TEST REPORT BNetzA-CAB-02/21-102 Test report no.: 1-3925/22-01-04 ## **Testing laboratory** #### **CTC advanced GmbH** Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: https://www.ctcadvanced.com e-mail: <u>mail@ctcadvanced.com</u> #### Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01. #### **Applicant** #### **Dialog Semiconductor BV** Het Zuiderkruis 53 5215 MV°s Hertogenbosch / NETHERLANDS Phone: -/- Contact: Laura Dimitropoulou e-mail: Laura.Dimitropoulou@diasemi.com #### Manufacturer #### **Dialog Semiconductor BV** Het Zuiderkruis 53 5215 MV°s Hertogenbosch / NETHERLANDS #### Test standard/s FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices For further applied test standards please refer to section 3 of this test report. **Test Item** Kind of test item: Bluetooth LE SoC Model name: DA1470x (DA14701, DA14705, DA14706, DA14708) FCC ID: N/A ISED certification number: N/A Frequency: 2400 MHz to 2483.5 MHz Technology tested: Bluetooth® LE Antenna: Integrated antenna Power supply: 3.0 V DC by external power supply Temperature range: -40°C to +85°C This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test report authorized: | Test performed: | |-------------------------|---------------------| | | | | | | | | | | Marco Bertolino | Michael Dorongovski | Lab Manager **Radio Communications** Radio Communications Lab Manager # 1 Table of contents | 1 | Table of | contents | 2 | |----|----------|--|----| | 2 | General | information | 2 | | | 2.1 N | lotes and disclaimer | 2 | | | | pplication details | | | | 2.3 T | est laboratories sub-contracted | 4 | | 3 | Test sta | ndard/s, references and accreditations | 5 | | 4 | | ng statements of conformity – decision rule | | | 5 | - | /ironment | | | 6 | | n | | | • | | eneral description | | | | | dditional informationdditional information | | | | | | | | 7 | Sequen | ce of testing | 8 | | | 7.1 S | equence of testing radiated spurious 9 kHz to 30 MHz | 8 | | | 7.2 S | equence of testing radiated spurious 30 MHz to 1 GHz | ç | | | 7.3 S | equence of testing radiated spurious 1 GHz to 18 GHz | 10 | | | 7.4 S | equence of testing radiated spurious above 18 GHz | 11 | | 8 | Descript | tion of the test setup | 12 | | | • | hielded semi anechoic chamber | | | | | hielded fully anechoic chamberhielded fully anechoic chamber | | | | _ | adiated measurements > 18 GHz | | | | | onducted measurements Bluetooth system | | | | | C conducted | | | _ | | | | | 9 | | ement uncertainty | | | 10 | Sun | nmary of measurement results | 19 | | 11 | Add | litional comments | 20 | | 12 | Mea | asurement results | 21 | | | 12.1 | System gain | 21 | | | 12.2 | Power spectral density | 22 | | | 12.3 | DTS bandwidth - 6 dB bandwidth | 23 | | | 12.4 | Occupied bandwidth - 99% emission bandwidth | 24 | | | 12.5 | Maximum output power | 25 | | | 12.6 | Band edge compliance radiated | 26 | | | 12.7 | TX spurious emissions conducted | 30 | | | 12.8 | Spurious emissions radiated below 30 MHz | 32 | | | 12.9 | Spurious emissions radiated 30 MHz to 1 GHz | 36 | | | 12.10 | Spurious emissions radiated above 1 GHz | | | | 12.11 | Spurious emissions conducted below 30 MHz (AC conducted) | 51 | | 13 | Glo | ssary | 54 | | 14 | Doc | eument history | 55 | | 15 | Accreditation Certificate - D-PL-12076-01-04 | 55 | |----|--|----| | 16 | Accreditation Certificate - D-PL-12076-01-05 | 56 | #### 2 General information #### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. ## 2.2 Application details Date of receipt of order: 2022-02-08 Date of receipt of test item: 2022-02-10 Start of test:* 2022-02-17 End of test:* 2022-02-17 Person(s) present during the test: -/- #### 2.3 Test laboratories sub-contracted None © CTC advanced GmbH Page 4 of 56 ^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software. # 3 Test standard/s, references and accreditations | Test standard | Date | Description | |---|----------------------|---| | FCC - Title 47 CFR Part 15 | -/- | FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices | | RSS - 247 Issue 2 | February
2017 | Digital Transmission Systems (DTSs), Frequency Hopping
Systems (FHSs) and Licence - Exempt Local Area Network (LE-
LAN) Devices | | RSS - Gen Issue 5 incl.
