Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M16C/62

Using the M16C/62 Timer in Pulse Output Mode

1.0 Abstract

The following article describes how to use the M16C/62 timers A's as square wave generators (Pulse Output Mode).

2.0 Introduction

The M16C/62 is a 16-bit MCU, based on the M16C CPU core, with features including 10-bit A/D, D/A, UARTS, timers, DMA, etc., and up to 256k bytes of user flash. The MCU has 5 timer A's, and Pulse Output Mode is an additional feature of timer A's Timer Mode. All 5 timer A's can operate in Pulse Output Mode. Timer A has the following additional modes of operation:

- Timer Mode (without Pulse Output)
- Event Counter Mode
- PWM Mode
- One-Shot Mode

Figure 1 illustrates the operation of timer A. The remainder of this article will focus on setting up timer A0 in Pulse Output Mode.

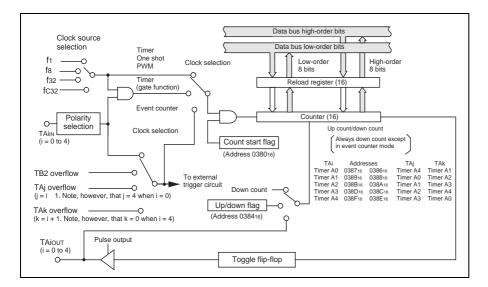


Figure 1 Bock Diagram of Timer A

3.0 Pulse Output Mode Description

In Pulse Output Mode, the counter register counts down using the selected clock source until the counter underflows (0000 to FFFFh). At this point, the TAiout pin toggles and the contents of the reload register are loaded back into the TAi register and the interrupt request bit is set. An interrupt will be accepted when all of the following conditions are met:

- interrupt enable flag (I flag) = "1"
- interrupt request bit = "1"
- interrupt priority level > IPL (Processor Interrupt Priority Level)

Note that the pulse output is free running and interrupts need not be enabled or serviced. If at any time during countdown the count start flag is cleared, the TAiout pin outputs an "L" and the count is suspended until the count start flag is set. Figure 2 illustrates this.

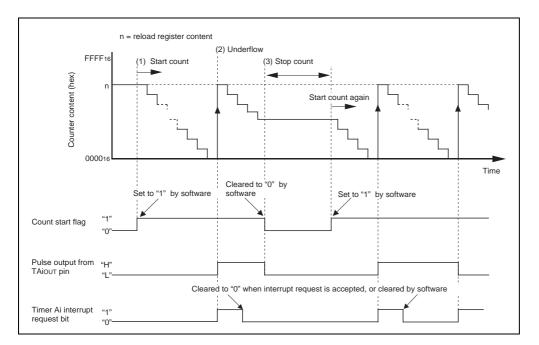
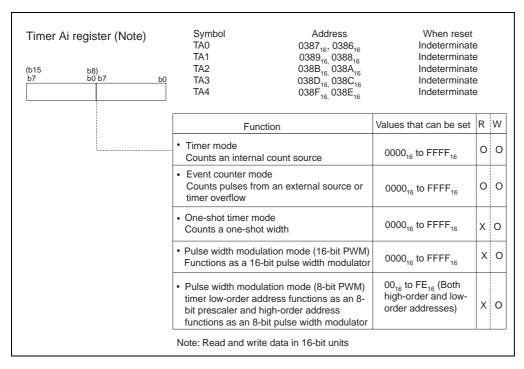


Figure 2 Operation Timing of Timer Mode, Pulse Output Function Selected


4.0 Configuring Pulse Output Mode

To configure a timer for Pulse Output Mode:

- 1. Load the Timer Ai register, TAi (which also loads the reload register) with the count source.
- 2. Load the Timer Ai Mode register, TAiMR:
 - Select timer mode: bits TMOD0, TMOD1 = 0.
 - Select pulse out: MR0 bit = 1.
 - Select the clock source (f1, f/8, f/32, or fc/32): bits TCK0,TCK1.
- 3. Load the Timer Interrupt Control register (TAiIC) with an interrupt priority level (ILVL), value of at least 1 if interrupts are required.
- 4. Ensure interrupts are enabled (I flag set).
- 5. Set the 'start count' flag bit, TAiS, in the Count Start Flag register, TABSR.

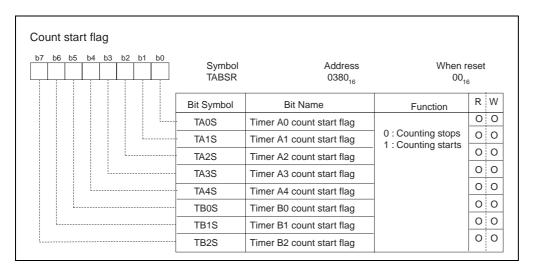
It is not necessary to perform these steps in the order listed, but the count register should be loaded before the 'start count' flag is set. Also, the priority level should not be modified when there is a possibility of an interrupt occurring.

