
 APPLICATION NOTE

R21AN0012EJ0100 Rev.1.00 Page 1 of 34

Nov 01, 2014

Smart Analog IC101

Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

Introduction

This tutorial introduces APIs and sample codes to control Smart Analog IC101 (RAA730101), with explanations on

how to use the API Builder SAIC101 coding assistance tool to assist in implementing APIs and sample codes.

Note: Smart Analog IC101 is referred to as “SAIC101” throughout this document.

Target Devices

Smart Analog IC 101 (part name: RAA730101), RL78/L13 (part name: R5F10WMGAFB)

Contents

1. Outline ... 2

2. Conditions for Confirming Operations ... 2

3. Usage Flow of Coding Assistance Tool API Builder SAIC101..................................... 3

4. SAIC101 API/Sample Code Integration Tutorial ... 4

4.1 Cautions for CubeSuite+ Usage .. 4

4.2 Creating a Project and Setting Code Generation with CubeSuite+ 5

4.2.1 Create a Project ... 5

4.2.2 Code Generation Process (Design Tool): setting and execution 6

4.3 How to Use API Builder SAIC101 .. 11

5. API Builder SAIC101... 17

5.1 Outline .. 17

5.2 System Configuration ... 17

5.3 Major Functions .. 18

5.4 Support Environment ... 18

5.5 Target MCUs .. 18

5.6 Window Configuration Explanation .. 19

5.7 Log Window ... 23

5.8 Error Messages ... 24

6. Integrating API Functions without Using API Builder SAIC101 25

R21AN0012EJ0100
Rev.1.00

Nov 01, 2014

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 2 of 34

Nov 01, 2014

1. Outline

This document describes actual examples of implementing API and sample code to control SAIC101 UART

transmission connections using API Builder SAIC101, a coding assistance tool. The environment combines use of

Renesas Starter Kit for RL78/L13 and Smart Analog IC RSK Option Evaluation Board TSA-OP-IC101, which has an

onboard Smart Analog IC.

The tutorial also explains API Builder SAIC101 specifications, as it is used to simplify the editing and integration of

SAIC101 APIs and sample code into a project based on the user’s development environment.

2. Conditions for Confirming Operations

Operations for the devices discussed in this document have been confirmed under the following conditions.

Table 2-1 Conditions for Confirming Operations

Item Description

Evaluation boards Renesas Starter Kit for RL78/L13 [R0K5010WMS900BE]

 Renesas Starter Kit for RL78/L13 CPU board

Abbreviation: RSK CPU Board

 Renesas Starter Kit LCD Application Board V2

Abbreviation: LCD extension board

 Smart Analog IC RSK Option Evaluation Board [TSA-OP-IC101]

Abbreviation: TSA-OP-IC101 board

MCU R5F10WMGAFB (RL78/L13)

Coding Assistance Tool (API

Builder SAIC101)

Ver1.00

Integrated Development

Environment (CubeSuite+)

V2.02.01 [20 Jun 2014]

C Compiler (CubeSuite+) CA78K0R V4.02.00.03 [16 Jan 2014]

RL78/L13 Code Library

(CubeSuite+)

V1.02.01.02 [11 Jun 2014]
Note1

Integrated Development

Environment (e2studio)

V3.0.0.22

C Compiler (e2studio) GNURL78 v14.01

RL78/L13 Code Library

(e2studio)

V1.02.00.03 [11 Feb 2014]
Note2

Note 1: The CubeSuite+ code library is included in the code generator plug-in. The environment described in this

document has been confirmed with CubeSuite+ Code_Generator for RL78_78K V2.04.00.

Note 2: The e2studio code library is included with the e2studio product.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 3 of 34

Nov 01, 2014

3. Usage Flow of Coding Assistance Tool API Builder SAIC101

The following flow shows the integration procedure for an API or sample code using API Builder SAIC101.

1. First create a new project in CubeSuite+ or e2studio. Using the code generation tool, set the MCU peripheral

functions for the serial array unit or other modules, and generate code. When this is complete, close the project.

2. Read the project created in Step 1 with API Builder SAIC101.

3. On API Builder SAIC101, set the serial connection between the SAIC and MCU and the sample code output.

4. Based on the information set in Step 3, API Builder SAIC101 outputs a file with the API or sample code, and

automatically integrates the information into the project file created in Step 1.

5. Build, run and confirm the project that now integrates the API or sample code from Step 4.

 Figure 3-1 API Builder SAIC101 Usage Flow

Coding Assistance

Tool

Integrated Development Environment

OR CubeSuite+ e2 studio

1. Create project, generate code

API Builder
SAIC101

2. Integrate project settings

3. Set SAIC connection and sample code output

4. Integrate API or sample
code output into project

5. Build, run, confirm operations

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 4 of 34

Nov 01, 2014

4. SAIC101 API/Sample Code Integration Tutorial

This section describes how the CubeSuite+ code generation function and the API Builder SAIC101 are used to create

and run sample code to operate the thermistor mounted on the Smart Analog IC RSK Option Evaluation Board [TSA-

OP-IC101] (referred to as TSA-OP-IC101 board). The development environment
Note

 consists of the TSA-OP-IC101

board, the Renesas Starter Kit for RL78/L13 CPU Board (referred to as RSK CPU board), and the Renesas Starter Kit

LCD Application Board V2 (referred to as LCD extension board). The tutorial describes an example that uses a UART

connection between the TSA-OP-IC101 board and the MCU.

