

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U19599EJ1V0AN00 (1st edition)
Date Published March 2009 N

Application Note

V850ES/JG3-H, V850ES/JH3-H
V850ES/JG3-U, V850ES/JH3-U

32-bit Single-Chip Microcontroller

USB CDC (Communication Device Class) Driver

 2009

V850ES/JG3-H
μPD70F3760
μPD70F3761
μPD70F3762
μPD70F3770

V850ES/JG3-U
μPD70F3763
μPD70F3764

V850ES/JH3-H
μPD70F3765
μPD70F3766
μPD70F3767
μPD70F3771

V850ES/JH3-U
μPD70F3768
μPD70F3769

Application Note U19599EJ1V0AN 2

[MEMO]

Application Note U19599EJ1V0AN 3

MINICUBE is a registered trademark of NEC Electronics Corporation in Japan and Germany or a trademark in the

United States of America.

Windows, Windows XP, and Windows Vista are registered trademarks or trademarks of Microsoft Corporation in the

United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

The information in this document is current as of March, 2009. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

Application Note U19599EJ1V0AN 4

PREFACE

Readers This application note is intended for users who understand the features of the

V850ES/Jx3-H or V850ES/Jx3-U, and are going to develop application systems using

this product.

Purpose This application note is intended to give users an understanding of the specifications

of the sample driver provided for using the USB function controller incorporated in the

V850ES/Jx3-H and V850ES/Jx3-U.

Organization This application note is broadly divided into the following six sections:

• An overview of the USB function controller incorporated in the V850ES/Jx3-H and

 V850ES/Jx3-U

• An overview of the USB standard

• The specifications for the sample driver

• The specifications for the sample application

• Development environment

• How to use the sample driver

How to Read This Manual It is assumed that the readers of this application note have general knowledge in the

fields of electrical engineering, logic circuits, and microcontrollers.

• To learn about the hardware features and electrical specifications of the

V850ES/Jx3-H and V850ES/Jx3-U

→ See the separately provided V850ES/JG3-H, V850ES/JH3-H Hardware User’s

Manual and V850ES/JG3-U, V850ES/JH3-U Hardware User’s Manual.

• To learn about the instructions of the V850ES/Jx3-H and V850ES/Jx3-U

→ See the separately provided V850ES Architecture User’s Manual.

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary or decimal ... XXXX

 Hexadecimal ... 0xXXXX

Prefix indicating power of 2 (address space, memory capacity):

 K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

 T (tera): 240 = 1,0244

 P (peta): 250 = 1,0245

 E (exa): 260 = 1,0246

Application Note U19599EJ1V0AN 5

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

 • Documents Related to the V850ES/Jx3-H and V850ES/Jx3-U

Document Name Document No.

V850ES Architecture User’s Manual U15943E

V850ES/JG3-H, V850ES/JH3-H Hardware User’s Manual U19181E

V850ES/JG3-U, V850ES/JH3-U Hardware User’s Manual U19287E

V850ES/JG3-H, V850ES/JH3-H, V850ES/JG3-U, V850ES/JH3-U USB

CDC (Communication Device Class) Driver Application Note

This manual

 • Documents Related to Development Tools (User’s Manuals)

Document Name Document No.

QB-V850ESJX3H In-Circuit Emulator U19170E

QB-V850MINI On-Chip Debug Emulator U17638E

QB-MINI2 On-Chip Debug Emulator with Flash Programming Function U18371E

Operation U18512E

C Language U18513E

Assembly Language U18514E

CA850 Ver. 3.20 C Compiler Package

Link Directives U18515E

PM+ Ver. 6.30 Project Manager U18416E

ID850QB Ver. 3.40 Integrated Debugger Operation U18604E

SM850 Ver. 2.50 System Simulator Operation U16218E

SM850 Ver. 2.00 or Later System Simulator External Component

User Open Interface

U14873E

Operation U17199E

User Open Interface U17198E

Basics U13430E

Installation U17419E

SM+ System Simulator

Technical U13431E

Task Debugger U17420E

Basics U18165E

RX850 Ver. 3.20 Real-Time OS

In-Structure U18164E

RX850 Pro Ver. 3.21 Real-Time OS Task Debugger U17422E

AZ850 Ver. 3.30 System Performance Analyzer U17423E

PG-FP5 Flash Memory Programmer U18865E

Application Note U19599EJ1V0AN 6

CONTENTS

CHAPTER 1 OVERVIEW..8
1.1 Overview ..8

1.1.1 Features of the USB function controller ...8
1.1.2 Features of the sample driver ..9
1.1.3 Files included in the sample driver...9

1.2 Overview of the V850ES/Jx3-H and V850ES/Jx3-U..10
1.2.1 Applicable products ...10
1.2.2 Features ..11

CHAPTER 2 OVERVIEW OF USB ...12
2.1 Transfer Format...12
2.2 Endpoints...13
2.3 Device Class ..13
2.4 Requests ..13

2.4.1 Types...13
2.4.2 Format ...15

2.5 Descriptor ..15
2.5.1 Types...15
2.5.2 Format ...16

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS ..18
3.1 Overview ..18

3.1.1 Features ..18
3.1.2 Supported requests ...19
3.1.3 Descriptor settings...20

3.2 Operation of Each Section ...24
3.2.1 CPU Initialization ...25
3.2.2 USBF initialization processing ...27
3.2.3 Monitoring endpoint 0 ..30
3.2.4 Monitoring endpoint 2 ..31

3.3 Function Specifications..32
3.3.1 Functions...32
3.3.2 Correlation of the functions..33
3.3.3 Function features...36

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS ...49
4.1 Overview ..49
4.2 Operation ...49
4.3 Using Functions ..51

CHAPTER 5 DEVELOPMENT ENVIRONMENT...52
5.1 Used Products ...52

5.1.1 Program development ...52
5.1.2 Debugging ...52

Application Note U19599EJ1V0AN 7

5.2 Setting Up the Environment...53
5.2.1 Preparing the host environment ..53
5.2.2 Setting up the target environment ...61

5.3 On-Chip Debugging ..69
5.3.1 Generating a load module ...69
5.3.2 Loading and executing the load module ..70

5.4 Checking the Operation ...73

CHAPTER 6 USING THE SAMPLE DRIVER...74
6.1 Overview ..74
6.2 Customizing the Sample Driver...75

6.2.1 Application section ..75
6.2.2 Setting up the registers ...76
6.2.3 Descriptor information ...76
6.2.4 Setting up the virtual COM port host driver ...76

6.3 Using Functions..81

APPENDIX A STARTER KIT...82
A.1 Overview ..82

A.1.1 Features ..82
A.2 Specifications..82

Application Note U19599EJ1V0AN 8

CHAPTER 1 OVERVIEW

This application note describes the CDC (communication device class) sample driver created for the USB function

controller incorporated in the V850ES/Jx3-H and V850ES/Jx3-U microcontrollers.

This application note provides the following information:

• The specifications for the sample driver

• Information about the environment used to develop an application program by using the sample driver

• The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the microcontrollers for which the sample

driver can be used.

1.1 Overview

1.1.1 Features of the USB function controller

The USB function controller (USBF) that is incorporated in the V850ES/Jx3-H and V850ES/Jx3-U and is to be

controlled by the sample driver has the following features:

• Conforms to the Universal Serial Bus Rev. 2.0 Specification.

• Operates as a full-speed (12 Mbps) device.

• Includes the following endpoints:

Table 1-1. Configuration of the Endpoints of the V850ES/Jx3-H and V850ES/Jx3-U

Endpoint Name FIFO Size (Bytes) Transfer Type Remark

Endpoint 0 Read 64 Control transfer (IN) −

Endpoint 0 Write 64 Control transfer (OUT) −

Endpoint 1 64 × 2 Bulk transfer 1 (IN) Dual-buffer configuration

Endpoint 2 64 × 2 Bulk transfer 1 (OUT) Dual-buffer configuration

Endpoint 3 64 × 2 Bulk transfer 2 (IN) Dual-buffer configuration

Endpoint 4 64 × 2 Bulk transfer 2 (OUT) Dual-buffer configuration

Endpoint 7 8 Interrupt transfer (IN) −

• Automatically responds to standard USB requests (except some requests).

• Can operate as a bus-powered device or self-powered deviceNote 1

• The internal or external clock can be selectedNote 2

 Internal clock: 6 MHz external clock multiplied by 8 (48 MHz)

 External clock: Input to the UCLK pin (fUSB = 48 MHz))

Notes 1. The sample driver selects bus power.

 2. The sample driver selects the internal clock.

CHAPTER 1 OVERVIEW

Application Note U19599EJ1V0AN 9

1.1.2 Features of the sample driver

The CDC sample driver for the V850ES/Jx3-H and V850ES/Jx3-U has the features below. For details about the

features and operations, see CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS.

