Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/38099 Group

Using the TPU for Audio Output by PWM

Introduction

This application note describes an example of voice output by the 16-bit timer pulse unit (TPU) of an H8/38099F product in PWM operation.

Non-compressed 8-bit audio data, sampled at 8 kHz, are stored in the on-chip flash memory of the H8/38099F product.

Target Device

H8/38099F

Contents

1.	Specification	. 2
2.	Applicable Conditions	. 3
3.	Description of Hardware	. 4
4.	Principles of Operation	. 6
5.	Description of Software	10

1. Specification

- (1) The 16-bit timer pulse unit (TPU) of the H8/38099F is used for output of a voice sound in PWM mode.
- (2) Non-compressed 8-bit-length audio data (PCM data), sampled at 8 kHz, are stored in on-chip flash memory of the H8/38099F product.
- (3) A low-pass filter and amplifier are externally connected to a PWM output pin (TIOCA1) to drive output of the voice sound from a speaker.
- (4) Pressing the IRQ0 pin interrupt switch starts output of the voice sound. The LED connected to the I/O port (P90 pin) lights up during audio output.
- (5) A block diagram of the hardware for this sample task is shown in figure 1. In this sample task, audio output is realized by externally connecting an audio-output circuit (low-pass filter, amplifier, speaker, etc.) to the starter kit (RSKH838099-1) manufactured by Renesas Technology.

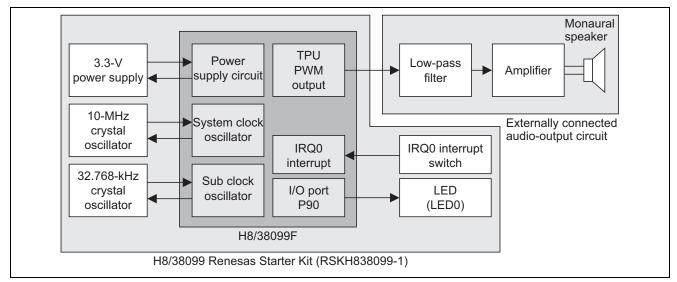


Figure 1 Block Diagram of Hardware

(6) When the switch connected to the IRQ0 interrupt pin is pressed, the sound of a voice saying "Irasshaimase" is output. The specification of the audio data (PCM data) is shown in table 1.

Table 1 Specification of Audio Data (PCM)

Item	Description
Sample size	8 bits
Sampling frequency	8 kHz
Number of channels	1 (monaural)
Total playback time	0.97 sec
Total number of samples	7,769
Data size	7,769 bytes

(7) In this sample application, all modules are initialized after release from the reset state; the chip is then placed in watch mode. Pressing the switch connected to the IRQ0 pin initiates a transition from watch mode to active mode (high-speed mode) in which audio output is performed. Once the audio output is completed, the chip reenters watch mode and again waits until the switch connected to the IRQ0 pin is pressed. A state transition diagram for this sample task is given as figure 2.

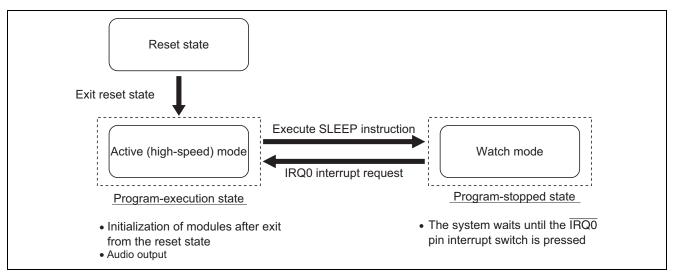


Figure 2 State Transition Diagram

2. Applicable Conditions

The applicable conditions for the H8/38099F product in this sample task are listed in table 2.