Amendment 1 & 2 | February
2021 | Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus | | Guidance | Version | Description | | KDB 558074 D01 ANSI C63.4-2014 ANSI C63.10-2013 | v05r02
-/-
-/- | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices | | Accreditation | Description | n | | D-PL-12076-01-04 | https://www. | nunication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf DakkS Deutsche Akkreditierungsstelle D-PL-12076-01-04 | | D-PL-12076-01-05 | | unication FCC requirements dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05 | ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002 © CTC advanced GmbH Page 5 of 56 ## 4 Reporting statements of conformity – decision rule Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3. The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong." © CTC advanced GmbH Page 6 of 56 ## 5 Test environment | Temperature | : | T_{nom} T_{max} T_{min} | +22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required. | |---------------------------|---|-------------------------------|--| | Relative humidity content | : | | 55 % | | Barometric pressure | : | | 1021 hpa | | | | V_{nom} | 3.0 V DC by external power supply | | Power supply | : | V_{max} | No tests under extreme environmental conditions required. | | | | V_{min} | No tests under extreme environmental conditions required. | ## 6 Test item # 6.1
General description | Kind of test item : | Bluetooth LE SoC | | |--|--|--| | Model name : | DA1470x (DA14701, DA14705, DA14706, DA14708) | | | HMN : | N/A | | | PMN : | N/A | | | HVIN : | N/A | | | FVIN : | N/A | | | S/N serial number : | 2045 00019 | | | Hardware status : | 500-06-B | | | Software status : | SDK10.2.2.35 | | | Firmware status : | -/- | | | Frequency band : | 2400 MHz to 2483.5 MHz | | | Type of radio transmission: Use of frequency spectrum: | DTS | | | Type of modulation : | GFSK | | | Number of channels : | 40 (1 Msps) | | | | 37 (2 Msps, only data channels without advertising channels) | | | Antenna : | Integrated antenna | | | Power supply : | 3.0 V DC by external power supply | | | Temperature range : | -40°C to +85°C | | ## 6.2 Additional information The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing. Test setup and EUT photos are included in test report: 1-3925/22-01-01_AnnexA 1-3925/22-01-01_AnnexD © CTC advanced GmbH Page 7 of 56 #### 7 Sequence of testing ## 7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, it is placed on a table with 0.8 m height. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement*** - The turntable rotates from 0° to 315° using 45° steps. - The antenna height is 1 m. - At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions. #### **Final measurement** - Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°. - Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT) - The final measurement is done in the position (turntable and elevation) causing the highest emissions with guasi-peak (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 8 of 56 ^{*)}Note: The sequence will be repeated three times with different EUT orientations. #### 7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height changes from 1 m to 3 m. - At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m. - The final measurement is done with quasi-peak detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 9 of 56 #### 7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used. - If the EUT is a floor standing device, it is placed directly on the turn table. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - Measurement distance is 3 m (see ANSI C 63.4) see test details. - EUT is set into operation. #### **Premeasurement** - The turntable rotates from 0° to 315° using 45° steps. - The antenna is polarized vertical and horizontal. - The antenna height is 1.5 m. - At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions. #### Final measurement - The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4. - Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations. - The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored. © CTC advanced GmbH Page 10 of 56 ## 7.4 Sequence of testing radiated spurious above 18 GHz #### Setup - The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer. - Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4. - The AC power port of the EUT (if available) is connected to a power outlet. - The measurement distance is as appropriate (e.g. 0.5 m). - The EUT is set into operation. #### **Premeasurement** • The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna. #### Final measurement - The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4). - Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored. © CTC advanced GmbH Page 11 of 56 ## 8 Description of the test setup Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard). In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item). Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A. #### **Agenda:** Kind of Calibration | k | calibration / calibrated | EK | limited calibration | |-------|--|-----|--| | ne | not required (k, ev, izw, zw not required) | ZW | cyclical maintenance (external cyclical | | | | | maintenance) | | ev | periodic self verification | izw | internal cyclical maintenance | | Ve | long-term stability recognized | g | blocked for accredited testing | | vlkl! | Attention: extended calibration interval | | | | NK! | Attention: not calibrated | *) | next calibration ordered / currently in progress | | | | | | © CTC advanced GmbH Page 12 of 56 #### 8.1 Shielded semi anechoic chamber The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from
EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63. Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00 FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor) #### Example calculation: FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ #### **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|------------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | Α | Switch-Unit | 3488A | HP | 2719A14505 | 300000368 | ev | -/- | -/- | | 2 | Α | Meßkabine 1 | HF-Absorberhalle | MWB AG 300023 | -/- | 300000551 | ne | -/- | -/- | | 3 | Α | Antenna Tower | Model 2175 | ETS-Lindgren | 64762 | 300003745 | izw | -/- | -/- | | 4 | А | Positioning
Controller | Model 2090 | ETS-Lindgren | 64672 | 300003746 | izw | -/- | -/- | | 5 | А | Turntable Interface-
Box | Model 105637 | ETS-Lindgren | 44583 | 300003747 | izw | -/- | -/- | | 6 | А | TRILOG Broadband
Test-Antenna 30
MHz - 3 GHz | VULB9163 | Schwarzbeck Mess -
Elektronik | 295 | 300003787 | vlKI! | 21.04.2021 | 20.04.2023 | | 7 | Α | EMI Test Receiver | ESR3 | Rohde & Schwarz | 102587 | 300005771 | k | 10.12.2020 | 09.06.2022 | © CTC advanced GmbH Page 13 of 56 # 8.2 Shielded fully anechoic chamber Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor) #### Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------|--|-------------------------------------|-------------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | A, B, C | DC power supply,
60Vdc, 50A, 1200 W | 6032A | HP | 2818A03450 | 300001040 | vlKI! | 09.12.2020 | 08.12.2023 | | 2 | С | Active Loop
Antenna 9 kHz to
30 MHz | 6502 | EMCO | 2210 | 300001015 | vlKI! | 01.07.2021 | 30.06.2023 | | 3 | A, B, C | Anechoic chamber | FAC 3/5m | MWB / TDK | 87400/02 | 300000996 | ev | -/- | -/- | | 4 | A, B | Double-Ridged
Waveguide Horn
Antenna 1-18.0GHz | 3115 | EMCO | 9107-3697 | 300001605 | vlKI! | 12.03.2021 | 11.03.2023 | | 5 | A, B, C | Switch / Control
Unit | 3488A | HP | * | 300000199 | ne | -/- | -/- | | 6 | В | Band Reject filter | WRCG2400/2483-
2375/2505-50/10SS | Wainwright | 11 | 300003351 | ev | -/- | -/- | | 7 | A, B, C | EMI Test Receiver
20Hz- 26,5GHz | ESU26 | R&S | 100037 | 300003555 | k | 09.12.2021 | 08.12.2022 | | 8 | В | High Pass Filter | VHF-3500+ | Mini Circuits | -/- | 400000193 | ne | -/- | -/- | | 9 | A, B | Broadband Amplifier
0.5-18 GHz | CBLU5184540 | CERNEX | 22049 | 300004481 | ev | -/- | -/- | | 10 | A, B, C | 4U RF Switch
Platform | L4491A | Agilent
Technologies | MY50000037 | 300004509 | ne | -/- | -/- | | 11 | A, B, C | NEXIO EMV-
Software | BAT EMC V3.21.0.27 | EMCO | -/- | 300004682 | ne | -/- | -/- | | 12 | A, B | RF-Amplifier | AMF-6F06001800-
30-10P-R | NARDA-MITEQ Inc | 2011572 | 300005241 | ev | -/- | -/- | © CTC advanced GmbH Page 14 of 56 # 8.3 Radiated measurements > 18 GHz Measurement distance: horn antenna 50 cm FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor) ## Example calculation: FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|-----------------------|----------------|---------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Microwave System
Amplifier, 0.5-26.5
GHz | 83017A | НР | 00419 | 300002268 | ev | -/- | -/- | | 2 | А | Std. Gain Horn
Antenna 18.0-26.5
GHz | 638 | Narda | 01096 | 300000486 | vlKI! | -/- | -/- | | 3 | А | RF-Cable | ST18/SMAm/SMAm
/48 | Huber & Suhner | Batch no.