• Conforms to the USB CDC Ver. 1.1 Abstract Control Model

• Operates as a virtual COM device

• Exclusively uses the following amounts of memory (excluding the vector table):

 ROM: About 3.5 KB

 RAM: About 1.1 KB

1.1.3 Files included in the sample driver

The sample driver includes the following files:

Table 1-2. Files Included in the Sample Driver

Folder File Overview

main.c Main routine, initialization, sample application

usbf850.c USB initialization, endpoint control, bulk transfer, control transfer

src

usbf850_communication.c CDC-specific processing

errno.h Error code definitions

main.h main.c function prototype declarations

RegDef.h Register definitions

Types.h User-defined type declarations

usbf850.h usbf850.c function prototype declarations

usbf850_communication.h usbf850_communication.c function prototype declarations

usbstrg_desc.h Descriptor definitions

include

usbf850_sfr.h Macro definitions for accessing the USBF registers

JG3H_CDC_VISTA.inf INF file for WindowsTM VistaTM inf file

JG3H_CDC_XP.inf INF file for Windows XPTM

Remark In addition, the project-related files generated when creating a development environment by using the

USB-to-serial conversion host driver or PM+ (an integrated development tool made by NEC Electronics)

are also included. For details, see 5.2.1 Preparing the host environment.

CHAPTER 1 OVERVIEW

Application Note U19599EJ1V0AN 10

1.2 Overview of the V850ES/Jx3-H and V850ES/Jx3-U

This section describes the V850ES/Jx3-H and V850ES/Jx3-U, which are controlled by using the sample driver.

The V850ES/Jx3-H and V850ES/Jx3-U are products in the low-power series of V850 single-chip microcontrollers

for real-time control, made by NEC Electronics. They use a V850 CPU core and have peripherals such as ROM, RAM,

timers, counters, a serial interface, an A/D converter, a D/A converter, a DMA controller, a CAN controller, and a USB

function controller. For details, see the V850ES/JG3-H, V850ES/JH3-H Hardware User’s Manual and V850ES/JG3-

U, V850ES/JH3-U Hardware User’s Manual.

1.2.1 Applicable products

The sample driver can be used for the following products:

Table 1-3. V850ES/Jx3-H and V850ES/Jx3-U Products

Internal Memory Interrupt Generic Name Part Number

Flash

Memory

RAMNote 1

Incorporated USB Function

Internal

Note 2

External

Note 2

μ PD70F3760 256 KB 40 KB Function controller

μ PD70F3761 384 KB 48 KB Function controller

μ PD70F3762 512 KB 56 KB Function controller

69 V850ES/JG3-H

μ PD70F3770 256 KB 40 KB Function controller 73

17

μ PD70F3765 256 KB 40 KB Function controller

μ PD70F3766 384 KB 48 KB Function controller

μ PD70F3767 512 KB 56 KB Function controller

69 V850ES/JH3-H

μ PD70F3771 256 KB 40 KB Function controller 73

20

μ PD70F3763 384 KB 48 KB Function controller

Host controller

V850ES/JG3-U

μ PD70F3764 512 KB 56 KB Function controller

Host controller

15

μ PD70F3768 384 KB 48 KB Function controller

Host controller

V850ES/JH3-U

μ PD70F3769 512 KB 56 KB Function controller

Host controller

72

20

Notes 1. Includes a data-dedicated 8 KB RAM area.

 2. Includes one non-maskable interrupt source.

Caution In this application note, all target microcontrollers are collectively indicated as the V850ES/Jx3-H,

unless distinguishing between them is necessary.

CHAPTER 1 OVERVIEW

Application Note U19599EJ1V0AN 11

1.2.2 Features

The main features of the V850ES/Jx3-H and V850ES/Jx3-U are as follows.

• Memory space: 64 MB of linear address space (for programs and data)

 External expansion: Up to 16 MB (including 1 MB used as internal ROM/RAM space)

• Internal memory: RAM: 40/48/56 KB

 Flash memory: 256/384/512 KB

• External bus interface: Multiplexed bus output (V850ES/JG3-H, V850ES/JG3-U)

 Separate bus/multiplexed bus output selectable (V850ES/JH3-H, V850ES/JH3-U)

 8/16-bit data bus sizing

 Wait function

 • Programmable wait

 • External wait

 Idle state

 Bus hold

• Serial interface: Asynchronous serial interface C (UARTC): 5 shared channels

 Three-wire variable-length serial interface F (CSIF): 2 dedicated channels and 3 shared

channels

 I2C bus interface (I2C): 3 shared channels

 CAN interface: 1 shared channel (μ PD70F3770 and μ PD70F3771)

 USB function interface: 1 dedicated channel

 USB host interface: 1 dedicated channel (V850ES/Jx3-U)

• DMA controller: 4 channels

• Clock generator: Main clock or subclock operation:

 Seven-level CPU clock (fXX, fXX/2, fXX/4, fXX/8, fXX/16, fXX/32, fXT)

 Clock-through mode/PLL mode selectable

Application Note U19599EJ1V0AN 12

CHAPTER 2 OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample driver conforms to.

USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host by using the same

type of connector. The USB interface is more flexible and easier to use than older interfaces in that it can connect up

to 127 devices by adding a branching point known as a hub, and supports the hot-plug feature, which enables devices

to be recognized by Plug & Play. The USB interface is provided in most current computers and has become the

standard for connecting peripherals to a computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-IF). For details about the

USB standard, see the official USB-IF website (www.usb.org).

2.1 Transfer Format

Four types of transfer formats (control, bulk, interrupt, and isochronous) are defined in the USB standard. Table 2-1

shows the features of each transfer format.

Table 2-1. USB Transfer Format

Transfer Format

Item

Control Transfer Bulk Transfer Interrupt Transfer Isochronous Transfer

Feature Transfer format used

to exchange

information required

for controlling

peripheral devices

Transfer format used

to periodically

handle large

amounts of data

Periodic data

transfer format that

has a low band width

Transfer format used

for a real-time

transfer

High speed

480 Mbps

64 bytes 512 bytes 1 to 1,024 bytes 1 to 1,024 bytes

Full speed

12 Mbps

8, 16, 32, or 64

bytes

8, 16, 32, or 64

bytes

1 to 64 bytes 1 to 1,023 bytes

Specifiable packet

size

Low speed

1.5 Mbps

8 bytes − 1 to 8 bytes −

Transfer priority 3 3 2 1

CHAPTER 2 OVERVIEW OF USB

Application Note U19599EJ1V0AN 13

2.2 Endpoints

An endpoint is an information unit that is used by the host to specify a communicating device and is specified using

a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided for every data communication path

that is used for a peripheral device and cannot be shared by multiple communication pathsNote. For example, a device

that can write to and read from an SD card and print out documents must have a separate endpoint for each purpose.

Endpoint 0 is used to control transfers for any type of device.

During data communication, the host uses a USB device address, which specifies the device, and an endpoint (a

number and direction) to specify the communication destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and functions as a FIFO

that absorbs the difference in speed of the USB and communication destination (such as memory).

Note An endpoint can be exclusively switched by using the alternative setting.

2.3 Device Class

Various device classes, such as the mass storage class (MSC), communication device class (CDC), and human

interface device class (HID), are defined according to the functions of the peripheral devices connected via USB (the

function devices). A common host driver can be used if the connected devices conform to the standard specifications

of the relevant device class, which is defined by a protocol.

The CDC is intended for communication devices connected to hosts, such as modems, FAX machines, and

network cards. The class is increasingly used for devices that are used for USB-to-serial conversion performing UART

communication with a computer, because recent computers do not have an RS-232C interface. Note that a different

CDC model is defined depending on the device to connect. The sample driver uses the Abstract Control Model.

2.4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request, to a function

device. A request includes data such as the direction and type of processing and address of the function device.

2.4.1 Types

There are two types of requests: standard requests and class requests.

The sample driver supports the following requests.

(1) Standard requests

Standard requests are used for all USB-compatible devices.

CHAPTER 2 OVERVIEW OF USB

Application Note U19599EJ1V0AN 14

Table 2-2. Standard Requests

Request Name Target Descriptor Overview

Device Reads the settings of the power supply (self or bus) and

remote wakeup.

GET_STATUS

Endpoint Reads the halt status.

Device Clears remote wakeup. CLEAR_FEATURE

Endpoint Cancels the halt status (DATA PID = 0).

Device Specifies remote wakeup or test mode. SET_FEATURE

Endpoint Specifies the halt status.

Device

Configuration

GET_DESCRIPTOR

String

Reads the target descriptor.

Device

Configuration

SET_DESCRIPTOR

String

Changes the target descriptor (optional).

GET_CONFIGURATION Device Reads the currently specified configuration values.

SET_CONFIGURATION Device Specifies the configuration values.

GET_INTERFACE Interface Reads the alternatively specified value among the

currently specified values of the target interface.

SET_INTERFACE Interface Specifies the alternatively specified value of the target

interface.

SET_ADDRESS Device Specifies the USB address.

SYNCH_FRAME Endpoint Reads frame-synchronous data.

(2) Class requests

Class requests are unique to device classes. For the sample driver, processing to respond to class requests

that support the CDC Abstract Control Model is implemented. The following requests can be responded to:

• SendEncapsulatedCommand

 This request is used to issue commands in the format of the protocol for controlling the communication class

interface.

• GetEncapsulatedResponse

 This request is used to request a response in the format of the protocol for controlling the communication

class interface.

• SetLineCoding

 This request is used to specify the serial communication format.

• GetLineCoding

 This request is used to acquire the communication format settings on the device side.

• SetControlLineState

 This request is used for RS-232/V.24 format control signals.