Table 2 Applicable Conditions

Item	Setting
System clock frequency	Crystal oscillator frequency: 10 MHz
	System clock (φ): 10 MHz
Sub clock frequency	Crystal oscillator frequency: 32.768 kHz
	Watch clock (φ _w): 32.768 kHz
Power supply voltage	Vcc = AVcc = 3.3 V

3. Description of Hardware

3.1 Audio Output Block

PWM waveforms generated by the 16-bit timer pulse unit (TPU) of the H8/38099F product are input to the operational amplifier via the low-pass filter. A speaker is connected to the output of the operational amplifier to handle audio output. Figure 3 is a diagram of the audio output circuit.

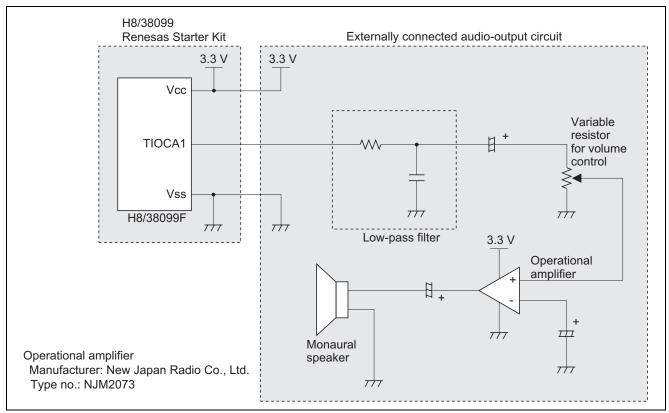


Figure 3 Circuit Diagram of Audio Output

3.2 **IRQ0** Pin Interrupt Switch

Figure 4 is a circuit diagram for the $\overline{IRQ0}$ interrupt switch connected to the $\overline{IRQ0}$ pin of the H8/38099F product. Pressing the switch releases the chip from watch mode, and initiates a transition to active mode (high-speed mode). Audio output is then performed in active mode.

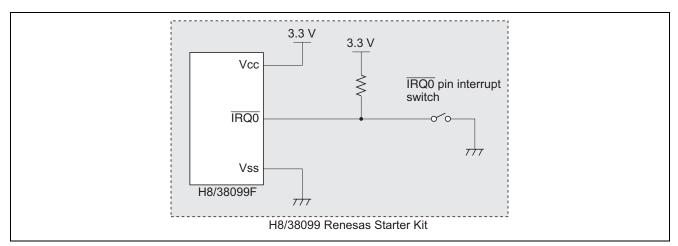


Figure 4 Circuit Diagram for the IRQ0 Pin Interrupt Switch

3.3 LED Block

Figure 5 is a circuit diagram for the LED connected to the P90 pin of the H38099F product. When the output signal from the P90 pin switches to the high level, the LED light goes out. When the signal switches to the low level, the LED lights up.

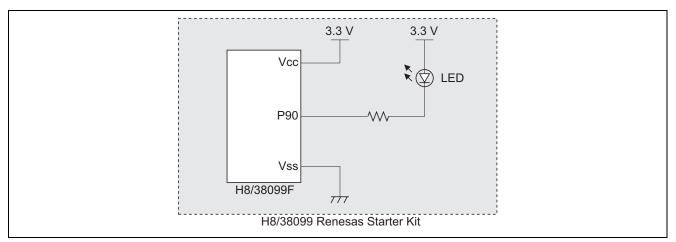


Figure 5 Circuit Diagram for the LED

4. Principles of Operation

4.1 Description of Audio-Output Operation

Figure 6 illustrates audio-output operation. On-chip peripheral modules are initialized in active mode (high-speed mode) after release from the reset state; the H8/38099F chip then enters watch mode. Pressing the IRQ0-pin interrupt switch releases the chip from watch mode to perform audio output. The LED connected to the P90 pin lights up during audio output. Once the audio output is completed, the chip returns to watch mode and again waits until the IRQ0-pin interrupt switch is pressed.