600918 | 400001182 | ev | -/- | -/- | | 4 | А | Spectrum Analyzer
9kHz - 30 GHz | FSP30 | R&S | 100623 | 300003464 | vlKI! | 09.12.2020 | 08.12.2022 | © CTC advanced GmbH Page 15 of 56 # 8.4 Conducted measurements Bluetooth system OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path) #### Example calculation: OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW) ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|----------------------------|-------------------------|-------------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Hygro-Thermometer | -/-, 5-45°C, 20-
100%rF | Thies Clima | -/- | 400000109 | ev | 13.08.2020 | 12.08.2022 | | 2 | Α | Power supply | NGSM 32/10 | Rohde & Schwarz | 3939 | 400000192 | vlKI! | 11.12.2019 | 10.12.2022 | | 3 | А | USB/GPIB interface | 82357B | Agilent
Technologies | MY52103346 | 300004390 | ne | -/- | -/- | | 4 | А | Signal analyzer | FSV30 | Rohde&Schwarz | 1321.3008K30/
103809 | 300005359 | vlKI! | 08.12.2020 | 07.12.2022 | | 5 | А | Switch matrix | RSM-1 | CTC advanced
GmbH | 29655273 | 400001355 | ev | -/- | -/- | | 6 | А | Tester Software
RadioStar (C.BER2
for BT
Conformance) | Version 1.0.0.X | CTC advanced
GmbH | 0001 | 400001380 | ne | -/- | -/- | | 7 | Α | Power Sensor | L2061XA | Keysight | MY58000020 | 300005803 | k | 14.12.2021 | 13.12.2022 | | 8 | А | Wideband Radio
Communication
Tester | CMW270 | Rohde & Schwarz | 102550 | 300006253 | k | 17.09.2021 | 16.09.2023 | © CTC advanced GmbH Page 16 of 56 ## 8.5 AC conducted FS = UR + CF + VC (FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN) #### Example calculation: FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$ ## **Equipment table:** | No. | Setup | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|-------|--|----------|-----------------|--------------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Two-line V-Network
(LISN) 9 kHz to 30
MHz | ESH3-Z5 | Rohde & Schwarz | 892475/017 | 300002209 | vlKI! | 14.12.2021 | 13.12.2023 | | 2 | Α | RF-Filter-section | 85420E | HP | 3427A00162 | 300002214 | NK! | -/- | -/- | | 3 | Α | EMI Test Receiver | ESCI 3 | R&S | 100083 | 300003312 | k | 09.12.2021 | 08.12.2022 | | 4 | А | Analyzer-Reference-
System (Harmonics
and Flicker) | ARS 16/1 | SPS | A3509 07/0
0205 | 300003314 | vlKI! | 29.12.2021 | 28.12.2023 | | 5 | Α | Hochpass 150 kHz | EZ-25 | R&S | 100010 | 300003798 | ev | -/- | -/- | | 6 | Α | PC | TecLine | F+W | | 300003532 | ne | -/- | -/- | | 7 | Α | Switch-Unit | 3488A | HP | 2719A14505 | 300000368 | ev | -/- | -/- | © CTC advanced GmbH Page 17 of 56 # 9 Measurement uncertainty | Measurement uncertainty | | | | | |--|--|--|--|--| | Test case | Uncertainty | | | | | Antenna gain | ± 3 dB | | | | | Spectrum bandwidth | ± 21.5 kHz absolute; ± 15.0 kHz relative | | | | | Maximum output power | ± 1 dB | | | | | Detailed conducted spurious emissions @ the band edge | ± 1 dB | | | | | Band edge compliance radiated | ± 3 dB | | | | | Band edge compliance conducted | ± 1.5 dB | | | | | Spurious emissions conducted | ± 3 dB | | | | | Spurious emissions radiated below 30 MHz | ± 3 dB | | | | | Spurious emissions radiated 30 MHz to 1 GHz | ± 3 dB | | | | | Spurious emissions radiated 1 GHz to 12.75 GHz | ± 3.7 dB | | | | | Spurious emissions radiated above 12.75 GHz | ± 4.5 dB | | | | | Spurious emissions conducted below 30 MHz (AC conducted) | ± 2.6 dB | | | | © CTC advanced GmbH Page 18 of 56 # 10 Summary of measurement results | \boxtimes | No deviations from the technical specifications were ascertained | |-------------|--| | | There were deviations from the technical specifications ascertained | | | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. | | TC Identifier | Description | Verdict | Date | Remark | |---------------|-----------------------------------|------------|------------|--------| | RF-Testing | CFR Part 15
RSS - 247, Issue 2 | See table! | 2022-03-01 | -/- | | Test
specification
clause | Test case | Guideline | Temperature conditions | Power source voltages | Mode | С | NC | NA | NP |
Remark | |--|--|---|------------------------|-----------------------|------------------|-------------|----|----|----|--------| | §15.247(b)(4)
RSS - 247 /
5.4 (4) | System gain | -/- | Nominal | Nominal | 1 Msps | × | | | | -/- | | §15.247(e)
RSS - 247 /
5.2 (b) | Power spectral density | KDB 558074
DTS clause: 8.4 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(a)(2)
RSS - 247 /
5.2 (a) | DTS bandwidth –
6 dB bandwidth | KDB 558074
DTS clause: 8.2 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | RSS Gen
clause 4.6.1 | Occupied
bandwidth | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(b)(3)
RSS - 247 /
5.4 (4) | Maximum output power | KDB 558074
DTS clause:
8.3.1.1 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.205
RSS - 247 /
5.5
RSS - Gen | Band edge
compliance cond.