CHAPTER 2 OVERVIEW OF USB

Application Note U19599EJ1V0AN 15

2.4.2 Format

USB requests have an 8-byte length and consist of the following fields:

Table 2-3. USB Request Format

Offset Field Description

bmRequestType Request attribute

Bit 7 Data transfer direction

Bits 6 and 5 Request type

0

Bits 4 to 0 Target descriptor

1 bRequest Request code

2 Lower

3

wValue

Higher

Any value used by the request

4 Lower

5

wIndex

Higher

Index or offset used by the request

6 Lower

7

wLength

Higher

Number of bytes transferred at the data stage (the

data length)

2.5 Descriptor

For the USB standard, a descriptor is information that is specific to a function device and is encoded in a specified

format. A function device transmits a descriptor in response to a request transmitted from the host.

2.5.1 Types

The following five types of descriptors are defined:

• Device descriptor

This descriptor exists in every device and includes basic information such as the supported USB specification

version, device class, protocol, maximum packet length that can be used when transferring data to endpoint 0,

vendor ID, and product ID.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

• Configuration descriptor

At least one configuration descriptor exists in every device and includes information such as the device attribute

(power supply method) and power consumption.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• Interface descriptor

This descriptor is required for each interface and includes information such as the interface identification number,

interface class, and supported number of endpoints.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor and defines the transfer type

(direction), maximum packet length that can be used for a transfer, and transfer interval. However, endpoint 0

does not have this descriptor.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

• String descriptor

This descriptor includes any character string.

This descriptor is transmitted in response to a GET_DESCRIPTOR_String request.

CHAPTER 2 OVERVIEW OF USB

Application Note U19599EJ1V0AN 16

2.5.2 Format

The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4. Device Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bcdUSB 2 USB specification release number

bDeviceClass 1 Class code

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code

bMaxPacketSize0 1 Maximum packet size of endpoint 0

idVendor 2 Vendor ID

idProduct 2 Product ID

bcdDevice 2 Device release number

iManufacturer 1 Index to the string descriptor representing the manufacturer

iProduct 1 Index to the string descriptor representing the product

iSerialNumber 1 Index to the string descriptor representing the device production number

bNumConfigurations 1 Number of configurations

Remark Vendor ID: The identification number each company that develops a USB device acquires from USB-IF

 Product ID: The identification number each company assigns to a product after acquiring the vendor ID

Table 2-5. Configuration Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint descriptors

bNumInterfaces 1 Number of interfaces in this configuration

bConfigurationValue 1 Identification number of this configuration

iConfiguration 1 Index to the string descriptor specifying the source code for this configuration

bmAttributes 1 Features of this configuration

bMaxPower 1 Maximum current consumed in this configuration (in 2 μA units)

CHAPTER 2 OVERVIEW OF USB

Application Note U19599EJ1V0AN 17

Table 2-6. Interface Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bInterfaceNumber 1 Identification number of this interface

bAlternateSetting 1 Whether the alternative settings are specified for this interface

bNumEndpoints 1 Number of endpoints of this interface

bInterfaceClass 1 Class code

bInterfaceSubClass 1 Subclass code

bInterfaceProtocol 1 Protocol code

iInterface 1 Index to the string descriptor specifying the source code for this interface

Table 2-7. Endpoint Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bEndpointAddress 1 Transfer direction of this endpoint

Address of this endpoint

bmAttributes 1 Transfer type of this endpoint

wMaxPacketSize 2 Maximum packet size of this transfer

bInterval 1 Polling interval of this endpoint

Table 2-8. String Descriptor Format

Field Size (Bytes) Description

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

bString Any Any data string

Application Note U19599EJ1V0AN 18

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

This chapter provides details about the features and processing of the USB CDC sample driver for the

V850ES/Jx3-H and the specifications of the functions provided in the V850ES/Jx3-H.

3.1 Overview

3.1.1 Features

The sample driver can perform the following processing:

(1) Initialization

The USBF is set up for use by manipulating various registers. This setup includes specifying settings for the

CPU registers of the V850ES/Jx3-H and specifying settings for the registers of the USBF. For details, see

3.2.1 CPU initialization and 3.2.2 USBF initialization.

(2) Monitoring endpoints

The statuses of transfer endpoints in the USB function controller are judged by reading the values of various

registers. The endpoints for control transfer (endpoint 0) and bulk-out transfer (reception) (endpoint 2) are

monitored. During the processing for monitoring endpoint 0, requests are also responded to. For details, see

3.2.3 Monitoring endpoint 0 and 3.2.4 Monitoring endpoint 2.

(3) Sample application

The data at the endpoint for bulk-out transfer (reception) is read, the data is converted to uppercase or

lowercase character strings, and then the data is written to the endpoint for bulk-in transfer (transmission). For

details, see CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 19

3.1.2 Supported requests

This section describes the USB requests supported by the sample driver.

(1) Standard requests

The sample driver returns the following responses for requests to which the V850ES/Jx3-H does not

automatically respond.

(a) GET_DESCRIPTOR_string

The host issues this request to acquire the string descriptor of the function device.

If this request is received, the sample driver transmits the requested string descriptor to the host through a

control read transfer.

(b) Other requests

If a request other than the above is received, the sample driver returns a STALL response.

(2) Class requests

The sample driver responds to class requests of the CDC by using the following requests:

(a) SendEncapsulatedCommand

This request is used to issue a command in the format of the CDC interface control protocol.

If this request is received, the sample driver retrieves the data related to the request and then transmits

them through bulk-in transfer.

(b) GetEncapsulatedResponse

This request is used to request a response in the format of the CDC interface control protocol.

Currently, the sample driver does not support this request.

(c) SetLineCoding

This request is used to specify the serial communication format.

If this request is received, the sample driver retrieves the data related to the request to specify settings

such as the communication rate and then transmits a NULL packet through control read transfer.

(d) GetLineCoding

This request is used to acquire the current communication format settings on the device side.

If this request is received, the sample driver reads settings such as the communication rate and then

transmits them through control read transfer.

(e) SetControlLineState

This request is used for RS-232/V.24 format control signals.

If this request is received, the sample driver transmits a NULL packet through control read transfer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 20

3.1.3 Descriptor settings

The settings of each descriptor specified by the sample driver are shown below. These settings are included in

header file usbf850_desc.h.

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.

The settings are stored in the UF0DDn registers (where n = 0 to 17) when the USBF is initialized, because the

hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 3-1. Device Descriptor Settings

Field Size (Bytes) Specified

Value

Description

bLength 1 0x12 Descriptor size: 18 bytes

bDescriptorType 1 0x01 Descriptor type: device

bcdUSB 2 0x0200 USB specification release number: USB 2.0

bDeviceClass 1 0x02 Class code: CDC

bDeviceSubClass 1 0x00 Subclass code: none

bDeviceProtocol 1 0x00 Protocol code: No unique protocol is used.

bMaxPacketSize0 1 0x40 Maximum packet size of endpoint 0: 64

idVendor 2 0x0409 Vendor ID: NEC

idProduct 2 0x01D0 Product ID: V850ES/JG3-H

bcdDevice 2 0x0001 Device release number: 1st version

iManufacturer 1 0x01 Index to the string descriptor representing the manufacturer: 1

iProduct 1 0x02 Index to the string descriptor representing the product: 2

iSerialNumber 1 0x03 Index to the string descriptor representing the device

production number: 3

bNumConfigurations 1 0x01 Number of configurations: 1

(2) Configuration descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USBF is initialized, because

the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Table 3-2. Configuration Descriptor Settings

Field Size (Bytes) Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x02 Descriptor type: configuration

wTotalLength 2 0x0030 Total number of bytes of the configuration, interface, and

endpoint descriptors: 48 bytes

bNumInterfaces 1 0x02 Number of interfaces in this configuration: 2

bConfigurationValue 1 0x01 Identification number of this configuration: 1

iConfiguration 1 0x00 Index to the string descriptor specifying the source code for this

configuration: 0

bmAttributes 1 0x80 Features of this configuration: bus-powered, no remote wakeup

bMaxPower 1 0x1B Maximum current consumed in this configuration: 54 mA

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 21

(3) Interface descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USBF is initialized, because

the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Two types of descriptors are set up because the sample driver uses two interfaces.

Table 3-3. Interface Descriptor Settings for Interface 0

Field Size (Bytes) Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: interface

bInterfaceNumber 1 0x00 Identification number of this interface: 0

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: no

bNumEndpoints 1 0x01 Number of endpoints of this interface: 1

bInterfaceClass 1 0x02 Class code: communications interface class

bInterfaceSubClass 1 0x02 Subclass code: Abstract Control Model

bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

Table 3-4. Interface Descriptor Settings for Interface 1

Field Size (Bytes) Specified

Value

Description

bLength 1 0x09 Descriptor size: 9 bytes

bDescriptorType 1 0x04 Descriptor type: interface

bInterfaceNumber 1 0x01 Identification number of this interface: 1

bAlternateSetting 1 0x00 Whether the alternative settings are specified for this interface: no

bNumEndpoints 1 0x02 Number of endpoints of this interface: 2

bInterfaceClass 1 0x0A Class code: communications interface class

bInterfaceSubClass 1 0x00 Subclass code: Abstract Control Model

bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.

iInterface 1 0x00 Index to the string descriptor specifying the source code for this

interface: 0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 22

(4) Endpoint descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.

The settings are stored in the UF0CIEn registers (where n = 0 to 255) when the USBF is initialized, because

the hardware automatically responds to a GET_DESCRIPTOR_configuration request.

Three descriptor types are specified because the sample driver uses three endpoints.

