6-Output 1.8V PCIe Zero-Delay/Fanout Clock Buffer with Zo = 33Ohms

DATASHEET

Description

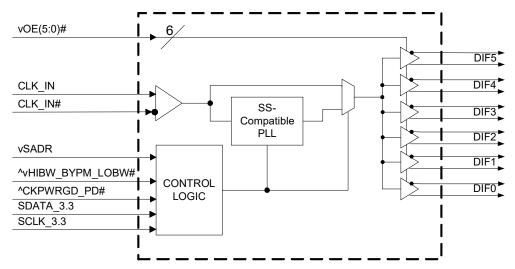
The 9DBV0631 is a member of Renesas' 1.8V Very-Low-Power (VLP) PCIe family. The device has 6 output enables for clock management and 3 selectable SMBus addresses.

Recommended Application

1.8V PCIe Gen1–5 Zero Delay/Fanout Buffer (ZDB/FOB)

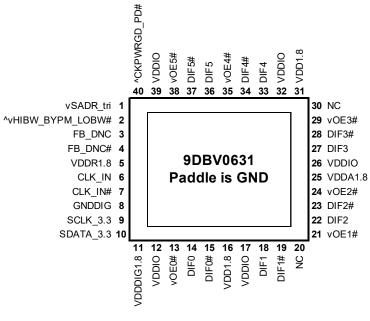
Output Features

• Six 1-200 MHz Low-Power (LP) HCSL DIF pairs


Key Specifications

- DIF additive cycle-to-cycle jitter < 5ps
- DIF output-to-output skew < 60ps
- PCIe Gen5 CC additive phase jitter < 40fs RMS
- 12kHz–20MHz additive phase jitter = 156fs RMS at 156.25MHz (typical)

Features/Benefits


- LP-HCSL outputs; save 12 resistors compared to standard PCIe devices
- 55mW typical power consumption in PLL mode; minimal power consumption
- Outputs can optionally be supplied from any voltage between 1.05 and 1.8V; maximum power savings
- OE# pins; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- Spread Spectrum tolerant; allows reduction of EMI
- Programmable Slew rate for each output; allows tuning for various line lengths
- Programmable output amplitude; allows tuning for various application environments
- Pin/software selectable PLL bandwidth and PLL Bypass; minimize phase jitter for each application
- Outputs blocked until PLL is locked; clean system start-up
- Configuration can be accomplished with strapping pins;
 SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Space saving 5 × 5mm 40-VFQFPN; minimal board space
- 3 selectable SMBus addresses; multiple devices can easily share an SMBus segment

Block Diagram

Pin Configuration

40-VFQFPN

^ prefix indicates internal Pull-Up Resistor v prefix indicates Internal Pull-Down Resistor 5mm x 5mm 0.4mm pin pitch

SMBus Address Selection Table

	SADR	Address	+ Read/Write bit
State of SADR on first application of	0	1101011	X
CKPWRGD_PD#	M	1101100	Х
	1	1101101	x

Power Management Table

CKPWRGD PD#	CLK IN	SMBus	OEx# Pin	D	lFx	PLL
CKFWKGD_FD#	CLK_IN	OEx bit	OLX# FIII	True O/P Comp. O/P		FLL
0	X	Х	Х	Low	Low	Off
1	Running	0	Х	Low	Low	On ¹
1	Running	1	0	Running	Running	On ¹
1	Running	1	1	Low	Low	On ¹

^{1.} If Bypass mode is selected, the PLL will be off, and outputs will follow this table.

Power Connections

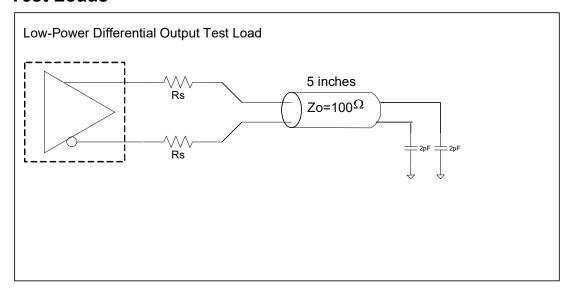
Pin Number			Description
VDD	VDDIO	GND	Description
			Input
5		41	receiver
			analog
11		8	Digital Power
16 21	12,17,26,32,	41	DIF outputs,
16, 31	12,17,26,32, 39	41	Logic
25		41	PLL Analog