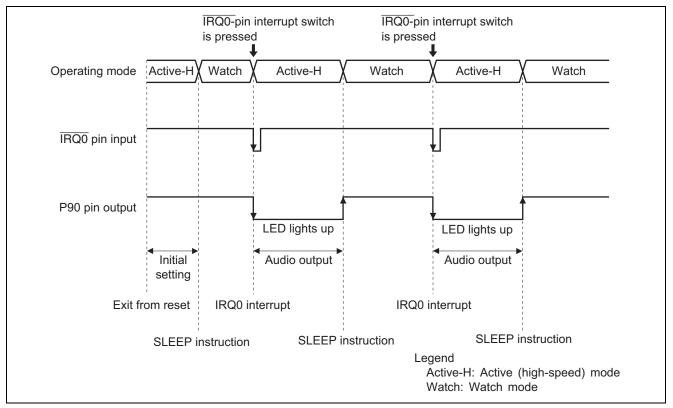


Figure 6 Audio-Output Operation

4.2 Description of PWM Output Operation by Using TPU

Figure 7 illustrates PWM output operation by the timer pulse unit (TPU) of the H8/38099F. In this sample application, channels 1 and 2 of the TPU are used to output PWM waveforms from the TIOCA1 pin. Channel 1 outputs a 40-kHz (39.0625-kHz) PWM waveform and channel 2 is used as an 8-kHz (7.8125-kHz) PWM timer.

Although the audio data in use were sampled at 8 kHz, setting the frequency of the PWM output waveform within the range of audible frequencies (20 Hz to 20 kHz) at 8 kHz will result in superposed noise (a tone) at 8 kHz. Therefore, channel 1 of the TPU is used to output a PWM waveform at 40-kHz (8 kHz x 5), i.e. out of the range of audible frequencies and at a multiple of the 8-kHz sampling frequency, from the TIOCA1 pin.

In the normal mode, the period of the signal on channel 2 is five times that of the signal on channel 1. Channel 2 is used to overwrite the audio data (duty cycle) of the PWM waveform for output from the TIOCA1 pin.

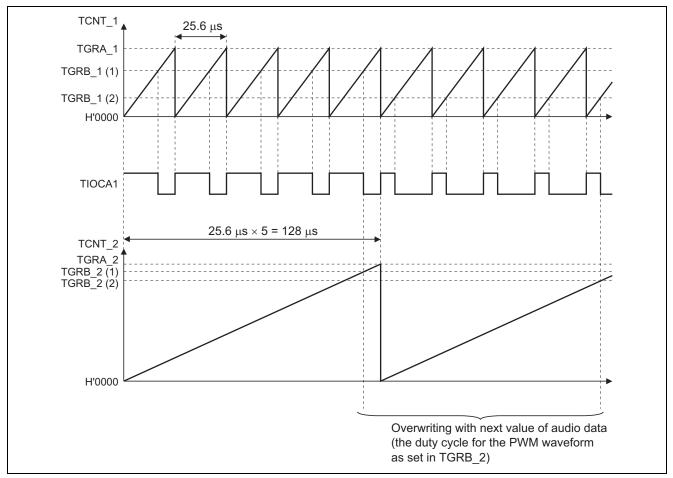


Figure 7 Operation of PWM Output by the TPU

(1) Setting of TGRA_1 (Timer General Register A1)

Timer general register A1 (TGRA_1) is used as the cycle register for the PWM waveform output from the TIOCA1 pin. The input clock for the timer counter 1 (TCNT_1) is set to ϕ . Since the sample size for the audio data is 8 bits, the TGRA_1 setting H'FF:

TGRA_1 = H'FF (8-bit size (256) - 1)

produces the following period for the PWM waveform output from the TIOCA1 pin.

 $(1/(\phi)) \times 256 = 25.6 \ \mu s$

(2) Setting of TGRB_1 (Timer General Register B1)

Timer general register B1 (TGRB_1) is used as the duty-cycle register for the PWM waveform output from the TIOCA1 pin. Settings for output of a PWM waveform from the TIOCA1 pin are initial output = 1, output on compare match with TGRA_1 = 1, and output on compare match with TGRB_1 = 0.

The duty-cycle setting in TGRB_1 is overwritten on a compare match with the TGRB_2 register of TPU_2.