Table 3-5. Endpoint Descriptor Settings for Endpoint 7

Field Size (Bytes) Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: endpoint

bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN

Address of this endpoint: 7

bmAttributes 1 0x03 Transfer type of this endpoint: interrupt

wMaxPacketSize 2 0x0008 Maximum packet size of this transfer: 8 bytes

bInterval 1 0x0A Polling interval of this endpoint: 10 ms

Table 3-6. Endpoint Descriptor Settings for Endpoint 2

Field Size (Bytes) Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: endpoint

bEndpointAddress 1 0x02 Transfer direction of this endpoint: OUT

Address of this endpoint: 2

bmAttributes 1 0x02 Transfer type of this endpoint: bulk

wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 3-7. Endpoint Descriptor Settings for Endpoint 1

Field Size (Bytes) Specified

Value

Description

bLength 1 0x07 Descriptor size: 7 bytes

bDescriptorType 1 0x05 Descriptor type: endpoint

bEndpointAddress 1 0x81 Transfer direction of this endpoint: IN

Address of this endpoint: 17

bmAttributes 1 0x02 Transfer type of this endpoint: bulk

wMaxPacketSize 2 0x0008 Maximum packet size of this transfer: 64 bytes

bInterval 1 0x0A Polling interval of this endpoint: 0 ms

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 23

(5) String descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_string request.

If a GET_DESCRIPTOR_string request is received, the sample driver stores the settings of this descriptor into

the UF0E0W register of the USBF.

Table 3-8. String Descriptor Settings

(a) String 0

Field Size (Bytes) Specified

Value

Description

bLength 1 0x04 Descriptor size: 4 bytes

bDescriptorType 1 0x03 Descriptor type: string

bString 2 0x09, 0x04 Language code: English (U.S.)

(b) String 1

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x2A Descriptor size: 42 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 40 − Vendor: NEC Electronics Corporation

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

(c) String 2

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x0E Descriptor size: 14 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 12 − Product type: CDCDrv (CDC driver)

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

(d) String 3

Field Size (Bytes) Specified

Value

Description

bLengthNote 1 1 0x16 Descriptor size: 22 bytes

bDescriptorType 1 0x03 Descriptor type: string

bStringNote 2 20 − Serial number: 0_98765432

Notes 1. The specified value depends on the size of the bString field.

 2. The vendor can freely set up the size and specified value of this field.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 24

3.2 Operation of Each Section
The processing sequence below is performed when the sample driver is executed. This section describes each

processing. For details about the sample application, see CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS.

Figure 3-1. Sample Driver Processing Flowchart

Start

Initializing the CPU

Initializing the ROMized
data

Initializing the USB
function controller

Monitoring endpoint 0

Monitoring endpoint 2

Executing the sample
application

Start

Initializing the CPU

Initializing the ROMized
data

Initializing the USB
function controller

Monitoring endpoint 0

Monitoring endpoint 2

Executing the sample
application

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 25

3.2.1 CPU Initialization

The settings necessary to use the USBF are specified.

Figure 3-2. CPU Initialization Flowchart

Start of CPU initialization

Locking up the system

Specifying the wait duration

Setting up clock generation

Stopping the watchdog timer

Setting up on-chip debugging

End of CPU initialization

Specifying the wait duration for
accessing data

Setting up the USB clock

YES

NO Are the settings of
special registers OK?

Start of CPU initialization

Locking up the system

Specifying the wait duration

Setting up clock generation

Stopping the watchdog timer

Setting up on-chip debugging

End of CPU initialization

Specifying the wait duration for
accessing data

Setting up the USB clock

YES

NO Are the settings of
special registers OK?

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 26

(1) Locking up the system

The system is locked up until the CPU clock frequency stabilizes.

Whether the LOCK bit of the LOCKR register is 0 is monitored.

(2) Specifying the wait duration

The number of clock cycles the system waits for a bus access to the internal peripheral I/O register is specified.

0x12 is written to the VSWC register. For the V850ES/Jx3-H, the number of clock cycles the system waits

varies depending on the operation frequency. However, for the sample driver, operation at 33.3 MHz to 48 MHz

is assumed.

(3) Setting up on-chip debugging

The CPU operation mode is switched. This setup is necessary for the V850ES/JG3-H and V850ES/JG3-U (but

not for the V850ES/JH3-H and V850ES/JH3-U).

1 is written to the OCDM0 bit of the OCDM register to enable the V850ES/JG3-H or V850ES/JG3-U to operate

in on-chip debugging mode.

(4) Stopping the watchdog timer

The operation mode of the watchdog timer is switched.

0x00 is written to the WDM21 and WDM20 bits of the WDTM2 register to stop the watchdog timer.

(5) Setting up clock generation

The operation of the internal CPU clock is set up. The following three registers are accessed:

(a) 0x0B is written to the CKC register to multiply the frequency of the clock signal generated by the internal

oscillator by 8 by using the PLL.

(b) 0x03 is written to the PLLCTL register to specify PLL mode and start the PLL.

(c) 0x00 is written to the PCC register to specify fXX as the internal clock frequency. For the sample driver,

this is specified assuming operation using the main clock.

(6) Specifying the wait duration for accessing data

The number of clock cycles the system waits when I/O ports that operate at different speeds are accessed for

data is specified for each I/O port.

0x1171 is written to the DWC0 register to access all three I/O ports while the system waits for one clock cycle.

(7) Setting up the USB clock

The operation of the USBF is set up. The following three registers are accessed:

(a) 0x02 is written to the UCKSEL register to supply the internal clock signal to the USBF.

(b) 0x00 is written to the UFCKMSK register to enable the USBF.

(c) 0x00 is written to the UHCKMSK register to enable the data-dedicated RAM (8 KB) to use for the USBF.

(8) Checking for errors when setting up special registers

Protection errors are checked for.

Whether the PRERR bit of the SYS register is 0 is monitored.

A protection error occurs if the OCDM, CKC, or PCC register is manipulated without following the specified

procedure.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 27

3.2.2 USBF initialization processing

The settings necessary to use the USBF are specified.

Figure 3-3. USBF Initialization Processing Flowchart

Start of USBF initialization processing

Setting the control endpoint to respond
using the NAK character

Initializing the request data register area

Pulling up the D+ signal

Setting up the interrupt mask register

Specifying interface and endpoint
information

End of USBF initialization processing

Disabling the control endpoint to
respond using the NAK character

Start of USBF initialization processing

Setting the control endpoint to respond
using the NAK character

Initializing the request data register area

Pulling up the D+ signal

Setting up the interrupt mask register

Specifying interface and endpoint
information

End of USBF initialization processing

Disabling the control endpoint to
respond using the NAK character

(1) Setting the control endpoint to respond using the NAK character

The NAK response operations for all requests are switched.

1 is written to the EP0NKA bit of the UF0E0NA register so that the hardware responds to all requests, including

requests that are automatically responded to, with a NAK.

The EP0NKA bit is used by software until the data used by requests that are automatically responded to has

been added to prevent the hardware from returning unintended data for such requests.

(2) Initializing the request data register area

The descriptor data transmitted in response to a GET_DESCRIPTOR request is added to various registers.

The following registers are accessed:

(a) 0x00 is written to the UF0DSTL register to disable remote wakeup and operate the USBF as a bus-

powered device.

(b) 0x00 is written to the UF0EnSL registers (where n = 0 to 2) to indicate that endpoint n operates normally.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 28

(c) The total data length (number of bytes) of the required descriptor is written to the UF0DSCL register to

determine the range of the UF0CIEn registers (where n = 0 to 255).

(d) The device descriptor data is written to the UF0DDn registers (where n = 0 to 17).

(e) The data of the configuration, interface, and endpoint descriptors is written to the UF0CIEn registers

(where n = 0 to 255).

(f) 0x00 is written to the UF0MODC register to enable automatic responses to

GET_DESCRIPTOR_configuration requests.

(3) Specifying interface and endpoint information

Information such as the number of supported interfaces, whether the alternative setting is used, and the

relationship between the interfaces and endpoints is specified for various registers.

The following registers are accessed:

(a) 0x80 is written to the UF0AIFN register to enable two interfaces.

(b) 0x00 is written to the F0AAS register to disable the alternative setting.

(c) 0x40 is written to the UF0E1IM register to link endpoint 1 to interface 1.

(d) 0x40 is written to the UF0E2IM register to link endpoint 2 to interface 1.

(e) 0x20 is written to the UF0E7IM register to link endpoint 7 to interface 0.

(4) Disabling the control endpoint to respond using the NAK character

The NAK response operations for all requests are switched.

0 is written to the EP0NKA bit of the UF0E0NA register to restart responses corresponding to each request,

including requests that are automatically responded to.

(5) Setting up the interrupt mask registers

Masking is specified for each USBF interrupt source.

The following registers are accessed:

(a) 0x00 is written to the UF0ICn registers (where n = 0 to 7) to clear all interrupt sources.

(b) 0x00 is written to the UF0FICn registers (where n = 0 and 1) to clear all transfer FIFOs.

(c) 0xDF is written to the UF0IM0 register to mask all interrupt sources indicated by the UF0IS0 register.

(d) 0x7E is written to the UF0IM1 register to mask interrupt sources indicated by the UF0IS1 register other

than those of the CPUDEC interrupt.

(e) 0xF3 is written to the UF0IM2 register to mask all interrupt sources indicated by the UF0IS2 register.

