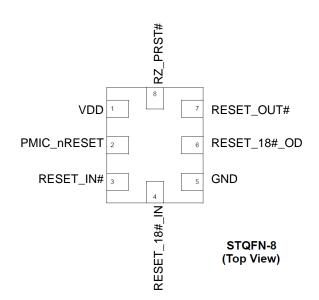


SLG7RN46452 GreenPAK ™ Reset signal

General Description

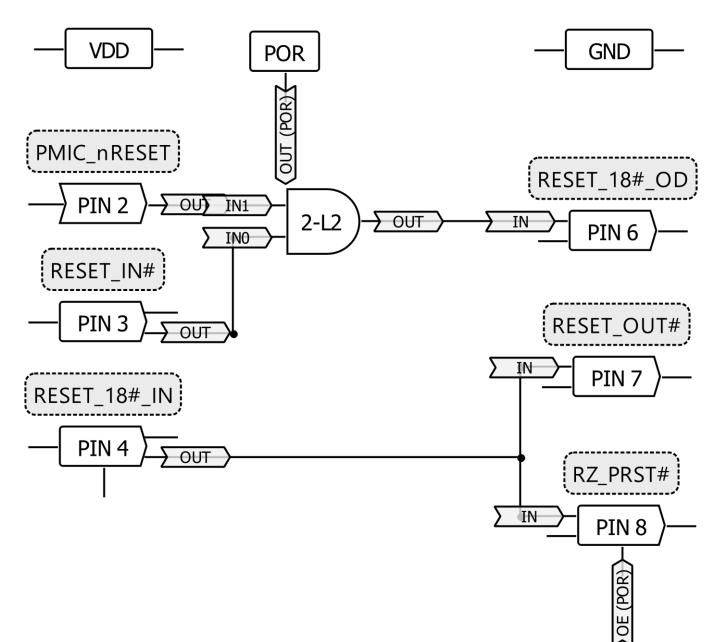

Renesas SLG7RN46452 is a low power and small form device. The SoC is housed in a 1mm x 1.2mm STQFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Pb Free / RoHS Compliant
- Halogen Free
- STQFN 8 Package

Output Summary

1 Output - Open Drain NMOS 2X 2 Outputs - Push Pull 1X



Pin Configuration

Block Diagram

Pin Configuration

Pin #	Pin Name	Туре	Pin Description	Internal Resistor
1	VDD	PWR	Supply Voltage	
2	PMIC_nRESET	Digital Input	Low Voltage Digital Input	floating
3	RESET_IN#	Digital Input	Digital Input with Schmitt trigger	floating
4	RESET_18#_IN	Digital Input	Digital Input without Schmitt trigger	1MΩ pulldown
5	GND	GND	Ground	
6	RESET_18#_OD	Digital Output	Open Drain NMOS 2X	floating
7	RESET_OUT#	Digital Output	Push Pull 1X float	
8	RZ_PRST#	Digital Output	Push Pull 1X float	

Ordering Information

Part Number	Package Type
SLG7RN46452V	8-pin STQFN
SLG7RN46452V	8-pin STQFN - Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit	
Supply Voltage on VDD relative t	to GND	-0.5	7	V
DC Input Voltage		GND - 0.5V	VDD + 0.5V	V
Maximum Average or DC Current	Push-Pull 1x		8	mA
(Through pin)	OD 2x		12	ШA
Current at Input Pin		-1.0	1.0	mA
Input leakage (Absolute Valu	le)		1000	nA
Storage Temperature Rang	je	-65	150	°C
Junction Temperature		150	°C	
ESD Protection (Human Body N	2000		V	
ESD Protection (Charged Device	1300		V	
Moisture Sensitivity Level		1		