& rad. | KDB 558074
DTS clause: 8.7.2
or 8.7.3 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(d)
RSS - 247 /
5.5 | TX spurious
emissions
conducted | KDB 558074
DTS clause: 8.5 | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.209(a)
RSS - Gen | Spurious
emissions
radiated
below 30 MHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | 15.247(d)
RSS - 247 /
5.5
§15.109
RSS - Gen | Spurious
emissions
radiated
30 MHz to 1 GHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.247(d)
RSS - 247 /
5.5
§15.109
RSS - Gen | Spurious
emissions
radiated
above 1 GHz | -/- | Nominal | Nominal | 1 Msps
2 Msps | × | | | | -/- | | §15.107(a)
§15.207 | Conducted
emissions
below 30 MHz
(AC conducted) | -/- | Nominal | Nominal | 1 Msps | \boxtimes | | | | -/- | **Note:** C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed © CTC advanced GmbH Page 19 of 56 ## 11 Additional comments The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license. Reference documents: 1-3925_22-01-04_Annex_MR_A1.pdf Special test descriptions: None Configuration descriptions: | Bluetooth Low Energy | | |---|------------------| | Longest Supported payload (37 – 255 Byte) | Tx: 255, RX: 255 | | LE 1M PHY supported | Yes | | LE 2M PHY supported | Yes | | Stable Modulation Index supported (SMI) | No | | LE Coded PHY supported (S=2) | No | | LE Coded PHY supported (S=8) | No | | Test mode: | \boxtimes | Bluetooth LE Test mode enabled (EUT is controlled by CMW) | |--|-------------|---| | | | Special software is used.
EUT is transmitting pseudo random data by itself | | Antennas and transmit operating modes: | | Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) | | | | Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. | | | | Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements. | © CTC advanced GmbH Page 20 of 56 # 12 Measurement results # 12.1 System gain # Limits: | FC | cc | ISED | |-----|----------------------------------|----------------------------------| | 6 (| dBi / > 6 dBi output power and p | power density reduction required | # Results: | | Low channel | Mid channel | High channel | |------------------------|-------------|-------------|--------------| | | (2402 MHz) | (2440 MHz) | (2480 MHz) | | Gain [dBi]
Declared | | 2.5 | | © CTC advanced GmbH Page 21 of 56 # 12.2 Power spectral density ## **Description:** Measurement of the power spectral density of a digital modulated system. | Measurement parameters | | | |-------------------------|---|--| | External result file | 1-3925_22-01-04_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 Peak Power Spectral Density DTS | | | Test setup | See sub clause 8.4 A | | | Measurement uncertainty | See sub clause 9 | | #### **Limits:** | FCC | ISED | | |------------------------|------|--| | Power spectral density | | | For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration. ## **Results:** | | | Frequency | | |---|--|-----------|--| | | 2402 MHz for 1
Msps, 2404 MHz for
2 Msps | 2440 MHz | 2480 MHz for 1
Msps, 2478 MHz for
2 Msps | | Power spectral density [dBm / 3kHz]
1 Msps | -10.5 | -10.7 | -10.9 | | Power spectral density [dBm / 3kHz]
2 Msps | -10.8 | -11.1 | -11.3 | © CTC advanced GmbH Page 22 of 56 # 12.3 DTS bandwidth - 6 dB bandwidth # **Description:** Measurement of the 6 dB bandwidth of the modulated signal. | Measurement parameters | | | |-------------------------|-----------------------------------|--| | External result file | 1-3925_22-01-04_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 Bandwidth 6dB DTS | | | Test setup | See sub clause 8.4 A | | | Measurement uncertainty | See sub clause 9 | | ## Limits: | FCC | ISED | | |---|------|--| | DTS bandwidth – 6 dB bandwidth | | | | Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz. | | | ## Results: | | Frequency | | | |--------------------------------|--|------|--| | | Msps, 2404 MHz for 2440 MHz Msps, 2478 MHz | | 2480 MHz for 1
Msps, 2478 MHz for
2 Msps | | 6 dB bandwidth [kHz]
1 Msps | 672 | 677 | 680 | | 6 dB bandwidth [kHz]
2 Msps | 1139 | 1139 | 1144 | © CTC advanced GmbH Page 23 of 56 # 12.4 Occupied bandwidth - 99% emission bandwidth # **Description:** Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN. | Measurement parameters | | | |-------------------------|--------------------------------------|--| | External result file | 1-3925_22-01-04_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 Bandwidth 99PCT-20dB | | | Test setup | See sub clause 8.4 A | | | Measurement uncertainty | See sub clause 9 | | ## <u>Usage:</u> | -/- | ISED | |--|------------------------| | Occupied bandwidth – 9 | 99% emission bandwidth | | OBW is necessary for emission designator | | ## Results: | | Frequency | | | |-------------------------------|-----------|------|--| | | | | 2480 MHz for 1
Msps, 2478 MHz for
2 Msps | | 99% bandwidth [kHz]
1 Msps | 1044 | 1042 | 1044 | | 99% bandwidth [kHz]
2 Msps | 2083 | 2082 | 2083 | © CTC advanced GmbH Page 24 of 56 # 12.5 Maximum output power # **Description:** Measurement of the maximum output power conducted. EUT in single channel mode. | Measurement parameters | | | |-------------------------|---|--| | | 1-3925_22-01-04_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 Maximum Peak Conducted Output | | | | Power DTS | | | Test setup | See sub clause 8.4 A | | | Measurement uncertainty | See sub clause 9 | | ## Limits: | FCC | ISED | | |--|------|--| | Maximum output power | | | | Conducted: 1.0 W – antenna gain max. 6 dBi | | | ## Results: | | Frequency | | | |---|--|----------|--| | | 2402 MHz for 1
