Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H Tiny Series

Using Compare Match Function for Timer Z 0/1 Output

Introduction

Timer Z outputs 0 or 1 on a compare-match of its timer counter 0 (TCNT0).

Target Device

H8/3687

Contents

1.	Specifications	2
2.	Description of Functions	2
3.	Description of Operation	4
4.	Description of Software	5
5.	Flowchart	7
6.	Program List	8

1. Specifications

- 1. Timer Z outputs 0 or 1 on a compare-match of its timer counter 0 (TCNT0).
- 2. The FTIOA pin normally outputs 1 and outputs 0 when TCNT0 matches GRA0.
- 3. The FTIOB pin normally outputs 0 and outputs 1 when TCNT0 matches GRB0.

2. Description of Functions

- 1. In this sample task, timer Z outputs 0 or 1 from its output pins on a compare-match of the timer counter 0 (TCNT0) of timer Figure 2.1 is a block diagram of timer Z. The elements of the block diagram are described below.
- The system clock (φ) is a 16-MHz clock that is used as a reference clock for operating the CPU and peripheral functions.
- Prescaler S (PSS) is a 13-bit counter with clock input of ϕ . PSS is incremented every cycle.
- Timer control register 0 (TCR0) specifies the input clock for TCNT0 and the condition for clearing TCNT0. In this sample task, the TCNT0 is incremented at the rising edge of $\phi/2$, and the TCNT0 is specified not to be cleared.
- Timer I/O control register A0 (TIORA0) controls GRA0 and GRB0. In this sample task, GRA0 and GRB0 are used as output-compare registers, the FTIOA0 pin outputs 0 on compare-match with GRA0, and the FTIOB0 outputs 1 on compare-match with GRB0.
- Timer counter 0 (TCNT0) is a 16-bit readable/writable upward counter that is incremented by an internal clock or external clock input. In this sample task, TCNT0 is incremented at the rising edge of $\phi/2$.
- General register A0 (GRA0) is a 16-bit readable/writable register. The value of GRA0 is always compared with that of TCNT0. In this sample task, GRA0 is set to 0x4000.
- General register B0 (GRB0) is a 16-bit readable/writable register. The value of GRB0 is always compared with that of TCNT0. In this sample task, GRB0 is set to 0x8000.
- Timer start register (TSTR) starts or stops the TCNT0 and TCNT1 operation. In this sample task, TCNT0 is specified to start counting and TCNT1 is specified to stop counting.
- Timer mode register (TMDR) selects synchronous or independent operation of TCNT0 and TCNT1. In this sample task, TCNT0 operates independently of TCNT1.
- Timer PWM mode register (TPMR) sets the output pins in normal operation mode or PWM mode. In this sample task, all outputs pins are set to normal operation mode.
- Timer function control register (TFCR) specifies operation modes and selects output levels. In this sample task, normal operation is specified for channels 0 and 1.
- Timer output master enable register (TOER) enables or disables channels 0 and 1 outputs. In this sample task, the FTIOA0 and FTIOB0 outputs are enabled.
- Timer output control register (TOCR) specifies the initial value that is output until the first compare-match is generated. In this sample task, the initial values of FTIOA0 and FTIOB0 are specified as 1 and 0, respectively.
- Input-capture/output-compare A0 pin (FTIOA0) is specified as an output-compare output pin and outputs 0 when the TCNT0 matches the GRA0.
- Input-capture/output-compare B0 pin (FTIOB0) is specified as an output-compare output pin and outputs 1 when the TCNT0 matches the GRB0.



Figure 2.1 Block Diagram of Timer Z Compare-Match 0/1 Output

2. Table 1 lists the function allocation for this sample task. The functions listed in table 1 are allocated so that 0 or 1 is on a compare-match of timer Z.