Frequency Select Table

FSEL Byte3 [1:0]	CLK_IN (MHz)	DIFx (MHz)
00	100.00	ČLK IN
01	50.00	CLK_IN
10	125.00	CLK_IN
11	Reserved	Reserved

PLL Operating Mode

		Byte1 [7:6]	Byte1 [4:3]
HiBW_BypM_LoBW#	MODE	Readback	Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11


3

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	vSADR_tri	IN	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
2	^vHIBW BYPM LOBW#		Trilevel input to select High BW, Bypass or Low BW mode.
	VI 118 VI_B II III_E 0 B VVII	IN	See PLL Operating Mode Table for Details.
3	FB_DNC	DNC	True clock of differential feedback. The feedback output and feedback input are connected
	_		internally on this pin. Do not connect anything to this pin.
4	FB_DNC#	DNC	Complement clock of differential feedback. The feedback output and feedback input are connected internally on this pin. Do not connect anything to this pin.
			1.8V power for differential input clock (receiver). This VDD should be treated as an Analog
5	VDDR1.8	PWR	power rail and filtered appropriately.
6	CLK IN	IN	True Input for differential reference clock.
7	CLK IN#	IN	Complementary Input for differential reference clock.
8	GNDDIG	GND	Ground pin for digital circuitry
	SCLK 3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
	SDATA 3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
11	VDDDIG1.8	PWR	1.8V digital power (dirty power)
12	VDDIO	PWR	Power supply for differential outputs
			Active low input for enabling DIF pair 0. This pin has an internal pull-down.
13	vOE0#	IN	1 =disable outputs, 0 = enable outputs
14	DIF0	OUT	Differential true clock output
	DIF0#	OUT	Differential Complementary clock output
	VDD1.8	PWR	Power supply, nominal 1.8V
17	VDDIO	PWR	Power supply for differential outputs
	DIF1	OUT	Differential true clock output
	DIF1#	OUT	Differential Complementary clock output
	NC	N/A	No Connection.
			Active low input for enabling DIF pair 1. This pin has an internal pull-down.
21	vOE1#	IN	1 =disable outputs, 0 = enable outputs
22	DIF2	OUT	Differential true clock output
	DIF2#	OUT	Differential Complementary clock output
		15.1	Active low input for enabling DIF pair 2. This pin has an internal pull-down.
24	vOE2#	IN	1 =disable outputs, 0 = enable outputs
25	VDDA1.8	PWR	1.8V power for the PLL core.
	VDDIO	PWR	Power supply for differential outputs
	DIF3	OUT	Differential true clock output
28	DIF3#	OUT	Differential Complementary clock output
20	OE2#	INI	Active low input for enabling DIF pair 3. This pin has an internal pull-down.
29	vOE3#	IN	1 =disable outputs, 0 = enable outputs
30	NC	N/A	No Connection.
31	VDD1.8	PWR	Power supply, nominal 1.8V
32	VDDIO	PWR	Power supply for differential outputs
33	DIF4	OUT	Differential true clock output
34	DIF4#	OUT	Differential Complementary clock output
35	vOE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down.
		IIN	1 =disable outputs, 0 = enable outputs
	DIF5	OUT	Differential true clock output
37	DIF5#	OUT	Differential Complementary clock output
38	vOE5#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down.
30	VOLU#	IIN	1 =disable outputs, 0 = enable outputs
39	VDDIO	PWR	Power supply for differential outputs
			Input notifies device to sample latched inputs and start up on first high assertion. Low enters
40	^CKPWRGD_PD#	IN	Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal
			pull-up resistor.
41	ePAD	GND	Connect paddle to ground.

