Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300L Series

Using the 14-Bit PWM Function to Generate Variable-Duty-Cycle Pulse Output

Introduction

14-bit PWM function is used to output 75.4 % of duty-cycle pulse from the PWM output pin.

Target Device

H8/3644

Contents

1.	Specifications	. 2
	Description of Functions	
۷.	Description of Functions	. 2
3.	Principle of Operation	. 4
4.	Description of Software	. 5
5.	Flowchart	. 6
6.	Program Listing	. 7

1. Specifications

- 1. As shown in figure 1, the 14-bit PWM function is used to output a variable-duty-cycle pulse from the PWM output pin.
- 2. In this sample task, 75.4 % of duty-cycle pulse is output with a $102.4 \,\mu s$ of pulse cycle, and a $77.2 \,\mu s$ of pulse high width.

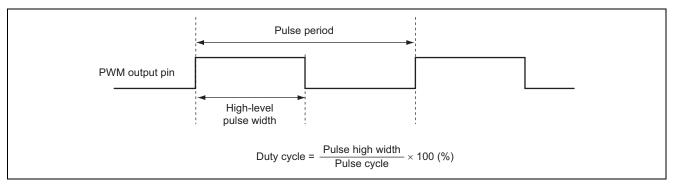


Figure 1 Duty Cycle Pulse Output By 14-Bit PWM Function

2. Description of Functions Used

- 1. In this sample task, the 14-bit PWM function is used to output a variable-duty-cycle pulse from the PWM output pin.
 - a. Figure 2 is a block diagram of the 14-bit PWM function. The elements of the block diagram are described below.
 - The system clock (φ) is a 5-MHz clock that is generated by dividing a 10-MHz OSC clock by two. The system clock is used as a reference clock for operating the CPU and peripheral functions.
 - The PWM control register (PWCR) is an 8-bit write-only register that selects an input clock. The input clock can be selected as one of two conversion cycles: a conversion cycle of 32.768/φ with minimum change width of 2/φ or a conversion cycle of 16.384/φ with minimum change width of 1/φ.
 - The PWM function uses the pulse division method to reduce ripples.
 - The PWM data registers U and L (PWDRU and PWDRL) are a 14-bit write-only register where the upper 6 bits function as PWDRU and the lower 8 bits function as PWDRL. Data written to PWDRU and PWDRL corresponds to the total of high level widths of one PWM waveform cycle. When data is written to the 14 bits of PWDRU and PWDRL, the contents of PWDRU and PWDRL are fetched into the PWM waveform generator to change PWM waveform generation data. Note that 14-bit data should be written to the lower 8 bits of PWDRU and then to the upper 6 bits of PWDRL in this order.
 - The port mode register 1 (PMR1) is an 8-bit readable/writable register that controls the function switching of pins in port 1. The P1₄/PWM pin can function as PWM output pin by selecting the PWM pin function via bit 4 (P1₄/PWM pin function switching bit) of PMR1.
 - The PWM output pin (PWM) outputs a PWM waveform of a pulse division method.

Note: When a PWM waveform is output using the 14-bit PWM function used in this sample task, a correct PWM waveform may not be output depending on the PWM register rewrite timing.

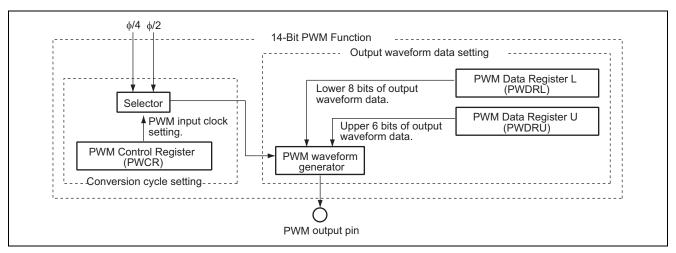


Figure 2 Block Diagram of 14-Bit PWM Function

2. Table 1 lists the function allocation for this sample task. The functions listed in table 1 are allocated so that a variable-duty-cycle pulse is output by the 14-bit PWM function.