 $TGRB_1 = (audio data - 1)$

(3) Setting of TGRA_2 (Timer General Register A2)

Timer general register A2 (TGRA_2) is used as the cycle register for the PWM timer to drive overwriting of the audio data (duty-cycle) setting in TGRB_1. The setting is for a period five times that for a compare match with TGRA_1. Although the audio data in use were sampled at 8 kHz, setting the frequency of the PWM output waveform within the range of audible frequencies at 8 kHz will result in an audible sound at 8 kHz. Therefore, the period of the PWM waveform output from the TIOCA1 pin is set to 40 kHz (39.0625 kHz), i.e. five times the sampling frequency of 8 kHz, with updating of the audio data at 8 kHz.

 $TGRA_2 = ((8 \text{ bits } (256)) \times 5) - 1 = H'4FF$

(4) Setting of TGRB_2 (Timer General Register B2)

Timer general register B2 (TGRB_2) is used as the duty-cycle register for the PWM timer to drive overwriting of the audio data (duty-cycle) setting in TGRB_1. The duty-cycle setting is for four cycles plus the duty cycle (4 cycles + duty cycle) of the 40-kHz (3.90625-kHz) PWM waveform output from the TIOCA1 pin.

 $TGRB_2 = ((8 \text{ bits } (256) \times 4) + (audio data)) - 1$

(5) Timing for Overwriting of Audio Data

Figure 8 shows the timing for overwriting of the audio data (duty cycle).

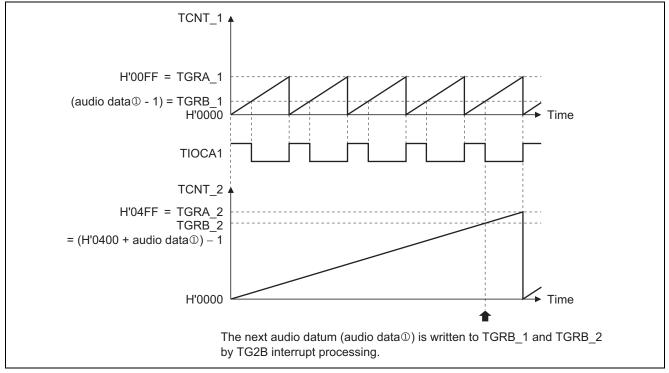


Figure 8 Timing for Overwriting of Audio Data

5. Description of Software

5.1 **Operating Environment**

Table 3 Operating Environment

Item	Description
Development tool	High-performance Embedded Workshop Ver.4.02.00.022
C/C++ complier	H8S, H8/300 SERIES C/C++ Compiler Ver.6.01.02
Complier options	-cpu = 300HA:24 -object = "\$(CONFIGDIR)¥\$(FILELEAF).obj" -debug -nolist -chgincpath -nologo

Table 4Section Settings

Address	Section Name	Description
H'000000	CVECT	Vector table area
H'000100	P, C	Program area, constant area
H'FFF380	В	On-chip RAM area (non-initialized data area)

Table 5 Vector Table for Interrupt Exception Handling

Exception Handling Source	Vector No.	Address ir	n Vect	or Table	Destination Interrupt Processing Function
RES	0	H'000000	to	H'000003	main
Watchdog timer					
System reserved	1	H'000004	to	H'000007	main
System reserved	2	H'000008	to	H'00000B	main
NMI	3	H'00000C	to	H'00000F	main
System reserved	4	H'000010	to	H'000013	main
Address break	5	H'000014	to	H'000017	main
IRQ0	6	H'000018	to	H'00001B	int_irq0
IRQ1	7	H'00001C	to	H'00001F	main
IRQAEC	8	H'000020	to	H'000023	main
IRQ3	9	H'000024	to	H'000027	main
IRQ4	10	H'000028	to	H'00002B	main
WKP0	11	H'00002C	to	H'00002F	main
WKP1	12	H'000030	to	H'000033	main
WKP2	13	H'000034	to	H'000037	main
WKP3	14	H'000038	to	H'00003B	main
WKP4	15	H'00003C	to	H'00003F	main
WKP5	16	H'000040	to	H'000043	main
WKP6	17	H'000044	to	H'000047	main
WKP7	18	H'000048	to	H'00004B	main
RTC 0.25-second overflow	19	H'00004C	to	H'00004F	main
RTC 0.5-second overflow	20	H'000050	to	H'000053	main
RTC second periodic overflow	21	H'000054	to	H'000057	main
RTC minute periodic overflow	22	H'000058	to	H'00005B	main