Note: Refer to Smart Analog IC101: Smart Analog Easy Starter 101 Tutorial (RL78/L13) (R21AN0011EJ) for details

on board connection settings.

4.1 Cautions for CubeSuite+ Usage

If Code generation (design tool) does not appear in the CubeSuite+ project tree, select Tool (T) Plug-in control

(P)… from the CubeSuite+ menu bar. In the Plug-in control window, go to the Additional functions tab and select

Code generation plug-in 1 and Code generation plug-in 2. Finally, reboot the CubeSuite+ program.

Carefully set the debug tool when confirming operations. The default setting of the debug tool is displayed in the

CubeSuite+ project tree: RL78 Simulator (debug tool). Bring your cursor over the default name and right click to

select the emulator you are using from Debug tools (D). For example, to select emulator E1, select RL78 E1 (Serial)

(L).

 Figure 4-1 Setting the Debug Tool

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 5 of 34

Nov 01, 2014

4.2 Creating a Project and Setting Code Generation with CubeSuite+

Using the CubeSuite+ code generation function, first create a project template and set the MCU peripheral functions.

Continue by following the procedure from 4.2.1on.

4.2.1 Create a Project

Figure 4-2 Create a Project

Figure 4-3 CubeSuite+ Project Creation Window

(2) Create new project

(1) Display start window

(1) Select RL78

(2) Select RL78/L13 (ROM:128KB)

R5F10WMG(80pin)

(3) Specify project type, name, and path

(4) Create project

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 6 of 34

Nov 01, 2014

4.2.2 Code Generation Process (Design Tool): setting and execution

Set the peripheral functions of the code generation design tool as follows.

1. Set peripheral I/O redirection register (PIOR)

Figure 4-4 Peripheral Functions - Pin Assignments

(2) Specify the following PIOR2
settings.

TxD1/SO10 : P42
RxD1/SDA10/SI10 : P43

SCL10/_SCK10 : P44

(3) Click Fix settings

 (1) Double click Common/Clock

Generator

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 7 of 34

Nov 01, 2014

2. Set serial array unit used for SAIC101 communications

Figure 4-5 Serial Array Unit 0: Channel Setting

Figure 4-6 UART1 Setting, Receive Setting

Note: Specify baud rate manually; do not select value from the pull down menu.

(1) Double click Serial Array Unit.

(3) Under Function, select“UART1,

Transmit/receive function” for
Channel 2.

(2) Under Serial Array Unit 0, click

Channel.

(1) Under Serial Array Unit 0, click UART1.
(2)Click Receive

(3) Data length setting: 8 bits

(4) Transfer direction setting: LSB

(6) Receive data level setting: Normal

(7) Baud rate: 4800
Note

(8) Reception end interrupt

priority(INTSR1): Low

(9) Callback function setting:
Select Reception end and
Reception error

(5) Parity setting: None

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 8 of 34

Nov 01, 2014

Figure 4-7 UART1 Setting, Send Setting

Note: Specify baud rate manually; do not select value from the pull down menu.

3. Set watchdog timer

Figure 4-8 Watchdog Timer Setting

(1) Click Transmit (2) Transfer mode setting:
Continuous transfer mode

(3) Data length setting: 8 bits

(4) Transfer direction

setting: LSB

(5) Parity setting: None

(6) Stop bit length setting: 1 bit

(7) Transmit data level setting: Normal

(8) Baud rate:

 4800
Note

(9) Transmit end interrupt

priority (INTST1): Low

(10) Callback function setting:

select Transmission end

(2) Watchdog timer operation setting:

Unused (1) Double click Watchdog Timer

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 9 of 34

Nov 01, 2014

4. Set LCD control/driver

Figure 4-9 LCD Controller/Driver Settings

(1) Double click
LCD Controller/Driver

(2) LCD operation setting: Used

(3) Display waveform setting:
A waveform

(4) Drive voltage generator setting:
Internal voltage boosting method

(5) Display mode setting:
Number of time slices: 4 (1/3 bias mode)

(6) Display data area setting:
A-pattern area data

(7) Initial value of LCD
power supply pin
setting: VDD voltage
is larger than 2.7V

(8) VLC0 voltage: 4.20 (V)

(9) Segment output pin setting:
select the following
SEG0 to SEG9, SEG12,
SEG19 to SEG22,
SEG24 to SEG38

(10) Source clock selection:
fIL (15kHz)

(11) Clock (LCDCL)
selection:
fIL/2^7 (117.2Hz)

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 10 of 34

Nov 01, 2014

5. Generate code

Figure 4-10 Code Generation Window

6. Save all changes made in CubeSuite+, close window.

Figure 4-11 Save and Close

(2) Generated code file is added to bottom of
list under File -> Code Generator

(1) Click Generate code

(2) Close (1) Save all

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 11 of 34

Nov 01, 2014

4.3 How to Use API Builder SAIC101

API Builder SAIC101 adds an API file and changes the source code for projects or source code created in 4.2.2. After

implementing the initial settings to register the file, make sure the project file in CubeSuite+ is closed before executing

the following process.