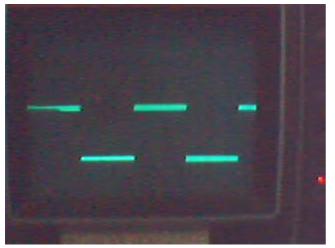
The required registers are shown in Figure 3 hrough Figure 6.

Figure 3 Timer Ai Register

						e r Symbol TAiMR(i=	0 to 4)	Address 039616 to 039A16	When reset 0016		
						Bit symbol Bit name		Bit name	Function	RW	
						TMOD0	Operati	ion mode	b1 b0	00	
				ί.		TMOD1	select bit		0 0 : Timer mode	00	
						MR0	Pulse o select b	output function bit	0 : Pulse is not output (TAiOUT pin is a normal port pin) 1 : Pulse is output (Note 1) (TAiOUT pin is a pulse output pin)		
						MR1	Gate fu	unction select bit	0 X (Note 2): Gate function not available (TAiin pin is a normal port pin) 1 0 : Timer counts only when TAiin pin is	00	
		l			MR2 Ga			held "L" (Note 3) 1 1 : Timer counts only when TAiiN pin is held "H" (Note 3)	00		
	- L.					MR3	0 (Must	always be fixed to '	'0" in timer mode)	00	
					TCK0	Count	source select bit	^{b7 b6} 00:f1 01:f8	00		
					TCK1			1 0 : f32 1 1 : fC32	00		
					I	are ir Note 2: The b	ivalid. it can be	e "0" or "1".	ng port register and port direction registion register to "0".	ster	

Figure 4 Timer Ai Mode Register in Timer Mode, Pulse Output




Figure 5 Count Start Flag Register

b7 b6 b5 b4 b3 b2 b1 b0		-)	ddress 055 ₁₆ to 00	When reset V59 ₁₆ XXXXX000 ₂			
	Bit Symbol	lit Symbol Bit Name		Function			
	ILVL0		0	b2 b1 b0 0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1 0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	0	0	
	ILVL1	Interrupt priority level sel bit	lect 0		0	0	
	ILVL2		1	0 1 : Level 5 1 0 : Level 6 1 1 : Level 7	0	0	
	IR	Interrupt request bit		0 : Interrupt not requested 1 : Interrupt requested		O Note	
		othing is assigned. rite "0" when writing to these bits. The value is "0" if read.					

Figure 6 Interrupt Control Register

5.0 Program Output

6.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/62 datasheets, 62aeds.pdf

User's Manual

- M16C/62 User's Manual, 62eum.pdf
- M16C/60 and M16C/20 C Language Programming Manual, 6020EC.pdf
- NC30 Ver. 4.0 User's Manual, NC30UE.pdf

7.0 Software Code

Following is a simple program written for Renesas' NC30 compiler to illustrate how to set up Pulse Output Mode on timer A0. This program runs on the MSV1632/62 Starter Kit Board and generates a 200Hz square wave on P7.0. A scope can be connected to pin 4 of JP3 to view the waveform. Be sure to remove IC4 (if installed) or the jumper across pins 3 and 4 at JP3 before running the program.

Note that when you stop the program (under KD30), the square wave output does not stop until the system is reset.

To become familiar with the timer, try changing the output frequency, the clock source, or even switch to a different timer (e.g. TA1, etc.).

* File Name: pulsout.c * Content: Example program for the "TIMER PULSE OUTPUT MODE ON THE M16C/62" application note. Generates a 200 Hz square wave on the P7.0 pin. For the MSV1632/62 starter kit board. * Compiled with NC30 ver. 3.20.00. * * All timing based on 16 Mhz Xtal Copyright, 2003 Renesas Technology Corporation, Inc. *_____ \$Loq:\$ *______* #include "sfr62.h" #define TIME CONFIG 0x44 /* 01000100 value to load into Timer Ai mode register |||||||| TMOD0, TMOD1: TIMER MODE SELECTED PULSE OUTPUT ||||| MR0:

 ||||
 MR1,MR2:
 GATE FUNCTION NOT SELECTED

 |||
 MR3:
 SET TO 0 IN TIMER MODE

 ||| MR3: ||_____ TCK0, TCK1: F DIVIDED BY 8 SELECTED */ #define CNTR IPL 0x00 // TAO priority interrupt level: interrupts not required //prototypes void initial(void); Name: main() Parameters: none Returns: nothing Description: initializes variables. Then does nothing but wait for TAO interrupts. void main (void) { init(); while (1); // square wave output is free running }

RENESAS


```
Name: init ()
Parameters: none
Returns: nothing
Description: timer TAO setup for Pulse Output Mode.
void init()
 {
  ta0 = 10000; // 16meg xtal, divide by 8, times 10,000 counts-> 5msec pulse widths.
/* the following procedure for writing an Interrupt Priority Level follows that as
described in the M16C data sheets under 'Interrupts' */
  _asm (" fclr i") ; // turn off interrupts before modifying IPL
taOic &= CNTR_IPL; // *?* use read-modify-write instruction to write IPL
  ta0mr = TIME CONFIG;
  asm (" fset i");
  ta0s = 1; //start counting
 }
```

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.