Electrical Characteristics

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage		1.71	3.3	5.5	V
TA	Operating Temperature		-40	25	85	°C
CVDD	Capacitor Value at VDD			0.1		μF
CIN	Input Capacitance			4		pF
ΙQ	Quiescent Current	Static inputs and floating outputs		1		μA
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
	Maximum Average or DC	$T_J = 85^{\circ}C$			45	mA
VDD	Current Through VDD Pin (Per chip side, see Note 2)	T _J = 110°C			22	mA
	Maximum Average or DC	$T_J = 85^{\circ}C$			84	mA
IGND	Current Through GND Pin (Per chip side, see Note 2)	T _J = 110°C			40	mA
		Logic Input at VDD=1.8V	1.071		VDD	V
		Logic Input at VDD=3.3V	1.84		VDD	V
		Logic Input at VDD=5.0V	2.744		VDD	V
		Logic Input with Schmitt Trigger at VDD=1.8V	1.276		VDD	V
		Logic Input with Schmitt Trigger at VDD=3.3V	2.17		VDD	V
VIH	HIGH-Level Input Voltage	Logic Input with Schmitt Trigger at VDD=5.0V	3.19		VDD	V
		Low-Level Logic Input at VDD=1.8V	0.936		VDD	V
		Low-Level Logic Input at VDD=3.3V	1.086		VDD	V
		Low-Level Logic Input at VDD=5.0V	1.185		VDD	V
		Logic Input at VDD=1.8V	0		0.73	V
VIL	LOW-Level Input Voltage	Logic Input at VDD=3.3V	0		1.255	V
		Logic Input at VDD=5.0V	0		1.877	V

					1	
		Logic Input with Schmitt Trigger at VDD=1.8V	0		0.475	V
		Logic Input with Schmitt Trigger at VDD=3.3V	0		0.934	V
		Logic Input with Schmitt Trigger at VDD=5.0V	0		1.488	V
		Low-Level Logic Input at VDD=1.8V	0		0.517	V
		Low-Level Logic Input at VDD=3.3V	0		0.669	V
		Low-Level Logic Input at VDD=5.0V	0		0.765	V
		Push-Pull 1X, Open Drain PMOS 1X, I _{OH} =100µA, at VDD=1.8V	1.692	1.788		V
Vон	HIGH-Level Output Voltage	Push-Pull 1X, Open Drain PMOS 1X, I _{OH} =3mA, at VDD=3.3V	2.721	3.108		V
		Push-Pull 1X, Open Drain PMOS 1X, I _{OH} =5mA, at VDD=5.0V	4.171	4.761		V
		Push-Pull 1X, I _{OL} =100µA, at VDD=1.8V		0.01	0.016	V
		Push-Pull 1X, I _{OL} =3mA, at VDD=3.3V		0.175	0.257	V
		Push-Pull 1X, IoL=5mA, at VDD=5.0V		0.225	0.325	V
Vol	LOW-Level Output Voltage	Open Drain NMOS 2X, I _{OL} =100µA, at VDD=1.8V		0.003	0.003	V
		Open Drain NMOS 2X, Io∟=3mA, at VDD=3.3V		0.043	0.061	V
		Open Drain NMOS 2X, I₀∟=5mA, at VDD=5.0V		0.057	0.08	V
		Push-Pull 1X, Open Drain PMOS 1X, V _{OH} =VDD-0.2V, at VDD=1.8V	1.045	1.506		mA
Іон	HIGH-Level Output Current (see Note 1)	Push-Pull 1X, Open Drain PMOS 1X, V _{OH} =2.4V, at VDD=3.3V	5.774	11.066		mA
		Push-Pull 1X, Open Drain PMOS 1X, V _{OH} =2.4V, at VDD=5.0V	20.656	30.203		mA
		Push-Pull 1X, V _{OL} =0.15V, at VDD=1.8V	0.984	1.363		mA
		Push-Pull 1X, VoL=0.4V, at VDD=3.3V	4.491	6.438		mA
I _{OL}	LOW-Level Output Current (see Note 1)	Push-Pull 1X, VoL=0.4V, at VDD=5.0V	6.087	8.611		mA
		Open Drain NMOS 2X, V _{OL} =0.15V, at VDD=1.8V	4.02	5.471		mA
		Open Drain NMOS 2X, V _{OL} =0.4V, at VDD=3.3V	17.995	25.459		mA

		Open Drain NMOS 2X, V _{OL} =0.4V, at VDD=5.0V	24.032	33.581		mA
Rpull_down	Internal Pull Down Resistance	Pull down on PIN 4		1		MΩ
T _{SU}	Startup Time	From VDD rising past PONTHR		0.54		ms
PONTHR	Power On Threshold	V _{DD} Level Required to Start Up the Chip	1.303	1.506	1.707	V
POFFTHR	Power Off Threshold	V _{DD} Level Required to Switch Off the Chip	0.675	0.901	1.174	V

Note:

1. DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.

2. The GreenPAK's power rails are divided in two sides. Pins 2, 3 and 4 are connected to one side, pins 6, 7 and 8 to another.