Msps, 2404 MHz for
2 Msps | 2440 MHz | 2480 MHz for 1
Msps, 2478 MHz
for 2 Msps | | Maximum output power conducted [dBm] 1 Msps | 5.8 | 5.5 | 5.3 | | Maximum output power conducted [dBm] 2 Msps | 5.9 | 5.6 | 5.4 | © CTC advanced GmbH Page 25 of 56 # 12.6 Band edge compliance radiated ## **Description:** Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. Measurement distance is 3m. | Measurement parameters | | | |-------------------------|---|--| | Detector | Peak / RMS | | | Sweep time | Auto | | | Resolution bandwidth | 1 MHz | | | Video bandwidth | 3 MHz | | | Span | Lower Band: 2300 – 2400 MHz
higher Band: 2480 – 2500 MHz | | | Trace mode | Max hold | | | Test setup | See sub
clause 8.2 A | | | Measurement uncertainty | See sub clause 9 | | ## **Limits:** | FCC | ISED | |--|---| | Band edge com | pliance radiated | | radiator is operating, the radio frequency power that is produ
that in the 100 kHz bandwidth within the band that contain
RF conducted or a radiated measurement. Attenuation be
required. In addition, radiated emissions which fall in the re | hich the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below as the highest level of the desired power, based on either an low the general limits specified in Section 15.209(a) is not estricted bands, as defined in Section 15.205(a), must also fied in Section 15.209(a) (see Section 5.205(c)). | 54 dBμV/m AVG 74 dBμV/m Peak © CTC advanced GmbH Page 26 of 56 # Result: | Scenario | Band edge compliance radiated [dBµV/m] | |-----------------------|--| | Data rate | 1 Msps | | Lower restricted band | 35.1 dBμV/m AVG
51.3 dBμV/m Peak | | Upper restricted band | 42.9 dBμV/m AVG
61.6 dBμV/m Peak | | Data rate | 2 Msps | | Lower restricted band | 33.7 dBμV/m AVG
49.7 dBμV/m Peak | | Upper restricted band | 40.3 dBμV/m AVG
57.5 dBμV/m Peak | © CTC advanced GmbH Page 27 of 56 ## Plots: Plot 1: Lower restricted band, 1 Msps Plot 2: Upper restricted band, 1 Msps © CTC advanced GmbH Page 28 of 56 Plot 3: Lower restricted band, 2 Msps Plot 4: Upper restricted band, 2 Msps © CTC advanced GmbH Page 29 of 56 # 12.7 TX spurious emissions conducted #### **Description:** Measurement of the conducted spurious emissions in transmit mode. | Measurement parameters | | | |-------------------------|--------------------------------------|--| | External result file | 1-3925_22-01-04_Annex_MR_A1.pdf | | | External result file | FCC Part 15.247 TX Spurious Conduced | | | Test setup | See sub clause 8.4 A | | | Measurement uncertainty | See sub clause 9 | | #### Limits: | FCC | ISED | | |---------------------------------|------|--| | TX spurious emissions conducted | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required © CTC advanced GmbH Page 30 of 56 # Results: 1 Msps | TX spurious emissions conducted | | | | | | |---------------------------------|---------------------------------|-----------------------------------|---|--|---------------------| | f [MHz] | | amplitude of
emission
[dBm] | limit
max. allowed
emission power | actual attenuation
below frequency of
operation [dB] | results | | 2402 | | 4.8 | 30 dBm | | Operating frequency | | All detected e | emissions are com
dBc limit! | ppliant with the -20 | -20 dBc | | compliant | | 2440 | | 4.0 | 30 dBm | | Operating frequency | | All detected e | emissions are com
dBc limit! | ppliant with the -20 | -20 dBc | | compliant | | 2480 | | 5.3 | 30 dBm | | Operating frequency | | All detected e | emissions are com
dBc limit! | ppliant with the -20 | -20 dBc | | compliant | ## Results: 2 Msps | TX spurious emissions conducted | | | | | |--|---|---|--|--| | | | | | | | | amplitude of
emission
[dBm] | limit
max. allowed
emission power | actual attenuation
below frequency of
operation [dB] | results | | | 5.6 | 30 dBm | | Operating frequency | | missions are com
dBc limit! | pliant with the -20 | -20 dBc | | compliant | | | 2.2 | 30 dBm | | Operating frequency | | All detected emissions are compliant with the -20 dBc limit! | | -20 dBc | | compliant | | | 5.2 | 30 dBm | | Operating frequency | | missions are com
dBc limit! | pliant with the -20 | -20 dBc | | compliant | | | dBc limit! missions are com dBc limit! missions are com | amplitude of emission [dBm] 5.6 missions are compliant with the -20 dBc limit! 2.2 missions are compliant with the -20 dBc limit! 5.2 missions are compliant with the -20 | amplitude of emission [dBm] max. allowed emission power 5.6 30 dBm missions are compliant with the -20 dBc limit! -20 dBc 2.2 30 dBm missions are compliant with the -20 dBc limit! -20 dBc 5.2 30 dBm missions are compliant with the -20 dBc limit! -20 dBc | amplitude of emission [dBm] max. allowed emission power operation [dB] 5.6 30 dBm missions are compliant with the -20 dBc limit! -20 dBc 2.2 30 dBm missions are compliant with the -20 dBc limit! -20 dBc 5.2 30 dBm missions are compliant with the -20 dBc limit! | © CTC advanced GmbH Page 31 of 56 # 12.8 Spurious emissions radiated below 30 MHz ## **Description:** Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10. | Measurement parameters | | | | |-------------------------|----------------------|--|--| | Detector | Peak / Quasi peak | | | | Sweep time | Auto | | | | Resolution bandwidth | F < 