To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To all our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMSs (flash memory, SRAMs €tc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better
and more reliable, but there is aways the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1

These materials are intended as areference to assist our customersin the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party'srights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements or
other reasons. It istherefore recommended that customers contact Renesas Technology Corporation
or an authorized Renesas Technology Corporation product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

When using any or al of theinformation contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as atota system before
making afinal decision on the applicability of the information and products. Renesas Technology
Corporation assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for usein adevice
or system that is used under circumstances in which human lifeis potentially at stake. Please contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor
when considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products
contained therein.

RENESANS

>
©
S
=
Q
=
o
-
Z
)
—+
)
7))

SH7727
USB Function Module

Application Notes

W
N

Renesas SuperH™ RISC Engine

HD6417727

Renesas Electronics Rev.1.0 2002.04

www.renesas.com

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party'$
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that
have received the latest product standards or specifications before final design, purchase ol
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’'s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directl
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment fo
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristi
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation o
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docume
without written approval from Hitachi.

7. Contact Hitachi’'s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 04/02, page ii of vi
RENESAS

Preface

These application notes describe the printer-class firmware that uses the USB Function Modu
the SH7727. They are provided to be used as a reference when the user creates USB Functic
Module firmware.

Using printer-class communications as an example, the application notes describe the
configuration of the USB Function Module that is built in the SH7727. The described system
configuration is an application example of the USB Function Module, and the contents are not
guaranteed.

In addition to these application notes, the manuals listed below are also available for referenc
when developing applications.

[Related manuals]

« Universal Serial Bus Specification Revision 1.1

e Universal Serial Bus Device Class Definition for Printing Devices
e SH7727 Hardware Manual

e SH7727 Solution Engine (MS7727SEO01) Instruction Manual

e SH7727 E10A Emulator User’'s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transport type. When using this transfer
type (see page 23-1 of the SH7727 Hardware Manual), the user needs to create the
program for it.

Also, the hardware specifications of the SH7727 and SH7727 Solution Engine, whic
will be necessary when developing the system described above, are described in th
application notes, but more detailed information is available in the SH7727 Hardwar
Manual and the SH7727 Solution Engine Instruction Manual.

Rev. 1.0, 04/02, page iii of vi
RENESAS

Rev. 1.0, 04/02, page iv of vi
RENESAS

Contents

SECHON 1 OVEIVIEW ..uuuiiiiiiiii ettt e e e e et e e e e e e e e e e e e e eaaa e eas
Section 2 Overview of the USBoooiiiiiiiiec e
2.1 USB CONNECHION TOPOIOGY ...ciiuetiiiieeeiiiiiiiee ettt ettt e et e e e e e nsbb e e e e e s anbnees
2.2 USB Signal Transfer Methodoouuiiiiiiiiiii e
2.3 Recognizing a Connection vs. NON-CONNECLION...........uiiiiieieeeiiieieeeiiices e e e e e e e
2.4 USB CONNECION ...ttt et e e e et et e e e bbb s e e e e e e e e e e e eennennanas s i B
228 T = o o [o o | AP 9...
2.6 USB Packets and Data TranSfereeiiiiiiiiiiieeeeee e e e e e e
2.6.1 OVEIVIEW Of PACKELS.uuiiiiiiiiiiiiiiiieeee et e e e e
2.6.2 CONIOl TraNSTOI ...t e e e e e e e e e e s e e eneeeees
2.6.3 BUIK TIANSTEI .ceiiiiiiieiiieee e e e e e e
2.6.4 1SOCNIONOUS TIANSTEIuuiiiiiiiiiiiiiiei et
2.6.5 INLEIrUPL TrANSTEI ..vuee i e e e e e e e aaaaaees
2.7 USB DEVICE FIraMEWOTK.......uuuuieieeiieiiiietieteeeeeeessasaasaaetaebeeteeeeeeeeeeaaeeaeeaeaessessanaannnnnnnnnes.
A A N B oot IR - = PR
2.7.2 DEVICE REQUEST...ceii ittt ettt s bbb e e
2 < T B 1= Tod 0] (] 25.
Section 3 Overview of the USB Module............oooriviiiiiiiiiiiiii e
3.1 Operation Of the MOAUIEcoiiiiiiiie e,
3.2 Organization of an ENAPOINTeeiiiiiiiiiiii et e e e e e,
3.3 Register ConfIQUIAIONueiiiiiiiiiiiie et 3l........
3.4 USB COMMAN PrOCESSING ..vuuuuiiiiieeeiieeeeeietie st e e e e e e e e et s s e s e e e e e e e e e e e assan e e e eaaaaes,
Section 4 Development ENVIFONMENT.........cooiiiiiiiiiiiiiiiiiieeeeee e
4.1 Hardware ENVIFONMENTuuiiiiiiieiiieie e e e et e e et e e e aeeeeaeaseesasasnnnnnneeneeeeeeeeeeees
4.2 Software ENVIFONMENT........uuiiiiiiiiiiieeie e seeieeeeee e e reeeee e e e e e e s e e e nnenneennnnees O.......
421 SAMPIE PrOGIAM ..oeiiiiiiiiiiee ettt et e e st e e e e e bbb e e e e e e aneee
4.2.2 Compiling @and LINKINGccooiiiiiieiiiee et e e e e 4
4.3 Loading and Executing the Programccoviiiiiiiiiiiiis e
4.3.1 Loading the PrOogramuuuuiiiiiei et s s e e e e e e e s e s e e e e e e e e e eeeansaneans
4.3.2 EXecUuting the PrOgramueiiiiiiiiiiiie ettt
4.4 Printing ProCEAUIEuiiiiieiiiiiiiee ettt e e einreee e e eee Dl
Section 5 Overview of the Sample Programcccccvviiiiiiiiiiiiinieeeeeees
5.1 State Transition Diagram........ccoooiiiiiiiiiiiiiie e e e e e e e Lo
5.2 USB COMMUNICAION SEALE......ccoiiiiiiiiiiiiitie ettt e e e e e e e e e e e s
L0 T e [T] (U od 11] - SRR 49..

Rev. 1.0, 04/02, Page v of vi

5.4 PUrpoSeSs Of FUNCLONSuuiiiiiiiiiiccciee e e e e e e s 50..........

Section 6 Sample Program Operationccuuuieeeiiiiiiiiiieeeeeeiiiis e e eeeiiineeeeaenns
G R |V = V] o Yo o PP OPP PSPPSR 55...
A Y/ o =230 | 0 (=T 0 U o] B5......
6.2.1 Method of Branching to Different Transfer Processes..........ccccoceeeeiieiieeeeiiivinnnnns 5
6.3 Interrupt on Cable Connection (VBUS, BRST)uciiiiiiiiiieieiieeeeiis e 5
I O a1 1o I I = 1 153 (= SRS R9.....
B.4.1 SEUUP SEBGE .. teeeeeeiiiiiiiie ettt e e e e e e e a e e e e |
B.4.2 DALA STAGE . .ueeeeriiiiiiie ettt e e e e {
6.4.3 SHALUS STAGE ..uuiiiiiiiie et aaaaa,
6.5 BUIK TraNSTEIS ...ttt ettt et e e e e e e e e e e abeeeee 66....
6.5.1 BUIK-OUL TraNSTeIS. ...ttt e e e e e e e e e e 6
6.5.2 BUIK-IN TranSTErSooooiiiiccce e 6
Section 7 ANAlyzer Data............oiiiiiiiiiii e
7.1 Control Transfer When a Device IS CONNECIEd............coeeiiiiiiiiiiiiiiiiiiiie e |
7.2 Bulk-Out Transport for Printing Out
(For the bulk-out transport, refer to SECtion 2.6.3.)covvvviiiiiiiiiie e |

Rev. 1.0, 04/02, page vi of vi
RENESAS

Section 1 Overview

These application notes describe how to use the USB Function Module that is built into the
SH7727, and contain examples of firmware programs.