3. Guaranteed by Design.

Package Top Marking

Serial Number Code Line 1

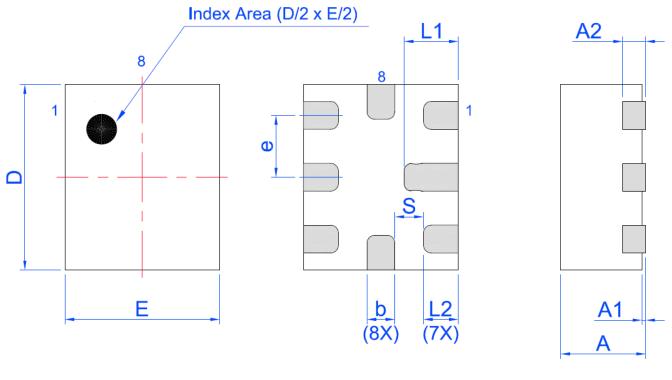
Pin 1 Identifier

Serial Number or Part Code Line 2*

* PP may consist of the special characters +, -, and = for a total of 9 different combinations, or may consist of two character alphanumeric Part Code (A-Z and 0-9), depending on time of marking.

Note: The SN Code (Line 1 and Line 2) is generated during production, and encodes information including part number, programming code number, date code and lot code. This same information is provided in plain text form on a label placed on the reel. If you need assistance in decoding the SN Code, please contact Dialog Semiconductor.

Datasheet Revision	Programming Code Number	Lock Status	Checksum	Part Code	Revision	Date
0.10	001	U	0xA1436134			04/04/2023


The IC security bit is locked/set for code security for production unless otherwise specified. The Programming Code Number is not changed based on the choice of locked vs. unlocked status.

Package Drawing and Dimensions

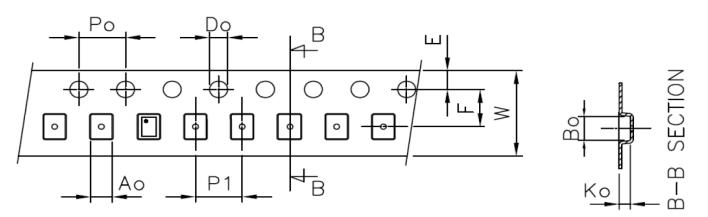
8 Lead STQFN Package 1.0 x 1.2 mm

TOP View

BTM View

SIDE View

Unit: mn	n						
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.15	1.20	1.25
A1	0.005	-	0.050	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L1	0.30	0.35	0.40
b	0.13	0.18	0.23	L2	0.175	0.225	0.275
е	().40 BSC	;	S		0.185 RE	F



Tape and Reel Specification

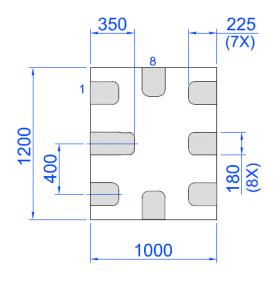
		Nominal	Max	Units			r (min)	Trailer	r (min)	Таре	Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Reel & Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STQFN 8L 0.4P FC Green	8	1.0x1.2x0.55	3000	3000	178/60	100	400	100	400	8	4

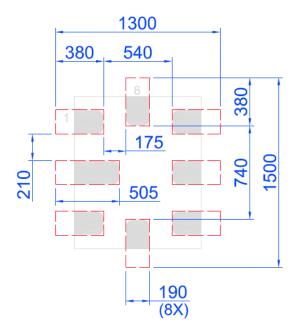
Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	w
STQFN 8L 0.4P FC Green	1.16	1.38	0.71	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 0.66 mm³ (nominal). More information can be found at <u>www.jedec.org.</u>




Recommended Land Pattern

Exposed Pad (PKG face down)

Recommended Landing Pattern (PKG face down)

Unlt: um

Datasheet Revision History

Date	Version	Change
04/04/2023	0.10	New design for SLG46108 chip

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.