150 kHz: 200 Hz | | | | | F > 150 kHz: 9 kHz | | | | Video bandwidth | F < 150 kHz: 1 kHz | | | | | F > 150 kHz: 30 kHz | | | | Span | 9 kHz to 30 MHz | | | | Trace mode | Max hold | | | | Test setup | See sub clause 8.2 C | | | | Measurement uncertainty | See sub clause 9 | | | ## **Limits:** | FCC | | ISED | | |---|-------------------------|------|----------------------| | TX spurious emissions radiated below 30 MHz | | | Hz | | Frequency (MHz) | Field strength (dBµV/m) | | Measurement distance | | 0.009 - 0.490 | 2400/F(kHz) | | 300 | | 0.490 - 1.705 | 24000/F(kHz) | | 30 | | 1.705 – 30.0 | 30 | | 30 | ## **Results:** | TX spurious emissions radiated below 30 MHz [dBμV/m] | | | | |---|--|--|--| | F [MHz] Detector Level [dBμV/m] | | | | | All detected emissions are more than 20 dB below the limit. | | | | | | | | | | | | | | © CTC advanced GmbH Page 32 of 56 ## Plots: Plot 1: 9 kHz to 30 MHz, 2402 MHz, transmit mode, 1 Msps Plot 2: 9 kHz to 30 MHz, 2440 MHz, transmit mode, 1 Msps © CTC advanced GmbH Page 33 of 56 Plot 3: 9 kHz to 30 MHz, 2480 MHz, transmit mode, 1 Msps Plot 4: 9 kHz to 30 MHz, 2404 MHz, transmit mode, 2 Msps © CTC advanced GmbH Page 34 of 56 Plot 5: 9 kHz to 30 MHz, 2440 MHz, transmit mode, 2 Msps Plot 6: 9 kHz to 30 MHz, 2478 MHz, transmit mode, 2 Msps © CTC advanced GmbH Page 35 of 56 ## 12.9 Spurious emissions radiated 30 MHz to 1 GHz #### **Description:** Measurement of the radiated spurious emissions in transmit mode. | Measurement parameters | | | |-------------------------|----------------------|--| | Detector | Peak / Quasi Peak | | | Sweep time | Auto | | | Resolution bandwidth | 120 kHz | | | Video bandwidth | 3 x RBW | | | Span | 30 MHz to 1 GHz | | | Trace mode | Max hold | | | Measured modulation | GFSK | | | Test setup | See sub clause 8.1 A | | | Measurement uncertainty | See sub clause 9 | | ## Limits: | FCC | ISED | | |--------------------------------|------|--| | TX spurious emissions radiated | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | §15.209 | | | | |-----------------|-------------------------|----------------------|--| | Frequency (MHz) | Field strength (dBµV/m) | Measurement distance | | | 30 - 88 | 30.0 | 10 | | | 88 – 216 | 33.5 | 10 | | | 216 – 960 | 36.0 | 10 | | | Above 960 | 54.0 | 3 | | © CTC advanced GmbH Page 36 of 56 Plots: Transmit mode Plot 1: 30 MHz to 1 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps ### Final results: | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB)
 Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 30.983 | 9.88 | 30.0 | 20.1 | 1000 | 120.0 | 143.0 | V | 294 | 13 | | 31.297 | 9.98 | 30.0 | 20.0 | 1000 | 120.0 | 143.0 | V | 140 | 13 | | 77.416 | 10.99 | 30.0 | 19.0 | 1000 | 120.0 | 208.0 | V | 266 | 8 | | 79.987 | 7.91 | 30.0 | 22.1 | 1000 | 120.0 | 100.0 | V | 40 | 8 | | 101.009 | 8.47 | 33.5 | 25.0 | 1000 | 120.0 | 200.0 | V | 15 | 14 | | 874.385 | 21.58 | 36.0 | 14.4 | 1000 | 120.0 | 162.0 | Н | 45 | 25 | © CTC advanced GmbH Page 37 of 56 Plot 2: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 30.931 | 17.86 | 30.0 | 12.1 | 1000 | 120.0 | 144.0 | ٧ | 148 | 13 | | 38.245 | 18.10 | 30.0 | 11.9 | 1000 | 120.0 | 144.0 | ٧ | 67 | 14 | | 49.776 | 16.42 | 30.0 | 13.6 | 1000 | 120.0 | 195.0 | ٧ | 256 | 15 | | 492.549 | 23.00 | 36.0 | 13.0 | 1000 | 120.0 | 160.0 | Н | 240 | 20 | | 720.397 | 22.23 | 36.0 | 13.8 | 1000 | 120.0 | 195.0 | ٧ | -9 | 23 | | 956.025 | 29.68 | 36.0 | 6.3 | 1000 | 120.0 | 190.0 | V | -37 | 25 | © CTC advanced GmbH Page 38 of 56 Plot 3: 30 MHz to 1 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 37.452 | 17.86 | 30.0 | 12.1 | 1000 | 120.0 | 187.0 | ٧ | 262 | 14 | | 56.026 | 17.69 | 30.0 | 12.3 | 1000 | 120.0 | 195.0 | ٧ | 142 | 16 | | 103.652 | 16.55 | 33.5 | 17.0 | 1000 | 120.0 | 182.0 | V | 232 | 14 | | 514.237 | 23.47 | 36.0 | 12.5 | 1000 | 120.0 | 195.0 | Н | 147 | 20 | | 734.390 | 26.49 | 36.0 | 9.5 | 1000 | 120.0 | 144.0 | Н | 205 | 23 | | 894.221 | 29.45 | 36.0 | 6.6 | 1000 | 120.0 | 195.0 | V | 232 | 25 | © CTC advanced GmbH Page 39 of 56 Plot 4: 30 MHz to 1 GHz, TX mode, 2404 MHz, vertical & horizontal polarization, 2 Msps | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 30.939 | 13.31 | 30.0 | 16.7 | 1000 | 120.0 | 140.0 | ٧ | 127 | 13 | | 57.215 | 16.88 | 30.0 | 13.1 | 1000 | 120.0 | 188.0 | ٧ | 52 | 16 | | 61.988 | 15.82 | 30.0 | 14.2 | 1000 | 120.0 | 182.0 | ٧ | 31 | 13 | | 512.410 | 18.54 | 36.0 | 17.5 | 1000 | 120.0 | 195.0 | Н | 142 | 20 | | 733.833 | 26.45 | 36.0 | 9.6 | 1000 | 120.0 | 195.0 | ٧ | 52 | 23 | | 913.691 | 29.64 | 36.0 | 6.4 | 1000 | 120.0 | 190.0 | Н | 217 | 26 | © CTC advanced GmbH Page 40 of 56 Plot 5: 30 MHz to 1 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 30.954 | 13.03 | 30.0 | 17.0 | 1000 | 120.0 | 185.0 | ٧ | 148 | 13 | | 55.926 | 12.39 | 30.0 | 17.6 | 1000 | 120.0 | 185.0 | ٧ | 142 | 16 | | 61.643 | 14.56 | 30.0 | 15.4 | 1000 | 120.0 | 125.0 | Н | 21 | 13 | | 503.844 | 23.18 | 36.0 | 12.8 | 1000 | 120.0 | 195.0 | Н | 232 | 20 | | 735.508 | 26.60 | 36.0 | 9.4 | 1000 | 120.0 | 195.0 | Н | 86 | 23 | | 887.500 | 24.52 | 36.0 | 11.5 | 1000 | 120.0 | 195.0 | V | 52 | 25 | © CTC advanced GmbH Page 41 of 56 Plot 6: 30 MHz to 1 GHz, TX mode, 2478 MHz, vertical & horizontal polarization, 2 Msps | Frequency
(MHz) | QuasiPeak
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Height
(cm) | Pol | Azimuth
(deg) | Corr.