The features of the USB Function Module contained in the SH7727 are listed below.

* Aninternal UDC (USB Device Controller) conforming to USB 1.1
» Automatic processing of USB controls

» Automatic processing of USB standard commands for endpoint O (some commands need |
processed through the firmware)

* Full-speed (12 Mbps) transfer supported

» Various interrupt signals needed for USB transmission and reception are generated.
» Internal system clock based on EXCPG or external input (48 MHz) can be selected.
« Low power consumption mode provided.

» Can be connected to the PDIUSBP11 series transceiver manufactured by Philips

Endpoint Configurations

Endpoint Name Transfer M_ax. Packet FIFO Buf'fer DMA
Name Type Size Capacity Transfer

EPOs Setup 8 bytes 8 bytes O
Endpoint 0 EPOi Control In 8 bytes 8 bytes O

EPOo Control Out 8 bytes 8 bytes O
Endpoint 1 EP1 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 2 EP2 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
Endpoint 3 EP3 Interrupt 8 bytes 8 bytes O

Figure 1.1 shows an example of a system configuration.

PC

‘‘ | USB Function

Parallel cable

——py

USB host

. SH7727SE
USB cable

Figure 1.1 System Configuration Example

Rev. 1.0, 04/02, page 1 of 80
RENESAS

This system is configured of the SH7727 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the SH7727SE), a printer with a parallel port, and a PC containing
Windows 2000 operating system.

The system can receive print data, transmitted from a host PC to the USB, by means of the
SH7727SE, and after converting them into the parallel format, can output the print data to a
printer. In addition, the system can use USB printer-class device drivers that are standard item:
Windows 2000, as well as printer device drivers.

This system offers the following features.

The sample program can be used to evaluate the USB module of the SH7727 quickly.
The sample program supports USB control transfer and bulk transport.

An E10A (PC card-type emulator) can be used, enabling efficient debugging.
Additional programs can be created to support interrupt transfer. *

powbdpE

Note: * Interrupt transfer programs are not provided, and will need to be created by the user.

Rev. 1.0, 04/02, page 2 of 80
RENESAS

Section 2 Overview of the USB

This chapter describes USB standards, including connection topology, transfer methods, and
formats, for your reference in developing USB systems. For details on these standards, refer
Universal Serial Bus Specification Revision 1.1.

2.1 USB Connection Topology

Figure 2.1 shows USB connection topology. A USB comprises a Host Controller mounted on
PC and devices that are connected to the Host Controller. By using a special device called a
you can expand the bus in order to increase the number of devices that can be connected to i
particular type of hub, one that is directly connected to the Host Controller, is called the root hi
which is normally housed in the PC system unit. A maximum of five levels of hubs (except for
the root hub) can be connected (or five hubs when connected serially).

PC

Host controller

Hub| Route hub |Device

ouT

Device\

30m max.

Device

Figure 2.1 Connection Topology

Rev. 1.0, 04/02, page 3 of 80
RENESAS

Host controller

Figure 2.2 Logical Topology

The Host Controller keeps track of devices by assigning 7-bit addresses to them. Because a
temporary address (default address: 0000000b) is needed that is used after a device is connec
until an address is assigned to it, the maximum number of devices, including the hubs, that can
connected to the Host Controller is 127.

The actual connection topology takes the Tree form, shown in figure 2.1; however, the logical
topology will be the Star form, illustrated in figure 2.2, a form in which the Host Controller and
the devices perform one-to-one communications in a time division protocol. All time-division
schedules (even when a device is connected via a hub, it acts as an image that is directly linke
the Host Controller) are decided by the Host Controller. Therefore, unless a command is issue
by the Host Controller (for details, see Token Packets in section 2.6.1), a device never sends d
to the Host Controller.

Devices can operate in two transfer modes: full speed device mode that performs high-speed
transfers (12 Mbps), and low-speed device mode that performs slow transfers (1.5 Mbps).

The direction in which a data transfer takes place is defined from the point of view of the Host
Controller: the direction in which data flow from the Host Controller to a device is designated th
OUT direction; the direction in which data flow from a device to the Host Controller is designate
the IN direction.

In the OUT direction, data are transferred in a broadcast mode, wherein they are transferred to
devices that are connected. Only data with a speed of 1.5 Mbps are transferred to low-speed
devices. (12 Mbps data are filtered by either the root hub or regular hubs. For further details se
Special Packets in section 2.6.1.)

Token packets that are transmitted in the broadcasting OUT direction contain address informat
(see Token Packets in section 2.6.1 for details) that enables the devices to identify the data bei
sent. Based on the address information, only the device to which the address applies operates
responds to the data.

Rev. 1.0, 04/02, page 4 of 80
RENESAS

2.2 USB Signal Transfer Method

The USB comprises two signal lines (D+, D-) and two power lines (Vbus, GND). Matching thi
organization, the USB cable is also internally comprised of four lines as illustrated in figure 2.2
In cables for full-speed devices, the signal lines (D+, D-) have a twisted pair structure. Althou
full-speed device cables require shielding in addition to twisted pairs, cables used for low-spet
devices require neither twisted pairs nor shielding. The maximum cable length supported is 5
for full-speed devices and 3 m for low-speed devices, for which neither twisted pairs nor shielc
is required.

VBus

——50000000000000000000000C | — &
D_
< GND
Twisted pair Shield

Note: Neither twisted pairs nor shielding are required in low-speed device cables.

Figure 2.3 USB Cable Configuration (for full-speed devices)

Data are transferred by means of differential signals using D+, D-. The transfer method empl
is the Non-Return to Zero Invert (NRZI) method, illustrated in figure 2.4, wherein when the
source data are 0, D+ and D- invert, and when they are 1, no inversion occurs. In NRZ, the
occurrence of successive 1s in the source data results in a lack of signal changes, which crea
potential problem of a shift in synchronization between host and device. To prevent this probl
when successive 1s occur in 6 or more bits, a 0 is inserted to cause an inversion (in a process
called bit stuffing). The Os inserted in this manner are removed by the receiving device after t
data are transferred.

In a state called the idle state where no data are transferred, in full-speed devices D+ become
high level, and D- the low level; in low-speed devices, D+ becomes the low level, and D- the h
level, according to the pull-up resistance in the device.

In the USB, data are transferred in packets (see section 2.6 for details on packets).
The leading packet is called SYNC (synchronization) with a fixed value of 00000001.

The portion of a packet in which the first bit of SYNC is inverted from D+ or D-from the idle ste
is called a SOP (Start Of Packet) (figure 2.6).

The end of a packet is a special signal for identifying the end of the packet, where both D+ an
are low levels (2-bit time), which is called an EOP (End Of Packet) (figure 2.7).

In the figures below, 2.4, 2.5, 2.6, and 2.7, the post NRZI differential signal waveform is for the

connection of a full-speed device. For the connection of a low-speed device, D+ and D- are

Rev. 1.0, 04/02, page 5 of 80
RENESAS

1 bit time (full speed: approx. 83 ns; low speed: approx. 667 ns)

reversed. (Note: In the EOP, both D+ and D- assume the low level, irrespective of the transfer

speed for the device.)

0 0 is forced for 1-bit period.

