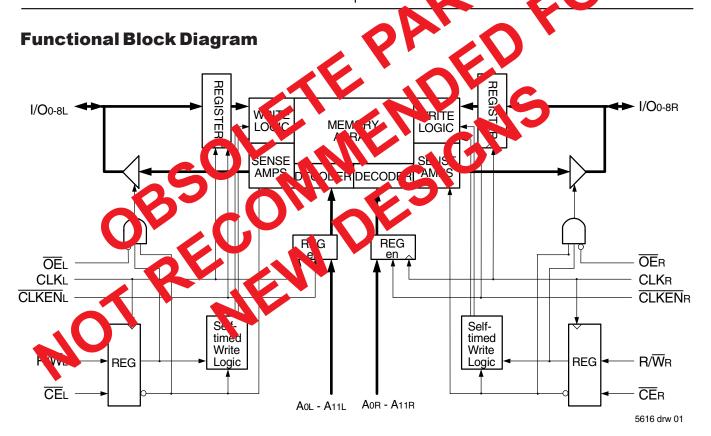
HIGH SPEED 3.3V (4K X 9) SYNCHRONOUS DUAL-PORT RAM


IDT70V914S OBSOLETE PART

Features

- High-speed clock-to-data output times
 - Commercial: 20/25ns (max.)
 - Industrial: 20/25ns (max.)
- Low-power operation – IDT70V914S Active: 250 mW (typ.)
 - Standby: 10 mW (typ.)
- Architecture based on Dual-Port RAM cells

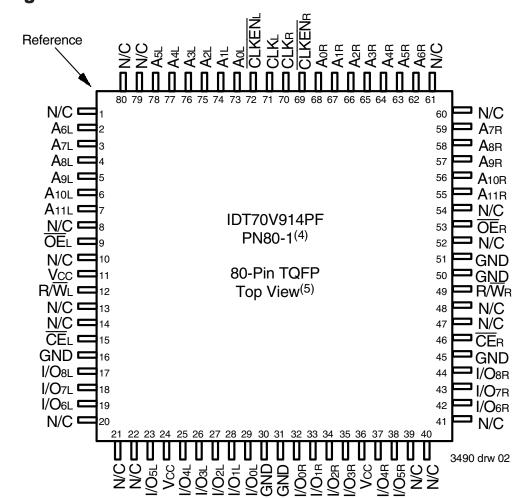
 Allows full simultaneous access from both ports
- LVTTL-compatible, single 3.3V (± 0.3V) power supply
- Clock Enable feature

- Synchronous operation
 - 5ns setup to clock, 1ns hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 20ns clock to data out
 - Self-timed write allows fast cycle times
 - 20ns cycle times, 50MHz operation
- LVTTL-compatible, single 3.3V (± 0.3V) power supply
- Clock Enable feature
- Guaranteed data output hold times
- Available in an 2 pin TQFP
- Industrial temperature range (-40°C to +15°) is available

JANUARY 2009

Industrial and Commercial Temperature Ranges

Description


The IDT70V914 is a high-speed 4K x 9 bit synchronous Dual-Port RAM. The memory array is based on Dual-Port memory cells to allow simultaneous access from both ports. Registers on control, data, and address inputs provide low set-up and hold times. The timing latitude provided by this approach allow systems to be designed with very short cycle times. With an input data register, this device has been optimized for applications having unidirectional data flow or bi-directional data flow in bursts.

The IDT70V914 utilizes a 9-bit wide data path to allow for parity at the

user's option. This feature is especially useful in data communication applications where it is necessary to use a parity bit for transmission/ reception error checking.

Fabricated using IDT's CMOS high-performance technology, these Dual-Ports typically operate on only 250mW of power at maximum high-speed clock-to-data output times as fast as 20ns. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low standby power mode.

The IDT70V914 is packaged in an 80-pin TQFP.

Pin Configurations^(1,2,3)

NOTES:

- 1. All Vcc pins must be connected to power supply.
- 2. All ground pins must be connected to ground supply.
- 3. Package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

5616 tbl 02

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽²⁾	Terminal Voltage	-0.5 to Vcc	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	50	mA

Absolute Maximum Ratings⁽¹⁾

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to ≤ 20mA for the period of VTERM ≥ Vcc + 10%.