Table 2.1 Function Allocation

Function	Description
PSS	13-bit counter with system clock input
TCR0	Specifies the TCNT0 input clock.
TIORA0	Setting for the FTIOA0 and FTIOB0 pins
TCNT0	16-bit counter
GRA0	Compared with TCNT0.
GRB0	Compared with TCNT0.
TSTR	Starts counting by TCNT0.
TMDR	Specifies TCNT0 to operate independently of TCNT1.
TPMR	Specifies all output pins for normal operation.
TOER	Enables the FTIOA0 and FTIOB0 pin outputs.
TOCR	Specifies the initial output values for the FTIOA0 and FTIOB0 pins.
FTIOA0 pin	Outputs 0 on a compare-match with GRA0.
FTIOB0 pin	Outputs 1 on a compare-match with GRB0.

3. Description of Operation

Operation of this sample task is described in figure 3.1. Hardware and software processing are applied in the way shown in figure 3.1 to output 0 or 1 on a compare-match of timer Z.

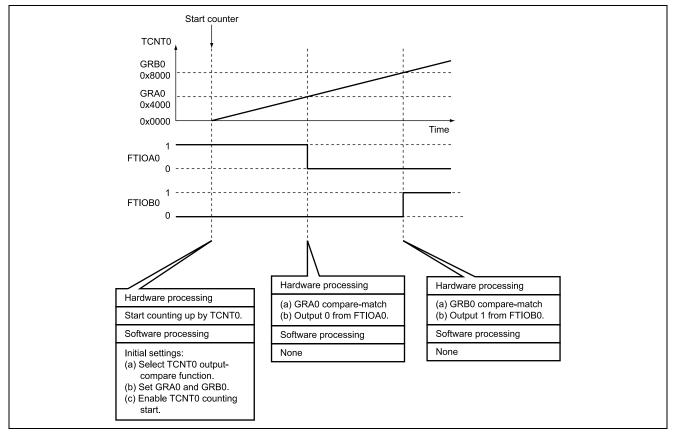


Figure 3.1 Principle of Operation

4. Description of Software

4.1 Modules

Table 4.1 describes the module used in this sample task.

Table 4.1 Description of Module

Module Name	Label Name	Function
Main routine	main	Sets the timer Z compare-match function, starts the counter, and sets output
		pins.

4.2 Arguments

This sample task uses no arguments.

4.3 Internal Registers

The internal registers used in this sample task are described below.

• TCR	Timer co	ntrol register 0	Address: 0xF700
Bit	Bit Name	Setting	Function
7	CCLR2	CCLR2 = 0	Counter clear 2 to 0
6	CCLR1	CCLR1 = 0	CCLR2 = x, CCLR1 = 0, CCLR0 = 0: Disables clearing of TCNT0
5	CCLR0	CCLR0 = 0	(x: Don't care)
4	CKEG1	CKEG1 = 0	Clock edge 1 to 0
3	CKEG0	CKEG0 = 0	CKEG1 = 0, CKEG0 = 0: Counts on the rising edge of the clock
2	TPSC2	TPSC2 = 0	Timer prescaler 2 to 0
1	TPSC1	TPSC1 = 0	TPSC2 = 0, TPSC1 = 0, TPSC0 = 1: Counts by $\phi/2$
0	TPSC0	TPSC0 = 1	

• TIORA0 Timer I/O control register A0 Address: 0xF701

Bit	Bit Name	Setting	Function
6	IOB2	IOB2 = 0	I/O control B2 to B0
5	IOB1	IOB1 = 1	IOB2 = 0, IOB1 = 1, IOB0 = 0:
4	IOB0	IOB0 = 0	Specifies the GRB0 as an output-compare register and the FTIOB0 pin to output 1 on a compare-match with GRB0.
2	IOA2	IOA2 = 0	I/O control A2 to A0
1	IOA1	IOA1 = 0	IOA2 = 0, $IOA1 = 0$, $IOA0 = 1$:
0	IOA0	IOA0 = 1	Specifies the GRA0 as an output-compare register and the FTIOA0 pin to output 0 on a compare-match with GRA0.

• TCNT0 Timer counter 0 Address: 0xF706

Function: A 16-bit up-counter that is incremented at the rising edge of $\phi/2$.

Setting: 0x0000

• GRA0 General register A0 Address: 0xF708

Function: A compare-match is generated if the GRA0 value matches TCNT0 counter value.