H8/38099 Group Using the TPU for Audio Output by PWM

Exception Handling Source	Vector No.	Address in V	Vecto	or Table	Destination Interrupt Processing Function
RTC hour periodic overflow	23	H'00005C t	to	H'00005F	main
RTC day periodic overflow	24	H'000060 t	to	H'000063	main
RTC week periodic overflow	25	H'000064 t	to	H'000067	main
RTC free-running overflow	26	H'000068 t	to	H'00006B	main
WDT overflow	27	H'00006C t	to	H'00006F	main
AEC	28	H'000070 t	to	H'000073	main
TPU TG1A	29	H'000074 t	to	H'000077	main
TPU TG1B	30	H'000078 t	to	H'00007B	main
TPU TCI1V	31	H'00007C t	to	H'00007F	main
TPU TG2A	32	H'000080 t	to	H'000083	main
TPU TG2B	33	H'000084 t	to	H'000087	int_tg2b
TPU TCI2V	34	H'000088 t	to	H'00008B	main
Timer FL	35	H'00008C t	to	H'00008F	main
Timer FH	36	H'000090 t	to	H'000093	main
SCI4	37	H'000094 t	to	H'000097	main
SCI3_1	38	H'000098 t	to	H'00009B	main
SCI3_2	39	H'00009C t	to	H'00009F	main
IIC2	40	H'0000A0 t	to	H'0000A3	main
10-bit A/D	41	H'0000A4 t	to	H'0000A7	main
Direct transition	42	H'0000A8 t	to	H'0000AB	main
System reserved	43	H'0000AC t	to	H'0000AF	main
System reserved	44	H'0000B0 t	to	H'0000B3	main
System reserved	45	H'0000B4 t	to	H'0000B7	main
System reserved	46	H'0000B8 t	to	H'0000BB	main
System reserved	47	H'0000BC t	to	H'0000BF	main
System reserved	48	H'0000C0 t	to	H'0000C3	main
System reserved	49	H'0000C4 t	to	H'0000C7	main
System reserved	50	H'0000C8 t	to	H'0000CB	main
System reserved	51	H'0000CC t	to	H'0000CF	main
System reserved	52	H'0000D0 t	to	H'0000D3	main
Timer C	53	H'0000D4 t	to	H'0000D7	main
Timer G	54	H'0000D8 t	to	H'0000DB	main
SCI_3	55	H'0000DC t	to	H'0000DF	main

5.2 List of Functions

Table 6 List of Functions

Function Name	Description
main	Main routine
	Specifies stack pointers, initializes on-chip peripheral modules, controls interrupts, the transition to watch mode, and the LED.
int_irq0	IRQ0 interrupt handling routine
	Clears interrupt request flags.
int_tg2b	TG2B interrupt handling routine
	Clears interrupt request flags and makes the duty-cycle settings in TGRB_1 and TGRB_2.
initialize	Initialization subroutine
	Initializes the watchdog timer, module standby mode, and I/O pins.
init_tpu	TPU initialization subroutine
	Initializes the TPU.