(f) 0xFE is written to the UF0IM3 register to mask interrupt sources indicated by the UF0IS3 register other

than those of the BKO1DT interrupt.

(g) 0x20 is written to the UF0IM4 register to mask all interrupt sources indicated by the UF0IS4 register.

(6) Pulling up the D+ signal

A high level signal is output from the D+ pin to report to the host that a device has been connected. For the

sample driver, the connections shown in Figure 3-4 are assumed and the following registers are accessed:

(a) 0xFC is written to the PM4 register of the CPU to set P41 to output mode.

(b) 0x02 is written to the P4 register of the CPU to output 1 from P41.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 29

Figure 3-4. USBF Connection Example

1.5 kΩ ±5%

UDPF

V850ES/Jx3-H

UDMF
30 kΩ ±5%

30 kΩ ±5%

INTP10

UVDD

P41

USB connector

D+

D–

VBUS

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 30

3.2.3 Monitoring endpoint 0

Endpoint 0 is used for control transfer. Because some requests, such as standard requests that are used for

emulation when a USB device is plugged in, are automatically responded to by hardware, standard requests and class

requests to which the hardware does not automatically respond are monitored.

Figure 3-5. Flowchart of Monitoring Endpoint 0

Start of monitoring endpoint 0

Clearing the interrupt flag

Processing the request

Judging the request type

Reading the request data

End of monitoring endpoint 0

CPUDEC interrupt
NO

YES

Start of monitoring endpoint 0

Clearing the interrupt flag

Processing the request

Judging the request type

Reading the request data

End of monitoring endpoint 0

CPUDEC interrupt
NO

YES

(1) Judging the CPUDEC interrupt

The reception of requests to which the hardware cannot automatically respond is detected.

The following registers are accessed:

(a) Whether the RSUSPD bit of the UF0IS0 register is “1” is monitored. If this bit is set to “1”, it indicates

that an interrupt request has been issued.

(b) Whether the CPUDEC bit of the UF0IS1 register is “1” is monitored. If this bit is set to “1”, it indicates

that an CPUDEC interrupt request has been issued. This interrupt request is issued if the received

request must be decoded. If this interrupt request is issued, it is also reported to the CPU as an

INTUSBF0 interrupt.

(2) Clearing the interrupt flag

The flag that indicates that an interrupt request has been issued is cleared.

"0x00" is written to the UF0ICn registers (n = 0 to 4).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 31

(3) Reading request data

The received data is read from the FIFOs and configured as request data.

The request data is acquired as 8-byte data by reading the UF0E0ST register eight times.

(4) Judging the request type

Whether the request to decode is a standard request or class request is judged.

If bits 6 and 5 are “00” for the first byte in the acquired request data (which indicates the request type), they

indicate a standard request. If they are “01”, they indicate a class request.

(5) Processing the request

The request is processed according to its type.

3.2.4 Monitoring endpoint 2

Endpoint 2 is used for bulk-out transfer (reception). Whether data has been received is monitored.

Figure 3-6. Flowchart of Monitoring Endpoint 2

Start of monitoring endpoint 2

Clearing the interrupt flag

Setting the data reception flag

End of monitoring endpoint 2

BKO1DT interrupt
NO

YES

Start of monitoring endpoint 2

Clearing the interrupt flag

Setting the data reception flag

End of monitoring endpoint 2

BKO1DT interrupt
NO

YES

(1) Judging the BKO1DT interrupt

Whether data has been successfully received is detected.

The BKO1DT bit of the UF0IS3 register is monitored. If this bit is set to "1”, it indicates that a BKO1DT interrupt

request has been issued. This interrupt request is issued if valid data is stored in the reception FIFOs. If this

interrupt request is issued, it is also reported to the CPU as an INTUSBF0 interrupt.

(2) Clearing the interrupt flag

The flag that indicates that an interrupt request has been issued is cleared.

"0" is written to the BKO1DTC bit of the UF0IC3 register.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 32

(3) Setting the data reception flag

The flag that indicates the presence of the received data (usbf850_rdata_flg) is set. This flag is uniquely

defined by the sample driver.

3.3 Function Specifications

This section describes the functions implemented in the sample driver.

3.3.1 Functions

The functions of each source file included in the sample driver are described below.

Table 3-9. Functions in the Sample Driver

Source File Function Name Description

main Main routine

init Initialization routine

cpu_init Initializes the CPU.

romp_init Initializes ROMization data.

main.c

app_main Sample application section

usbf_init Initializes the USBF.

intusb0b Monitors endpoint 0 and controls responses to

requests.

intusb1b Monitors endpoint 2

usbf850_data_send Transmits USB data.

usbf850_data_receive Receives USB data.

usbf850_rdata_length Acquires the USB received data length.

usbf850_sendnullEP0 Transmits a NULL packet for endpoint 0.

usbf850_sendstallEP0 Performs a STALL response for endpoint 0.

usbf850_standardreq Processes standard requests.

usbf850_getdesc Processes GET_DESCRIPTOR requests.

usbf850.c

usbf850_sstall_ctrl Controls the STALL responses.

usbf850_send_encapsulated_command Processes SendEncapsulatedCommand requests.

usbf850_set_line_coding Processes SetLineCoding requests.

usbf850_get_line_coding Processes GetLineCoding requests.

usbf850_set_control_line_state Processes SetControlLineState requests.

usbf850_communicatio

n.c

usbf850_setfunction_communication Adds CDC class request processing functions.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 33

3.3.2 Correlation of the functions

Some functions call other functions during the processing. The following figures show the correlation of the

functions.

Figure 3-7. Calling Functions in the Main Routine

main

init

intusb0b

usbf_init

cpu_init

romp_init

app_main

intusb1b

usbf850_data_send

usbf850_rdata_length

usbf850_data_receive

main

init

intusb0b

usbf_init

cpu_init

romp_init

app_main

intusb1b

usbf850_data_send

usbf850_rdata_length

usbf850_data_receive

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 34

Figure 3-8. Calling Functions During the Processing for the USB Function Controller

intusb0b

usbf850_sendstallEP0

usbf850_standardreq

usbf850_sendstallEP0

usbf850_getdesc

usbf850_sendstallEP0

usbf850_data_send

usbf850_data_receive

usbf850_sendstallEP0

intusb0b

usbf850_sendstallEP0

usbf850_standardreq

usbf850_sendstallEP0

usbf850_getdesc

usbf850_sendstallEP0

usbf850_data_send

usbf850_data_receive

usbf850_sendstallEP0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 35

Figure 3-9. Calling Functions During the Processing for the USB Communication Class

usbf850_send_encapsulated_command

usbf850_data_receive

usbf850_data_send

usbf850_set_line_coding

usbf850_data_receive

usbf850_sendnullEP0

usbf850_get_line_coding

usbf850_data_send

usbf850_set_control_line_state

usbf850_sendnullEP0

usbf850_send_encapsulated_command

usbf850_data_receive

usbf850_data_send

usbf850_set_line_coding

usbf850_data_receive

usbf850_sendnullEP0

usbf850_get_line_coding

usbf850_data_send

usbf850_set_control_line_state

usbf850_sendnullEP0

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 36

3.3.3 Function features

This section describes the features of the functions implemented in the sample driver.

(1) Function description format

The functions are described in the following format.

Function name

[Overview]

An overview of the function is provided.

[C description format]

The format in which the function is written in C is provided.

[Parameters]

The parameters (arguments) of the function are described.

Parameter Description

Parameter type and name Parameter summary

[Return values]

The values returned by the function are described.

Symbol Description

Return value type and name Return value summary

[Description]

The feature of the function is described.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 37

(2) Functions for the main routine

main

[Overview]

Main processing

[C description format]

void main(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called first when the sample driver is executed.

This function calls the initialization function (init), the endpoint 0 monitoring function (intusb0b), the endpoint 2

monitoring function (intusb1b), and then the sample application processing function (app_main).

init

[Overview]

Initialization processing

[C description format]

void init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called in the main routine.

The CPU initialization processing function (cpu_init), ROMization package initialization processing function

(romp_init), and then the USBF initialization processing function (usbf_init) are called.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 38

cpu_init

[Overview]

Initializes the CPU.

[C description format]

void cpu_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during initialization.

The settings that are necessary to use the USBF in the V850ES/Jx3-H, such as the number of wait cycles, clock

frequency, and operation mode when accessing the bus, are specified.

romp_init

[Overview]

ROMization package initialization processing

[C description format]

void romp_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during initialization.

The copy function (_rcopy) is called and the information stored at the specified address is copied to the RAM

area byte by byte.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 39

app_main

[Overview]

Sample application processing

[C description format]

void app_main(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the main processing and is implemented as an example of using the functions

included with the sample driver.

After checking whether the USB function controller has received data, the received data length acquisition function

(usbf850_rdata_length) and the data reception function (usbf850_data_receive) are called to retrieve

the data. Next, the retrieved data is converted to uppercase or lowercase characters based on the ASCII

character codes. Finally, the data transmission function (usbf850_data_send) is called to transmit the data.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 40

(3) Functions for the USBF

usbf_init

[Overview]

Initializes the USBF.

[C description format]

void usbf_init(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during initialization processing.

This function specifies the settings required for using the USBF, such as allocating and specifying the data area,

and masking interrupt requests.

intusb0b

[Overview]

Monitors endpoint 0.