1. Start up API Builder SAIC101

Figure 4-12 Icon Screen

Double click
API_Builder_SAIC101.exe

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 12 of 34

Nov 01, 2014

2. Read and display information for project to be integrated in the API.

Figure 4-13 Project File Read Operation

Figure 4-14 File Open Dialog

Figure 4-15 Project Information Confirmation

Click Select a project file.

(1) Select created project file (.mtpj).

(2) Open

Confirm that the settings for the
project that was read are
displayed in the window.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 13 of 34

Nov 01, 2014

3. Set SAIC101 connection, set sample code output, execute file output

Figure 4-16 Tool Setting Window

Section describing output check of single operation sample code has been abbreviated.

(3) Confirm SAIC (from step 2) has been added.

(1) Frequency of CPU and

peripherals: 24 (MHz)

(2) Click Add SAIC.

(4) Select “Sample code for RSK board + RSK LCD application
board + SAIC101 RSK optional board [On-board sensor:
Thermistor control]”.

(5) Click File output.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 14 of 34

Nov 01, 2014

4. Start up CubeSuite+ to confirm that the API files have been integrated

Figure 4-17 API File Integration Confirmation

5. Confirm that the thermistor control sample has been added to the r_cg_main.c in main function.

Figure 4-18 Thermistor Control Sample Code Output Confirmation (r_cg_main.c)

API files have been added.

Thermistor control sample has been
added to r_cg_main.c

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 15 of 34

Nov 01, 2014

6. Confirm source code build

Figure 4-19 CubeSuite+ Rebuild Project Result Window

7. Connect target board, download program, then execute sample code

Figure 4-20 CubeSuite+ Code Download/Execute Window

Note: To supply power from the emulator, set the following before implementing the process in Step 7: Go to RL78 E1

(Serial) (Debug tool) Property Target board connection, set Supply power from emulator (max 200mA) to

Yes and Supply voltage to 5.0V.

Execute Rebuild Project.

Make sure there is no build error in the
output panel.

Connect board and PC to E1

and execute Download
Note

After download is complete,
execute program.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 16 of 34

Nov 01, 2014

Figure 4-21 Confirming Operations

E1

Side view

Top view

Thermistor

After sample code
execution, A/D-converted
results (HEX display) of the
thermistor output are
displayed in the LCD panel.
As the temperature
increases, the numerical
value decreases.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 17 of 34

Nov 01, 2014

5. API Builder SAIC101

5.1 Outline

The API Builder SAIC101 is a coding assistance tool that helps developers configure an API for Smart Analog IC101,

generate the API sample code, and integrate the code into the user project. User-friendly GUI enables operations, such

as editing API to meet user environments, selecting sample code, and outputting data to the debugger.

5.2 System Configuration

Figure 5-1 System Configuration

Note1: Currently supported integrated development environments: Renesas Electronics’ CubeSuite+ and e2studio.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 18 of 34

Nov 01, 2014

5.3 Major Functions

 Auto-integration of SAIC101 sample code to project file created in CubeSuite+ or e2 studio.

 Easy editing and integration of developer-specific serial interface with user-friendly GUI.

 Select SAIC101 sample code and generate sample C source code for Renesas Starter Kit.
Note

Note: API Builder SAIC101 currently only supports RL78/L13.

5.4 Support Environment

Table 5-1 Support Environment

Supported OS Windows® 8 (32-bit, 64-bit versions)

 Windows® 7 (32-bit, 64-bit versions)
Essential software environment in addition to

Windows OS .Net Framework 4 and later

5.5 Target MCUs

 RL78/L13

R5F10WLA

R5F10WLC

R5F10WLD

R5F10WLE

R5F10WLF

R5F10WLG

R5F10WMA

R5F10WMC

R5F10WMD

R5F10WME

R5F10WMF

R5F10WMG

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 19 of 34

Nov 01, 2014

5.6 Window Configuration Explanation

The API Builder SAIC101 windows are configured as follows.

1. Project selection and information display

Figure 5-2 File Read/Display Update Confirmation

Code generation
setting information

(serial setting, LCD
on/off)

Select SAIC control serial
transmission mode

Note: Reads code generation
setting; selectable only when both
UART or SPI are specified.

MCU info

Select project file from open dialog.
Note: Supports CubeSuite+(*.mtpj,

.mtsp), and e2studio(.cproject)

After selection is
made, project
 information is
shown on right side
 of button.

Display when no project file has been selected

IDE icon

Path of project file read by builder

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 20 of 34

Nov 01, 2014

2. Set hardware-dependent areas and select sample code output

Figure 5-3 Hardware-dependent Setting and Sample Code Output Selection (1/2)

UART function output setting
Note: SAIC101 negotiation code output setting
Note: Sample output setting at startup.