5.3 List of On-Chip RAM Areas in Use (Non-Initialized Data Area)

Table 7 List of On-Chip RAM Areas in Use

Data Type	Variable Name	Description	Address	Used in
unsigned short	voice_cnt	Counter for audio data	H'FFF380	main int_tg2b
				init_tpu

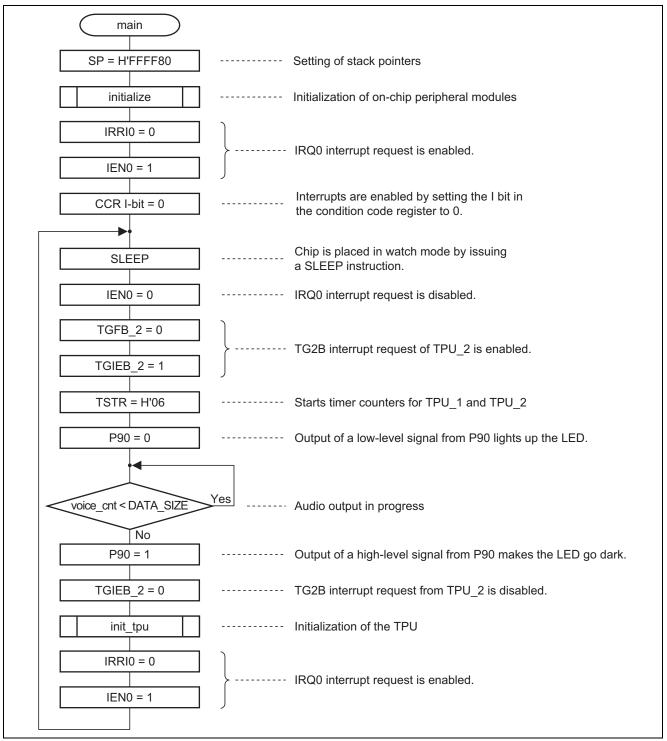
5.4 List of Constant Areas

Table 8List of Constant Areas

Data Type	Constant Name	Description	Address	Data
Const unsigned short	DATA_SIZE	Audio data size	H'000276	H'1E59
Const unsigned char	VOICE_DATA [0]	Audio data (0)	H'000278	H'80
Const unsigned char	VOICE_DATA [1]	Audio data (1)	H'000279	H'80
		•		
		•		
		•		
Const unsigned char	VOICE_DATA [7767]	Audio data (7767)	H'0020CF	H'80
Const unsigned char	VOICE_DATA [7768]	Audio data (7768)	H'0020D0	H'80

5.5 Description of Functions

5.5.1 main Function (main routine)


1. Functional Overview

This function specifies stack pointers, initializes on-chip peripheral modules, and controls interrupts, the transition to watch mode, starting of the TPU counters, and the LED.

- 2. Arguments None
- 3. Return value None

4. Flowchart

Figure 9 Flowchart of main Function

5.5.2 int_irq0 Function

1. Functional Overview

IRQ0 interrupt handling routine; performs wait processing to eliminate chattering signal from the IRQ0-pin interrupt switch, and clears the IRQ0 interrupt request flag.

- 2. Arguments None
- 3. Return value None
- 4. Flowchart

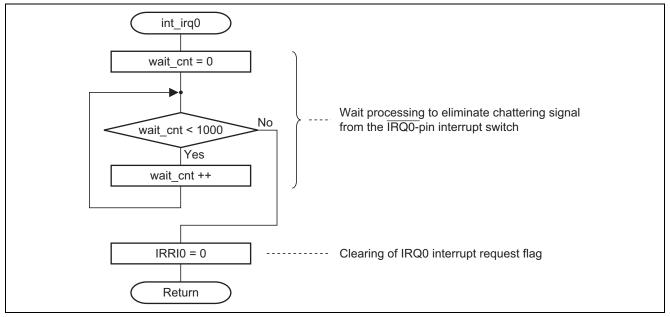


Figure 10 Flowchart of int_irq0 Function

5.5.3 int_tg2b Function

1. Functional Overview

TG2B interrupt handling routine of TPU_2; clears the TG2B interrupt flag and makes audio-data (duty-cycle) settings in TGRB_1 and TGRB_2.