Table 1 Function Allocation

Function	Description
PWCR Selects a clock to be provided to the 14-bit PWM	
PWDRU	Sets the upper 6 bits of PWM output waveform data
PWDRL	Sets the lower 8 bits of PWM output waveform data
PWM	PWM waveform output pin

3. Principle of Operation

1. Figure 3 illustrates the principle of operation of this sample task. The hardware and software processing shown in figure 3 applies the 14-bit PWM function to output a variable-duty-cycle pulse.

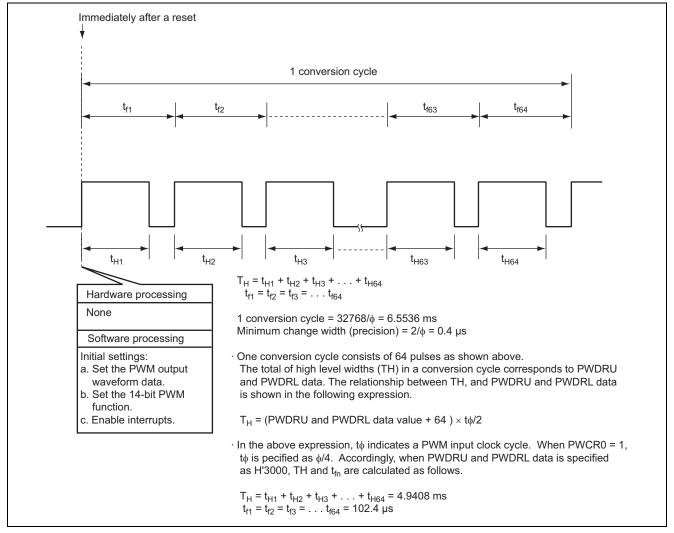


Figure 3 Operation Principle of duty-cycle pulse Output by 14-Bit PWM Function

4. Description of Software

4.1 Modules

Table 2 describes the module used in this sample task.

Table 2 Description of Modules

Module	Label	Function	
Main routine	MAIN	Initializes the stack pointer, sets the 14-bit PWM function, and enables interrupts	

4.2 Arguments

Table 3 describes the arguments used in this sample task.

Table 3 Description of Arguments

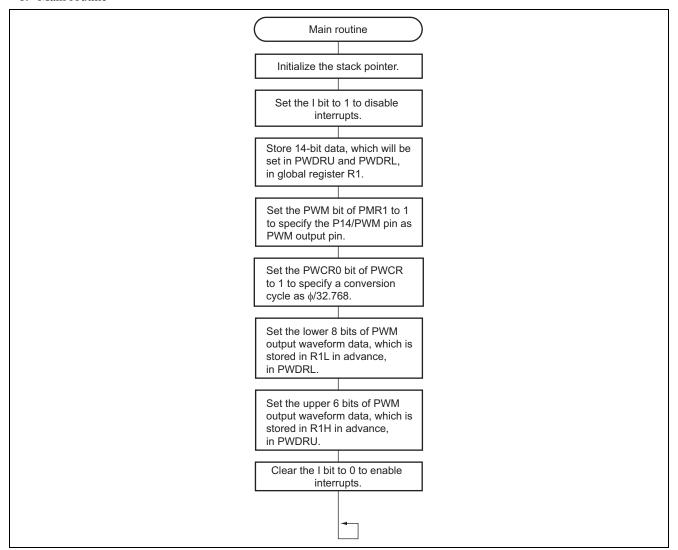
Argument	Function	Used in	Data Size	Input/ Output
R1H	Upper 6 bits of PWM output waveform data to be set in PWDRU	Main routine	1 byte	Input
R1L	Lower 8 bits of PWM output waveform data to be set in PWDRL	Main routine	1 byte	Input

4.3 Internal Registers

Table 4 describes the functions of internal registers used in this sample task.