Specify the CPU clock (fCLK) frequency set in RL78/L13.
*Use to calculate software wait in API.

Add SAIC button

SPI function output setting
Note: Select interrupt (or polling)
for SPI control function

List of SAIC setting information (see
Table 5-2)

Note: Click Add SAIC button to add

Click preview mark to display preview in
log window (see Figure 5-5).

Select to enable FLASH
API

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 21 of 34

Nov 01, 2014

Figure 5-4 Hardware-dependent Setting and Sample Code Output Selection (2/2)

File output button
Note: Creates backup of file to be changed, updates
project.

Confirm changes button
Note: Changes are displayed
in log window (see Figure

5-5)

Sample code output setting
Note: Selected sample code will be integrated into main function
(exclusion control)

Individual sample codes can be selected when single
operation sample is selected in sample code output
setting.
Note: Multiple selections valid

No. of deadlock judgment loops setting
Note: Loop process is executed for number
of times set.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 22 of 34

Nov 01, 2014

Table 5-2 SAIC Setting Information

Note1: When using the sample code, set to 0, as the SAIC number is fixed as 0 when calling API functions.

Note2: The power-on reset function is only supported for SAIC101 and SAIC502.

Note3: Cannot be set when SAIC101 is specified in the SAIC field.

Item Description Notes

DEL Deletes a line that corresponds

to the list of SAIC setting

information
－

SAIC Specifies SAIC part name to be

connected to board

For SPI communications: select SAIC101,

SAIC300, SAIC301, SAIC500, SAIC501, or

SAIC502 from pull-down menu.

For UART communications: only SAIC101 can be

selected

Serial Ch Specifies serial channel Select serial channels from pull-down menu that

have been set during code generation (See 4.2.2)

SAIC number Number specified as argument

when calling API function

Can be set within unsigned char type range (0 to

255)
Note1

Reset by: Specifies reset process at SAIC

startup

Select the following from the pull-down menu.

 Power-on reset wait
Note2

Waits for the period specified by “Wait time

(ms)”

 External reset (RESET port = L)
Note3

Outputs period L specified by “Wait time (ms)”

to the port specified in “Reset pin”.

 Internal reset (RESET register = 1)
Note3

Set 1 to the RESET bit of the SAIC reset control

register (RC) to clear it.

Reset pin
Note3

 Specifies the port connected to

the RESET pin

The RESET pin can be specified when external

reset has been selected in “Reset by:”.. The

RESET pin must be set when using external reset;

otherwise an error will occur when a file is output.

Wait time (ms) Specifies the wait period length

when power-on reset wait is

selected in “Reset by:”. When

external reset is selected,

specify a period that sets the

RESET pin to L.

The period can be set within the float-type range.

CS pin Specifies the port connected to

the CS pin.

Can only be set when using SPI communications.

The CS pin must be set when using SPI; otherwise

an error will occur when a file is output.

INT pin Specifies the port connected to

the INT pin.

Can only be set when using SPI communications

and SAIC101.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 23 of 34

Nov 01, 2014

5.7 Log Window

This section describes the log window.

Figure 5-5 Log Window

Project selection: displays IDE information to
be edited

Selected MCU: displays the MCU information for the
project to be edited

List of affected files:
displays all files to be edited

Last tab: displays logs for last
operation used

All tab: displays logs for all
operations

Sample Code Preview tab:
displays preview of sample code

Preview of source code to
be inserted

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 24 of 34

Nov 01, 2014

5.8 Error Messages

Table 5-3 provides descriptions and notes for each error message. When a fatal error occurs, the configuration file may

be corrupted. If this happens, reinstall the file from the API Builder SAIC101 ZIP file provided by Renesas.

Table 5-3 Error Messages

No Error Window Notes

1
[Fatal Error]

The CSV file format is not correct.

There is a possibility that the configuration

file is corrupted.

This tool stores MCU-specific information in a CSV

file. An error indicates that the CSV file format read for

the MCU is incorrect.

2
[Error]

The serial interface setting has not been

generated.

This API uses functions output by the code generation

tool. Before executing the tool, set the serial interface

(UART/SPI) in the code generation tool, then

generate the code.

3
[Error]

There is no configuration file for the

corresponding MCU.

An MCU information file for this tool is not available.

Please check the Chips folder to make sure there is

an MCU information file selected in the current

project. If no file exists, the MCU is not supported by

the tool.

4
[Error]

There is no SAIC setting.

Displayed during file output if no SAICs are selected.

Make sure you specify at least one SAIC.

5
[Error]

Write error has occurred.

[Affected write file name]

Displayed when an error occurs during the file write

operation. The name of the file triggering the error is

displayed.

6
[Error]

The SAIC number specified for SPI is

duplicated.

The SAIC number specified for UART is

duplicated.

Displayed when the same number is used for two or

more SAICs. Always make sure unique numbers are

set for each SAIC.

7
[Error]

Port: PX.X is duplicated.

Displayed when more than one pin is assigned as the

CS pin or the RESET pin. Carefully confirm the circuit

settings on the hardware and specify the correct port

number.