- 2. Arguments None
- 3. Return value None
- 4. Flowchart

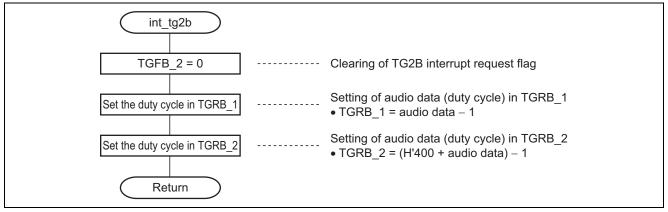


Figure 11 Flowchart of int_tg2b Function

5.5.4 initialize Function

1. Functional Overview

This function halts the watchdog timer, makes settings for module standby mode and for initialization of the I/O pin (pin P90 connected to the LED), TPU, $\overline{IRQ0}$ pin, and the system control register for the transition to watch mode.

- 2. Arguments None
- 3. Return value None
- 4. Flowchart

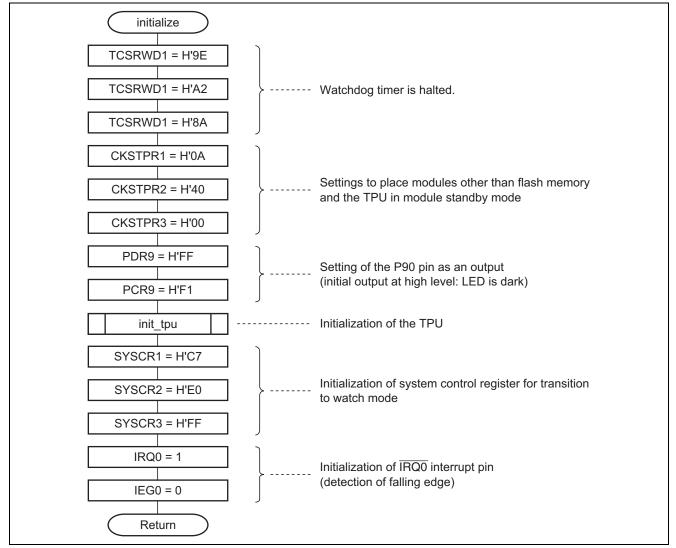


Figure 12 Flowchart of initialize Function

5.5.5 init_tpu Function

- 1. Functional Overview This function initializes the TPU.
- 2. Arguments None
- 3. Return value None
- 4. Flowchart

(init_tpu		
voice_cnt = H'0000]	Initialization of on-chip RAM areas
TSTR = H'00]	Stops the timer counters (TCNT_1 and TCNT_2)
TCR_1 = H'20]	TCNT_1 starts counting on a rising edge from the internal clock (ϕ) and is cleared by a compare match with TGRA_1.
TIOR_1 = H'16]	Initial output from the TIOCA1 pin is 1. The TIOCA1 outputs 0 on compare matches with TGRB_1 and 1 on compare matches
TCNT_1 = H'0000]	with TGRA_1. Initialization of TCNT_1
TGRA_1 = H'00FF]	Setting of the cycle period (25.6 $\mu s)$ in TGRA_1
Set the duty cycle in TGRB_1]	Setting of the duty cycle (audio data) in TGRB_1 • TGRB_1 = audio data – 1
TMDR_1 = H'C2]	TPU_1 operates in PWM mode 1.
TCR_2 = H'20]	TCNT_2 starts counting on a rising edge from the internal clock (ϕ) and is cleared by a compare match with TGRA_2.
TIOR_2 = H'00]	Output from TIOCA2 and TIOCB2 is disabled.
TCNT_2 = H'0000]	Initialization of TCNT_2
TGRA_2 = H'04FF]	Setting of the cycle period (128 $\mu s)$ in TGRA_2
Set the duty cycle in TGRB_2]	Setting of the duty cycle (audio data) in TGRB_2 • TGRB_2 = (H'0400 + audio data) - 1
TMDR_2 = H'C0]	TPU_2 is in normal operation.
Return		

Figure 13 Flowchart of init_tpu Function

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Descript		
Rev.	Date	Page	Summary	
1.00	Apr.17.08	_	First edition issued	

All trademarks and registered trademarks are the property of their respective owners.

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations

KENESAS

- (3) healthcare intervention (e.g., excision, administration of medication, etc.)
- (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2008. Renesas Technology Corp., all rights reserved.