Test Loads

Alternate Terminations

The 9DBV family can easily drive LVPECL, LVDS, and CML logic. See "AN-891 Driving LVPECL, LVDS, and CML Logic with "Universal" Low-Power HCSL Outputs" for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBV0631. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2.5	V	1,2
Input Voltage	V_{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.6	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	ç	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB}; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	300	750	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	200		725	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.35		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d_{tin}	Measurement from differential waveform	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

² Slew rate measured through +/-75mV window centered around differential zero.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA = T_{AMB}, Voltage per VDD, VDDIO of normal operation conditions. See Test Loads for Loading Conditions.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.7	1.8	1.9	V	
Output Supply Voltage	VDDIO	Supply voltage for Low Power HCSL Outputs	0.95	1.05-1.8	1.9	V	
Ambient Operating	T _{AMB}	Commercial range	0	25	70	°C	1
Temperature		Industrial range	-40	25	85	°C	1
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus	0.75 V _{DD}		$V_{DD} + 0.3$	V	
Input Mid Voltage	V _{IM}	Single-ended tri-level inputs ('_tri' suffix)	0.4 V _{DD}		0.6 V _{DD}	V	
Input Low Voltage	V _{IL}	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	V	
	I _{IN}	Single-ended inputs, V_{IN} = GND, V_{IN} = VDD	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs V_{IN} = 0 V; Inputs with internal pull-up resistors V_{IN} = VDD; Inputs with internal pull-down resistors	-200		200	uA	
	F_{ibyp}	Bypass mode	1		200	MHz	2
Input Frequency	F _{ipII}	100MHz PLL mode	50	100.00	140	MHz	2
input Frequency	F _{ipll}	125MHz PLL mode	62.5	125.00	175	MHz	2
	F _{ipll}	50MHz PLL mode	25	50.00	65	MHz	2
Pin Inductance	L _{pin}				7	nΗ	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,6
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCle	f _{MODINPCle}	Allowable Frequency for PCle Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCle	f _{MODIN}	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE# Latency	t _{LATOE} #	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2
SMBus Input Low Voltage	V_{ILSMB}	V_{DDSMB} = 3.3V, see note 4 for V_{DDSMB} < 3.3V			0.8	V	4
SMBus Input High Voltage	V _{IHSMB}	V_{DDSMB} = 3.3V, see note 5 for V_{DDSMB} < 3.3V	2.1		3.6	V	5
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}	Bus Voltage	1.7		3.6	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	7

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³ Time from deassertion until outputs are >200 mV.

 $^{^{4}}$ For V_{DDSMB} < 3.3V, V_{ILSMB} <= $0.35V_{DDSMB}$.

 $^{^{5}}$ For V_{DDSMB} < 3.3V, V_{IHSMB} >= 0.65 V_{DDSMB} .

⁶ DIF_IN input.

⁷ The differential input clock must be running for the SMBus to be active.

Electrical Characteristics-Low-Power HCSL Outputs

TA = T_{AMB}; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

AND 113		· · · · · · · · · · · · · · · · · · ·					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.7	2.9	4	V/ns	1,2,3
Siew rate	dV/dt	Scope averaging on, slow setting	1.1	2.1	3.4	V/ns	1,2,3
Slew rate matching	□dV/dt	Slew rate matching, Scope averaging on		7	20	%	1,2,4
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	774	850	mV	7
Voltage Low	V_{LOW}	averaging on)	-150	18	150	IIIV	7
Max Voltage	Vmax	Measurement on single ended signal using		821	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	-15		IIIV	7
Vswing	Vswing	Scope averaging off	300	1536		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	414	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off	·	13	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

AND, 113 O I		,		0			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDA}	VDDA+VDDR, PLL Mode, @100MHz		11	15	mA	1
	I _{DD}	VDD, All outputs active @100MHz		6	10	mA	1
	I _{DDO}	VDDIO, All outputs active @100MHz		24	30	mA	1
Powerdown Current	I _{DDAPD}	VDDA+VDDR, CKPWRGD_PD#=0		0.4	0.6	mA	1, 2
	I _{DDPD}	VDD, CKPWRGD_PD#=0		0.5	0.8	mA	1, 2
	I _{DDOPD}	VDDIO, CKPWRGD_PD#=0		0.0003	0.1	mA	1, 2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

² Input clock stopped.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}; Supply Voltage per VDD, VDDIO of normal operation conditions, See Test Loads for Loading Conditions