[C description format]

void intusb0b(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the main processing and supports control transfer.

The issuance of CPUDEC interrupt requests is monitored, and, if the issuance of such a request is identified,

request data (8 bytes) is retrieved and then decoded. The request type is judged based on the result of decoding

the data, and then the corresponding function is called to issue a response.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 41

intusb1b

[Overview]

Monitors endpoint 2.

[C description format]

void intusb1b(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called in the main processing and supports bulk-out transfer (reception).

The issuance of BKO1DT interrupt requests is monitored, and, if the issuance of such a request is identified, the

data reception flag (usbf850_rdata_flg) is set.

usbf850_data_send

[Overview]

Transmits USB data.

[C description format]

INT32 usbf850_data_send(UINT8 *data, INT32 len, INT8 ep)

[Parameters]

Parameter Description

UINT8 *data Transmission data buffer pointer

INT32 len Transmission data length

INT8 ep Transmission data length

[Return values]

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

[Description]

This function stores the data stored in the transmission data buffer into the FIFO for the specified endpoint, byte

by byte.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 42

usbf850_data_receive

[Overview]

Receives USB data.

[C description format]

INT32 usbf850_data_receive(UINT8 *data, INT32 len, INT8 ep)

[Parameters]

Parameter Description

UINT8 *data Reception data buffer pointer

INT32 len Reception data length

INT8 ep Data reception endpoint number

[Return values]

Symbol Description

DEV_OK Normal completion

DEV_ERROR Abnormal termination

[Description]

This function reads data from the FIFO for the specified endpoint byte by byte and stores the data into the

reception data buffer.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 43

usbf850_rdata_length

[Overview]

Acquires the USB reception data length.

[C description format]

void usbf850_rdata_length(INT32* len , INT8 ep)

[Parameters]

Parameter Description

INT32* len Pointer to the storage address of the received data length

INT8 ep Data reception endpoint number

[Return values]

None

[Description]

This function reads the received data length of the specified endpoint.

usbf850_sendnullEP0

[Overview]

Transmits a NULL packet for endpoint 0.

[C description format]

void usbf850_sendnullEP0(void)

[Parameters]

None

[Return values]

None

[Description]

This function clears the FIFO for endpoint 0 and transmits a NULL packet from the USBF by setting the bit that

indicates the end of data to 1.

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 44

usbf850_sendstallEP0

[Overview]

Returns a STALL response for endpoint 0.

[C description format]

void usbf850_sendstallEP0(void)

[Parameters]

None

[Return values]

None

[Description]

This function makes the USBF return a STALL response by setting the bit that indicates the use of STALL

handshaking to 1.

usbf850_standardreq

[Overview]

Processes standard requests to which the USBF does not automatically respond.

[C description format]

void usbf850_standardreq(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the processing for monitoring endpoint 0.

If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR request processing

function (usbf850_getdesc). For other requests, this function calls the function for returning STALL responses

for endpoint 0 (usbf850_sendstallEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 45

usbf850_getdesc

[Overview]

Processes GET_DESCRIPTOR requests.

[C description format]

void usbf850_getdesc(void)

[Parameters]

None

[Return values]

None

[Description]

This function is called during the processing of standard requests to which the USBF does not automatically

respond.

If a decoded request requests a string descriptor, this function calls the USB data transmission function

(usbf850_data_send) and transmits a string descriptor from endpoint 0. If a decoded request requests any

other descriptor, this function calls the function for processing STALL responses for endpoint 0

(usbf850_sendstallEP0).

usbf850_sstall_ctrl

[Overview]

Controls STALL responses.

[C description format]

void usbf850_sstall_ctrl(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the STALL response processing function for endpoint 0 (usbf850_sendstallEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 46

(4) Functions for USB communication device class processing

usbf850_send_encapsulated_command

[Overview]

Processes SendEncapsulatedCommand requests.

[C description format]

void usbf850_send_encapsulated_command(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the data reception function (usbf850_data_receive) to retrieve the data received at

endpoint 0, and then calls the data transmission function (usbf850_data_send) to transmit data from endpoint 2

via bulk-in transfer (transmission).

usbf850_set_line_coding

[Overview]

Processes SetLineCoding requests.

[C description format]

void usbf850_set_line_coding(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the data reception function (usbf850_data_receive) to retrieve the data received at

endpoint 0, and then writes the data to the UART_MODE_INFO structure. Based on the retrieved data, this

function specifies the transfer speed, data length, and UART mode, and then calls the NULL packet transmission

function for endpoint 0 (usbf850_sendnullEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 47

usbf850_get_line_coding

[Overview]

Processes GetLineCoding requests.

[C description format]

void usbf850_get_line_coding(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the data transmission function (usbf850_data_send) to transmit the value of the

UART_MODE_INFO structure from endpoint 0.

usbf850_set_control_line_state

[Overview]

Processes SetControlLineState requests.

[C description format]

void usbf850_set_control_line_state(void)

[Parameters]

None

[Return values]

None

[Description]

This function calls the NULL packet transmission function for endpoint 0 (usbf850_sendnullEP0).

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Application Note U19599EJ1V0AN 48

usbf850_setfunction_communication

[Overview]

Adds CDC class request functions.

[C description format]

void usbf850_setfunction_communication(void)

[Parameters]

None

[Return values]

None.

[Description]

This function adds the addresses of various functions for processing USB communication class requests.

Application Note U19599EJ1V0AN 49

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

This chapter describes the sample application included with the sample driver.

4.1 Overview

The sample application is provided as a simple example of using the USB communication device class driver and is

incorporated in the main routine of the sample driver.

The sample application reads the data received by the USB function controller, converts uppercase characters to

lowercase characters based on the ASCII character codes, and then transmits the converted data. Various functions

of the sample driver are used during this processing.

4.2 Operation

The sample application performs the processing shown in the following flowchart.

Figure 4-1. Flowchart for the Sample Application Processing

Start of the processing by the sample
application

Acquiring the USB reception data
length

Transmitting USB data

Converting the received data to uppercase or
lowercase characters

Receiving USB data

End of the processing by the sample
application

Data reception flag
= 1?

NO

YES

Start of the processing by the sample
application

Acquiring the USB reception data
length

Transmitting USB data

Converting the received data to uppercase or
lowercase characters

Receiving USB data

End of the processing by the sample
application

Data reception flag
= 1?

NO

YES

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

Application Note U19599EJ1V0AN 50

(1) Checking for received USB data

The data reception flag (usbf850_rdata_flg) set by the sample driver is monitored. If this flag is set, it indicates

that there is received data in the USB function controller.

(2) Acquiring the USB reception data length

The reception data length is acquired. A sample driver function is called for this processing.

(3) Receiving USB data

Reception starts by specifying the buffer (FIFO) in which to store the received data, the length of the data to

receive, and the reception endpoint number. A sample driver function is called for this processing.

(4) Converting the received data to uppercase or lowercase characters

Data is read from the reception FIFOs and characters are converted. The letters “A” to “Z” and “a” to “z” are

identified based on their ASCII character codes, and then uppercase characters are converted to lowercase

characters and vice versa. 2-byte characters, numbers, and symbols are not converted.

(5) Transmitting USB data

The converted data is transmitted. Transmission starts by specifying the buffer in which the data to transmit is

stored, the length of the data, and the transmission endpoint number. A sample driver function is called for this

processing.

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

Application Note U19599EJ1V0AN 51

4.3 Using Functions

The main.c source file that includes this sample application is coded as follows in order to call sample driver

functions. For details about the functions, see 3.3 Specifications of Functions.

List 4-1. Sample Application Code Portion

1 #include "main.h"

2 #include "usbf850.h"

3 #include "usbf850_sfr.h"

4 #include "RegDef.h"

5 #include "errno.h"

6 :

7 Omitted

8 :

9 void app_main(void)

10 {

11 UINT8 user_data[USER_RBUF_SIZE];

12 INT32 ret;

13 INT32 len;

14 INT32 i;

15 :

16 Omitted

17 :

18 memset(user_data , 0 , USER_RBUF_SIZE);

19 usbf850_rdata_length(&len , C_BKO1);

20 ret = usbf850_data_receive(&user_data[0], len, C_BKO1);

21 if (ret != DEV_ERROR) {

22 :

23 Omitted

24 :

25 usbf850_data_send(user_data, len, C_BKI1);

(1) Definitions and declarations

usbf850.h and usbf850_sfr.h are included in order to use the sample driver functions.

(2) Acquiring the reception data length and receiving data

The function for acquiring the data length (usbf850_rdata_length) is called on line 19 and the function for

receiving data (usbf850_data_receive) is called on line 20. C_BKO1, which is used as an argument

indicating the endpoint number, is defined in usbf850_sfr.h.

(3) Transmitting data

The function for transmitting data (usbf850_data_send) is called on line 25. C_BKI1, which is used as an

argument indicating the endpoint number, is defined in usbf850_sfr.h.

Application Note U19599EJ1V0AN 52

CHAPTER 5 DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that uses the

USB communication device class sample driver for the V850ES/Jx3-H and the procedure for debugging the

application.

5.1 Used Products

This section describes the used hardware and software tool products.