Table 4 Description of Internal Registers

Register		Function	Address	Setting
PWCR	PWCR0	PWM control register (Clock select 0)	H'FFD0	1
		PWCR0 = 1: Sets a clock to be provided to the 14-bit PWM as $\phi/4$	Bit 0	
PWDRU		PWM data register U	H'FFD1	H'30
		Sets the upper 6 bits of PWM output waveform data		
PWDRL		PWM data register L	H'FFD2	H'00
		Sets the lower 8 bits of PWM output waveform data		
PMR1	PWM	Port mode register 1 (P14/PWM pin function switching)	H'FFFC	1
		PWM = 1: Sets the P14/PWM pin as PWM output pin.	Bit 4	


4.4 RAM

This sample task does not use RAM.

5. Flowchart

1. Main routine

6. Program Listing

```
H8/300L Series -H8/3644,H8/3657-
; *
     Application Note
; *
    'Duty Pulse Output by 14-bit PWM Function'
; *
     Function
; *
     : 14bit PWM
; *
    External Clock: 10MHz
     Internal Clock : 5MHz
; *
    Sub Clock :
               32.768kHz
       .cpu
                 300L
;* Symbol Defnition
H'FFD0
                                      ;PWM Control Register
      .equ
                                     ;Clock Select
PWCR0
                 0,PWCR
     .bequ
                                     ;PWM Data Register U
PWDRU
      .equ
                H'FFD1
                                      ;PWM Data Register L
PWDRI.
      .equ
                 H'FFD2
PMR1
      .equ
                 H'FFFC
                                      ;Port Mode Register 1
                                      ;P14/PWM Terminal Function Change
PWM
      .bequ
                 4,PMR1
;* Ram Allocation
STACK
                H'FF80
                                      ;Stack Pointer
      .equ
;* Vector Address
                н'0000
      .org
       .DATA.W
                MAIN
                                      ;Reset Interrupt
       .org
                н'0008
       .data.w
                MATN
                                      ; IRQ0 Interrupt
       .data.w
                 MAIN
                                      ;IRQ1 Interrupt
       .data.w
                 MAIN
                                      ;IRQ2 Interrupt
       .data.w
                 MAIN
                                      ; IRQ3 Interrupt
       .data.w
                 MAIN
                                      ;INTO - INT7 Interrupt
```


		111.001.4	
	.org	Н'0014	
	.data.w	MAIN	Timer A Interrupt
	.data.w	MAIN	;Timer B1 Interrupt
;			
	.org	Н'0020	
	.data.w	MAIN	;Timer X Interrupt
	.data.w	MAIN	;Timer V Interrupt
;			
	.org	н'0026	
	.data.w	MAIN	Scil Interrupt
;			
	.org	H'002A	
	.data.w	MAIN	;Sci3 Interrupt
	.data.w	MAIN	;A/D Converter Interrupt
	.data.w	MAIN	;Sleep Interrupt
;			
;*****	******	*******	************
;* Main	Program		*
	_	*******	************
;			
,	.org	н'1000	
;	.019	11 1000	
MAIN	.equ	\$	
PIATIV	MOV.W	#STACK,SP	;Initialize Stack Pointer
	ORC		
	ORC	#H'80,CCR	;Interrupt Disable
;	MOTE II	UTT 2000 D1	ACAD 14 Piber PIM Ochust Pales Pate
	MOV.W	#H'3000,R1	;Set 14-Bits PWM Output Pulse Data
;			
	MOV.W	#H'14FF,R0	
	MOV.B	ROH,@PMR1	;Initialize PWM Output Terminal Function
	MOV.B	ROL,@PWCR	;Initialize PWM Input Clock
;			
	MOV.B	R1L,@PWDRL	;Initialize PWM Output Pulse Data Higher
	MOV.B	R1H,@PWDRU	;Initialize PWM Output Pulse Data Lower
;			
	ANDC	#H'7F,CCR	;Interrupt Enable
;			
MAIN9	.equ	\$	
	BRA	MAIN9	
;			
	.end		

Website and Support

Renesas Technology Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Description
_		

		2000p	••
Rev.	Date	Page	Summary
1.00	Dec.19.03	_	First edition issued
2.00	Nov.30.06	All pages	Content correction

Notes regarding these materials

- 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2006. Renesas Technology Corp., All rights reserved.