AIVID, 117 3 1	,	2.0 0		J -			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode	1.8	2.7	3.8	MHz	1,5
PLL Bandwidth	DVV	-3dB point in Low BW Mode	0.8	1.4	2	MHz	1,5
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain		1.1	2	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50.1	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-1	0.0	1	%	1,3
Skow Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	3000	3636	4500	ps	1
Skew, Input to Output	t _{pdPLL}	PLL Mode V _T = 50%	0	81	200	ps	1,4
Skew, Output to Output	t _{sk3}	V _T = 50%		26	50	ps	1,4
Jitter, Cycle to cycle	t.	PLL mode		13	50	ps	1,2
Sitter, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Phase Jitter Parameters - 12kHz to 20MHz

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions. See Test Loads for loading conditions.

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Specification Limit	Units	Notes
12k-20M Additive Phase Jitter,	t	Fan-out Buffer Mode,		156		n/a	fs	1 2 3
Fan-out Buffer Mode	ljph12k-20MFOB	SSC OFF, 156.25M Hz		150		11/a	(rms)	1, 2, 3

Notes:

- 1. Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.
- 2. 12kHz to 20MHz brick wall filter.
- 3. For RMS values additive jitter is calculated by solving for b where $[b = sqrt(c^2 a^2)]$, a is rms input jitter and c is rms total jitter.

² Measured from differential waveform

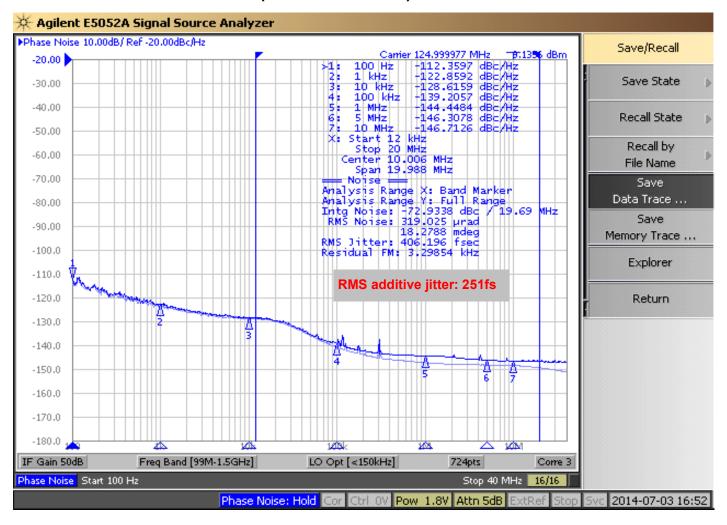
³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

Electrical Characteristics-Additive PCIe Phase Jitter for Fanout Buffer Mode^[7]

T_{AMB} = over the specified operating range. Supply Voltages per normal operation conditions. See Test Loads for loading conditions.


Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limit	Units	Notes
	tjphPCleG1-CC	PCIe Gen 1 (2.5 GT/s)		1.7	3.0	86	ps (p-p)	1, 2
	ŧ	PCIe Gen 2 Hi Band (5.0 GT/s)		0.033	0.049	3	ps (RMS)	1, 2
Additive PCIe Phase Jitter, Fan-out Buffer Mode	tjphPCleG2-CC	PCle Gen 2 Lo Band (5.0 GT/s)		0.122	0.199	3.1	ps (RMS)	1, 2
(Common Clocked Architecture)	tjphPCleG3-CC	PCIe Gen 3 (8.0 GT/s)		0.059	0.098	1	ps (RMS)	1, 2
	tjphPCleG4-CC	PCIe Gen 4 (16.0 GT/s)		0.059	0.098	0.5	ps (RMS)	1, 2, 3, 4
	tjphPCleG5-CC	PCIe Gen 5 (32.0 GT/s)		0.023	0.038	0.15	ps (RMS)	1, 2, 3, 5
	tjphPCleG1-SRIS	PCIe Gen 1 (2.5 GT/s)		0.175	0.038	n/a	ps (RMS)	1, 2, 6
Additive PCIe Phase Jitter.	tjphPCleG2-SRIS	PCIe Gen 2 (5.0 GT/s)		0.156	0.275	n/a	ps (RMS)	1, 2, 6
Fan-out Buffer Mode (SRIS Architecture)	tphPCleG3-SRIS	PCIe Gen 3 (8.0 GT/s)		0.041	0.247	n/a	ps (RMS)	1, 2, 6
(ONO AIGINECIALE)	tphPCleG4-SRIS	PCIe Gen 4 (16.0 GT/s)		0.043	0.064	n/a	ps (RMS)	1, 2, 6
	phPCleG5-SRIS	PCIe Gen 5 (32.0 GT/s)		0.036	0.066	n/a	ps (RMS)	1, 2, 6