5.1.1 Program development

The following hardware and software are necessary to develop a system that uses the sample driver:

Table 5-1. Example of the Components Used in a Program Development Environment

Components Product Example Remark

Hardware Host − A PC/ATTM-compatible computer using

Windows XP or Windows Vista

Integrated development tool PM+ V6.31 Software

Compiler CA850 W3.20

5.1.2 Debugging

The following hardware and software are necessary to debug a system that uses the sample driver:

Table 5-2. Example of the Components Used in a Debugging Environment

Components Product Example Remark

Host − A PC/AT-compatible computer using Windows

XP or Windows Vista

Target device TK-850/JG3H Tessera Technology, Inc.

Hardware

USB cables − miniB-to-A connector cable

Integrated development tool PM+ V6.31

Debugger ID850QB V3.50

Software

Flash memory programming

tool

ID850QB V3.50

Device file DF703771 For the V850ES/Jx3-H

Host driver for the debugging

port

− Note 1

Files

Project files − Note 2

Notes 1. For details about products and how to obtain them, contact NEC Electronics.

 2. A file that is used when creating a system using PM+ is included with the sample driver.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 53

5.2 Setting Up the Environment

This section describes the preparations required for developing and debugging a system by using the products

described in 5.1 Used Products.

5.2.1 Preparing the host environment

Create a dedicated workspace on the host for debugging.

(1) Installing an integrated development tool

Install PM+. For details, see the PM+ User’s Manual.

(2) Downloading drivers

Store the set of files provided with the sample driver in any directory without changing the folder structure.

Store the device driver in any directory..

Figure 5-1. Folder Structure of the Sample Driver

Folder containing include files

Folder containing NEC compiler projects

Folder containing source files

Any folder include

NEC_project

src

Folder containing INF files Inf file

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 54

(3) Setting up the workspace

The procedure for using project files included with the sample driver is described below.

<1> Start PM+, and then select Open Workspace in the File menu.

<2> In the Open Workspace dialog box, specify the workspace file in the NEC_project folder, which is the

sample driver installation directory.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 55

(4) Installing a device file

The procedure for using a device file for the V850ES/Jx3-H is described below.

<1> Select Project Settings in the PM+ Project menu.

<2> In the Project Settings dialog box, click the Device Install button on the Project Information tab to

start the Device File Installer.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 56

<3> In the Device File Installer dialog box, click the Install button to start the installation wizard.

<4> In the Install Information File dialog box, click the Browse button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 57

<5> In the Open dialog box, open the directory in which the device file was stored, select __CSETUP.INI, and

then click the Open button.

<6> In the Install Information File dialog box, click the Next button.

 In the NEC SOFTWARE LICENSE AGREEMENT dialog box, read the license agreement, and then click

the Agree button if you agree with the terms.

<7> In the Kind of File dialog box, select the device file to install, and then click the Next button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 58

<8> In the Install Directory dialog box, confirm that a path is displayed, and then click the Next button.

<9> In the Installation Start dialog box, click the Next button.

<10> The device file is installed to the project. This might take a while depending on the environment.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 59

<11> In the Installation Finished dialog box, click the Finish button.

(5) Setting up the building tool

The procedure for using the CA850 as the building tool and the ID850QB as the debugging tool is described

below.

<1> Select Project Settings in the PM+ Project menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 60

<2> In the Project Settings dialog box, click the Detail Setting button on the Tool Version Settings tab.

<3> In the Tool Version Detail Setting dialog box, select the compiler version to use in the CA850 column

and the debugger version to use in the ID850QB column.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 61

5.2.2 Setting up the target environment

Connect the target device to use for debugging.

(1) Connecting the target device

Connect the two USB ports on the TK-850/JG3H to the USB ports of the host by using USB cables.

Figure 5-2. Connecting the TK-850/JG3H

Host TK-850/JG3H

USB1
(debugging port)

USB2
(virtual COM port)

Remark For a drawing and details about the ports of the K-850/JG3H, see APPENDIX A STARTER KIT.

(2) Installing the host driver

The procedure for using the virtual COM port host driver included with the sample driver is described below.

Remark One of the two USB ports on the TK-850/JG3H is a debugging port that requires a separate host

driver. For details about the files to use and how to obtain them, contact NEC Electronics.

<1> When the connections of the TK-850/JG3H are recognized by the host, the Found New Hardware

message is displayed, and then the Found New Hardware Wizard starts.

<2> On the first page of the Found New Hardware Wizard dialog box, select No, not this time, and then

click the Next button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 62

<3> On the next page, select Install from a list or specific location (Advanced) and then click the Next

button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 63

<4> On the next page, select Don’t search. I will chose the driver to install and then click the Next button.

<5> On the next page, click the Have Disk button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 64

<6> In the Install From Disk dialog box, click the Browse button to display the inf file folder in the directory

in which the sample driver was stored.

<7> Select the inf file in the XP or VISTA folder according to the OS used on the host, and then click the

Open button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 65

<8> In the Install From Disk dialog box, confirm that the path under Copy manufacturer’s files from: is

correct, and then click the OK button.

<9> In the Found New Hardware Wizard dialog box, select NEC Electronics JG3H Virtual UART, and then

click the Next button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 66

<10> The driver installation starts.

<11> In the Hardware Installation dialog box, click the Continue Anyway button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 67

<12> The driver is installed. This might take a while depending on the environment.

<13> On the next page, click the Finish button.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 68

(3) Checking the device assignment

Open the Windows Device Manager window. In the Ports (COM & LPT) category, make sure that NEC

Electronics Jx3H Virtual UART is displayed and check the assigned COM port number.

Remark Device names and port numbers can be changed. For details, see 6.2 Customizing the Sample Driver.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 69

5.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was developed using the

workspace described in 5.2 Setting Up the Environment.

For the V850ES/Jx3-H, a program can be written to its internal flash memory and the program operation can be

checked by directly executing the program by using a debugger (on-chip debugging).

5.3.1 Generating a load module

To write a program to the target device, use a C compiler to generate a load module by converting a file written in C

or assembly language.

For PM+, generate a load module by selecting Rebuild in the Build menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 70

5.3.2 Loading and executing the load module

Execute the generated load module by writing (loading) it to the target.

(1) Writing the load module

The procedure for writing the load module to the TK-850/JG3H by using PM+ is described below.

<1> Start the ID850QB by selecting Debug in the Build menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 71

<2> In the Configuration dialog box, select “6.000” (MHz) for Main OSC and “8” for Multiply rate.

<3> If a project file included with the sample driver is used, the following dialog box is displayed. Click the

Yes button to start writing the load module file.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 72

(2) Executing the program

Click the button in the ID850QB window or select Run Without Debugging in the Run menu.

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Application Note U19599EJ1V0AN 73

5.4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB, the result of executing the

sample application in the driver can be checked.

Start terminal software (such as Tera Term) on the host, enter the following characters, and then check how they

are displayed:

• A character from "A" to "Z" should be displayed as "a" to "z".

• A character from "a" to "z" should be displayed as "A" to "Z".

• A character other than "A" to "Z" or "a" to "z" should be displayed as is.

Remark For details about the sample application, see CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS.

Application Note U19599EJ1V0AN 74

CHAPTER 6 USING THE SAMPLE DRIVER

This chapter describes information that you should know when using the USB CDC sample driver for the

V850ES/Jx3-H.

6.1 Overview

The sample software can be used in the following two ways:

(1) Customizing the sample driver

Rewrite the following sections of the sample driver as required:

• The sample application section in main.c

• The values specified for the registers in RegDef.h and usbf850_sfr.h

• The descriptor information in usbf850_desc.h

• Device names and provider information included in the virtual COM port host driver (inf file)

Remark For the list of files included in the sample driver, see 1.1.3 Files included in the sample driver.

(2) Using functions

Call functions from within the application program as required. For details about the provided functions, see

3.3 Function Specifications.

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 75

6.2 Customizing the Sample Driver

This section describes the sections to rewrite as required when using the sample driver.

6.2.1 Application section

The code in main.c below includes a simple example of processing using the sample driver. The initialization

before and after the processing and endpoint monitoring can be used by including the processing to actually use for

the application in this section.

List 6-1. Sample Application Code

1 /*==

2 Sample

3 void app_main(void)

4

5 Arguments:

6 N/A

7 Return values:

8 N/A

9 Overview:

10 sample application processing function.

11 ==*/

12 void app_main(void)

13 {

14 UINT8 user_data[USER_RBUF_SIZE];

15 INT32 ret;

16 INT32 len;

17 INT32 i;

18

19 if (usbf850_rdata_flg != 0) {

20 usbf850_rdata_flg = 0;

21

22 /* Receive processing */

23 memset(user_data , 0 , USER_RBUF_SIZE);

24 usbf850_rdata_length(&len , C_BKO1);

25 ret = usbf850_data_receive(&user_data[0], len, C_BKO1);

26 if (ret != DEV_ERROR) {

27

28 /* uppercase <-> lowercase (ASCII code) */

29 for (i = 0 ; i < len ; i++) {

30 if ((user_data[i] >= 'a') && (user_data[i] <= 'z')) {

31 user_data[i] = user_data[i] - 0x20;

32 } else if ((user_data[i] >= 'A') && (user_data[i] <= 'Z')) {

33 user_data[i] = user_data[i] + 0x20;

34 } else {

35 /* none */

36 }

37 }

38

39 /* Transmission processing */

40 usbf850_data_send(user_data, len, C_BKI1);

41 }

42 }

43 }

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 76

6.2.2 Setting up the registers

The registers the sample driver uses (writes to) and the values specified for them are defined in RegDef.h and

usbf850_sfr.h. By rewriting the values in this file according to the actual use for the application, the operation of

the target device can be specified by using the sample driver.