(dB) | |--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|---------------| | 30.892 | 17.78 | 30.0 | 12.2 | 1000 | 120.0 | 182.0 | ٧ | -10 | 13 | | 56.801 | 12.15 | 30.0 | 17.9 | 1000 | 120.0 | 112.0 | Н | 233 | 16 | | 61.996 | 14.82 | 30.0 | 15.2 | 1000 | 120.0 | 102.0 | Н | -27 | 13 | | 512.901 | 23.40 | 36.0 | 12.6 | 1000 | 120.0 | 195.0 | Н | 52 | 20 | | 735.523 | 26.53 | 36.0 | 9.5 | 1000 | 120.0 | 195.0 | ٧ | 261 | 23 | | 904.349 | 24.72 | 36.0 | 11.3 | 1000 | 120.0 | 195.0 | ٧ | 112 | 26 | © CTC advanced GmbH Page 42 of 56 ### 12.10 Spurious emissions radiated above 1 GHz ### **Description:** Measurement of the radiated spurious emissions in transmit mode. | Measurei | ment parameters | |-------------------------|--| | Detector | Peak / RMS | | Sweep time | Auto | | Resolution bandwidth | 1 MHz | | Video bandwidth | 3 x RBW | | Span | 1 GHz to 26 GHz | | Trace mode | Max hold | | Measured modulation | GFSK | | Test setup | See sub clause 8.2 B (1 GHz - 18 GHz) | | rest setup | See sub clause 8.3 A (18 GHz - 26 GHz) | | Measurement uncertainty | See sub clause 9 | ### **Limits:** | FCC | ISED | | | | | |---|------|--|--|--|--| | TX spurious emissions radiated | | | | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional | | | | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | | §15.209 | | | | | | | | |-----------------|-------------------------|----------------------|--|--|--|--|--|--| | Frequency (MHz) | Field strength (dBµV/m) | Measurement distance | | | | | | | | Above 960 | 54.0 (Average) | 3 | | | | | | | | Above 960 | 74.0 (Peak) | 3 | | | | | | | © CTC advanced GmbH Page 43 of 56 # **Results:** Transmitter mode, 1 Msps | TX spurious emissions radiated [dBμV/m] | | | | | | | | | |---|----------|-------------------|----------|----------|-------------------|----------|----------|-------------------| | 2402 MHz | | | 2440 MHz | | | 2480 MHz | | | | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] | Detector | Level
[dBµV/m] | | 12010 | Peak | 51.1 | 7320 | Peak | 47.2 | 7440 | Peak | 46.6 | | 12010 | AVG | 42.9 | 1320 | AVG | 38.9 | 1440 | AVG | 38.3 | # **Results:** Transmitter mode, 2 Msps | | TX spurious emissions radiated [dBμV/m] | | | | | | | | |----------|---|-------------------|----------|----------|-------------------|----------|----------|-------------------| | 2404 MHz | | | 2440 MHz | | | 2478 MHz | | | | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] | Detector | Level
[dBµV/m] | F [MHz] | Detector | Level
[dBµV/m] | | -/- | Peak | -/- | 7320 | Peak | 46.6 | 7435 | Peak | 46.8 | | -/- | AVG | -/- | 1320 | AVG | 36.9 | 1433 | AVG | 38.0 | © CTC advanced GmbH Page 44 of 56 ### **Plots:** Transmitter mode Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 2: 18 GHz to 26 GHz, TX mode, 2402 MHz, vertical & horizontal polarization, 1 Msps © CTC advanced GmbH Page 45 of 56 Plot 3: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps Plot 4: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 1 Msps © CTC advanced GmbH Page 46 of 56 Plot 5: 1 GHz to 18 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps Plot 6: 18 GHz to 26 GHz, TX mode, 2480 MHz, vertical & horizontal polarization, 1 Msps © CTC advanced GmbH Page 47 of 56 Plot 7: 1 GHz to 18 GHz, TX mode, 2404 MHz, vertical & horizontal polarization, 2 Msps Plot 8: 18 GHz to 26 GHz, TX mode, 2404 MHz, vertical & horizontal polarization, 2 Msps © CTC advanced GmbH Page 48 of 56 Plot 9: 1 GHz to 18 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps Plot 10: 18 GHz to 26 GHz, TX mode, 2440 MHz, vertical & horizontal polarization, 2 Msps © CTC advanced GmbH Page 49 of 56 Plot 11: 1 GHz to 18 GHz, TX mode, 2478 MHz, vertical & horizontal polarization, 2 Msps Plot 12: 18 GHz to 26 GHz, TX mode, 2478 MHz, vertical & horizontal polarization, 2 Msps Date: 16 FEB .2022 09:42:24 © CTC advanced GmbH Page 50 of 56 ### 12.11 Spurious emissions conducted below 30 MHz (AC conducted) ### **Description:** Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set
to single channel mode and the transmit frequency is 2440 MHz. This measurement is representative for all channels and modes. If critical peaks are found frequency 2402 MHz and 2480 MHz will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits. | Measurement parameters | | | | | | | |-------------------------|--|--|--|--|--|--| | Detector | Peak - Quasi peak / average | | | | | | | Sweep time | Auto | | | | | | | Resolution bandwidth | F < 150 kHz: 200 Hz
F > 150 kHz: 9 kHz | | | | | | | Video bandwidth | F < 150 kHz: 1 kHz
F > 150 kHz: 100 kHz | | | | | | | Span: | 9 kHz to 30 MHz | | | | | | | Trace mode: | Max hold | | | | | | | Test setup | See sub clause 8.5. A | | | | | | | Measurement uncertainty | See sub clause 9 | | | | | | ### **Limits:** | FCC | | ISED | | | |--|---------------------|------|------------------|--| | TX spurious emissions conducted < 30 MHz | | | | | | Frequency (MHz) | Quasi-peak (dBμV/m) | | Average (dBμV/m) | | | 0.15 - 0.5 | 66 to 56* | | 56 to 46* | | | 0.5 – 5 | 56 | | 46 | | | 5 - 30.0 | 60 | | 50 | | ^{*}Decreases with the logarithm of the frequency #### **Results:** | Spurious emissions conducted < 30 MHz [dBμV/m] | | | | | |--|----------|----------------|--|--| | F [MHz] | Detector | Level [dBμV/m] | | | | No emissions detected | | | | | | | | | | | | | | | | | © CTC advanced GmbH Page 51 of 56 ### Plots: Plot 1: 150 kHz to 30 MHz, phase line ### Final results: | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | 0.515663 | 18.95 | 37.05 | 56.000 | 13.40 | 32.60 | 46.000 | © CTC advanced GmbH Page 52 of 56 Plot 2: 150 kHz to 30 MHz, neutral line | Frequency | Quasi peak