Notes:

- 1. The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. If oscilloscope data is used, equipment noise is removed from all results.
- 2. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately Jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200 MHz (at 300 MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results the RTO result must be used.
- 3. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.
- 4. Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 5. Note that 0.25 ps RMS is to be used in channel simulations to account for additional noise in a real system.
- 6. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by $\sqrt{2}$. And additional consideration is the value for which to divide by $\sqrt{2}$. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by $\sqrt{2}$, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5ps RMS/ $\sqrt{2}$ = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/ $\sqrt{2}$ = 0.5ps RMS if the clock chip is near the clock input.
- 7. Additive jitter for RMS values is calculated by solving for b where $b = \sqrt{(c^2 a^2)}$, and a is rms input jitter and c is rms output jitter.

Additive Phase Jitter: 125M (12kHz to 20MHz)

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- Controller (host) sends the byte count = X
- Renesas clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Renesas clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Blo	Index Block Write Operation								
Controller (Host)		Renesas (Slave/Receiver)						
Т	starT bit								
Slave Addre	ess								
WR	WRite								
			ACK						
Beginning E	Byte = N								
			ACK						
Data Byte 0	Count = X								
			ACK						
Beginning E	Byte N	×							
		X Byte	ACK						
0									
0			0						
0			0						
			0						
Byte N + X	- 1								
			ACK						
Р	stoP bit								

Note: Read/Write address is latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Renesas clock will acknowledge
- Controller (host) sends the beginning byte location = N
- Renesas clock will acknowledge
- · Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- Renesas clock will acknowledge
- Renesas clock will send the data byte count = X
- Renesas clock sends Byte N+X-1
- Renesas clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Index B	lock Read Operat	tion	
Controlle	r (Host)		Renesas
Т	starT bit		
Slave Ad	dress		
WR	WRite		
			ACK
Beginning	g Byte = N		
			ACK
RT	Repeat starT		
Slave Ad	dress		
RD	ReaD		
			ACK
			Data Byte Count=X
ACK			
			Beginning Byte N
ACK			
			0
0			0
0	0		0
0		X Byte	
	T	×	Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function		0	1	Default
Bit 7	DIF OE5	Output Enable	RW	Low/Low	Enabled	1
Bit 6	DIF OE4	Output Enable	RW	Low/Low	Enabled	1
Bit 5	Reserved					
Bit 4	DIF OE3	Output Enable	RW	Low/Low	Enabled	1
Bit 3	DIF OE2	Output Enable	RW	Low/Low	Enabled	1
Bit 2	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 1	Reserved					
Bit 0	DIF OE0	Output Enable	RW	Low/Low	Enabled	1

^{1.} A low on these bits will override the OE# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	PLLMODERB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODERB0	PLL Mode Readback Bit 0	R	See Fill Opera	See PLL Operating Mode Table	
Bit 5	PLLMODE SWCNTRL	Enable SW control of PLL	RW	Values in B1[7:6]	Values in B1[4:3]	0
DIL 3	FEEMODE_SWCITTLE	Mode:	1700	set PLL Mode	set PLL Mode	
Bit 4	PLLMODE1	PLL Mode Control Bit 1	RW ¹	Soc DII Operat	See PLL Operating Mode Table	
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ¹	See FLL Opera	ing wode rable	0
Bit 2		Reserved				1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.6V	01 = 0.7V	1
Bit 0	AMPLITUDE 0	Controls Output Amplitude	RW	10= 0.8V	11 = 0.9V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