Setting: 0x04000

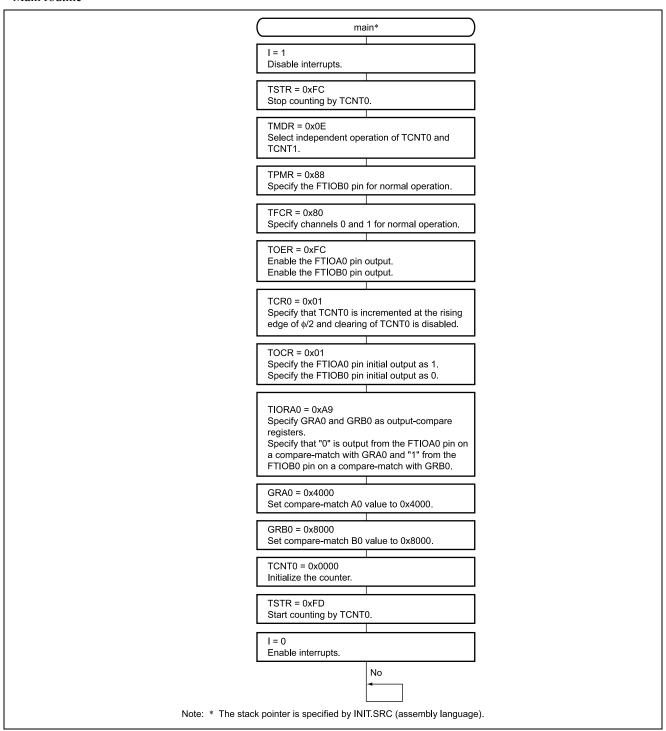
• GRB0 General register B0 Address: 0xF70A

Function: A compare-match is generated if the GRB0 value matches TCNT0 counter value.

Setting: 0x08000

TENESAS Using Compare Match Function for Timer Z 0/1 Output

•	TSTR Timer sta	art register	Address: 0xF720
Bit	Bit Name	Setting	Function
0	STR0	0	Channel 0 counter start
			STR0 = 0: Stops counting by TCNT0.
			STR0 = 1: Starts counting by TCNT0.
•	TMDR Timer mo	ode register	Address: 0xF721
Bit	Bit Name	Setting	Function
0	SYNC	0	Timer synchronization
			SYNC = 0: TCNT0 operates independently of TCNT1.
			SYNC = 1: TCNT0 operates synchronously with TCNT1.
•	TPMR Timer PV	VM mode register	Address: 0xF722
Bit	Bit Name	Setting	Function
0	PWMB0	0	PWM mode B0
			PWMB0 = 0: The FTIOB0 pin operates in normal operation mode.
			PWMB0 = 1: The FTIOB0 pin operates in PWM mode.
•	TFCR Timer fur	nction control regi	ster Address: 0xF723
Bit	Bit Name	Setting	Function
1	CMD1	CMD1 = 0	Combination mode 1 to 0
0	CMD0	CMD0 = 0	CMD1 = 0, CMDk0 = 0: Channels 0 and 1 operates in normal operation
			mode.
	monn m:		
		tput master enable	=
Bit		Setting	Function
1	EB0	0	Master enable B0
			EB0 = 0: Enables the FTIOB0 pin output.
			EB0 = 1: Disables the FTIOB0 pin output.
0	EA0	0	Master enable A0
			EA0 = 0: Enables the FTIOA0 pin output.
			EA0 = 1: Disables the FTIOA0 pin output.
		tput control registe	
Bit		Setting	Function
1	TOB0	1	Output level select B0
			TOB0 = 0: Specifies the initial output value on the FTIOB0 pin as 0.
			TOB0 = 1: Specifies the initial output value on the FTIOB0 pin as 1.
0	TOA0	0	Output level select A0
			TOA0 = 0: Specifies the initial output value on the FTIOA0 pin as 0.
			TOA0 = 1: Specifies the initial output value on the FTIOA0 pin as 1.


Description of RAM 4.4

This sample task does not use RAM.