(1) RegDef.h

The CPU registers that are mainly used in initialization processing are defined in this file. (For details, see

3.2.1 CPU Initialization processing.)

(2) usbf850_sfr.h

This file includes the definitions of the USBF registers, the register bits used in various types of processing,

and the values specified for the bits. (For details, see 3.3.2 USBF initialization processing.)

6.2.3 Descriptor information

The data the sample driver adds to the USBF during initialization processing (described in 3.1.3 Descriptor

settings) is defined in usbf850_desc.h. Information such as the attributes of the target device can be specified by

using the sample driver by rewriting the values in this file according to the use in an actual application.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and product ID must also be

rewritten in the host driver to install (the INF file) when connecting the target device. (For details, see 6.2.4 (3)

Changing the vendor and product IDs.)

Any information can be specified for the string descriptor. The sample driver defines manufacturer and product

information, so rewrite the information as required.

6.2.4 Setting up the virtual COM port host driver

The driver that was installed in 5.2.2 Preparing the environment can be customized as follows.

(1) Changing the COM port number

When the connection of a USB device is recognized by the host, the host automatically assigns the COM port

number of the device, but the number can be changed to any number. To change the COM port number by

using the host, perform the following procedure:

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 77

<1> Open the Device Manger window and display the items in the Ports (COM & LPT) category.

<2> Select NEC Electronics Jx3H Virtual UART (COMn) (where n is a number assigned by the host) to

display its properties.

<3> Click the Advanced button on the Port Settings tab.

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 78

<4> In the Advanced Settings for COMn dialog box (where n is a number assigned by the host), select any

port number from the COM Port Number drop-down list.

Remarks 1. Make sure not to select a port number that is used for a different device.

 2. Immediately after applying this change, the new port number becomes valid but might not be

reflected immediately in the Device Manager.

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 79

(2) Changing properties

Some information, such as the attributes of the device used by the Device Manager, can be changed. The

information that can be changed is shown below.

(a) The device name (in the list of devices)

<1>

(b) The device name, manufacturer name, and version (in the device properties)

<1> <1>

<2><2>

<3>

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 80

Because this information is displayed based on the information included in the host driver (the INF file), it can

be changed by rewriting the INF file. The sections in the INF file, which correspond to the numbers in the

example on the previous page, are shown below.

List 6-2. INF File (JG3H_CDC_XP.inf) Code

1 ; .inf file (Win2000,XP):
2 [Version]
3 Signature="$Windows NT$"
4 Class=Ports
5 ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
6
7 Provider=%NEC%
8 LayoutFile=layout.inf
9 DriverVer=10/15/1999,5.0.2153.1 <3>
10
11 [Manufacturer]
12 %NEC%=NEC
13
14 [NEC]
15 %NECV850ESJx3H%=Reader, USB\VID_0409&PID_01D0
16
17 [Reader_Install.NTx86]
18 ;Windows2000
19
20 [DestinationDirs]
21 DefaultDestDir=12
22 Reader.NT.Copy=12
23
24 [Reader.NT]
25 CopyFiles=Reader.NT.Copy
26 AddReg=Reader.NT.AddReg
27
28 [Reader.NT.Copy]
29 usbser.sys
30
31 [Reader.NT.AddReg]
32 HKR,,DevLoader,,*ntkern
33 HKR,,NTMPDriver,,usbser.sys
34 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
35
36 [Reader.NT.Services]
37 AddService = usbser, 0x00000002, Service_Inst
38
39 [Service_Inst]
40 DisplayName = %Serial.SvcDesc%
41 ServiceType = 1 ; SERVICE_KERNEL_DRIVER
42 StartType = 3 ; SERVICE_DEMAND_START
43 ErrorControl = 1 ; SERVICE_ERROR_NORMAL
44 ServiceBinary = %12%\usbser.sys
45 LoadOrderGroup = Base
46
47 [Strings]
48 NEC = "NEC Electronics Corporation" <2>
49 NECV850ESJx3H = "NEC Electronics Jx3H Virtual UART" <1>
50 Serial.SvcDesc = "USB Serial emulation driver"

CHAPTER 6 USING THE SAMPLE DRIVER

Application Note U19599EJ1V0AN 81

(3) Changing the vendor and product IDs

If the vendor and product IDs in the device descriptor are changed, the same changes must be specified in the

host driver (the INF file).

Include the vendor and product IDs in the INF file as shown on line 15 in List 6-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”

Product ID: Represented by four digits in hexadecimal format following “PID_”

6.3 Using Functions

The code for applications can be simplified and the code size can be reduced because frequently used and

versatile types of processing are provided as defined functions. For details about each function, see 3.3 Function

Specifications.

The following sections of the sample application shown in List 6-1 can be reused as application examples for

various types of defined processing.

(1) Judging whether data has been received

The data reception flag usbf850_rdata_flg is monitored on line 19. This flag is uniquely defined by the sample

driver and the result of monitoring endpoint 2 for the sample driver (intusb1b) is applied to this flag. (For

details, see 3.2.4 Monitoring endpoint 2.) If this flag is set, it indicates that there is received data in the USB

function controller.

(2) Data reception processing

For the sample driver, separate functions that define retrieval processing for the received data, one for

acquiring the data length and another for copying the data, are provided, and they are called on lines 24 and 25

(usbf850_rdata_length and usbf850_data_receive). The variables used as arguments are included

on lines 14 to 17, and C_BKO1, which indicates the endpoint number, is defined in usbf850_sfr.h.

(3) Data transmission processing

The function that defines the processing for copying the transmitted data (usbf850_data_send) is called on

line 40. The variables used as arguments are included on lines 14 to 17, and C_BKI1, which indicates the

endpoint number, is defined in usbf850_sfr.h.

Application Note U19599EJ1V0AN 82

APPENDIX A STARTER KIT

This chapter describes the TK-850/JG3H starter kit for the V850ES/Jx3-H, made by Tessera Technology, Inc.

A.1 Overview

The TK-850/JG3H is a kit to develop applications that use the V850ES/Jx3-H. The entire development sequence

from creating a program to building, debugging, and checking operation can be performed simply by installing

development tools and USB drivers and then connecting either board to the host. This kit uses a monitoring program

that enables debugging without connecting an emulator (on-chip debugging).

Figure A-1. Connections of the TK-850/JG3H

Host TK-850/JG3H

USB1
(debugging port)

USB2
(virtual COM port)

A.1.1 Features

The TK-850/JG3H has the following features:

• A USB miniB connector for the internal USBF

• Up to 84 I/O ports

• As small as a business card

• Efficient development by using the board with the integrated development environment (PM+)

A.2 Specifications

The main specifications of the TK-850/JG3H are as follows:

• CPU μPD70F3760 (V850ES/JG3-H)

• Operating frequency 48 MHz (subsystem clock: 32.768 kHz)

• Interface USB connector (miniB) × 2

 N-Wire connector (only the pad)

 MINICUBE®2 connector (SICA: only the pad)

 Peripheral board connector × 2 (only the pad)

• Supported platform Host: DOS/V computer that has a USB interface

 OS: Windows 2000, Windows XP

• Operating voltage 5.0 V (internal operation at 3.3 V)

• Package dimensions W89 × D52 (mm)

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	PREFACE
	CHAPTER 1 OVERVIEW
	1.1 Overview
	1.1.1 Features of the USB function controller
	1.1.2 Features of the sample driver
	1.1.3 Files included in the sample driver

	1.2 Overview of the V850ES/Jx3-H and V850ES/Jx3-U
	1.2.1 Applicable products
	1.2.2 Features

	CHAPTER 2 OVERVIEW OF USB
	2.1 Transfer Format
	2.2 Endpoints
	2.3 Device Class
	2.4 Requests
	2.4.1 Types
	2.4.2 Format

	2.5 Descriptor
	2.5.1 Types
	2.5.2 Format

	CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS
	3.1 Overview
	3.1.1 Features
	3.1.2 Supported requests
	3.1.3 Descriptor settings

	3.2 Operation of Each Section
	3.2.1 CPU Initialization
	3.2.2 USBF initialization processing
	3.2.3 Monitoring endpoint 0
	3.2.4 Monitoring endpoint 2

	3.3 Function Specifications
	3.3.1 Functions
	3.3.2 Correlation of the functions
	3.3.3 Function features

	CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS
	4.1 Overview
	4.2 Operation
	4.3 Using Functions

	CHAPTER 5 DEVELOPMENT ENVIRONMENT
	5.1 Used Products
	5.1.1 Program development
	5.1.2 Debugging

	5.2 Setting Up the Environment
	5.2.1 Preparing the host environment
	5.2.2 Setting up the target environment

	5.3 On-Chip Debugging
	5.3.1 Generating a load module
	5.3.2 Loading and executing the load module

	5.4 Checking the Operation

	CHAPTER 6 USING THE SAMPLE DRIVER
	6.1 Overview
	6.2 Customizing the Sample Driver
	6.2.1 Application section
	6.2.2 Setting up the registers
	6.2.3 Descriptor information
	6.2.4 Setting up the virtual COM port host driver

	6.3 Using Functions

	APPENDIX A STARTER KIT
	A.1 Overview
	A.1.1 Features

	A.2 Specifications