- made indicate and in the control i									
Byte 2	Name	Control Function	Type 0 1		Default				
Bit 7	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	Slow setting	tting Fast setting				
Bit 6	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow setting	Fast setting	1			
Bit 5	Reserved								
Bit 4	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	Slow setting	Fast setting	1			
Bit 3	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	Slow setting	Fast setting	1			
Bit 2	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	Slow setting	Fast setting	1			
Bit 1	Reserved					1			
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	Slow setting	Fast setting	1			

SMBus Table: Frequency Select Control Register

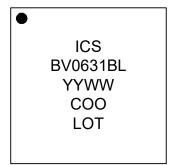
Byte 3	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved					
Bit 6	Reserved					
Bit 5	FREQ_SEL_EN	I RVV I		SW frequency change disabled	SW frequency change enabled	0
Bit 4	FSEL1	Freq. Select Bit 1	RW ¹	See Frequency	0	
Bit 3	FSEL0	Freq. Select Bit 0	RW ¹	See Frequenc	y Select Table	0
Bit 2	Reserved					
Bit 1	Reserved					1
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB RW Slow setting Fast setting		1		

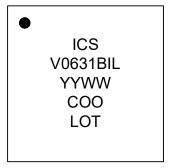
^{1.} B3[5] must be set to a 1 for these bits to have any effect on the part.

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	1	Default	
Bit 7	RID3		R			0	
Bit 6	RID2	Revision ID	R	Λ rov -	A rev = 0000		
Bit 5	RID1		R	A lev -			
Bit 4	RID0		R		0		
Bit 3	VID3		R			0	
Bit 2	VID2	VENDOR ID	R	0001	- IDT	0	
Bit 1	VID1	VENDOR ID	R	0001	0001 = IDT		
Bit 0	VID0		R		1		


SMBus Table: Device Type/Device ID


Byte 6	Name	Control Function	Type	0	1	Default	
Bit 7	Device Type1	Device Type	R	00 = FG,	01 = DB	0	
Bit 6	Device Type0	Device Type	R	10 = DM, 11=	10 = DM, 11= DB fanout only		
Bit 5	Device ID5		R			0	
Bit 4	Device ID4		R				
Bit 3	Device ID3	Device ID	R	000110 bina	ny or 06 boy	0	
Bit 2	Device ID2	Device ID	R	000 FTO DITIA	10 binary or 06 hex		
Bit 1	Device ID1		R				
Bit 0	Device ID0	7	R			0	

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default	
Bit 7	Reserved						
Bit 6		Reserved				0	
Bit 5		Reserved				0	
Bit 4	BC4		RW			0	
Bit 3	BC3			Writing to this regist			
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0	
Bit 1	BC1		RW	= 8 b	ytes.	0	
Bit 0	BC0		RW			0	

Marking Diagrams

Notes:

- 1. "LOT" is the lot sequence number.
- 2. "COO" denotes country of origin.
- 3. "YYWW" is the last two digits of the year and week that the part was assembled.
- 4. Line 2: truncated part number
- 5. "L" denotes RoHS compliant package.
- 6. "I" denotes industrial temperature range device.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ_{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base	2.4		°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air			°C/W	1
mermai Resistance	θ_{JA1}	Junction to Air, 1 m/s air flow	NDG40	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow	28 27		°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow			°C/W	1

¹ePad soldered to board

Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website. The package information is the most current data available and is subject to change without revision of this document.