level | Margin quasi
peak | Limit QP | Average
level | Margin
average | Limit AV | |-----------|---------------------|----------------------|----------|------------------|-------------------|----------| | MHz | dΒμV | dB | dΒμV | dΒμV | dB | dΒμV | | -/- | -/- | -/- | -/- | -/- | -/- | -/- | © CTC advanced GmbH Page 53 of 56 # 13 Glossary | EUT | Equipment under test | | | | | |------------------|--|--|--|--|--| | DUT | Device under test | | | | | | UUT | Unit under test | | | | | | GUE | GNSS User Equipment | | | | | | ETSI | European Telecommunications Standards Institute | | | | | | EN | European Standard | | | | | | FCC | Federal Communications Commission | | | | | | FCC ID | Company Identifier at FCC | | | | | | IC | Industry Canada | | | | | | PMN | Product marketing name | | | | | | HMN | Host marketing name | | | | | | HVIN | Hardware version identification number | | | | | | FVIN | Firmware version identification number | | | | | | EMC | Electromagnetic Compatibility | | | | | | HW | Hardware | | | | | | SW | Software | | | | | | Inv. No. | Inventory number | | | | | | S/N or SN | Serial number | | | | | | С | Compliant | | | | | | NC | Not compliant | | | | | | NA | Not applicable | | | | | | NP | Not performed | | | | | | PP | Positive peak | | | | | | QP | Quasi peak | | | | | | AVG | Average | | | | | | OC | Operating channel | | | | | | OCW | Operating channel bandwidth | | | | | | OBW | Occupied bandwidth | | | | | | OOB | Out of band | | | | | | DFS | Dynamic frequency selection | | | | | | CAC | Channel availability check | | | | | | OP | Occupancy period | | | | | | NOP | Non occupancy period | | | | | | DC | Duty cycle | | | | | | PER | Packet error rate | | | | | | CW | Clean wave | | | | | | MC | Modulated carrier | | | | | | WLAN | Wireless local area network | | | | | | RLAN | Radio local area network | | | | | | DSSS | Dynamic sequence spread spectrum | | | | | | OFDM | Orthogonal frequency division multiplexing | | | | | | FHSS | Frequency hopping spread spectrum | | | | | | GNSS | Global Navigation Satellite System | | | | | | C/N ₀ | Carrier to noise-density ratio, expressed in dB-Hz | | | | | © CTC advanced GmbH Page 54 of 56 # 14 Document history | Version | Applied changes | Date of release | |---------|-----------------|-----------------| | -/- | Initial release | 2022-03-01 | ## 15 Accreditation Certificate - D-PL-12076-01-04 | first page | last page | |---|--| | DALKS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition | Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38110 Berlunschweig | | Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkhelmer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation unwher D-PL-12076-01.1 (comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order pulsing, 15 pages Egner Head of Division | disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMStelleG) of 31 July 2009 (Federal Law Gasette I p. 2525) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 3 July 2008 series (and the Council of 3 July 2008 series (and the Council of 3 July 2008) as products (Official Journal of the European Union 1.218 of 3 July 2008, p. 30). DAMS is a signatory to the Multilateral Agreements for Muttal Recognition of the European Co-paration for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (LICA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org ILAC: www.ilac.org | | The configure targether with its annex reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the database of accreditation backes of Poutsche Alkreditierungsstelle GmbH. Mattar/News datks defeny content faccredited-badies datks ten rates winted. | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf © CTC advanced GmbH Page 55 of 56 # 16 Accreditation Certificate - D-PL-12076-01-05 | first page | last page | |--
---| | Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements) | Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesaltee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate dissemination of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation assessment by DAKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette 1 p. 2629) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 3 July 2008 servicia pour the requirements for accreditation and markets unveillance relating | | The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by order tigs. Ing. (Probart Egner Head of Division) | to the marketing of products (Official Journal of the European Union 1, 218 of 9 July 2008, p. 30), DANAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation [EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.uls.ocng IAF: www.iaf.nu | | The certificate together with its owner reflects the status at the time of the date of issue. The current status of the scape of occreditation cane be found in the admission of occreditations of Development of the Askreditionungsstelle GmbH. https://www.dokks.do/en/content/accredited-badies-dakks ten satus water. | | Note: The current certificate annex is published on the websites (link see below). https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf