return
\\ V3
\ Main task LED task
Interrupt handler | S
Event flag creation| ,
LED task creation S
S LED control
—>| / turning the LED on|
. ! . when it is off or
iset_flg ----f----- -1+ wai_flg K turning it off when
| J it is on)
sta_tsk
-
return _, T~ ext_tsk

Figure2.1 Relationship among Application Programs

Figure 2.2 shows the programs to be created in this guide.

| Create a CPU initialization routine |

| Create tasks |

|Create an interrupt initialization modulel

| Create an interrupt handler |

Figure2.2 Programsto be Created

Rev. 1.0, 03/03, page 5 of 48
RENESAS

21 Creating CPU Initialization Routine

After the CPU reset, the CPU initialization routine is executed for setting a bus state controller and
initializing the hardware.

The ROM monitor supplied with the Solution Engine has already set the bus state controller and
initialized the hardware. Thus, this guide omits the description of them.

Figure 2.3 shows the procedure to create the CPU initialization routine.

| Set BSC | Set BSC by _hi_cpuasm (7750_cpuasm.src).
| Use the assembler language to write a
program before the stack area is reserved by

| Set stack pointer | setting BSC.

Set cache | . - -

| Start a kernel by _hi_cpuini (7750_cpuini.c).
| The stack pointer has been set. Use the C

| language to write a program.

| Start a kernel

Figure2.3 Creating a CPU Initialization Routine

In the CPU initialization routine, the stack pointer must be reserved completely before you attempt
to execute any program written in the C language. Because the program created by the compiler
may locate the stack frame or work area in a stack, you cannot execute it until the stack area is
completely reserved.

Figures 2.4 to 2.6 show the parts to be changed in of _hi_cpuasm (7750_cpuasm.src).

Rev. 1.0, 03/03, page 6 of 48
RENESAS

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkk ko kkkkkkkkkkkk ok ok ok k ok ok ok ok ok ok ko k ok ko kb ok ok ok ok ok ok ok -

x HI 7000/4 CPU initialize routine N
i Copyright (c) Hitachi, Ltd. 2000. N
D Li censed Material of Hitachi, Ltd. N

ok kk kR KRR KKk kkk ok ok kkkkk kA kAR Kk kkkk ok ko kkkkk kA kA Ak kkkkkkkkkkkkkk kA kX kK ok Kk Kok ok k ok ok -
kkk ok kkkkkkkkkkkkk ko ko k ko ok K ok ok ok ok ok -

; * HI 7000/ 4(HSO07001 Tl 41SR) V1.0 H

;* FILE = 7612_cpuasm src ; 0 *
;¥ CPU type = SH7612 e
R R e R e e T e T

. program _hi _cpuasm

. headi ng "hi _cpuasm: CPU initialize routine"

. export _hi _cpuasm

.inport _hi _cpui ni

.section P_hi cpuasm code, al i gn=4

ok kkkkkkhkkkkkkkkkkkkkkhkhhkhkk ok k ok ok ok k ok kkkkh ok h ok ok ko ko ok ok ok ok ok ok ok ok ok k ok ok kb ko ok ok ok ok k-

;* BSC address N

.**;*;
BSC_BASE .assign h'ffffffco ; BSC base address (WCR2)

BCR1L .assign h'ffffffe0-BSC_BASE ; BCRlL address offset

CR2 .assign h'ffffffe4-BSC_BASE ; BCR2 address offset

BCR3 .assign h'fffffffc-BSC_BASE ; BCR3 address offset

WCR1 .assign h'ffffffe8-BSC_BASE ; WCR1 address of fset

WCR2 .assign h'ffffffc0-BSC_BASE ; WCR2 address of fset

WCR3 .assign h'ffffffc4-BSC_BASE ; WCR3 address of fset

MCR .assign h' ffffffec-BSC_BASE ; MCR address of fset

RTCSR .assign h'fffffff0-BSC_BASE ; RTCSR address offset

RTCNT .assign h'fffffff4-BSC_BASE ; RTCNT address offset

RTCOR .assign h'fffffff8-BSC_BASE ; RTCOR address offset

MD_REG BASE .assign h'ffff8000 ; node register base address of SDRAM
CM_BIT .assign h'0080 ; OMF bit in RTCSR

Figure2.4 PartstobeChanged in _hi_cpuasm (7750 _cpuasm.src)

Rev. 1.0, 03/03, page 7 of 48
RENESAS

PEREE KR KK KK KK KK KK KA KA R AR AR AR AR AR AR KRR R KR KR KRR R R AR AR AR AR AR AR AR AR AR IR IR IR IR kK
’

;* BSC address '*'
.*H**H*H*H*M*H*HH*H*H**H“*H**HH*HHHHH*HHHHHH“H*H
BSC BASE .assign h'ff800000 ; BSC base address

BCRL .assign h'ff800000-BSC BASE ; BCR1l address of fset

BCR2 .assign h'ff800004-BSC BASE ; BCR2 address of fset

WCR1 .assign h'ff800008-BSC BASE ; WCR1 address of f set

WCR2 .assign h'ff80000c-BSC BASE ; WCR2 address of fset

WCR3 .assign h'ff800010-BSC BASE ; WCR3 address of f set

MCR .assign h'ff800014-BSC_BASE ; MR address of f set

PCR .assign h'ff800018-BSC BASE ; PCR address of fset

RTCSR .assign h'ff80001c-BSC BASE ; RTCSR address of f set

RTCNT .assign h'ff800020- BSC_ BASE ; RTCNT address of fset

RTCOR .assign h'ff800024-BSC BASE ; RTCOR address of fset

RFCR .assign h'ff800028-BSC_BASE ; RFCR address of f set

éDNRZ .assign h'ff900000 ; SDVR2 address

SDVR3 .assign h'ff940000 ; SDVR3 address

CNF_BI T .assign h' 0080 ; OMF bit in RTCSR

Rk kR Ak kR Ak R Ak kR Rk k kR Kk kR Ak kR Ak ok kR kKR Rk R ARk kR R kKRR Kk kR Ak kR Ak
;* BSCinitial data ;*;
;* After reset, you nust initialize BSC for nenory(stack) access at first.;*;
;* Please rmdlfy these definition in order to your hardware. ,*;
N N I L Iy
BCR1_DATA .assign h' 00000000 ; BCRL initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h' 77777777 ;. WCRL initial data
WCR2_DATA .assign h'fffeefff ;. WCR2 initial data
WOR3_DATA . assign h' 07777777 CWoR3 initial data S;ﬁg%iégfd?fﬁo
MCR_DATA .assign h' 00000000 ;. MCR initial data the hard 9
PCR_DATA .assign h' 0000 . PCR initial data © hardware
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h' 000 ;. RFCR initial data
éTP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
éM/RQ_DATA .assign h'0230 ; SDVR2 initial data
SDVR3_DATA .assign h'0230 ; SDVR3 initial data

i DLE_TI ME .assign h'1000 ; loop counter for idle-tinme
REFRESH CNT .assign h'8 ; counter for dummy refresh
B
; * NAMVE = _hi _cpuasm i
:*FUNCTION = CPU initialize routine ; -
© kK ko Kok Kk Kk Kk Kk K ko Kk ok Kk o Kk Kk K ko Kk Kk ko R ok Kk Kk Kk Rk Kk Kk Kk Kk K Kk Kk
_hi _cpuasm

;¥**** |Initialize BSC

; nov. | #BSC_BASE, r 0 ; set BSC base address to gbr

; I dc r0, gbr

: mov.| #BCRL_DATA, r0 : Initialize BCRL

; nov. | r0, @BCR1, gbr) Omit the comment to
; set BSC
; nmov.w #BCR2_DATA, r0 ; Initialize BCR2

; nov.w r0, @BCR2, gbr)

: mov.| #WCRL_DATA, r0 Initialize WRL

; nov. | r0, @WCR1, gbr)

: mov.| #WCR2_DATA, 10 . Initialize WORR

; nov. | r0, @WCR2, gbr)

: mov.| #WCR3_DATA, 10 : Initialize WOR3

; nov. | r0, @WCR3, gbr)

Figure2.5 PartstobeChanged in _hi_cpuasm (7750 _cpuasm.src)

Rev. 1.0, 03/03, page 8 of 48
RENESAS

==

3
=
ss

ss

nmov. w

w
LW
w
*** |nitialize

nov. |

hi cpuasn010:
add
cnp/ eq
bf

. W
w

nmov. w

hi _cpuasn020:
nmov. w
cnp/ ge
bf

hi _cpuasnD30:

#MCR_DATA, r 0
r0, @MCR, gbr)

#PCR_DATA, r 0
r0, @PCR, gbr)

#STP_REFRESH, r 0
r0, @RTCSR, gbr)

#RTCNT_DATA, r 0
r0, @ RTCNT, gbr)

#RTCOR_DATA, r 0
r0, @ RTCOR, gbr)

#RFCR_DATA, r 0
r0, @RFCR, gbr)

SDRAM
DLE_TIME r0

#-1,10
#0,10
hi cpuasn010

#SDVR2, 1 O
#SDVR2_DATA* 4, r 2
rl, @ro0,r2)

#SDVR3, r 0
#SDVR3_DATA* 4, r 2
rl, @ro0,r2)

#RTCSR_DATA, r 0
r0, @RTCSR, gbr)

#REFRESH_CNT, r 2
@RFCR, gbr), r0

r2,r0
hi _cpuasnD20

Initialize MCR

Initialize PCR

stop refresh

Initialize RTCNT

Initialize RTCOR

Initialize RFCR

loop for idle-time

Initialize SDVR(CS2)
wite dummy data(r1l)
Initialize SDVR(CS3)
wite dummy data(r1l)

Initialize RTCSR

read RFCR
if end dummy refresh
el se goto hi_cpuasnD20

Omit the comment
to set BSC.

Set stack pointer

Jump to hi_cpuini

****% |nitialize sp and junp to hi_cpuini() witten by C|anguage
nov. | #CCN_BASE, r 2 ; get CCN base address
nov. | #PON_CCDE, r 3 ; get exception code to power-on
nov. | @EXPEVT, r2),r0 ; get exception code
cnp/eq r3,r0 ; if exception !'= power-on
bf hi _cpuasnD50 ; then hi _cpuasnD50
nov. | #__kernel _pon_sp,r2 ; get stack address
hi _cpuasnD40:
nmov r2,r15 , set SP
nov. | #_hi _cpuini,r0 ; get hi_cpuini address
jmp @0 ; junp to hi_cpuini()
nop ; never return to this point
hi _cpuasnD50:
nmov. | #__kernel _man_sp, r2 , get stack address
bra hi _cpuasnD40
nop
. pool
’ .end

Set stack pointer

Figure2.6 PartstobeChanged in _hi_cpuasm (7750 _cpuasm.src)

Rev. 1.0, 03/03, page 9 of 48

RENESAS

Figure 2.7 shows the part to be changed in _hi_cpuini (7750_cpuini.c).

[Kk Kk kK kK kK K Kk Kk Kk Kk Kk ok ko kK K Kk K K K K K

I* H 7750/ 4 CPU initialize routine */
I* Copyright (c) Hitachi, Ltd. 2001. */
I* Li censed Material of Hitachi, Ltd. */
/* HI 7750/ 4(HSO7751 Tl 41SR) V1. 0A */

[k kK kK kK K K K K K K K K K K K Kk kK ko ko ok K K K K kK

[Kk Kk kK kK kK K K K Kk K K K Kk kK ok o K kK K K kK

/* FILE = 7750_cpuini.c ; */
/* CPU type = SH7750 */
/***~k~kk********~k~kk********~k~kk*********************~k~kk**********k**********k**/
#i ncl ude <machi ne. h>

#i ncl ude "itron.h"

#i ncl ude "kernel . h"

#def i ne CCR_DATA 0x0000090d /* CACHE enabl e data */
/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragme section _hicpuini
#pragma nor egsave(hi _cpuini)

Change from cache
enable to cache

voi d hi _cpui ni (voi d) disable

{
/*** |nitialize Hardware Environment **g/
|/* vini _cac((UW CCR_DATA); */ | |vi ni _cac((UW CCR_DATA) ;
Start a kernel
/*** |nitialize Software Environnment ***/
/* _INITSCT(); */ /* Call section-initialize routine */
L vsta_knl (); /* Start kernel */
J

Figure2.7 Part to be Changed in _hi_cpuini (7750_cpuini.c)

Set a bus state controller and create a hardware initialization routine for the specific hardware.

Rev. 1.0, 03/03, page 10 of 48
RENESAS

2.2 Creating Tasks
A task is the main processing of an application program.

Figure 2.8 shows the procedure to create and register a task.

Create a task

Do you want to use No
a configurator to registe

the task?

Start the configurator and Register the task with the
register the task*? cre_tsk service call*'

Notes: 1.The cre_tsk service call must be enabled to register the task.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.8 Creating and Registering Task

Create a task by changing the sample (task.c) supplied with HI7750/4. The sample is in the install
folder “tutorial”.

In this guide, the main task (MainTask) is registered by the configurator and the LED task by the
cre_tsk service call.

Rev. 1.0, 03/03, page 11 of 48
RENESAS

221 Main Task

This section describes how to change MainTask contained in the sample program (task.c) supplied
with HI7750/4. Figure 2.9 shows the overview of changes made in MainTask. Starting task7
periodically turns the LED on and off.

Before change After change
| Create an event flag | | Create an event flag |
| Create and start task7 | | Create and start task7 |

Wait for an event

' N
| Delete event flag 6 | |

| < | Change stacd |

Start task7 |

~
| Wait for an event | | |

| Terminate and delete MainTask | |

| Delete event flag 6 |

| Terminate and delete task7 |

Figure2.9 Overview of ChangesMadein MainTask

Figure 2.10 shows the parts to be changed in MainTask.

Rev. 1.0, 03/03, page 12 of 48
RENESAS

- - Define the include file supplied with the C compiler.
#i ncl ude <machi ne. h> |

#include "itron. h" [. . .
#incl ude "kernel . h" Required when using the HI7750/4 service call.
#i ncl ude "kernel _id. h"

voi d Mai nTask(VP_I NT exinf);
void task7(VP_I NT exinf); MainTask and task7 are the main functions for each task.
Another function never calls them. #pragma noregsave is
valid to suppress the stack area.

- Define the LED output port address. For details, see the
#define LED_ADR (UH *)0xb0c00000 | Solution Engine Overview Manual.

#pragma nor egsave(Mai nTask, task?7) |

[% Kk k ok kK K K K K K K KK K K K K K K K K K K Kk

* Mai nTask()
* This task is created and activated by Configurator.
* tskid : "ID_MainTask" (defined in kernel _id.h as this task's ID.)

* itskpri : 6
k**t*****k**k*t**********k**********k*t*****k****t*****k**k*t**********l
voi d Mai nTask(VP_I NT exinf)
{
uni on CrePacket {
T_CTSK t_ctsk; /* Creation info. for task */
T_CFLG t_cflg; [/* Creation info. for event flag */
} packet;

ER ercd;
FLGPTN wai ptn, flgptn;

Define the task attribute.

If task7 uses the DSP, use the OR operator to define
TA_COPO.

(packet.t_ctsk.tskatr = TA_HLNG | TA_ACT | TA_COPO)
This allows the DSP register to be saved (to guarantee
a kernel) when changing a task.

/*** Create eventflag-6 ***/
packet.t_cflg.flgatr = TA TFI FQ TA_WSG.| TA CLR;
packet.t_cflg.iflgptn = 0;

ercd = cre_flg(6, (T_CFLG *)&packet);

/*** Create task-7 ***/
packet .t _ctsk.tskatr = TA HLNG TA_ACT;
packet.t_ctsk.exinf = 0;
packet .t _ctsk.task = (FP)task7;)

packet.t_ctsk.itskpri = 7; Register the task and start it.
packet .t _ctsk.stksz = 0x200;
packet .t _ctsk.stk = (VP)NULL;

ercd = cre_tsk(7, (T_CTSK *)&packet);

[*** Wait for eventflag-6 ***/ for(;;) {
wai ptn = 0x11111111; /*** Wait for eventflag-6 ***/
ercd = wai _flg(6, waiptn, TWF_ANDW &fl gptn) wai ptn = 0x11111111;
ercd = wai _flg(6, waiptn, TW-_ANDW &fl gptn);
/*** Delete eventflag-6 ***/ i f (exi nf == 0x00000000L) {
ercd = del _flg(6); exi nf = 0x0000f f 00L;
} else {
ext _tsk(); exi nf = 0x00000000L;
} i
ercd = sta_tsk(7,exinf);
Wait for the event flag to set by the interrupt }

handler. Change the exinf value and start
task?. At this time, exinf is passed to task7
as a start code.

Figure2.10 Changing MainTask

Rev. 1.0, 03/03, page 13 of 48
RENESAS

222 LED Task

This section describes how to change task7 of the sample program (task.c) supplied with
HI7750/4. Figure 2.11 shows the part to be changed in task7.

/*x**********x**********************************x**********x****************
* task7()

* This task is created and activated by MinTask.

* tskid: 7

* qtskpri o 7
*i**********i**********************************i**********i****************/

voi d task7(VP_I NT exinf)

ER ercd;

ercd = set_flg(6, Oxffffffff); *LED_ADR = (UH) exi nf; Turn the LED on or off according
) |:> ext _tsk(); to the exinf value, and then
while(1); terminate itself (task7)

Figure2.11 Changing task?

2.3 Creating an Interrupt Handler
The interrupt handler is started by an external interrupt that suspends another processing.

Figure 2.12 shows the procedure to create and register the initialization module and the interrupt
handler.

Rev. 1.0, 03/03, page 14 of 48
RENESAS

Do you need an No

initialization module?

Create the initialization module

Do you want to
use a configurator to register
the initialization

No

module?
Yes
Start the configurator and Call the subroutine
register the initialization module*? (initialization module)*!

Create an interrupt handler

Do you want to
Use the configurator to registe
the interrupt
andler?

No

Yes
Start the configurator and Register the interrupt handler
register the interrupt handler? by the def_inf service call*!

Notes: 1. The def_inf service call must be enabled to register the interrupt handler.
For details, see the HI7000/4 Series User's Manual.
2. This procedure is described in section 3, Configurator.

Figure2.12 Creating and Registering Initialization Module and Interrupt Handler

This guide describes how to use the on-chip TMU1 in the SH7750 to create the interrupt handler
and how to use a configurator to register it.

Create the tmul.c file for the initialization module and the interrupt handler and store the file in
the install folder “tutorial”.

Table 2.1 lists the interrupt conditions.

Rev. 1.0, 03/03, page 15 of 48
RENESAS

Table2.1 Interrupt Conditions

Item Description Function File Name

Initialization module Required. Use the configurator to register the TMU1_ini tmul.c
module.

Interrupt handler Use the configurator to register the handler. TMU1_int tmul.c

Interrupt cycle An interrupt occurs every one second. — —

Interrupt level 1 — —

Rev. 1.0, 03/03, page 16 of 48
RENESAS

231 Creating Initialization Module

This section describes how to create an initialization module for the on-chip TMUT1 in the
SH7750. The initialization module initializes the TMU1 and sets the interrupt cycle and level.
Figure 2.13 shows the procedure to create the initialization module.

| Save GBR |
|

| Set the TPU base address in GBR |
|

| Stop TCNT of the TMU1 |
|

| Set the INTC base address in GBR |
|

| Read IPRA |
|

| Clear the IPRA-TMU1 level |
|

Set the TMU base address in GBR
|
Set TCR
[
Dummy-read TCR
|

| Set the IPRA-TMU1 level to 1 | Set TCOR
[[
| |
| Set IPRA | Start TCNT of the TMU1

I
| Dummy-read IPRA |

|
Clear the BL bit to enable the interrupt
|

Restore GBR to the original state

| Set the BL bit to mask the interrupt | | Set TCNT |

Figure2.13 Creating Initialization Module

Figures 2.14 and 2.15 show the contents of TMU1_ini (tmul.c).

Rev. 1.0, 03/03, page 17 of 48
RENESAS

#i ncl ude <machi ne. h>

#include "itron.h"

#i ncl ude "kernel.h"

#define BL_BI T 0x10000000 /* BL bit pattern */

/* Peripheral COock (FRQCR set value = H OE13 (CPU: Bus: P = 200: 33: 33 Miz)) */
#defi ne PCLK 33333400

/* TSTR set val ue */

#defi ne TCNT1_STA 0x02 /* Start TCNT of the TMUL */

#defi ne TCNT1_STP Ooxfd /* Stop TCNT of the TMJ1 */

/* TCR set value */

#define DV 4 /* Division ratio = 4 */
#define D V64 0x0000 /* Division ratio = 1/4 */
#define UNIE 0x0020 /* Interrupt generated by an underflow of the TCRL */

/* TCNT set value */
#defi ne | NTERVAL 1000000 /* 1 second: 1000ms: 1000000us

*/

#define TCNT1_DAT (UW (((doubl e)l NTERVAL/ (((doubl €) 1000000/ (doubl e) PCLK) * (doubl e) DI V)) (doubl e) 1)

(1 second/ ((1second/33.3334 MHz)*4))-

/* 1 PRA set value */

#define | PRA_CLR TPU1 OxfOff /* IPR bit8-11 clear data */
#define TMU1_LVL 1 /* TMJL interrupt level =1 */
/* TMJ, | PRA |/ O address */

#define TMU_BASE 0xff d80000 /* TMJ base address */
#defi ne TSTR (Oxffd80004 - TMJ BASE) /* TMJ TSTR */
#defi ne TCORL (Oxffd80014 - TMJ BASE) /* TMJ TCOR(chl) */
#defi ne TCNT1 (Oxffd80018 - TMJ BASE) /* TMJ TCNT(chl) */
#defi ne TCR1 (Oxffd8001C - TMJ BASE) /* TMJ TCR (chl) */
#defi ne | NTC_BASE 0xffd00000 /* I NTC base address */
#define | PRA (Oxffd00004 - I NTC_BASE) /* | NTC | PR(I PRA: TMJ chO) */
/k**********k**********k**********k*k********k*k**********k**********k*******/
/* NAMVE = TMJL_i ni */
/* FUNCTION = initialize the TMJL */

[ko k ok kK K K K K K K K R R R K K K Kk

void TMJL ini (void)

{
VP gbr save; /* GBR save area
UH ipra; /* I PRA retention area
gbrsave = get_gbr (); /* Save GBR
set _gbr ((VP) TMJ_BASE) ; /* Set the TPU base address in GBR
gbr _and_byt e(TSTR, TCNT1_STP) ; /* Stop the TCNT of the TMU1
set _gbr ((VP) | NTC_BASE) ; /* Set the INTC base address in GBR
ipra = gbr_read_word (1PRA); /* Read | PRA
ipra & | PRA_CLR TPUL; /* Clear the | PRA-TMJ1 | evel
ipra|= TMJL_LWVL << 8; /* I PRA-TMJL level =1
set_cr (BL_BIT | get_cr ()); /* Set the BL bit to mask an interrupt
gbr_wite_word (IPRAipra); /* Set |PRA
gbr_read_word (IPRA); /* Dunmy-read | PRA
set _gbr ((VP) TMJ_BASE) ; /* Set the TPU base address in GBR
gbr _write_word(TCRL, UNI E| DI V4); /* Set TCR
gbr _read_wor d(TCR1); /* Dunmy-read TCR
gbr_write_l ong(TCOR1, TCNT1_DAT); /* Set TCOR
gbr_write_l ong(TCNT1, TCNT1_DAT); /* Set TCNT
gbr _or _byte(TSTR, TCNT1_STA); /* Start the TCNT of the TMU1L
set_cr(~BL_BIT & get_cr()); /* Clear the BL bit to enable an interrupt
set _gbr (gbrsave); /* Restore GBRto the original state
}

*/
*/

*/
*/

*/

Figure2.14 Contentsof TMUL ini (tmul.c)

Rev. 1.0, 03/03, page 18 of 48
RENESAS

232

Creating Interrupt Handler

This section describes how to create an interrupt handler for the on-chip TMU1 in the SH7750.
The interrupt handler clears an interrupt source of the TMU1 and issues an event flag to task7.
Figure 2.15 shows the procedure to create the interrupt handler.

Save GBR

Set the TPU base address in GBR

Set the BL bit to mask an interrupt

Clear TCR (Clear an interrupt source)

Dummy-read TCR

Issue iset_flg

Clear the BL bit to enable an interrupt

Restore GBR to the original state

Figure2.15 Creating Interrupt Handler

Figure 2.17 shows the contents of TMU1_int (tmul.c).

[%%k Kk ok K ok K K K K K K K K K K K K K K K KK K K K K K Kk

| *
| *

NAVE
FUNCTI ON

= TMJ1_i nt

= TMJ1 interrupt handler

*/
*/

J Rk Kk k kK k ok k ko k ok k ok Kk ok k kK Rk ok ok kkkk ko k ok Kk ok ok k kK kkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkk kx|

voi d

{

TMUL_i nt (voi d)
VP gbr save;
gbrsave get _gbr();

set _gbr ((VP) TMJ_BASE) ;
set_cr(BL_BIT | get_cr());

gbr _write_word(TCRL, UNI E| DI V4) ;
gbr _read_wor d(TCR1);

iset_flg(6, Oxffffffff);

set_cr(~BL_BIT & get_cr());
set _gbr(gbrsave);

/* GBR save area */
/* Save GBR */
/* Set the TPU base address in GBR */
/* Set the BL bit to mask an interrupt */
/* Clear UNF */
/* Dunmmy-read TCR */
/* Set an event flag for task7 */

/* Clear the BL bit to enable an interrupt */

/* Restore GBR to the original

/* ret_int

state */
*/

Figure?2

A7

RENESAS

Contentsof TMUL int (tmul.c)

Rev. 1.0, 03/03, page 19 of 48

Rev. 1.0, 03/03, page 20 of 48
RENESAS

Section 3 Configuration

Configuration means to register the programs created in section 2 to HI7750/4. HI7750/4 provides
a tool that allows easy configuration using GUI and a configurator.

This section describes how to use the configurator to register the application programs.

Figure 3.1 shows the programs to be registered in this guide.

| Register the task |

| Register the interrupt initialization routine |

| Register the interrupt handler |

Figure3.1 Programsto be Registered
The defaults are used for programs other than those above.

For details of each program set by the configurator, see the Configurator Help.

Rev. 1.0, 03/03, page 21 of 48
RENESAS

31 Starting Configurator

Double-click the configurator set file (7750.hcf) to start the configurator. The 7750.hcf file is in
the install folder “sh7750”.

Figure 3.2 shows the Configurator Startup screen.

gurator - HI
Yiew Generate

2 (74

Generate Help

|»

Kernel Execution Condit Kernel Interrupt Mask Level
Kernel Extention Functio

) Specify a level when interrupt inside the kernel is masked.
Time Management Fun pecity P

Debugging Function User interrupts above the selected level are accepted without delay however service
Service Calls Selection calls must not he izssued in these interrupt handlers.

Interrupt/CPI Exception Timer interrupt level{CFG_TIMLYL) setin time management function view must be
Trap Exception Handlel specified below kernel interrupt mask level.

Frefetch Function
Initialization Routine
Task

Semaphore

Ewent Flag

Data Queus

Mailbox

Mutex

Message Buffer
Fixed-size Memory Poo
Yariable-size Memaory F
Cyclic Handler

Alarm Handler

Crerrun Handler
Extended Service Call

| | Hijm |f

FaorHelp, press F1 LUK

Kernel Interrupt Mask Level [CFG_KMLMESKLYL] 14 -

Figure3.2 Configurator Startup Screen

3.2 Interrupt Mask Level
Table 3.1 lists the interrupt mask levels for the application programs in this guide.

Table3.1 Interrupt Mask Levels

Type Mask Level Remarks
Task 0

Interrupt handler 1

Kernel 14 Default

Rev. 1.0, 03/03, page 22 of 48
RENESAS

Click kernel operational conditions in the HI7750/4 Configuration Information area on the
Configuration Startup screen to view the screen in figure 3.2. In this screen, the mask level for a
kernel interrupt can be set. Since the default value (14) is used for the mask level of a kernel
interrupt in this guide, you do not need to change the interrupt level.

3.3 Registering Task

Click Task in the HI7750/4 Configuration Information area on the Configuration Startup screen to
view the Task Information screen in figure 3.3.

0] or-HI?
File “iew Generate Help
O = = £l K?
[ew Open Save Generate Help
- HI??50/4Configuration infor =
- Kernel Execution Condit ~Task Information
- Kermel Extention Functia Max. Task ID [CFG_MAXTSKID] 10
- Time Management Furn
- Debugging Function Mz Static Stack Task ID [CFG_STSTKID] s
- Service Calls Selection Max, Task Priority [CFG_MAXTSKPRI] 10
- InterruptCPL Exception
- Trap Exception Handlel Dynamic Stack Area Size [CFG_TSKSTKSZ] TSI Modify |
- Prefetch Function

- |nitialization Routing . .
List of Static Stacks

- Task

- Semaphore Stack Mame Stack Size Task IDs which use this stack

- Ewvent Flag _kernel_ststk00o1 0x00000400 1

- Data Cuele _kernel_ststkn0oz2 000000400 2

- bailbox _kernel_ststk0003 0x00000400 3

- Mutex _kernel_ststk0004 0x00000400 4-5

- Message Buffer .

- Fixed-size Memaory Poo LIS @i el =
- Yariahle-size Memary F 7 | IDiName Status after creation | Address | Priority | Stack Size/Stack

- Cyclic Handler B Ready State MainTask B 0x00000400

- Alarm Handler
- Owverrun Handler
- Extended Service Call

J ool I_>|j

ForHelp, press F1 lil—l—lm,— ~
Figure3.3 Task Information Screen

Click the Change button in the Task Information area in figure 3.3 to view the Modification of
Task Information screen in figure 3.4.

Rev. 1.0, 03/03, page 23 of 48
RENESAS

Modification of Task Infarmation

—Mlax Task D [CFG_MAXTEKID]
™ Automatically sets the Max. 1D of Task
Cancel |

Wawx. 1D 10 -

—Max. Static Stack Task ID [CFG_STSTKID]

]

Wa. 1D

—Max, Task Priority [CFG_MAXTSKPRI]
= | sutomatically sets the Maw Eriarily afiliask and it

as. Priority 10 -

— Total Size of Dynamic Stack Area [CFG_TSKSTKSZ]

™ autamatically sets the Regquired Size of Task

Total Size Ox00004000

Ox0000042c

b

Figure3.4 Maodification of Task Information Screen

On this screen, you can change the maximum task ID, the maximum task ID using static stacks,
maximum task priority, and the total size of the dynamic stack area. For details about differences
between static stacks and dynamic stacks, see section 2.6.6, Task Stack, in the HI7000/4 Series
User’s Manual.

For details about how to calculate the task stack size, see Appendix C, Calculation of Work Area
Size, in the HI7000/4 Series User’s Manual.

In this guide, the defaults are used for registering the task. You do not need to change the task
information.

Rev. 1.0, 03/03, page 24 of 48
RENESAS

34

Registering Interrupt Handler

Click Interrupt and CPU Exception Handler in the HI7750/4 Configuration Information area on
the Configuration Startup screen to view the List of Interrupt/CPU/Trap Exception Handlers
screen in figure 3.5.

QN or-HI?
Yiew Generate

File
O = = £l K2
[ew Open Save Generate Help

2l

= HIF?50/4Canfiguration infar

- Kernel Execution Condit
- Kernel Extention Functio
- Time Management Furn
- Debugging Function

- Service Calls Selection
- Interrupt!CPL Exception
- Trap Exception Handlel
- Prefetch Function

- Initialization Routine

- Task

- Semaphore

- Ewvent Flag

- Data Queus

- Mailbiox

- hutex

- Message Buffer

- Fixed-size Memaory Poo
- Yariahle-size Memory F
- Cyclic Handler

- Alarm Handler

- Owverrun Handler

- Extended Service Call

| H©

—Interrupt Information
Max. Exception Code [CFG_MAXVCTHO]

| »

Interrupt Handler Stack Size [CFG_IRQSTKEZ]

0x0fed
0x00001000

Modify |

List of Interrupt'CPU Exception Handlers

i | Exception Code

Address

SR Register Value Description Langu;l

Ox0360
0x0380
0x03a0
0x03c0
0x03e0
Ox0400
Ox0420
Ox0440
Ox0460
Ox0480
Ox04a0
Ox04c0
Ox04e0
Ox0500

SYSTEM TIMER

|

ol

1

=
=
| »

FaorHelp, press F1

[Numl o

Figure3.5 List of Interrupt/CPU/Trap Exception Handlers Screen

Register the timer interrupt handler in this guide. Use the mouse on the scroll bar on the right of
the List of Interrupt/CPU/Trap Exception Handlers to view the exception code around 0x0420.
Double click exception code 0x0420 to view the Definition of Interrupt/CPU/Trap Exception
Handler screen in figure 3.6.

The exception code, 0x0420, is used for the TMU1 interrupt exception code in this guide. For
details of the exception code, see the SH7750 Hardware Manual.

Double click exception code 0x0420 to view the screen shown in figure 3.6.

RENESAS

Rev. 1.0, 03/03, page 25 of 48

Definition of Interrupt{CPU Exception Handler

— Exception Code
Exception Code IUHU“U ¥ Link with Kernel Librang

— Description Language

&+ High-Level Language(TA_ HLMG) " Assembly Language(TA_ASW)

— SR Registervalue————— Address

Sefting Yalue IUH4UUUUU1’U Address I

Specify an interruption level in the
hit 4 - ¥ ofthe SR register setup

value in case of interrupt handler ’—IOK cancel |

Figure3.6 List of Interrupt/CPU/Trap Exception Handlers Screen

Set TMU1 _int in the Address box. The mask level of the interrupt handler in this guide is 1. So
change the SR register setting to 0x4000010.

This SR register setting is used as a SR register setting when control is passed to the TMU1_init
interrupt handler. The level should be set to higher than hardware interrupt levels. However, if a
service call is issued from the interrupt handler, the level must be set to less than the level of a
kernel.

Figures 3.7 and 3.8 show the Definition of Interrupt/CPU/Trap Exception Handler screens after
you made definitions.

Rev. 1.0, 03/03, page 26 of 48
RENESAS

Definition of Interrug 4 ation Handler

Exception Code
Exception Code |0x0420 W Link with Kernel Likrary

Cescription Language

& High-Level Language(TA_HLMNG) " Assembly Language(TaA_ASM

SR Register Walue Address

Sefting Walue |0x40000010 Address T _int

Specify an interruption level in the
hit 4 - ¥ ofthe SR register setup

value in case of interrupt handler ’—|OK cancel |

Figure 3.7 Definition of Interrupt/CPU/Trap Exception Handler Screen

File “iew Generate Help

O = =] & K2
[ew Open Save Generate Help

=1- HIF750/4Canfiguration infar =

Kermel Execution Condit Interrupt Infarmation

kernel Extention Functio Max. Exception Code [CFG_MAXVCTHO] Ox0fed

Time Management Furn

Debugging Function Interrupt Handler Stack Size [CFG_IRQSTKSZ] 0x00001000 Modify

Service Calls Selection

Interrupt/CPL Exception

Trap Exception Handler| List of Interrupt'CPU Exception Handlers

Pf‘?fe.tCh.F“”d'D”_ % | Exception Code | Address SR RegisterValue Description Language ﬂ

Initialization Routine D360

Task 0x0360

Semaphore 00330

Event Flag - J

Data Queus %0280

Maillaox o400 SYSTEM TIMER:

hutex ¥ Ox0420 ThMU1 _int Ox40000010 High-Level Language

Message Buffer Dx0440

Fixed-size Memary Poo 0x0460 =

“ariahle-size Memory F 0x0480

Cyclic Handler Ox04a0

Alarm Handler D040

Owerrun Handler 0x04e0

Extended Service Call _

| | -

/ | ol | ;IJ
FaorHelp, press F1 LUK

Figure 3.8 Definition of Interrupt/CPU/Trap Exception Handler Screen
(after Making Definitions)

Rev. 1.0, 03/03, page 27 of 48
RENESAS

35 Registering Initialization Routine

Click Initialization Routine in the HI7750/4 Configuration Information area on the Configurator
Startup screen to view the Initialization Routine List screen in figure 3.9.

The initialization routine that is registered on this screen is called immediately after the kernel
startup (setup) completes and executed with the kernel mask level (the value set for the kernel
operational conditions in the configuration information). This routine differs from the CPU
initialization routine that is executed immediately after a reset.

In the initialization routine, the service call of a kernel can be issued.

The issuable service call is the one that can be called from non-task context (system state: N)
described in section 3, Service Calls, in the HI7000/4 Series User’s Manual.

The initialization routine is used for the following purposes:

Interrupt initialization
Initialization routine for task setup

3. Event flag, mailbox, or memory pool of which initial setting is to be completed before passing
the control to a task or an interrupt handler

File %iew Generate He

O = = ‘ &l K?
R=T Open Save Generate Help

= HIF750/4Canfiguration infor 1=

- Kemel Execution Condit || jet of Intialization Routines

- Kernel Extention Functio

- Time Management Fun

- Debugging Function

- Service Calls Selection

- InterruptCPL Exception

- Trap Exception Handlel

- Prefetch Function

= nitialization Foutine

- Task

- Semaphore

- EwentFlag

- Data Queus

- Mailbiox

- hutex

- Message Buffer

- Fixed-size Memary Poo 4 |

- Yariable-size Memaory F

- Cyclic Handler

- Alarm Handler

- Owerrun Handler

- Extended Service Call

J ool ol

FaorHelp, press F1 LUK i

Figure3.9 List of Initialization Routines Screen

i | Address Stack Size Description Language Extended Informatic

Rev. 1.0, 03/03, page 28 of 48
RENESAS

Right click on the blank area of the List of Initialization Routines to view the menu. Then, select
Register to view the Registration Initial Routine screen in figure 3.10.

The following explains how to register the initial routine.

tion of Initialization Routine

—Address Stack Size

Address I Size ID}{DDDDMDD

—Description Language

& High-Level LanguageTA_HLNGY ¢ Assembly LanguageTA_ASK)

— Extended Information

Informatian I

[~ Linkwith Kernel Lilrary

Register I Cancel

Figure3.10 Registration of Initialization Routine Screen

Rev. 1.0, 03/03, page 29 of 48
RENESAS

Set TMU| _ini in the Address box and click the Register button, and then the Close button. Use the
expression below to obtain the stack size.

e TMUI _ini stack frame size: 8 bytes
e Required size for the initialization routine: 192 + 24 bytes
Total: 224 bytes

For details about how to calculate the stack size, see Appendix C, Calculation of Work Area Size,
in the HI7000/4 Series User’s Manual. Use the default since the calculated stack size is smaller
than it.

Figure 3.11 shows the Registration of Initialization Routine screen after registration. Figure 3.12
shows the List of Initialization Routines screen after registration.

ation of Initialization Routine

—address Stack Size

Address ITMU1_ini Size ID}{DDDDD1DD

—Description Language

¢ High-Level Language(TA_HLMNG) € Assembly Language(TA_ASK)

— Extended Information

Infarmation I

™ Link with lKernel Library

Eegister I Cancel |

Figure3.11 Registration of Initialization Routine Screen (after Registration)

Rev. 1.0, 03/03, page 30 of 48
RENESAS

Help

Yiew Generate

Eile
0 = (= = n?
R=T Open Save Generate Help

2l

= HIF750/4Canfiguration infor
- Kernel Execution Condit
- Kernel Extention Functio
- Time Management Fun
- Debugging Function

- Service Calls Selection
- InterruptCPL Exception
- Trap Exception Handlel
- Prefetch Function

- Initialization Raoutine

- Task

- Semaphore

- EwentFlag

- Data Queus

- Mailbiox

- hutex

- Message Buffer

- Fixed-gize Memary Foa
- Yariable-size Memaory F
- Cyclic Handler

- Alarm Handler

- Owerrun Handler

- Extended Service Call

| H©

1

List of Initialization Routines

| v

ki | Address

Stack Size

Description Language Extended Informatic

THMU1_ini

Ox00000100

High-Level Language

| of

FaorHelp, press F1

[A T

3.6

Figure3.12 List of Initialization Routines Screen (after Registration)

Registering Event Flag Information

Click Event Flag in the HI7750/4 Configuration Information area on the Configuration Startup
screen to view the Event Flag Information screen in figure 3.13.

Click the Change button in the Event Flag Information area to change the maximum event flag ID.
Right click on the blank area of the Event Flag List and select Create to view the Creation of

Event Flag screen in figure 3.14. For initial creation of an event flag, set the information about the
event flag on this screen.

The application implemented in this guide dynamically creates one event flag in the task. Use the
default event flag information.

RENESAS

Rev. 1.0, 03/03, page 31 of 48

File Yiew Generate

figg or-HI7?

Help
O = = = K2
R=T Open Save Generate Help

<

=1- HIF?50/4Configuration infar

Kernel Execution Condit
Kernel Extention Functio
Time Management Fun
Debugging Function
Service Calls Selection
Interrupt/CPL Exception
Trap Exception Handlel
Frefetch Function
Initialization Routine
Task

Semaphore

Data Queus

Mailbox

Mutex

Message Buffer
Fixed-size Memory Poo
Yariable-size Memaory F
Cyclic Handler

Alarm Handler

Crerrun Handler
Extended Service Call

| ol

Event Flag Infarmation

Li=t of Event Flags

Maz. Event Flag 1D [CF G_MAKF LGID]

10 Modiy

% | ID/Name

<

Initial Bit Pattern

Waiting Queue

<

Multiple Tasks in Wait State

FaorHelp, press F1

LM

Ewvent Flag ID

10 Mumber

the ID Murnber.

Aftribute

[~ Enables Multiple Tasks to Wait{TA_WWLUIL)

Figure3.13 Event Flag Information Screen

TR

1D Mame can be specified when Auto is selected in

1D Marme

-

[T Clears Bits when Released from \Wait State(TA_CLR)

Initial Bit Pattern

Bit Pattern

Ox00000000

—

Waiting Queue

f* FIFQ Order (TA_TFIFO)

" Priority Order (TA_TPRI)

Create |

Cancel

Figure3.14 Creation of Event Flag Screen

Rev. 1.0, 03/03, page 32 of 48

RENESAS

|»

3.7 Creating Configuration Files

Click the Create button on the Configurator Startup screen to create the configuration files
required for configuring HI7750/4. For details about the configuration files, see section 5.1.2,
Configurator Output File, in the HI7000/4 Series User’s manual.

Now, the definition and registration by the configurator are complete. To close 7750.hcf, choose
Overwrite or Save As from the File menu to save all the information.

3.8 Building the Executable File by HEW

Compile and link the files created by the configurator using HEW supplied with SHC/C++
compiler to create the executable file to be downloaded. This section describes how to build the
executable file by HEW.

There are two methods to configure HI7750/4. Table 3.2 lists the type of links.

Table3.2 TypeofLinks

Type Description

Whole linkage Links the kernel and all configuration files into a single load module (called a
whole load module).

Separate linkage Links the kernel code portion (called a kernel load module) and the kernel
data portion (called a kernel environment load module) into separate load
modules.

Application files can be included in a kernel load module, a kernel
environment load module, or in an independent application load module.

For details, see section 5, Configuration, in the HI7000/4 Series User’s Manual.

This guide describes how to use the whole link method to configure the program in big endian
format.

Rev. 1.0, 03/03, page 33 of 48
RENESAS

381 Starting HEW

Double click hios.hws in the install folder “hios” to start HEW to build HI7750/4. Figure 3.15
shows the HEW Startup screen.

SR 7750_mix - Hitachi Embex 0
File Edit Project Cptions Build Tools Window Help

s e =l e ElE B & E
| D% |m|eeé ¢da
Zlx
Fom_
E-l@ TIE0 ofe
[7750 def
2[5 7750_mix

E-423 Project Files

7750 _cpuasmsrc
-[2] 7750 epuinic
-[Z] 7750 expentsrc
TT60_ntdwnsrc
7760 sysdnnc
- T80 tmrdrv.e
-] kerrel cfec
2] kernel defc
: taskc

projects [= havigation

x|

Build A Find in Filex

For Help, press F1 [== ms T
Figure3.15 HEW Startup Screen

Wersion Control

The standard project file hios.hws contains three sub-projects to configure the program for the
target CPU. Table 3.3 lists the type of project files.

Table3.3 Project Files

7750_mix Project file for creating the whole load module for the whole link method

7750_cfg Project file for creating the kernel load module for the separate link method

7750_def Project file for creating the kernel environment load module for the separate
link method

Select the project file 7750_mix for creating the whole load module.

Rev. 1.0, 03/03, page 34 of 48
RENESAS

3.8.2 Defining Configuration File

Define each application program created in section 2 as a project file. Use the default project file
configuration and define only the timer driver to implement the sample program operation in this

guide.

On the Current Project Set screen, select Add Files... from the Project menu to add tmul.c as a
project file. Figures 3.16 and 3.17 show the screen for adding a file.

Eile Edit | Project Options Build Tools Window Help
%m‘JJ@@éluhw@ ElEl® =
Bemove Files..

File Extensions HJ@ e § i@ |

Edit, Project Gonfleuration

Set Current Project

Insert Project.

Dependent Projects..
3 Froject Files
760 cpuasmsrc
7750 cpuinic
7760 expent src
7750 intdwnsre
7750 sysdwnc
T Amrdrve
kernel cfes
kernel def.c
tazk.c
I W
I3 7751 def
&

51 _mix

= Projects | =1 Navigaton

S

Find in Files Version Carral

| wm

Add filets? to project

Figure3.16 AddingaFile

Rev. 1.0, 03/03, page 35 of 48
RENESAS

Add Filels)

Look in: IaTutnliaI j 5 i =2
| Task.c

] trut

File name: | Add

Files af hope: IF'miectFiles j Cancel |
i

Figure3.17 AddingaFile

Now, defining the configuration files completes.

Rev. 1.0, 03/03, page 36 of 48
RENESAS

3.8.3 Changing a Linkage Address
Change the linkage addresses to run the programs on the Solution Engine address map.

The Solution Engine is supplied with 32-Mbyte SDRAM from 0x0C00000 to 0xOFFFFFFF. In
this guide, 16 Mbytes from 0x0C00000 to OxOCFFFFFF are used.

Select OptLinker from the Options menu to view the OptLinker Options screen (figure 3.18).

0_mix - Hitachi Embed

File Edit Froject | Options Build Tools ‘indow Help |

O W e SH GAC+ Library Generator. O IDthig =1 =
- - | SH GG+ Gompiler
SH Acsenbler les & & |
I
=3 hios
& 7O cle Build Phases.
g 770 def Build Gonfigurations..
N X

Project Files

7750 cpuasmsre
7750 cpuinic
T760_expent sre
T760_intdwn.src
TE0_svsdwnc
TE0_tmrdrv.c
kernel ofec
kermel dsfc

) Projects | =1 Navigaion

x

Find in Files

Edit options for phase OptLinker [| | — ms | | 2
Figure3.18 Selecting OptLinker

Wersion Cortrol

Rev. 1.0, 03/03, page 37 of 48
RENESAS

e Changing a kernel stack pointer

Double click _kernel_pon_sp and _kernel_man_sp in the Input tab and set the value so that the
values point to the end address of the RAM mounted on each hardware + 1 (0OxAD000000 in P2
space) as shown in figures 3.19 to 3.21.

Input IOutput | Optimize | Section | Werify | Other |

Ihput files

Add..

lhgert., |
Madifis.

[]] Binary files ;I
Pl | | j Bemuve |

Defines
Define | Twpe | Value | fidd..
_kernel_pon_sp Addre.. 0AC100000
_kernel_man_sp Addre.. 0ACT00000 REmaye |
¥ Use entry point Prelinker contral :
|_hi_cpuasm Auto j
[~ Use external subcommand file (0] 4 | Cancel |

Figure3.19 OptLinker options Screen

Modify define

Symbol: | kernel pon_sp
Walue :

* Mumber/fddress : | H&D000000 =]

{Hexadecimall

" Symbol : I
Cancel |

Figure3.20 OptLinker options Screen (_kernel_pon_sp)

Rev. 1.0, 03/03, page 38 of 48
RENESAS

Mad iff:.-' define

symbol: | _kernel_man_sp

Walue

£+ Mumber/fiddress - I H AD000000 E

{Hexadecimal}

" Symhbal : I
Cancel |

Figure3.21 OptLinker options Screen (_kernel_man_sp)

e Changing a section address

Click the Section tab to view the Define Section screen (figure 3.22).

OptLinker optionsfobj_bieg?

Input I Dutputl Optimize Section |‘-.-‘erif;-.f I Cither I

Felocatable =ection start address :

| Address Section - Add..
[HE0000T 00 | F_hiexpent

HE00o1000 | < hibaze IEalita. |

F hireset
C_hivect — [et W er |
C hitrp
F hiknl Bemaye |
C_hidet

C hizvamt |

C hicfe L ¥
F hizysdwn] 0

F hiintdwn LI - o

Generate external symbal file :

[T Use external subcommand file Ok | Cancel |

Figure3.22 Define Section Screen

Click Address for each section to enable the Modify... button. Change the section addresses as
listed in table 3.4.

Rev. 1.0, 03/03, page 39 of 48
RENESAS

Table3.4 Section Addresses

Section Before After Section Before After
Name Change Change Name Change Change
P_hiexpent 80000100 8C000100 B_hiwrk 8C000000 8C010000
C_hibase 80001000 8C001000 B_himpl

P_hireset B_hidystk

C_hivct B_histstk

C_hitrp B_hiirgstk

P_hiknl B_ hitrcbuf

C_hidef B_hitrceml

C_hisysmt B

C_hicfg R

P_hisysdwn P_hicpouasm A0000000 AC000000
P_hiintdwn P_hicpuini

P_hitmrdrv

P

C

D

Rev. 1.0, 03/03, page 40 of 48

RENESAS

384 Build

Execute HEW to build an executable file that can be downloaded to the Solution Engine by the
E10A emulator. Select Build from the Build menu. Figure 3.23 shows the screen for selecting

Build.

5 7760 mix = Hitachi Emb:
File Edit Project Options | Build

Id

4 Build Al

ls indow Help

(Ctrl vy

Update All Dependenci

4] #5 | obi_big ~|E] B = EL
¢ila|

= 750 e Generate Makefile
T750 def
(=7 7750_mix
=153 Project Files
! 7760 cpuasmstc
[7760 _cpuinic
750 expentsrc
[E] 7760 intdwn.sre
7750 sysdmnc
TH0 v
kemel clec
kemel defc

Stop) Build
Terminste Gurrent Tool

®-[20 Dependencies
T efe
7751 _def
7351 mix

ChrlFEreak

P projects | < navigation

x|

Build £ Fine in Files

Version Gortrol_/

Build cut of date active projsct and out of date dependant projects [—

Figure3.23 Selecting Build

The executable file is created by selecting Build. The result of compilation and linkage is shown at
the bottom of the window. If a compile error occurs, correct the applicable source and build the
file again. The executable file (with the file extension .abs) is created in the install folder

“obj_big”.

Now you can download the file to the Solution Engine by the E10A emulator and execute it. For
details about how to download and execute the file, see section 4, Downloading and Executing

Application Programs.

Rev. 1.0, 03/03, page 41 of 48
RENESAS

3.9 Disabling Parameter Check Function

When debugging the application programs completes and they are ready to be installed into the
product, you can disable the parameter check function. This check function is an unnecessary
routine performed in the beginning of the service call, in the HI series operating system.

You can use the configurator to disable the parameter check function. Figure 3.24 shows the
screen for disabling the parameter check function.

nfigurator - HIZ 75074 - [untitied)]
File “iew Generate Help

0 = (= = n?
[ew Open Save Generate Help
= HIF?50/4Canfiguration infar B

Kernel Execution Condit Parameter Check Function
eell=Entipnikun e
Time Management Furn

- Debugging Function
. Service Calls Selection IV Install the Parameter Check Function [CF G_PARCHK]

If a parameter check function is installed, parameters will he
checked when service calls issued.

- InterruptCPL Exception
- Trap Exception Handlel
- Prefetch Function

- Initialization Routine

- Task

- Semaphore

- Ewvent Flag

- Data Queus

- Mailbiox

- hutex

- Message Buffer

- Fixed-size Memaory Poo
- Yariahle-size Memory F
- Cyclic Handler

- Alarm Handler

- Owverrun Handler

- Extended Service Call

J ool I_>|j

ForHelp, press F1 lil—l—lm,— ~
Figure3.24 Disabling Parameter Check Function

Click Kernel Extended Function on the Configurator Startup screen to view the screen in figure
3.24. Uncheck the Install the Parameter Check Function checkbox and create and build the
configuration files. The executable file with the parameter check function disabled is created.

Rev. 1.0, 03/03, page 42 of 48
RENESAS

Section 4 Downloading and Executing
Application Programs

This section describes how to use the E10A to download the executable file created in section 3,
Configuration, and run it on the Solution Engine.

4.1 Initializing Solution Engine

The ROM monitor supplied with the Solution Engine initializes the CPU. In this guide, this
monitor is used for the CPU initialization. (When using another board, you must use a specific
CPU initialization routine. For details of CPU initialization, see section 2.1, Creating CPU
Initialization Routine.)

Configure the system as shown in figurel.1 in section 1, Overview. Start the host computer, turn
the Solution Engine on, select HDI for EI0A SH7750 from the Windows Start menu to start the
HDI. Figure 4.1 shows the HDI Startup screen.

||Eile Edit Wiew Run Memory Setun Window Help

[e [F e e s R REE B E R O S

R I EERE R

||

[For Help, press Fi T
Figure4.1 HDI Startup Screen

Then, choose Go from the Run menu (figure 4.2).

Rev. 1.0, 03/03, page 43 of 48
RENESAS

P E A

H Eile Edit Miew |Run Memory Setup Window Help

~ Peset GPU — =
[0 gme M= GEn e GEEE, WSS B eRaD || P
F&

eset Go Shift+Fb
(& o) BT
St G o Girenr
Bun

Step I
Step Ower
Step Out
Step

Helt

Frenessl||BER 9 0 pRR|

e e

|Run fram current PG [I
Figure4.2 Gomenu

After one or two seconds, click the STOP button (red) on the menu bar. Now, initializing the
Solution Engine completes and this allows reading from or writing to the SDRAM supplied with
the Solution Engine.

Rev. 1.0, 03/03, page 44 of 48
RENESAS

4.2 Downloading Application Program
Download the executable file created in section 3, Configuration, to the E10A.

Figure 4.3 shows the screen for downloading the executable file.

E10A Emulator

File Edit Wisw Bun Memory Sstup Window Help
Hew Session.. GirkN = .

Load Session,. Ctri+d H gl B FREE WE L
Save Session O3

Save Session fis.

[P R Ea@ |2

e Assenbler

Exit Ale+Fd T5T RO,RO

= ; H° AEOD 1456:3
W(H 002613, PC) , R3
RY,R2

#H700,RO

R3,RZ

RO, @(H'01:4,R5)
WH 00148, PCY, RO
@(R0,R4),RE

RZ,RE

iH' AEDD 147623
@RE, RS

R4,R2

H AEDD 1470212
R4, @(RO,R4)
8(R0,R4).R2

E D gyl

4

sl E T H

|Load code and symbols

Offzet:

Cipen

IHID v [erify Cancel |
File name:

|D:¥hi'."'."EEI-4¥kerneI¥fu:ur_shu:ﬁ¥hiu:us¥hiuser¥u:ubj_big¥?'.|‘5[l_mll

Figure4.3 Downloading Executable File

Select Load Program... from the File menu on the HDI Startup screen. On the Load Program
screen in figure 4.3, enter the name of the executable file to download in the File Name box and

click the Open button to download it. The executable file is 7750_mix.abs in the install folder
“obj_big”.

After downloading succeeds, the Complete Download screen in figure 4.4 appears.

Rev. 1.0, 03/03, page 45 of 48
RENESAS

HOI

Maodule name: DihiTTE0-4¥kerne fEfor_shof¥hios¥hiuzer¥ob) big¥ 7780 _mix.abs
freas loaded:
2C0007100 - BC000933
2C0071000 - 8C001408
2C04Dc - BCO0DERF
RCO00000 — ACOO00&S

Figure4.4 Complete Download Screen

Click the OK button on the Complete Download screen.

4.3 Executing Application Program

To execute the program, choose Registers from the View menu on the HDI Startup screen to view
the register information (figure 4.5).

E10A Emulator
H Eile Edit |Wiew Bun Memory Setup Window Help
Breakpaints CHrl+B - P A = L Ta T
D98 ommandLine oL e B GIREE L WE AT ELE N 6T D
;- Digazsembly.. Ctrl+D
i 10 Area e+l
Labels Girl+a
e locale Gl FEhrft
Ade

Memary Ctrl+M
EnGE falyeie G

R0,RO
BHAE001456:8
@CH 0026:8,PC)LR3

8¢ TEE
aelll Status Cirl+l
2el) Trace Grl+T
Watch Girl 4
Localized Dump.

ae(l01466 9000

ACD R3.R2
0v.B RO,@(H'07:4,R5)
MOV W @(H'0014:8,FC) RO

ac(01468 G4E MOV L @(R0,R4).RB
ael0146a 3620 CMP/EQ RZ2,RB

aell0146c 8F03 BF/S @H* AE001476:8
as00146e 5560 MO, B WRG, G
ac(01470 5243 MOk Fd.R2

ael01472 A003 BRA @H* AEC0147C:12
ae(01474 0446 Mo L R4, @(R0,R4)
ac(01478 0Z4E MOV.L @CR0,R4) B2

Pl

AAd z>en=csi|| B3 9% 268

|Open register window

Figure4.5 Register Information

Then, change the PC value. Double click the PC value on the Register Information screen to view
the Change PC Value screen (figure 4.6).
Rev. 1.0, 03/03, page 46 of 48

RENESAS

Walle:

| 4000000

oe

t Bz

I'I.I'I.ﬂm:ule Feeizter

j Cancel |

Figure4.6 Change PC Value Screen

Change the PC value to AC000000 as shown in figure 4.6 and click the OK button. This value is
the start address of the CPU initialization routine.

Now, you can execute the program. Select Go from the Run menu to execute the program (figure

4.7).

i
i [B nisassenly =10l
i || | Addrese |BP [Code Label |dssenbler Source |
||| 2001458 2003 TST RO,R0
o [I[2001452 89T BT @ AE001456: 8
).R3

ﬁ; 2% Resiste Yalue B
a@fll==] o 00000000
mlllas] m AE0052FF
]| R 00000096 Fo)
w =] ® 00000000 2.0
| S AE005754
= |EC - AF005754
=L ll==| Re (0000001 -
[f]as] w7 00000000
w |2 ks AEODBEEL
g 22| R AE005264 12
S|zl R0 (0000000
E RIT AE005694
= RI2 00000001
A R13 OEFFFFD0
ﬂ. R14 (0000001
] R15 OEFFFFEC
Y ACO00000
M 00000000
= VER 0000000

MACH 00000000

MACL 00000000

PR AE001450

SR (0000DFD

SPC 00000000

KN}

|Far Help, press F1

Figure4.7 Execute Program Screen

RENESAS

Rev. 1.0, 03/03, page 47 of 48

Rev. 1.0, 03/03, page 48 of 48
RENESAS

H17750/4 Hitachi Industrial Realtime Operating System
Configuration Guide

Publication Date: 1st Edition, March 2003
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2003. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Introduction
	1.1	Overview
	1.2	System Configuration
	1.3	Prerequisites

	Section 2 Creating Application Programs
	2.1	Creating CPU Initialization Routine
	2.2	Creating Tasks
	2.2.1	Main Task
	2.2.2	LED Task

	2.3	Creating an Interrupt Handler
	2.3.1	Creating Initialization Module
	2.3.2	Creating Interrupt Handler

	Section 3 Configuration
	3.1	Starting Configurator
	3.2	Interrupt Mask Level
	3.3	Registering Task
	3.4	Registering Interrupt Handler
	3.5	Registering Initialization Routine
	3.6	Registering Event Flag Information
	3.7	Creating Configuration Files
	3.8	Building the Executable File by HEW
	3.8.1	Starting HEW
	3.8.2	Defining Configuration File
	3.8.3	Changing a Linkage Address
	3.8.4	Build

	3.9	Disabling Parameter Check Function

	Section 4 Downloading and Executing �Application Programs
	4.1	Initializing Solution Engine
	4.2	Downloading Application Program
	4.3	Executing Application Program

	Colophon