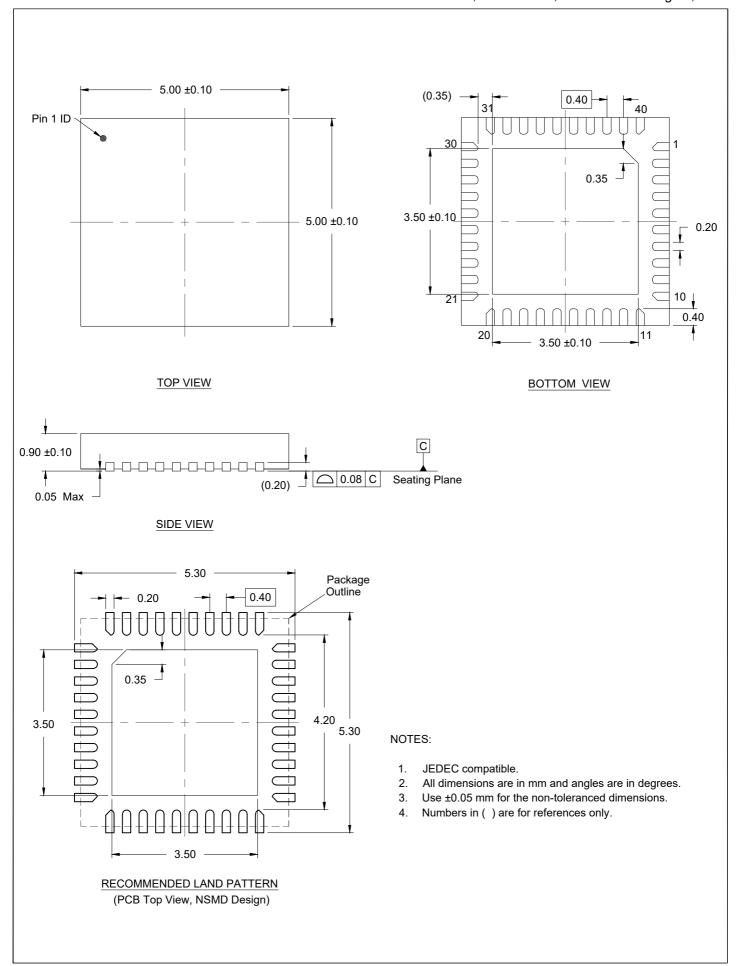
40-VFQFPN Package Outline Drawing

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBV0631BKLF	Trays	40-pin VFQFPN	0 to +70° C
9DBV0631BKLFT	Tape and Reel	40-pin VFQFPN	0 to +70° C
9DBV0631BKILF	Trays	40-pin VFQFPN	-40 to +85° C
9DBV0631BKILFT	Tape and Reel	40-pin VFQFPN	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

[&]quot;B" is the device revision designator (will not correlate with the datasheet revision).


Revision History

Revision Date	Description	
September 5, 2012	1. Pinout changed from 48 to 40 pins. Paddle is now GND.	
	2. Thermal data added	
	3. General Description/Front Page Text updated to match other 9DBVxx31 devices.	
	4. SMBus updated.	
	5. Power Ground Connections updated.	
	6. Electrical tables updated.	
	7. Move to preliminary.	
September 17, 2012	1. Changed ordering information from 9DBV0631A to 9DBV0631B	
February 25, 2013	1. Changed VIH min. from 0.65*VDD to 0.75*VDD	
	2. Changed VIL max. from 0.35*VDD to 0.25*VDD	
	3. Added missing mid-level input voltage spec (VIM) of 0.4*VDD to 0.6*VDD.	
July 7, 2014	Updated top-side device marking and associated notes.	
September 10, 2014	Updated front page text for consistency.	
	2. Updated block diagram for consistency.	
	3. Updated electrical tables with characterization data.	
	4. Updated SMBus nomenclature - bits did NOT change.	
	5. Converted to new doc template.	
	6. Changed IDD spec from 8mA to 10mA MAX	
November 7, 2014	Widened input frequency ranges for PLL modes.	
April 28, 2016	1. Updated max frequency of 100MHz PLL mode to 140MHz	
	2. Updated max frequency of 125MHz PLL mode to 175MHz	
	3. Updated max frequency of 50MHz PLL mode to 65MHz	
July 27, 2016	Corrected ordering information typo by adding "T" for Tape and Reel devices.	
August 2, 2021	Updated document title.	
	2. Updated Recommended Applications.	
	3. Updated Key Specifications.	
	4. Updated Package Outline Drawings section.	
	5. Updated Phase Jitter tables.	

Package Code:NDG40P2 40-VFQFPN 5.0 x 5.0 x 0.9 mm Body, 0.4 mm Pitch PSC-4292-02, Revision: 02, Date Created: Aug 30, 2022

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.