8
[Error]

The CS pin is not set.

Displayed when the CS pin is not set. SPI

communications require the CS pin to be set to

ensure normal operations.

9
[Error]

The reset time is not correct.

Displayed when an invalid value is set as the wait

period (ms). Please enter a correct value.

10
[Error]

The reset pin setting is not correct.

Displayed when the RESET pin is not set correctly.

Please set the correct pin name.

11
[Error]

Multiple SAICs are specified for one

UART.

Only one SAIC can be set for each UART channel.

Make sure you only set one SAIC to each channel.

12
[Input Error]

Enter a value from 0 to 255.

The valid range for SAIC numbers is 0 to 255. Please

set a value from within that range.

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 25 of 34

Nov 01, 2014

6. Integrating API Functions without Using API Builder SAIC101

Table 6-1 provides a list of files used for setting API Builder SAIC101when integrating APIs using the combined RSK

CPU board and TSA-OP-IC101 board environment. If you are not using API Builder SAIC101, the source codes shown

in this section will need to be changed manually.

This section describes integrating APIs for UART communications. The same descriptions can be applied to SPI

communications by simply replacing uart/UART with spi/SPI. In addition, this example uses UART1 for UART and

CSI10 SPI communications.

Table 6-1 Files Required for Setting API Integration

 File Name Notes

r_cg_main.c Code generation file

r_cg_sau.c Code generation file

r_cg_sau.h Code generation file

r_cg_sau_user.c Code generation file

r_sa_uart_control_register.c API file
Note

r_sa_uart_control_register.h API file
Note

r_sa_uart_control_register_user.c API file
Note

Note: Copy the API files from the sample code. The sample code can be downloaded from the following URL. UART

files are stored in the “ \an_r21an0014jj0100_saic_usefulexample\UART\source” folder; and SPI files are stored in the

“\an_r21an0014jj0100_saic_usefulexample\SPI\source” folder.

Sample code download URL:

http://www.renesas.com/products/smart_analog/smart_analog_ic/smart_analog_ic_101/Application_Notes.jsp

File name: an_r21an0014ej0100_saic_usefulexample.zip

The following shows the contents of each file.

 r_cg_main.c modifications

 [UART/SPI] Add include definitions for API functions.

 [UART/SPI] Add API initialization function to R_MAIN_UserInit function.

#include <stddef.h>

#include "r_sa_uart_control_register.h"

void R_MAIN_UserInit(void)

{

 /* Start user code. Do not edit comment generated here */

 EI();

 // ***

 // * SAIC Initialization(UART)

 // ***

 /* Be sure to call this function prior to the main loop.*/

 R_SAIC_UART_Init(); /* SmartAnalogIC Initialize. */

 /* End user code. Do not edit comment generated here */

}

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 26 of 34

Nov 01, 2014

 r_cg_sau_user.c modifications

 [UART/SPI] Add include definition for API functions.

 [UART/SPI] Add global variables in bit control file.

 [UART only] Add global variables across flag files used by API function.

 [SPI only] Add global variable across flag files used by API function.

 [UART only] Add flag update process in r_uart1_callback_receiveend function.

 [SPI only] (when using communication module interrupt) Add CS=H or communication end process to

r_csi10_callback_receiveend function.

 [SPI only] (when using communication module interrupt) Add flag update, CS=H or communication end process

to r_csi10_callback_error function.

#include "r_sa_uart_control_register.h"

static const uint8_t gs_bit_tbl[] =

{

 0x01U, 0x02U, 0x04U, 0x08U, 0x10U, 0x20U, 0x40U, 0x80U,

};

uint8_t g_uart_tx_end_flag = 0U;

uint8_t g_uart_rx_end_flag = 0U;

uint8_t g_csi_overrun_flag = 0U;

static void r_uart1_callback_receiveend(void)

{

 /* Start user code. Do not edit comment generated here */

 g_uart_rx_end_flag |= gs_bit_tbl[E_UART1];

 /* End user code. Do not edit comment generated here */

}

static void r_csi10_callback_receiveend(void)

{

 /* Start user code. Do not edit comment generated here */

 R_SAIC_SPI_CSDisable(E_CSI10);

 R_CSI10_Stop();

 /* End user code. Do not edit comment generated here */

}

static void r_csi10_callback_error(uint8_t err_type)

{

 /* Start user code. Do not edit comment generated here */

 g_csi_overrun_flag |= gs_bit_tbl[E_CSI10];

 R_SAIC_SPI_CSDisable(E_CSI10);

 R_CSI10_Stop();

 /* End user code. Do not edit comment generated here */

}

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 27 of 34

Nov 01, 2014

 [UART only] Add flag update process to r_uart1_callback_sendend function.