Capacitance

(TA = +25°C, f = 1.0MHz) TQFP Only

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	8	pF
Соит	Output Capacitance	Vout = 3dV	9	pF

NOTES:

1. These parameters are determined by device characterization, but are not production tested.

3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

Maximum Operating Temperature and Supply Voltage $^{(1,2)}$

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	3.3V ± 0.3
Industrial	-40°C to +85°C	0V	3.3V ± 0.3

NOTES:

5616 tbl 01

5616 tbl 04

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
GND	Ground	0	0	0	V
V⊪	Input High Voltage	2.2		Vcc+0.3 ⁽²⁾	V
VIL	Input Low Voltage	-0.3(1)		0.8	V
5616 tbl 03					

NOTES:

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 0.3V.

DC Electrical Characteristics Over the Operating	
Temperature and Supply Voltage Range (Vcc = 3.3V ± 0.3))

			70V914S		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Lu	Input Leakage Current ⁽¹⁾	Vcc = 3.6V, $VIN = 0V$ to Vcc	_	10	μA
llo	Output Leakage Current	\overline{CE} = VH, VOUT = 0V to VCC	_	10	μA
Vol	Output Low Voltage	loL = +4mA	_	0.4	V
Vон	Output High Voltage	ICH = -4mA	2.4		V

NOTE:

1. At Vcc ≤ 2.0V, input leakages are undefined

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾ ($Vcc = 3.3V \pm 0.3V$)

				Co	14S20 m'l Ind	Co	14S25 m'l Ind	
Symbol	Parameter	Test Condition	Version	Typ. ⁽²⁾	Мах.	Typ. ⁽²⁾	Max.	Uni
Icc	Dynamic Operating Current	\overline{CEL} and $\overline{CER} = VIL$, Outputs Disabled	COM'L	80	140	75	130	mA
	(Both Ports Active)	$f = f_{MAX}^{(1)}$	IND	80	200	75	190	
ISB1	Standby Current (Both Ports - TTL			30	55	25	50	m
	Level Inputs)	$f = fMAX^{(1)}$	IND	30	85	25	80	
ISB2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\overline{CE}_{A''} = V_{IL}$ and	COM'L	55	85	45	80	m
		Active Port Outputs	IND	55	100	45	95	
ISB3	Full Standby	Both Ports CER and	COM'L	3	15	3	15	m
	Current (Both Ports - All CMOS Level Inputs)	$ \overline{CEL} \ge Vcc - 0.2V V_{IN} \ge Vcc - 0.2V or V_{IN} \le 0.2V, f = 0^{(2)} $	IND	3	15	3	15	
ISB4	Full Standby Current (One Port - All CMOS	$\frac{\overline{C}\overline{E}^{"}A^{"}}{C\overline{E}^{"}B^{"}} \stackrel{\leq}{\geq} Vcc - 0.2V^{(3)}$	COM'L	55	85	45	80	m
	Level Inputs)	$V_{IN} \ge V_{CC} - 0.2V \text{ or}$ $V_{IN} \le 0.2V$, Active Port Outputs Disabled $f = f_{MAX}^{(1)}$	IND	55	100	45	95	

NOTES:

1. At fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcyc, using "AC TEST CONDITIONS" at input levels of GND to 3V.

2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.

3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

4. Vcc = 3.3V, TA = 25°C for Typ, and are not production tested. Icc pc = 150mA (Typ).

Industrial and Commercial Temperature Ranges

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

5616 tbl 07

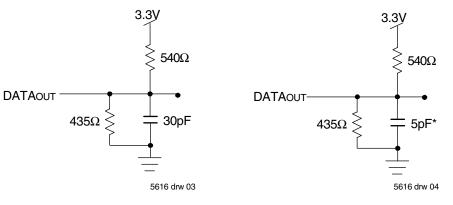


Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcklz, tckHz, tolz, and toHz) *Including scope and jig.

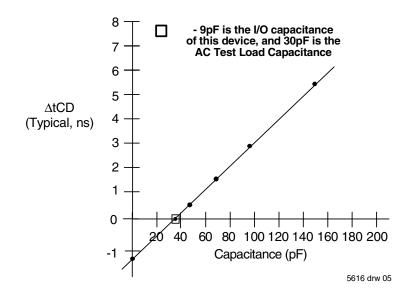
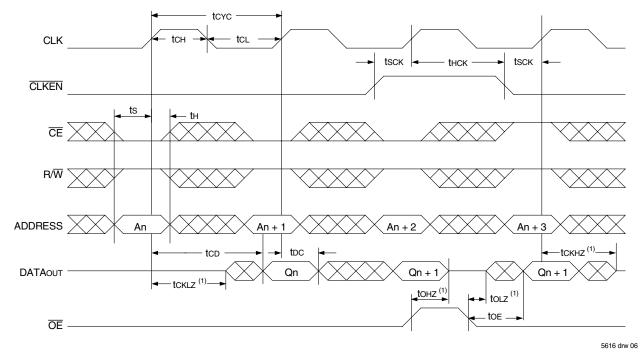
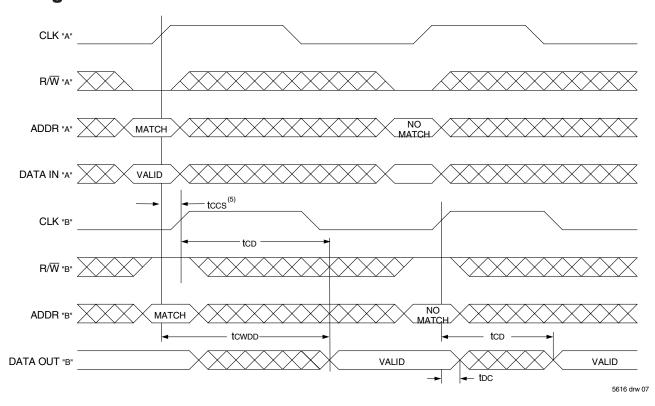


Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) (Commercial: Vcc = 3.3V ± 0.3V)

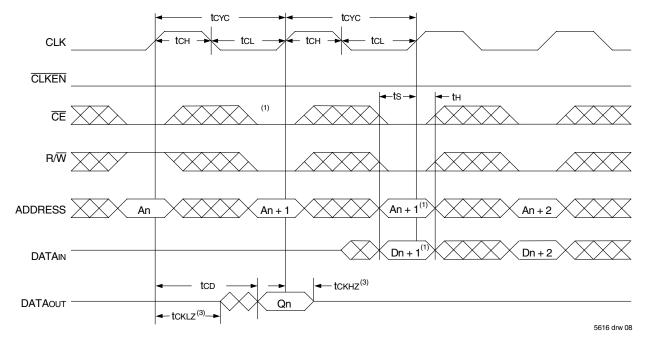

		70914S20 Com'l & Ind		70914S25 Com'l & Ind			
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
tcyc	Clock Cycle Time	20	_	25	_	ns	
tсн	Clock High Time	8	_	10	_	ns	
tcL	Clock Low Time	8	_	10	_	ns	
tCD	Clock High to Output Valid		20	_	25	ns	
ts	Registered Signal Set-up Time	5	_	6	_	ns	
tH	Registered Signal Hold Time	1	_	1	_	ns	
tDC	Data Output Hold After Clock High	3	_	3	_	ns	
tCKLZ	Clock High to Output Low-Z ^(1,2)	2	_	2	_	ns	
tскнz	Clock High to Output High- $Z^{(12)}$		9	_	12	ns	
tOE	Output Enable to Output Valid		10	_	12	ns	
toLz	Output Enable to Output Low-Z ^(1,2)	0	_	0	_	ns	
tонz	Output Disable to Output High- $\mathbb{Z}^{(12)}$		9	_	11	ns	
tsck	Clock Enable, Disable Set-up Time	5	_	6	_	ns	
tHCK	Clock Enable, Disable Hold Time	2	_	2	_	ns	
Port-to-Port	Delay						
tcwpp	Write Port Clock High to Read Data Delay	_	35		45	ns	
tcss	Clock-to-Clock Setup Time		15		20	ns	
0750		•			•	5616 tbl 08	

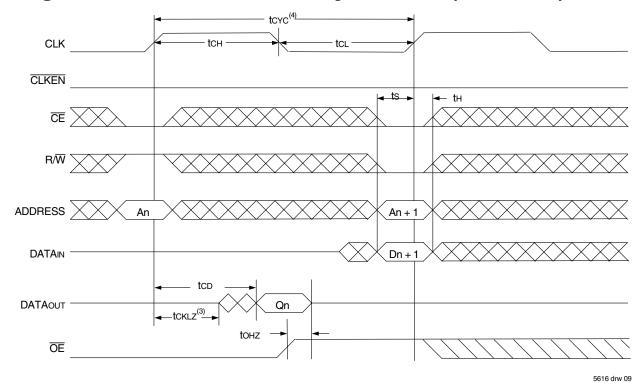
NOTES:


1. Transition is measured 0mV from Low or High impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested.

Timing Waveform of Read Cycle, Either Side


Timing Waveform of Write with Port-to-Port Read^(2,3,4)


NOTES:

- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. $\overline{\text{CE}}_{\text{L}} = \overline{\text{CE}}_{\text{R}} = \text{Vil}, \overline{\text{CLKEN}}_{\text{L}} = \overline{\text{CLKEN}}_{\text{R}} = \text{Vil}.$
- 3. \overline{OE} = VIL for the reading port, port 'B'.
- 4. All timing is the same for left and right ports. Ports "A" may be either the left or right port. Port "B" is opposite from port "A".
- 5. If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwDD.
- If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb. tcwbb does not apply in this case.

Timing Waveform of Read-to-Write Cycle No. $1^{(1,2)}$ (tcyc = min.)

Timing Waveform of Read-to-Write Cycle No. $2^{(4)}$ (tcyc > min.)

NOTES:

1. For tcyc = min.; data out coincident with the rising edge of the subsequent write clock can occur. To ensure writing to the correct address location, the write must be repeated on the second write clock rising edge. If $\overline{CE} = V_{IL}$, invalid data will be written into array. The An+1 must be rewritten on the following cycle.

2. OE LOW throughout.

- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. For tcyc > min.; OE may be used to avoid data out coincident with the rising edge of the subsequent write clock. Use of OE will eliminate the need for the write to be repeated.

Functional Description

The IDT70V914 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide very short set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing.

The internal write pulse width is dependent on the LOW to HIGH

transitions of the clock signal allowing the shortest possible realized cycle times. Clock enable inputs are provided to stall the operation of the address and data input registers without introducing clock skew for very fast interleaved memory applications.

A HIGH on the \overline{CE} input for one clock cycle will power down the internal circuitry to reduce static power consumption.

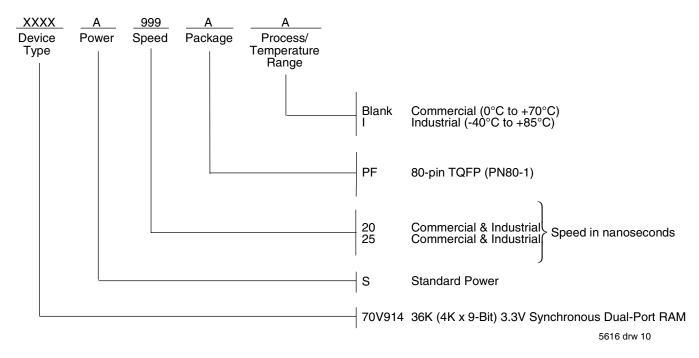
Truth Table I: Read/Write Control⁽¹⁾

	Inputs				Outputs	
	Sy	ynchronous ⁽³⁾ Asynchronous				
[CLK	ĒĒ	R/W	ŌĒ	I/O0-8	Mode
	Ŷ	Н	Х	Х	High-Z	Deselected, Power-Down
	Ŷ	L	L	Х	DATAIN	Selected and Write Enabled
	Ŷ	L	Н	L	DATAOUT	Read Selected and Data Output Enable Read
	Ŷ	Х	Х	Н	High-Z	Outputs Disabled
						5616 tbl 09

Truth Table II: Clock Enable Function Table⁽¹⁾

	Inputs		Registe	r Inputs	Register Outputs ⁽⁴⁾	
Mode	CLK ⁽³⁾		ADDR	DATAIN	ADDR	DATAOUT
Load "1"	↑	L	Н	Н	Н	Н
Load "0"	↑	L	L	L	L	L
Hold (do nothing)	↑	Н	Х	Х	NC	NC
	Х	Н	Х	Х	NC	NC
5616 tbl 10						

NOTES:


1. 'H' = HIGH voltage level steady state, 'h' = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition, 'L' = LOW voltage level steady state 'l' = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition, 'X' = Don't care, 'NC' = No change

2. CLKEN = VIL must be clocked in during Power-Up.

3. Control signals are initialted and terminated on the rising edge of the CLK, depending on their input level. When RW and CE are LOW, a write cycle is initiated on the LOW-to-HIGH transition of the CLK. Termination of a write cycle is done on the next LOW-to-HIGH transistion of the CLK.

4. The register outputs are internal signals from the register inputs being clocked in or disabled by CLKEN.

Ordering Information

Datasheet Document History

1/20/00:	Initial Public Offering					
1/10/01:	Page 1 Fixed AL and AR numbers in drawing					
	Page 4 Increased storage temperature parameter					
	Clarified TA parameter					
	Page 5 DC Electrical parameters-changed wording from "open" to "disabled"					
	Changed ±200mV to 0mV in notes					
01/29/09:	Page 10 Removed "IDT" from orderable part number					
04/26/09:	PDN-F-09-01 issued. See IDT.com for PDN specifics					
09/02/15:	70V914 Datasheet changed to Obsolete Status					

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: 408-284-2794 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.