5. **Flowchart**

Main routine

6. Program List

```
H8/300HN Series -H8/3687-
    Application Note
  'Output 0 and 1 by output compare function'
/* Function
   : Timer Z output compare function
                  16MHz
   External Clock :
/* Internal Clock : 16MHz
                 32.768kHz
/* Sub Clock :
#include <machine.h>
/* Symbol Definition
   unsigned char b7:1;
                        /* bit7 */
                        /* bit6 */
   unsigned char b6:1;
                         /* bit5 */
   unsigned char b5:1;
                         /* bit4 */
   unsigned char b4:1;
   unsigned char b3:1;
                         /* bit3 */
   unsigned char b2:1;
                         /* bit2 */
                         /* bit1 */
   unsigned char b1:1;
   unsigned char b0:1;
                         /* bit0 */
#define
           TCR0
                      *(volatile unsigned char *)0xF700
                                                                /* Timer control register 0
                       *(volatile unsigned char *)0xF701
           TIORA0
                                                                /* Timer I/O Control Register A_0
#define
           TCNT0
                       *(volatile unsigned short *)0xF706
                                                                /* Timer counter 0
#define
                                                                /* General register A_0
          GRA0
                      *(volatile unsigned short *)0xF708
#define
         GRB0
                      *(volatile unsigned short *)0xF70A
                                                                /* General register B_0
#define
         TCR1
                      *(volatile unsigned char *)0xF710
                                                                /* Timer control register_1
#define
                      *(volatile unsigned char *)0xF711
                                                                /* Timer I/O Control Register A 1
         TIORA1
                      *(volatile unsigned char *)0xF720
                                                                /* Timer start register
#define
         TMDR
                      *(volatile unsigned char *)0xF721
                                                                /* Timer mode register
         TPMR
                     *(volatile unsigned char *)0xF722
                                                                /* Timer PWM mode register
#define
         TFCR
                                                                /* Timer function control register
#define
                     *(volatile unsigned char *)0xF723
#define
         TOER
                                                                /* Timer output master enable register
                      *(volatile unsigned char *)0xF724
#define
           TOCR
                       *(volatile unsigned char *)0xF725
                                                                 /* Timer output control register
/* Function define
extern void INIT ( void );
                                                                 /* SP Set
void main ( void );
```


H8/300H Tiny Series Using Compare Match Function for Timer Z 0/1 Output

```
/* Vector Address
#pragma section V1
                                                                    /* VECTOR SECTOIN SET
void (*const VEC_TBL1[])(void) = {
                                                                    /* 0x00 - 0x0f
   INIT
                                                                    /* 00 Reset
#pragma section
/* Main Program
void main ( void )
   set_imask_ccr(1);
                                                                     /* Interrupt Disable
   TSTR = 0xFC;
                                                                    /* TCNT0 count stop
   TMDR = 0x0E:
                                                                    /* TCNT0,TCNT1 Single Mode
   TPMR = 0x88;
                                                                    /* FTIOB0 is Normal Mode
   TFCR = 0x80;
                                                                    /* Chanel 0,1 is Normal Mode
    TOER = 0xFC;
                                                                     /* FTIOA0,FTIOB0 Output Enable
    TCR0 = 0x01;
                                                                     /* Rising edge, phi/2 Clock count
    TOCR = 0x01;
                                                                     /* First level set FTIOA0:1 FTIOB0:0
   TIORAD = 0 \times A9:
                                                                     /* 0 output by GRA compare match
                                                                     /* 1 output by GRB compare match
   GRA0 = 0x4000;
                                                                     /* Set GRA0
   GRB0 = 0x8000;
                                                                     /* Set GRB0
   TCNT0 = 0x0000;
                                                                     /* Set TCNT0
    TSTR = 0xFD;
                                                                     /* TCNT0 count start
    set_imask_ccr(0);
                                                                    /* Interrupt Enable
   while(1);
```

Link address specifications

Section Name	Address
CV1	0x0000
Р	0x0100

H8/300H Tiny Series Using Compare Match Function for Timer Z 0/1 Output

Revision Record

		Descripti	on	
Rev.	Date	Page	Summary	
1.00	Sep.29.03	_	First edition issued	

H8/300H Tiny Series Using Compare Match Function for Timer Z 0/1 Output

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.