 [UART only] Add R_UART1_SettingChange function called from API.

static void r_uart1_callback_sendend(void)

{

 /* Start user code. Do not edit comment generated here */

 g_uart_tx_end_flag |= gs_bit_tbl[E_UART1];

 /* End user code. Do not edit comment generated here */

}

void R_UART1_SettingChange(uint8_t setting)

{

 e_uart_setting_t uart_setting = (e_uart_setting_t)setting;

 switch (uart_setting)

 {

 /* 4800bps, Parity=None */

 case E_UART_4800bps_None:

 SPS0 = 0x0055U; /* Serial clock selection register */

 SDR02 = 0x9A00U; /* Baud rate setting */

 SDR03 = 0x9A00U; /* Baud rate setting */

 SCR02 &= ~0x0300U; /* Parity setting */

 SCR03 &= ~0x0300U; /* Parity setting */

 break;

 /* 4800bps, Parity=Odd */

 case E_UART_4800bps_Odd:

 SPS0 = 0x0055U; /* Serial clock selection register */

 SDR02 = 0x9A00U; /* Baud rate setting */

 SDR03 = 0x9A00U; /* Baud rate setting */

 SCR02 |= 0x0300U; /* Parity setting */

 SCR03 |= 0x0300U; /* Parity setting */

 break;

 /* 4800bps, Parity=Even */

 case E_UART_4800bps_Even:

 SPS0 = 0x0055U; /* Serial clock selection register */

 SDR02 = 0x9A00U; /* Baud rate setting */

 SDR03 = 0x9A00U; /* Baud rate setting */

 SCR02 &= ~0x0300U; /* Parity setting */

 SCR03 &= ~0x0300U; /* Parity setting */

 SCR02 |= 0x0200U; /* Parity setting */

 SCR03 |= 0x0200U; /* Parity setting */

 break;

 /* 250000bps, Parity=None */

 case E_UART_250kbps_None:

 SPS0 = 0x0000U; /* Serial clock selection register */

 SDR02 = 0x5E00U; /* Baud rate setting */

 SDR03 = 0x5E00U; /* Baud rate setting */

 SCR02 &= ~0x0300U; /* Parity setting */

 SCR03 &= ~0x0300U; /* Parity setting */

 break;

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 28 of 34

Nov 01, 2014

 [UART only] Add R_UART1_GetHeader function called from API.

/**

* Function Name: R_UART1_GetHeader

* Description : This function returns the process header data

received by the UART1.

* Arguments : uint8_t *packet_data -

* Header data

* : uint8_t rx_buffer[] -

* Receive buffer

* : uint16_t read_pos -

* Buffer read position

* Global Value : g_uart1_rx_count

* Number of received data in the UART1

* SFR : None

* Return Value : uint8_t -

* 0=Invalid, 1=Valid

**/

uint8_t R_UART1_GetHeader(uint8_t *packet_data, uint8_t

rx_buffer[], uint16_t read_pos)

{

 uint8_t ret = 0U;

 if (read_pos < g_uart1_rx_count)

 {

 *packet_data = rx_buffer[read_pos];

 ret = 1;

 }

 return (ret);

}

 /* 250000bps, Parity=Odd */

 case E_UART_250kbps_Odd:

 SPS0 = 0x0000U; /* Serial clock selection register */

 SDR02 = 0x5E00U; /* Baud rate setting */

 SDR03 = 0x5E00U; /* Baud rate setting */

 SCR02 |= 0x0300U; /* Parity setting */

 SCR03 |= 0x0300U; /* Parity setting */

 break;

 /* 250000bps, Parity=Even */

 case E_UART_250kbps_Even:

 SPS0 = 0x0000U; /* Serial clock selection register */

 SDR02 = 0x5E00U; /* Baud rate setting */

 SDR03 = 0x5E00U; /* Baud rate setting */

 SCR02 &= ~0x0300U; /* Parity setting */

 SCR03 &= ~0x0300U; /* Parity setting */

 SCR02 |= 0x0200U; /* Parity setting */

 SCR03 |= 0x0200U; /* Parity setting */

 break;

 }

}

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 29 of 34

Nov 01, 2014

 [UART only] Add R_UART1_Getdata function called from API.

 [SPI only] (when using polling) Add R_CSI10_MaskStart function called from API.

/**

* Function Name: R_UART1_Getdata

* Description : This function check of bytes of data that is not

less than the number specified has been received.

* Arguments : uint16_t rx_cnt -

* number of bytes specified data

* Global Value : g_uart1_rx_count

* Number of received data in the UART1

* SFR : None

* Return Value : uint8_t -

* 0=Invalid, 1=Valid

**/

uint8_t R_UART1_Getdata(uint16_t rx_cnt)

{

 uint8_t ret = 0U;

 if (rx_cnt <= g_uart1_rx_count)

 {

 ret = 1U;

 }

 return (ret);

}

/**

* Function Name: R_CSI10_MaskStart

* Description : This function starts the CSI10 module operation.

* Arguments : None

* Return Value : None

**/

void R_CSI10_MaskStart(void)

{

 SO0 |= _0400_SAU_CH2_CLOCK_OUTPUT_1;/* CSI10 clock initial level */

 SO0 &= ~_0004_SAU_CH2_DATA_OUTPUT_1; /* CSI10 SO initial level */

 SOE0 |= _0004_SAU_CH2_OUTPUT_ENABLE; /* enable CSI10 output */

 SS0 |= _0004_SAU_CH2_START_TRG_ON; /* enable CSI10 */

 CSIIF10 = 0U; /* clear INTCSI10 interrupt flag */

 CSIMK10 = 1U; /* disable INTCSI10 interrupt */

}

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 30 of 34

Nov 01, 2014

 r_cg_sau.h modifications

 [UART only] Add extern declaration of the function added to r_cg_sau.c to enable reference from API.

 [SPI only] Add extern declaration of the function added to r_cg_sau.c to enable reference from API.

 [SPI only] (when using polling) Add extern declaration of the function added to r_cg_sau.c to enable reference

from API.

 r_sa_uart_control_register.h modifications

 [SPI only] Use either communications module interrupt or polling function by commenting out one of the two.

(The polling setting is disabled in UART so the interrupt usage is fixed.)

 [UART only] Set UART negotiation function process items. Comment out unnecessary items.

 [UART/SPI] Enable/disable Flash-related API. To disable, comment out.

 [UART/SPI] Set number of loops to judge deadlock during communication wait with SAIC101.

 [UART only] Set UART ch definition. Modify to match MCU’s number of UART module channels.

extern void R_UART1_SettingChange(uint8_t setting);

extern uint8_t R_UART1_GetHeader(uint8_t *packet_data, uint8_t

rx_buffer[], uint16_t read_pos);

extern uint8_t R_UART1_Getdata(uint16_t rx_cnt);

extern uint8_t g_csi_overrun_flag;

extern void R_CSI10_MaskStart(void);

#define D_SPI_OPERATION D_SPI_USE_INTERRUPT /* Use of interrupts by

communication modules */

//#define D_SPI_OPERATION D_SPI_REGISTER_POLLING /* No use of interrupts by

communication modules */

#define D_UART_NEGOTIATION_250KBPS_PARITY_ODD /* UART baudrate=250000bps, Parity=Odd */

#define D_UART_NEGOTIATION_250KBPS_PARITY_EVEN /* UART baudrate=250000bps, Parity=Even */

#define D_UART_NEGOTIATION_250KBPS_PARITY_NONE /* UART baudrate=250000bps, Parity=None */

#define D_UART_NEGOTIATION_4800BPS_PARITY_ODD /* UART baudrate=4800bps, Parity=Odd */

#define D_UART_NEGOTIATION_4800BPS_PARITY_EVEN /* UART baudrate=4800bps, Parity=Even */

#define D_UART_NEGOTIATION_4800BPS_PARITY_NONE /* UART baudrate=4800bps, Parity=None */

#define D_SAIC_FLASH_API_VALID /* Enabling FLASH API functions */

#define D_DEADLOCK_CNT (11000000L) /* Number of loops

until it is judged as a dead lock in a communication wait state */

typedef enum

{

 E_UART0 = 0x00U, /* UART0 */

 E_UART1, /* UART1 */

 E_UART2, /* UART2 */

 E_UART3, /* UART3 */

 E_UART_MAX /* Maximum value judgment */

} e_uart_ch_t;

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 31 of 34

Nov 01, 2014

 [SPI only] Set CSI ch definition. Modify to match MCU’s number of SPI module channels.

 r_sa_uart_control_register_user.c modifications

 [UART/SPI] Set include definition for code generation serial file. Modify code generation tool output file name

if necessary.

 [UART/SPI] Set CPU CLK (MHz). Modify as needed based on MCU setting.

 [UART/SPI] Set (ms) power-on reset period. Modify period as needed.

 [UART/SPI] Set NOP count calculated from power-on reset period.

 [UART only] Set global variables to store SAIC information. The variable array’s index number corresponds to

the SAIC number used in each API. Register the connected channel and SAIC with the ENUM value set in

r_sa_uart_control_register.h.

typedef enum

{

 E_CSI00 = 0x00U, /* CSI00 */

 E_CSI01, /* CSI01 */

 E_CSI10, /* CSI10 */

 E_CSI11, /* CSI11 */

 E_CSI20, /* CSI20 */

 E_CSI21, /* CSI21 */

 E_CSI30, /* CSI30 */

 E_CSI31, /* CSI31 */

 E_CSI_MAX /* Maximum value judgment */

} e_csi_ch_t;

#include "r_cg_sau.h"

#define D_CPU_CLK_MHZ (24.0F) /* Operation clock(MHz) */

#define D_WAIT_PON_RST_TIME_MS (4.00F) /* Wait time (ms) */

#define D_PON_RST_NOP_CNT

((uint32_t)((D_WAIT_PON_RST_TIME_MS/(1.0F/D_CPU_CLK_MHZ))*1000.0F/7.0F))

const uart_saic_t g_uart_saic_data_tbl[] =

{

// { UART_ch, sa_type, }, /* format */

 { E_UART1, E_SAIC101, }, /* Information of SAIC whose SAIC number is 0 */

};/* Global variable that stores SAIC information */

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 32 of 34

Nov 01, 2014

 [SPI only] Set global variables to store SAIC information. The variable array’s index number corresponds to the

SAIC number used in each API. Register the connected channel and SAIC with the ENUM value set in

r_sa_spi_control_register.h. Register the addresses and bits for the CS pin and INT pin as shown below. When

not using the INT pin, register NULL as the pin address.

 [UART only] Set global variables to store serial module information. The variable array’s index number

corresponds to the SAIC connection channel. Register any related functions.

const spi_saic_t g_spi_saic_data_tbl[] =

{

// { csi_ch, sa_type, p_cs_addr, cs_bit_num, p_int_addr, int_bit_num, }, /* format */

 { E_CSI10, E_SAIC101, &P0, 6U, &P0, 7U, }, /* Information of SAIC whose SAIC number is 0 */

// { E_CSI21, E_SAIC300, &P7, 3U, &P7, 4U, }, /* Information of SAIC whose SAIC number is 1 */

}; /* Global variable that stores SAIC information */

const uart_serial_t g_uart_serial_data_tbl[] =

{

#if (D_UART_OPERATION==D_UART_USE_INTERRUPT)

// { R_UARTx_Start, R_UARTx_Stop, R_UARTx_Receive, R_UARTx_Send, R_UARTx_GetHeader, R_UARTx_Getdata, R_UARTx_SettingChange, },

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, },

 { R_UART1_Start, R_UART1_Stop, R_UART1_Receive, R_UART1_Send, R_UART1_GetHeader, R_UART1_Getdata, R_UART1_SettingChange, },

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, },

 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, },

#elif D_UART_OPERATION==D_UART_REGISTER_POLLING

 /* not supported */

#endif

}; /* global variables to store serial module information */

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 33 of 34

Nov 01, 2014

 [SPI only] Set global variables to store serial module information. The variable array’s index number

corresponds to the SAIC connection channel. Register the functions needed to use of the communication

module interrupt. When using polling, register the communication register addresses and bits, and any related

functions.

 [UART/SPI] Set global variables to store RESET information. Set the Reset method. Only power-on reset

can be selected for SAIC101. For the SAIC number, register the index number of the global variable array

that stores the SAIC information.

const spi_serial_t g_spi_serial_data_tbl[] =

{

#if D_SPI_OPERATION==D_SPI_USE_INTERRUPT

// { CSI_Start, CSI_Stop, CSI_Send_Receive, }, /* format */

 { NULL, NULL, NULL, }, /* CSI00 */

 { NULL, NULL, NULL, }, /* CSI01 */

 { R_CSI10_Start, R_CSI10_Stop, R_CSI10_Send_Receive, }, /* CSI10 */

 { NULL, NULL, NULL, }, /* CSI11 */

 { NULL, NULL, NULL, }, /* CSI20 */

 { NULL, NULL, NULL, }, /* CSI21 */

 { NULL, NULL, NULL, }, /* CSI30 */

 { NULL, NULL, NULL, }, /* CSI31 */

#elif D_SPI_OPERATION==D_SPI_REGISTER_POLLING

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI00 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI01 */

 { (uint16_t *)&SMR02,&SIO10,&IF1L,1U,(uint16_t*)&SSR02,(uint16_t*)&SIR02,R_CSI10_MaskStart,R_CSI10_Stop,}, /* CSI10 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI11 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI20 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI21 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI30 */

 { NULL, NULL, NULL, 0U, NULL, NULL, NULL, NULL, }, /* CSI31 */

#endif

}; /* global variables to store serial module information */

const uart_reset_t g_uart_reset_data_tbl[] =

{

 //process, Port address, Bit num, nop_cnt, spi_saic_t number,},

 { E_SAIC_POWERON_RESET, NULL, 0U, D_PON_RST_NOP_CNT, 0U, },

};/* Global variable that stores RESET information */

Smart Analog IC101 Tutorial for Sample Code Introduction and API Builder SAIC101 (RL78/L13)

R21AN0012EJ0100 Rev.1.00 Page 34 of 34

Nov 01, 2014

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History <revision history,rh>

Rev. Date

Description

Page Summary

Rev.1.00 Nov 01, 2014 --- First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved. �

Colophon 4.0

	Introduction
	Target Devices
	Contents
	1. Outline
	2. Conditions for Confirming Operations
	3. Usage Flow of Coding Assistance Tool API Builder SAIC101
	4. SAIC101 API/Sample Code Integration Tutorial
	4.1 Cautions for CubeSuite+ Usage
	4.2 Creating a Project and Setting Code Generation with CubeSuite+
	4.2.1 Create a Project
	4.2.2 Code Generation Process (Design Tool): setting and execution

	4.3 How to Use API Builder SAIC101

	5. API Builder SAIC101
	5.1 Outline
	5.2 System Configuration
	5.3 Major Functions
	5.4 Support Environment
	5.5 Target MCUs
	5.6 Window Configuration Explanation
	5.7 Log Window
	5.8 Error Messages

	6. Integrating API Functions without Using API Builder SAIC101
	Website and Support
	Revision History <revision history,rh>
	General Precautions in the Handling of MPU/MCU Products
	Notice