S

Bit Stuffing

it period,

b

ued for 6-|

n

[
-

Figure 2.5
Lo |

1 conti

Figure 2.4 NRZI Transfer Method

- (No data)

source data is 0
D+
D-
D+
D-
D+
D-

Source data
* Inverted when

Differential signal
after NRZI
Source data
Data after bit stuffing
Differential signal
after NRZI
Source data
Differential signal
after NRZI

RENESAS

Figure 2.6 SOP and SYNC

Rev. 1.0, 04/02, page 6 of 80

<~——— Data prior to EOP 4>E<— EOP—>E<— Idle —

Differential signal D+ '

after NRZI D- | |
Both are
low level

Figure 2.7 EOP

For each device, the power lines (Vbus, GND) can supply a maximum of 500 mA of current at
supply voltage of 5V.

The available current immediately after a connection is 100 mA maximum. After a connection
made, initialization is performed using a standard command (see Standard Command in secti
2.7.2) using a maximum current of 100 mA.

In these settings, the Host Controller reads information on the maximum current used by devic
that are connected (this information is contained in the Descriptor information to be explained
section 2.8). Based on this information, if the Host Controller determines that there are no po
supply problems, the devices are allowed to increase their power consumption for the first tim:

In the case of devices that require a current greater than 500 mA, a power supply must be prc
in the devices themselves.

Note: If a hub that is not self-powered (a bus-powered hub) is used, the maximum current th
can be used per port is subject to a 100 mA limitation. If a device requiring more than !
mA is connected to a bus-powered hub, during the initialization process the Host
Controller determines that an adequate power supply cannot be provided. In this case
Host Controller controls the bus-powered hub so that the latter will not supply power to
any of the devices that are connected to it.

2.3 Recognizing a Connection vs. Non-Connection

The side downstream from the Host Controller and the hub (the device side) pulls down the D
and D- at 15K. On the other hand, the device side pulls up the D+ for full-speed devices and t
D- for low-speed devices at 1.5K Consequently, when a device is connected to the Host
Controller or a hub, the Host Controller or the hub can recognize the transfer rate of the devic
according to which signal line, D+ or D-, is pulled up. Table 2.1 shows the relationship betwe
the states of D+ and D- for the Host Controller/hub. Figures 2.8 and 2.9 illustrate actual circui
configurations.

Rev. 1.0, 04/02, page 7 of 80
RENESAS

Table 2.1 Relationship between Signal Lines and Connected Devices

D+ D- Connected Device
Pulled up Pulled down Full-speed device
Pulled down Pulled up Low-speed device
Pulled down Pulled down Device not connected
Pulled up Pulled up Disabled

USB transceiver D+

Pull-up resistor

(High-speed/ D-

low-speed)

Pull-down resistor
15kQ x 2

UsB
conn.
Type A

USB cable
twisted pair/shielding
required, 5m max.

Host-Controller/hub

* Power lines
omitted. See 2.2.

1.5kQ
D+
): usB USB transceiver
conn. D- | (High-speed
Type B (High-speed)

Full-speed device

Figure 2.8 For Full-Speed Devices

USB transceiver | D*

Pull-up resistor

(High-speed/ D-

low-speed)

Pull-down resistor
15k x 2

UsB
conn.
Type A

USB cable
twisted pair/shielding
not required, 3m max

Host Controller/hub

* Power lines
omitted. See 2.2

1.5kQ
D+
): UsB USB transceiver
conn. D- High-speed
et (High-speed)

Full-speed device

Rev. 1.0, 04/02, page 8 of 80

Figure 2.9 For Low-Speed Devices

RENESAS

2.4 USB Connector

The USB uses two types of connectors: a flat Type A connector used on the Host Controller s
(figure 2.10) and a square Type B connector used on the device side (figure 2.11). The differe
connector configurations are designed to prevent physical misconnection (in the USB, connec
between Host Controllers or devices are prohibited).

In the case of a hub, a Type B connector is used on the upstream side (the Host Controller sic
and a Type-A connector is used on the downstream side (the device side).

Figure 2.10 Type A Connector

Figure 2.11 Type B Connector

2.5 Endpoint

Each device has FIFOs called endpoints (EPs). When sending or receiving data, the Host
Controller and the device do so through endpoints. The number of endpoints that a device ca
have depends on the transfer rate for the device and is defined as in table 2.2.

Table 2.2 Number of Available Endpoints

Device Transfer Rate Endpoint No. Max. No. of Endpoints
Full speed (12 Mbps) Oto 15 16 each for INJOUT
Low speed (1.5 Mbps) Oto2 3 each for INJOUT

In table 2.2, the endpoint with number 0 is used for control transfers (section 2.6.2). All device
must have endpoint 0. Any number of endpoints 1 to 15 can be used. The direction in which
flow through an endpoint or the application of an endpoint can be user-defined as part of a de'

Rev. 1.0, 04/02, page 9 of 80
RENESAS

design process. In USB1.0, however, interrupt transfers can occur only in the IN direction
(section 2.6.5).

For endpoints, the maximum amount of data that can be sent or received is defined for each
transfer method. Data greater than a specified side cannot be sent or received through a giver
endpoint. However, any data less than the allowed maximum size (short packets) can be sent «
received. Table 2.3 shows the endpoint data sizes for each transfer method. For each endpoil
any data size within the limits defined in table 2.3 can be specified.

Table 2.3 Max. data size (in bytes)

Transfer Method

Device Control Isochronous
Bulk transfer Interrupt transfer
transfer rate transfer transfer
Full speed 8,16,32,64 8,16,32,64 0to 64 (any 0 to 1023 (any
integer) integer)
Low speed 8 Not available 0to 8 (any integer) Not available

Note: See sections 2.6.2 to 2.6.5 for transfer methods.

2.6 USB Packets and Data Transfer

In the USB, data are transferred in units of packets. A packet is the smallest unit of data in US
data. The USB protocol communicates using a combination of several packets, and this
combination is referred to as a transaction. In a transaction, packets appear in the following or
token, data, and handshake.

A set of transactions is referred to as a frame (figure 2.12).

Frame (1 ms)
Setup IN ouT
transaction transaction transaction
N N N
s N ava N
SOF ||SETUP | DATAO | ACK || IN [DATA1| ACK | OUT | DATAO | ACK -+ | SOF || SETUP | DATAO
SOF packet Data packet \ .
Handshake packet In gach frame, thg po_rtlgn
devoid of a transaction is idle.
Token packet

Figure 2.12 Transactions and Frames

Rev. 1.0, 04/02, page 10 of 80
RENESAS

A frame begins with an SOF packet that is issued every millisecond and continues on to the n
SOF. The scheduling of transactions in a frame is handled completely by the Host Controller.

In each frame, the portion that is not filled with a transaction (the portion devoid of any data)
assumes an idle state, as explained in section 2.2.

Transactions are sent and received between the Host Controller and a device according to a
specified sequence. Following is a description of packets used in a USB, as well as the
characteristics and the format of each transfer method.

2.6.1 Overview of Packets

Packets used in the USB must conform to prescribed formats. As shown in table 2.4, packets
be classified into five categories: SOF, token, data, handshake, and special. These categorie
identified using a 4-bit PID (packet ID).

Table 2.4 List of PIDs

PID Type PID Name Send Device PID[3:0]
SOF SOF Host controller 0101
Token ouT Host controller 0001
IN Host controller 1001
SETUP Host controller 1101
Data DATAO Host controller/device 0011
DATAl Host controller/device 0010
Handshake ACK Host controller/device 0010
NAK Device 1010
STALL Device 1110
Special PRE Host controller 1100

A packet takes the following format: a packet begins with SYNC, followed byRID,and CRC
(the handshake or special packet does not have a CRC), and ends with an EOP. SYNC
(synchronization) indicates the beginning of a packet and transmits a fixed value of 00000001
The receiver of the packet performs a synchronization by using SYNC. PID indicates the type
packet, and each type has a unique vaRI®. is a bit-by-bit binary complement of PID. This
complement permits the detection of errors. CRC (Cyclic Redundancy Check) is the result of
CRC-checking of each packet with the exception of SYNC, PIDPand

Rev. 1.0, 04/02, page 11 of 80
RENESAS

SOF (Start Of Frame)

An SOF is a packet that is issued by the Host Controller at millisecond intervals. The interval
from on SOF to another is called a frame. SOFs are used to synchronize an entire device. In
addition, they are used to generate reference signals for isochronous transmissions (section 2.
or suspend-prevention signals (generated by the hub/root hub upon receipt of a keep-alive sigr
SOF) for low-speed devices. Although in terms of classification an SOF belongs to the token
packet, because it is used differently from other tokens as described above, it represents a sep
category.

SYNC | PID ; PID Frame no. CRC EOP PID type
8 bits | 4 bits | 4 bits 11 bits 5 bits | 2 bits SOF=0101

Figure 2.13 SOF Packet
Token

A token, which can only be issued by the Host Controller, is used to inform a device that a
command is being sent or the direction in which data are to be sent. Several types of token
packets exist, as described below. A token packet also includes address information that enab
given device whether data being sent from the Host Controller are addressed to it, and endpoir
information that identifies the endpoint for a device.

[OUT token]
The Host Controller issues an OUT token before sending data to a device.
[IN token]

The Host Controller issues an IN token when requesting the transmission of data from a
device.

[SETUP token]

This token is issued when a command is transmitted in a control transfer. See section 2.6.2
details on control transfers.

SsyNC | PID ! PID ADDR ENDP | CRC | EOP | PIDtype

8 bits | 4 bits | 4 bits 7 bits 4 bits | 5bits | 2 bits | OUT=0001
IN=1001
SETUP=1101

Figure 2.14 Token Packet

Rev. 1.0, 04/02, page 12 of 80
RENESAS

Data

The Host Controller and devices use the data packet when transmitting data. Two types of dé
packets exist, differentiated by whether PID is DATAO or DATAL. Transmission of these data
packets in an alternating fashion can detect any missing data, which enhances the reliability o
transmission process. (Isochronous transmissions use data packets that are fixed at DATAO.)

SYNC | PID PID DATA CRC | EOP | PIDtype
8 bits | 4 bits ; 4 bits 0~1023 bytes 16 bits | 2 bits | DATA0=0011
DATA1=1011

Figure 2.15 Data Packet
Handshake

A handshake enables the receiver to notify the sender of whether the data have been receive
normally. The following types of handshake exist: (Note: A handshake is not issued in an
isochronous transfer.)

[ACK]

This handshake is issued when either the Host Controller or a device has received a data |
normally.

[NAK]
A NAK is issued by a device to the Host Controller under the following conditions:

O Although OUT token packets and data packets were received from the Host, data cann
received because the endpoint is full.

O Although an IN token packet was received from the Host, the data to be sent are not ye
ready.

When receiving NAK, in the case of an OUT transaction, the Host Controller re-issues an

OUT token and the data that failed to be received; in the case of an IN transaction, the Ho:s
Controller re-issues an IN token later. Because the Host Controller is defined as being abl
send and receive data packets at any time, the Host Controller never returns NAK to a dev

[STALL]

A STALL handshake is issued by a device when an error condition occurs and the device
requires intervention by the Host.

Rev. 1.0, 04/02, page 13 of 80
RENESAS

[No response] (no handshake packets issued)

If an error is found in a PID or a CRC result does not match, a handshaking is not performe
and no response is generated. If a no response condition lasts more than a fixed length of 1
(16~18 bit time) after transmitting data, the Host Controller or a device goes into a timeout
state and recognizes that a communication error has occurred. Subsequently, the Host
Controller re-issues the token and data for which an error condition was recognized.

SYNC | PID ! PID | EOP PID type

8 bits | 4 bits ! 4 bits | 2 bits ACK=0010
NAK=1010
STALL=1110

Note: Packets not issued if no response

Figure 2.16 Handshake Packet

Special

A PRE(PREAMBLE) packet is defined as a special packet. The PRE packet indicates to the
device that a low-speed transfer will be performed following it.

A full-speed data transfer to low-speed device can cause an error.
The PRE packet can prevent this error.

When dealing with a low-speed device, hubs (including the root hub) filter out any full-speed da
so that they are not transmitted to the low-speed device. However, when receiving a PRE pacl
the hubs stop filtering, and begin to transfer the low-speed data received from the Host Control
to the low-speed device.

Although low-speed data are also transferred to full-speed devices, because low-speed data c:
generate valid full-speed PIDs, there is no possibility of full-speed devices producing an error d
to the low-speed data.

SYNC | PID PID | EOP PID type
8 bits | 4 bits, 4 bits | 2 bits PRE=1100

Note: Low-speed data following this packet

Figure 2.17 Special Packet

Rev. 1.0, 04/02, page 14 of 80
RENESAS

2.6.2 Control Transfer

A control transfer is used to issue a command to a device. This is the first transfer that occurs
when a device is connected to the Host Controller. In this case, the Host Controller uses a co
transfer on the new device in order to obtain information on the device. Therefore, whether th
are full-speed devices or low-speed devices, all devices must support this transfer method.

Control transfers can be divided into a setup stage, a data stage, and a status stage.

Note: In the following description of transfer methods, which side sends a packet is indicatec
the right side of the packet, i.e., (H) indicates the Host Controller side, (D) the device s

[Setup Stage]

This is the first stage in a control transfer. In the setup stage, the Host Controller issues a
command to a device and provides instructions on what is to be sent or received. Accordil
this command, the device sets up the data to be sent to the Host Controller or prepares
receiving data from the Host Controller.

The setup stage for a control transfer consists of setup transactions. The size of the data |
for a setup transaction is always 8 bytes. The Host Controller stores the command being s
in the data packet.

The PID for a data packet is always DATAO. The handshake packet for a setup transactio
the packet that the device sends to the host. In this case, the device must always return A
Returning either NAK or STALL in a setup transaction is prohibited. Therefore, devices mt
always be prepared to receive a setup transaction.

Sender
| Setup Token | (H)
Data (8bytes fixed) (H)
PID: DATAO fixed
ACK (D)

Figure 2.18 Setup Stage

Rev. 1.0, 04/02, page 15 of 80
RENESAS

[Data Stage]

In the data stage, according to the command received in the setup stage, the device repeat:
receipt of the data being sent or the transmission of the data to be sent.

The direction of data never changes in the midst of a data stage.

In an IN direction data stage, if the data to be sent by the device have depleted, the device |
either a short packet (a data packet with a byte count less than the maximum data size spec
for the device) or a 0-byte data packet to notify the Host Controller of the end of transmissio
Some commands do not have any data to be sent or received, in which case the data stage
is omitted.

In cases where data are sent/received repeatedly, the PID for the data packets toggles
DATAle DATAQO DATAL...

Sender Sender
I IN token I (H) I OUT token I (H)
DATAO0/ DATAO/
DATAL (D) DATAL (H)
(toggled on trans.) (toggled on trans.)
ACK (H) ACK (D)

Figure 2.19 Data stage (left: IN, right: OUT)
[Status Stage]

A status stage begins when a token is transmitted in a direction opposite to the data stage (
the setup stage if there is no data stage). For example, if an IN token is issued in a data stz
and data are transferred from a device to the Host Controller, the status stage begins when
OUT token is issued. Thus, the data stage terminates when the direction of data is reverse

As illustrated in figure 2.20, a status stage is associated with three patterns: an IN direction
data stage, an OUT direction data stage, and no data stage.

The data packet following the transmission of a token in the status stage must contain a pac
with a 0-byte data length with a DATA1 PID.

Rev. 1.0, 04/02, page 16 of 80
RENESAS

IN dir. data stage UT dir. data stag Setup stage only
(Fig. 2.19, left) (Fig. 2.19, right) (Fig. 2.18)

Sender Sender Sender
OUT token (H) | IN token (H) IN token H)
DATA1 DATA1 DATA1
(0 byte) (H) (0 byte) (D) (0 byte) (D)
ACK (D) ACK (H) ACK H)
Note: left: after IN data stage

middle: after IN data stage

right:

after setup stage only

The reason that the reversal of direction brings on the status stage is that the data stage is de
so that it can be terminated even before the Host Controller has received or transmitted all the

Figure 2.20 Status Stage

that were requested by means of a setup stage command.

Figure 2.21 shows an example of a control transfer that has an IN direction data stage. Suppt
that the Host Controller requests 32-byte data in the setup stage; after the setup stage has en
the Host Controller issues an IN token; according to this command, the device sends 88-byte
(if the maximum packet size is 88 bytes); and the Host Controller issues ACK. At this point, th
device will have sent 8 bytes out of the 32 bytes. If more data are needed, the Host Controlle
issues the IN token. When no more data are needed, the Host Controller issues the OUT tok
The OUT token changes the direction of data, and at this time the status stage is brought on,

the control transfer ends.

Rev. 1.0, 04/02, page 17 of 80
RENESAS

Setup stage
(Fig. 2.18)

Data stage <

Status stage <

Figure 2.21 Data Stage Interrupted

2.6.3 Bulk Transfer

A bulk transfer is used to send large quantities of data without error when the transfer process
not subject to a time constraint. In a bulk transfer, the data transfer speed is not guaranteed, b
data integrity is guaranteed. If a data error is found (e.g., a CRC mismatch), the receiver does
issue a handshake. If ACK is not returned, the sender re-transmits the affected data. If there i
room in the FIFO or the data to be sent are not yet ready, the sender issues NAK. The amount
data that can be transferred in a bulk transfer can be specified in the MAX packet size. A bulk
transfer cannot be used with low-speed devices.

If an IN token is issued by the Host Controller (left side in figure 2.22), data are transmitted fror
the device and a handshake is issued by the Host Controller.

If an OUT token is issued by the Host Controller (right side in figure 2.22), data are transmitted
from the Host Controller, and a handshake is issued by the device.

In both bulk IN/OUT, each time a data send/receive action is repeated, the PID for the data pac
toggles DATAG DATA1+« DATAO...

Rev. 1.0, 04/02, page 18 of 80
RENESAS

Sender Sender
IN token (H) OUT token (H)
DATAO/ DATAO/
DATAL (D) DATA1 (H)
(toggled on trans.) (toggled on trans.)
(H) (D)
ACK ACK

Figure 2.22 Bulk Transfer (left: IN, right: OUT)

2.6.4 Isochronous Transfer

An Isochronous transfer is used to send continuous data, such as audio data and moving pict
Isochronous transfers are priority-scheduled so that a data transfer occurs at a rate of once pe
frame (1 ms). In an Isochronous transfer, however, offset values from an SOF packet cannot
guaranteed. In other words, the first transfer can occur at the end of a frame and the next trar
can occur at the beginning of the frame. Devices are required to be able to handle these
contingencies.

Isochronous transfers cannot be used with low-speed devices.
As shown in figure 2.23, Isochronous transactions do not contain handshake packets.

Unlike a bulk transfer, in an Isochronous transfer, data are not re-sent even if there are errors
data that are transferred. The maximum size of a data packet that can be specified for an
Isochronous transfer is 1023 bytes.

The PID for the data packet is fixed at DATAO (the PID does not toggle).

Sender Sender
IN token H) OUT token H)
DATAO,fixed DATAO,fixed
(no toggle) ©) (no toggle) H)

No handshaking

Figure 2.23 Isochronous Transfer (left: IN, right: OUT)

Rev. 1.0, 04/02, page 19 of 80
RENESAS

2.6.5 Interrupt Transfer

In an interrupt transfer, the Host Controller generates IN transactions for devices in specified
cycles. Devices can specify to the Host Controller the cycle in which transactions are to be
generated. A cycle can be specified in 1 to 255 frames. The Host Controller starts an IN
transaction at least once per specified cycle. Note that although devices are not accessed in
intervals less than a specified cycle, they can be accessed in intervals greater than a specified
cycle. (Only IN interrupt transfers are supported in USB1.0, but USB1.1 supports both IN and
OUT interrupt transfers.)

Interrupt transfers can be used with both full-speed/low-speed devices.

The maximum data packet size that can be specified is 64 bytes for full-speed devices and 8 b
for low-speed devices.

Each time a data receive action is repeated, the PID for the data packet toggles
DATAOs DATALle DATAO...

In an interrupt-in transfer, if the Host Controller generates an IN token and the device has data
transmit, the device sends a data packet, as illustrated in figure 2.24 (a) (left). If the device has
transmit data when an IN token is generated, the device issues NAK instead of sending a data
packet, as shown in figure 2.24 (a) (right)

When the device When the device
Sender . .
has data to transmit has no data to transmit

TR o]

DATAO/ NAK
(D) DATAL
(toggled on trans.)

(H)
ACK

Figure 2.24 (a) Interrupt-In Transfer

In an interrupt-out transfer, the Host Controller sends an OUT token then data to the device. W
the device has received the data, it sends an ACK packet, as illustrated in figure 2.24 (b) (left).
the device failed to receive data following the OUT token sent from the host controller, the devi
sends a NAK packet instead of an ACK packet, as shown in figure 2.24 (b) (right)

Rev. 1.0, 04/02, page 20 of 80
RENESAS

Sender When the device When the device

can receive data cannot receive data
(H) ouT OouT
DATAO/ DATAO/
(H) DATAL DATA1
(toggled on trans.) (toggled on trans.)
(D) ACK NAK

Figure 2.24 (b) Interrupt-Out Transfer

Rev. 1.0, 04/02, page 21 of 80
RENESAS

2.7 USB Device Framework

For plug-and-play, for the USB, detailed procedures are established from connecting the USB
cable to configuring the system. This section explains those procedures.

2.7.1 Device States

USB devices can have the various states shown in figure 2.25. A device can be used only whe
has transited to the configuration state.

Attached <Attached state>
The device, attached to the root hub or a

hub, is not powered on.

<Powered state>
Suspended The root hub or hubs have been

r\\ Bus activity configured by the Host Controller, and

they are supplying the power to the device.
In this state, all signals are ignored until
the reset signal is received.

Default 2 ot <Default state>
q> N —____\uspende The device that has been reset is

Hub Configured.

S

Bus inactive

Bus activity automatically assigned address O.

I Set Address request I <Address state>
A device-specific address other than 0
is assigned with the SetAddress command

Bus inactive (Standard Commands in section 2.7.2).

Bus activity -
<Configured state>
The configuration has been set by the
I Set Configuration request I Host.

. . <Suspended state>
: Bus inactive If no bus traffic is detected for more than
Configured Suspended ; :
-— 3ms, the device goes into the power-
Bus activity - ;)
saving mode. After returning from this
state, the device regains the original state.

Figure 2.25 USB Device State

Rev. 1.0, 04/02, page 22 of 80
RENESAS

2.7.2

For a device to be able to transit to the configuration state, it must respond to the commands i
by the Host Controller. Commands issued by the Host Controller are called device requests,
their format is defined by the USB standard. The Host Controller issues device requests in thi

Device Request

setup stage in a control transfer.

Three types of device requests are available:

Standard commands

These commands are defined in the USB standard. All devices must support these comm

Table 2.5 shows a list of standard commands.
For details on standard commands, refer to the standards documentation.

Table 2.5 List of Standard Commands

Command Name Function Data Stage Direction of
Data Stage
Clear_Feature Clears the endpoint stall. N
o
(Endpoint_stall)
Clear_Feature Clears the device remote wakeup
(Device_ Remote Wa feature. No
keup)
Get_Configuration Gets configuration information. Yes IN
Get_Descriptor Gets device descriptor
- information Yes IN
(Device) :
Get_Descriptor Gets configuration descriptor
- information Yes IN
(Config) :
Get_Descriptor Gets string descriptor
: information Yes IN
(String) :
Get_Interface Gets interface information. Yes IN
Get_Status(Device) Gets device status information. Yes IN
Get_Status(Interface) Gets interface status information. Yes IN
Get_Status(EndPoint) Gets endpoint status information. Yes IN
Set_Address Sets the device address. No

RENESAS

Rev. 1.0, 04/02, page 23 of 80

Command Name Function Data Stage Direction of

Data Stage
Set_Descriptor Sets the device descriptor.
. Yes Out
(Device)
Set_Descriptor Sets the configuration descriptor.
. Yes Out
(Config)
Set_Descriptor Sets the string descriptor.
i Yes Out
(String)
Set_Configuration Sets configuration. No
Set_Feature Sets the endpoint to the Stall
0
(EndPoint_Stall) stage.
Set_Feature Sets the device to the wakeup
(Device_Remote_Wa State. No
keup)
Set_Interface Sets an interface. No
Posts a specific frame number on
Sync_Frame the endpoint during an Yes out

Isochronous transfer (if a special
number is required).

Class command

Class commands other than hub commands are established by corporate groups, subject tc
certification by the USB-IF (USB Implementers Forum). Several classes exist: audio class,
common class, HID (Human Interface Device) class, and printer class.

Vendor command

Vendor commands can be defined freely by device designers, provided that the commands
conform to the same format as other commands.

Rev. 1.0, 04/02, page 24 of 80
RENESAS

2.8 Descriptor

Each USB device is associated with what is called descriptor information that indicates the tyy
characteristics, and attributes of the device itself. By obtaining device information on a device,
Host Controller can recognize the type of device that is connected to a given bus.

Standard USB devices have the following descriptors: device, configuration, interface, and
endpoint.

These descriptors are described in tables 2.6, 2.7, 2.8, and 2.9.

Table 2.6 Device Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x12)
bDescriptorType 1 Descriptor type (fixed at 0x01)

bcdUSB 2 USB version, represented in BCD
bDeviceClass 1 Class code: 0: no class; 0xFF: vendor class

1 to OXFE: special class

bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code: 0: no specific protocol used
OxFF: vendor-specific protocol

bMaxPacketSize0 Maximum packet for endpoint O

idvVendor 2 Vendor ID (assigned to manufacturers by the
USB-IF)

idProduct 2 Product ID (assigned to each device by
manufacturer)

bcdDevice 2 Device version, represented in BCD

iManufacturer 1 Index to a string descriptor indicating the
manufacturer’'s name

iProduct 1 Index to a string descriptor indicating the device
name

iSerialNumber 1 Index to a string descriptor indicating the serial
number of the device

bNumCaonfigurations 1 Number of configurable devices

Note: USB Implementers Forum

Rev. 1.0, 04/02, page 25 of 80
RENESAS

Table 2.7 Configuration Descriptor

Field Size (in bytes) Description
bLength 1 Descriptor size (fixed at 0x09)
bDescriptorType 1 Descriptor type (fixed at 0x02)
wTotalLength 2 Total length of descriptor
bNuminterface 1 Number of interfaces associated with descriptor
bConfiguration 1 Argument value (1 or higher) for the selection of
Value this descriptor using Set_Configuration
iConfiguration 1 Index to a string descriptor
bmAttributes 1 Device power supply
Bit 7: bus power; bit 6: self-power; bit 5: remote
wakeup; bits 4 to 0: reserved
MaxPower 1 Specifies the maximum bus power consumption

in units of 2 mA.

Table 2.8 Interface Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x09)

bDescriptorType 1 Descriptor type (fixed at 0x04)

binterfaceNumber 1 Zero-base index number that represents this
interface in the configuratione

bAlternateSetting 1 An argument value for the selection of alternate
settings using Set_Interface.

bNumEndpoints 1 Number of endpoints associated with a device
(exclusive of endpoint 0)

binterfaceClass 1 Class code 0: no class; OxFF: vendor class;
1 to OxFE: special class

binterfaceSubClass 1 Subclass code

binterfaceProtocol 1 Protocol code 0: no specific protocols used

OxFF: vendor-specific protocol

ilnterface 1 Index to the string descriptor representing this
interface

Rev. 1.0, 04/02, page 26 of 80
RENESAS

Table 2.9 Endpoint Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x07)

bDescriptorType 1 Descriptor type (fixed at 0x05)

bEndpointAddress 1 Endpoint address: bit 7: direction (0:OUT 1:IN);
bits 6 to 4: reserved (0); bits 3 to 0: endpoint
number

bmaAttributes 1 Endpoint transfer method: bits 7 to 2: reserved
(0); bits 1 to 0: transfer method (0: control, 1:
Isochronous , 2: bulk, 3: interrupt)

wMaxPacketSize Maximum packet size

binterval 1 Specifies polling intervals in units of ms.

Specify 1 for Isochronous transfers.
Ignored for bulk or control transfers.

Rev. 1.0, 04/02, page 27 of 80

RENESAS

Rev. 1.0, 04/02, page 28 of 80
RENESAS

Section 3 Overview of the USB Module

3.1 Operation of the Module

This sectiorexplains the operation of the USB module internal to the SH7727. Commands ant
data that are sent by the host are stored in the EP (FIFO) in the USB Module for each transfel
type. When reading data, you should access the data register for a given endpoint. When se
data to the host, you should write them to the data register for the endpoint (figure 3.1).

Internal peripheral bus USB function module

Status and
control registers

Interrupt requests

DMA transfer requests uDC To transceiver
FIFO
(288 bytes)
— 1
Clock (48MHz)
Internal peripheral bus UDC=USB Device Controller

Figure 3.1 USB Module Block Diagram

Rev. 1.0, 04/02, page 29 of 80
RENESAS

3.2 Organization of an Endpoint

The USB function module internal to the SH7727 has four endpoints. Table 3.1 shows the
organization of USB function module endpoints.

Table 3.1 Endpoint Configuration

Name of Svmbol Tvpe of Transfer Max. Packet FIFO Buffer ~ DMA
Endpoint y yp Size Capacity Transfer
EPOs Setup 8 bytes 8 bytes .
Endpoint 0 EPOi Control-IN 8 bytes 8 bytes .
EPOO Control-OUT 8 bytes 8 bytes .
) 64x2)
Endpoint 1 EP1 Bulk-out 64 bytes Possible
(128 bytes)
. . 64x2 .
Endpoint 2 EP2 Bulk-in 64 bytes Possible
(128 bytes)
Endpoint 3 EP3 Interrupt 8 bytes 8 bytes .

Rev. 1.0, 04/02, page 30 of 80
RENESAS

3.3

Register Configuration

Table 3.2 shows the configuration of USB function module registers.

Table 3.2 Register Configuration

Name Abbreviation R/W Initial Address Access
Value Size
USBEPOi data register USBEPDROI W H'A4000242 8
USBEPOo data register USBEPDROO R H'A4000243 8
USBEPOs data register USBEPDROS R H'A4000247 8
USBEP1 data register USBEPDR1 R H'A400024E 8
USBEP2 data register USBEPDR2 w H'A4000249 8
USBEP3 data register USBEPDR3 W H'A4000252 8
Interrupt flag register O USBIFRO R/W H'10 H'A4000240 8
Interrupt flag register 1 USBIFR1 R/W H'00 H'A4000241 8
Trigger register USBTRG W H'A4000244 8
FIFO clear register USBFCLR % H'A4000245 8
USBEPOQo received data size USBEPSZ00 R H'00 H'A4000246 8
register
Data status register USBDASTS R H'00 H'A4000248 8
Endpoint stall register USBEPSTL R/W H'00 H'A400024B 8
Interrupt enable register O USBIERO R/W H'00 H'A400024C 8
Interrupt enable register 1 USBIER1 R/W H'00 H'A400024D 8
USBEP1 received data size =~ USBEPSZ1 R H'00 H'A400024F 8
register
USBDMA setting register USBDMA R/W H'00 H'A4000251 8
Interrupt selection register 0 USBISRO R/W H'00 H'A400024A
Interrupt selection register 1 ~ USBISR1 R/W H'07 H'A4000250

Following is a description of registers that are frequently used in this sample program. For
information on all registers, refer to the SH7727 hardware manual.

RENESAS

Rev. 1.0, 04/02, page 31 of 80

1. USBEPOi Data Register (USBEPDROI)

This is an 8-byte FIFO buffer for the transmission of endpoint 0. This register holds 1 packe
of transmission data in response to Control IN. The transmission data are set when 1 packe
data is written and EPOIPKTE in the USB trigger register is set. When an ACK handshake i
returned from the host after the data are sent, EPQITS in USB interrupt flag register 0 is set.
The FIFO buffer can be cleared using EPOICLR of the USBFIFO clear register.

2. USBEPOo Data Register (USBEPDRO0O)

This is an 8-byte FIFO buffer for the reception of endpoint 0. Received data for endpoint 0,
exclusive of the setup command, are stored in this buffer. Upon normal reception of data,
EPOOTS in USB interrupt flag register 0 is set, and the number of received bytes is indicate
the EPOo received data size register. After the data are read, setting EPOORDFN in the US
trigger register makes the reception of another packet possible. The FIFO buffer can be
cleared using EPOOCLR of the USBFIFO clear register.

3. USBEPOs Data Register (USBEPDROS)

This is an 8-byte FIFO buffer solely for the reception of the setup command for endpoint 0.
When the setup command to be processed by the application is received and command dat
successfully stored, SETUPTS in USB interrupt flag register 0 is set. Because the setup
command must always be received, any data remaining in the buffer will be overwritten by t
new data. If the reception of another command is initiated while the current command is be
read, the read data are invalidated so that the read action by the application can be disablet
favor of the reception action.

4. USBEP1 Data Register (USBEPDR1)

This is a 128-byte FIFO buffer for the reception of endpoint 1. This is a double buffer with a
capacity 2 times the maximum packet size. Upon the successful reception of 1 byte of data
from the host, EP1FULL of USB interrupt flag register 0 is set. The number of received byte
is indicated in the USBEP1 received data size register. Writing the value 1 to EP1RDFN of
the USB trigger register after data are read makes the read-side buffer ready for reception ¢
other data. The received data in the FIFO buffer are available for DMA transfer. The FIFO
buffer can be cleared using EP1CLR of the USBFIFO clear register.

5. USBEP2 Data Register (USBEPDR?2)

This is a 128-byte FIFO buffer for the transmission of endpoint 2. This is a double buffer witl
a capacity 2 times the maximum packet size. Writing the transmission data to the FIFO buff
and setting EP2PKTE in the USB trigger register sets 1 packet of transmission data and the
double buffer is switched. The transmission data to the FIFO buffer are available for DMA
transfer. The FIFO buffer can be cleared using EP2CLR of the USBFIFO clear register.

Rev. 1.0, 04/02, page 32 of 80
RENESAS

6. USBEP3 Data Register (USBEPDR?3)

This is an 8-byte FIFO buffer for the transmission of endpoint 3. This buffer holds 1 packe
transmission data for the interrupt transfer of endpoint 3. Writing 1 packet of data and sett
EP3PKTE in the USB trigger register sets the transmission data. Upon normal transmissic
1 packet of data and reception of an ACK handshake from the host, EP3TS for the USB
interrupt flag register is set. The FIFO buffer can be cleared using EP3CLR of the USBFIF
clear register.

. USB Interrupt Flag Register 0 (USBIFRO)

Together with USB interrupt flag register 1, this register indicates the interrupt status
necessary for the application. When an interrupt source is generated, the corresponding b
setto 1, and a CPU interrupt request is generated in combination with USB interrupt enabl
register 0. However, EP1FULL and EP2EMPTY cannot be cleared because they are statt
registers.

Bit: 7 6 5 4 3 2 1 0

Bit name: | BRST EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

FULL TR |EMPTY| TS TS TR TS
R/W: R/W R R/W R R/W R/W R/W R/W
Initial value: 0 0 0 1 0 0 0 0

Bit 7: bus reset
1 is set in this bit when a bus reset signal is detected on the USB bus.

Bit 6: EP1 FIFO full

1 is set in this bit when endpoint 1 (bulk OUT) successfully receives 1 packet of data from-
host. The value 1 is retained as long as valid data exist in the FIFO buffer.

Bit 5: EP2 transfer request

1 is set in this bit when an IN token for endpoint 2 (bulk IN) is received from the Host
Controller and no valid transmission data exist in the FIFO buffer. NAK handshake signals
are returned to the Host Controller until data are written to the FIFO buffer and packet-sen
enable is set.

Bit 4: EP2 FIFO empty

This bit is set when at least one of the transmission FIFO buffers (double buffer configurati
for endpoint 2 is available for the writing of transmission data.

Bit 3: setup command received

1 is set in this bit when the setup command to be decoded by the application is received b
endpoint 0 and an ACK handshake is returned to the Host Controller.

Rev. 1.0, 04/02, page 33 of 80
RENESAS

» Bit 2: EPOo received

1 is set in this bit when endpoint 0 successfully receives data from the Host Controller, store
them in the FIFO buffer, and returns an ACK handshake to the Host Controller.

e Bit 1: EPQi transfer request

1 is set in this bit when an IN token for endpoint 0 is received from the Host Controller and
valid transmission data do not exist in the FIFO buffer. NAK handshake signals are returne
to the Host Controller until data are written to the FIFO buffer and packet-send-enable is se

« Bit 0: EPOi transmitted

1 is set in this bit when data are transmitted from endpoint 0 to the Host Controller and an
ACK handshake is returned.

8. Interrupt Flag Register 1(USBIFR1)

Bit: 7 6 5 4 3 2 1 0

. EP3 EP3
Bit : — — _ _

it name VBUSMN R TS VBUSF
R/W: R R R R R R/W R/W R/W
Initial value: 0 0 0 0 0 0 0 0

» Bits 7 to 4: reserved

» Bit 3: USB Connect Status

This bit is a status bit for monitoring the state of the USBF_VBUS pin. It reflects the state of
the USBF_VBUS pin.

e Bit 2: EP3 transfer request

1 is set in this bit when an IN token for endpoint 3 (an interrupt) is received from the Host
Controller and no valid transmission data exist in the FIFO buffer. A NAK handshake is
returned to the host until data is written to the FIFO buffer and packet transmission is enable

« Bit 1: EP3 transmitted

1 is set in this bit when data are sent from endpoint 3 to the Host Controller and an ACK
handshake is returned.

» Bit 0: USB bus connected

1 is set in this bit when connected to or disconnected from the USB bus. The USBF_VBUS
pin is used to detect connection/disconnection. The USBF_VBUS pin, required in the Modu
should always be connected.

Rev. 1.0, 04/02, page 34 of 80
RENESAS

. Trigger Register (USBTRG)

Bit: 7 6 5 4 3 2 1 0

Bit name: EP3 EP1 EP2 a EPOs | EPOO | EPOI
PKTE | RDFN | PKTE RDFN | RDFN | PKTE

R/W: W W W W W w W w

Bit 7: reserved

Bit 6: EP3 packet enabled

Transmission data are set by writing 1 to this bit after writing 1 packet of data to the FIFO
buffer for the transmission of endpoint 3.

Bit 5: EP1 read

Write 1 to this bit after 1 packet of data is read from the FIFO buffer for endpoint 1. The FI
buffer for the receiving of endpoint 1 is a double-buffer. Writing 1 to this bit initializes the
buffer from which data have been read and makes it available for the reception of another
packet.

Bit 4: endpoint 2 packet enabled

Write 1 to this bit after data for the FIFO buffer for endpoint 2 have been read. Writing 1
makes the buffer available for the transmission or receipt of data for the next data stage. |
handshakes will be returned in response to any send/receive requests from the host in the
stage until such time as 1 is written to this bit.

Bit 3: reserved

Bit 2: EPOs read

Write 1 to this bit after data for the FIFO buffer for EPOs commands have been read. Writir
makes the buffer available for the transmission or reception of data for the next data stage
NAK handshakes will be returned in response to any send/receive requests from the host i
data stage until such time as 1 is written to this bit.

Bit 1: EPOo read

Writing 1 to this bit after 1 packet of data is read from the FIFO buffer for the transmission
endpoint O initializes the FIFO buffer and makes it available for the receipt of another pack

Bit 0: EPOIi packet enabled

Writing 1 to this bit after 1 packet of data is written to the FIFO buffer for the transmission c
endpoint O sets the transmission data.

Rev. 1.0, 04/02, page 35 of 80
RENESAS

10. Interrupt Enable Register 0 (USBIERO)
This register enables interrupt requests for interrupt flag register 0 (USBIFR0). When this
register is set to 1, and a corresponding interrupt flag is set, an interrupt request is generate
the CPU. The associated interrupt vector number is determined by the contents of interrupt
selection register 0 (USBISRO).

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

Bi :
ttname: | BRSTf cy | 7R [empry| 7s | 18 | TR | TS

R/W: R/W R R/W R R/W R/W R/W R/W
Initial value: 0 0 0 1 0 0 0 0

11. Interrupt Enable Register 1 (USBIER1)

This register enables interrupt requests for interrupt flag register 1 (USBIFR1). When this
register is set to 1, and a corresponding interrupt flag is set, an interrupt request is generate
the CPU. The associated interrupt vector number is determined by the contents of interrupt
selection register 1 (USBISR1).

Bit: 7 6 5 4 3 2 1 0

. EP3 EP3
B : — — — _ _

it name R TS VBUSF
R/W: R R R R R R/W R/W R/W
Initial value: 0 0 0 0 0 0 0 0

Rev. 1.0, 04/02, page 36 of 80
RENESAS

3.4 USB Command Processing

USB standard commands that are sent by the Host Controller during a control transfer can be
divided into two types: commands that are automatically processed by the USB Function Mod
and commands that require processing by the user. All class commands and vendor commar
must be decoded by the user. Table 3.3 shows the classification of commands that require
decoding by the user and commands that do not require decoding.

Table 3.3 Command Decoding

User Decoding Required User Decoding Not Required
Clear Feature Get Descriptor

Get Configuration Synch Frame

Get Interface Set Descriptor

Get Status Class/Vendor command
Set Address

Set Configuration
Set Feature
Set Interface

For commands that do not require decoding by the user, the USB Function Module automatic:
processes command decoding, data stages, and status stages. When receiving a command tl
requires decoding by the user, the Function Module saves it in the FIFO for EPOs. Upon norn
reception of a command, the USB Function Module generates a SETUPTS interrupt. Upon
detecting this interrupt, the user needs to read and process the endpoint data.

Rev. 1.0, 04/02, page 37 of 80
RENESAS

Rev. 1.0, 04/02, page 38 of 80
RENESAS

Section 4 Development Environment

This chapter looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

SH7727 Solution Engine (hereafter called the SH7727SE; type number: MS7727SEOQ1)
manufactured by Hitachi ULSI Systems Co., Ltd.

Super I/O expansion connector board (MSUSIOEX01) manufactured by Hitachi ULSI
Systems Co., Ltd.

SH7727 E10A Emulator manufactured by Hitachi, Ltd.

PC (Windows 95/98) equipped with a PCMCIA slot

PC (Windows 2000) to serve as the USB host

Parallel-port printer

USB cable

Parallel cable

Hitachi Debugging Interface (hereafter called the HDI) manufactured by Hitachi, Ltd.
Hitachi Embedded Workshop (hereafter called the HEW) manufactured by Hitachi, Ltd.

4.1 Hardware Environment

Figure 4.1 shows device connections.

Used to install HDI and
HEW, and for program

compiling and connector board,

Used as the USB host;
outputs printing data

| E10A PC (Win95/98) |

SH7727SE

Super 1/O expansion connector

AC adapter
included with
SolutionEngine

the super 1/0O expansio

USB host PC (Win2000) | USB cable

Parallel cable

Printer

Figure 4.1 Device Connections

Rev. 1.0, 04/02, page 39 of 80
RENESAS

1. SH7727SE

Some DIP switch settings on the SH7727SE board must be changed from those at shipmer
Before turning on the power, ensure that the switches are set as follows. There is no need t
change any other DIP switches.

Table 4.1 DIP Switch Settings

At Time of Shipment After Change DIP Switch Function
SW1-6 OFF SW1-6 ON Select the endian
SW1-8 OFF SW1-8 ON Select E10A emulator
SW4-1 OFF SW4-1 ON Set SCIF2 baud rate
SW4-2 OFF SW4-2 ON Set SCIF2 baud rate

2. Super I/O expansion connector board

For an explanation of connection with the SH7727SE, please refer to the instruction manual
for the SolutionEngine. This expansion connector board is not included with the
SolutionEngine, and must be purchased separately.

3. USB host PC

A PC with Windows 2000 installed and with a USB port is used as the USB host. This syste
uses printer-class device drivers installed as a standard part of the Windows 2000 system, «
so there is no need to install new drivers.

4. E10A PC

The E10A should be inserted into a PC card slot and connected to the SH7727SE via a
interface cable. After connection, start the HDI and perform emulation.

4.2 Software Environment

A sample program, as well as the compiler and linker used, are explained.

4.2.1 Sample Program

Files required for the sample program are all stored in the SH7727 folder. When this entire fold
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are indicated in figure 4.2 below.

Rev. 1.0, 04/02, page 40 of 80
RENESAS

| SH7727 |
/CatProType.h CatTypedef.h SetMacro.h \
SetSystemSwitch.h SetUsblinfo.h SH7727.h SysMemMap.h
DoBulk.c DoControl.c Dolnterrupt.c DoRequest.c ppout.c
StartUp.c UsbMain.c DoReqgestPrinterClass.c sct.src AsmFunction.src
debugger.ABS debugger.MAP debugger.MOT log.txt dwfinf (folder)
BildOfHew.bat InkSetl.sub
7727E10A.hdc

Figure 4.2 Files Included in the Folder

4.2.2 Compiling and Linking
The sample program is compiled and linked using the following software.
Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew, the procedure for compiling and linking the program is as
follows.*

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling. (fig
4.3)

C:\
I—\Hew

\Tmp

Figure 4.3 Creating a Working Folder

Next, the folder in which the sample program is stored (SH7727) should be copied to any arbi
drive. In addition to the sample program, this folder contains a batch file named BildOfHew.ba
This batch file sets the path, specifies compile options, specifies a log file indicating the compi
and linking results, and performs other operations. When BildOfHew.bat is executed, compilin
and linking are performed. As a result, a Motorola S-type format file named debugger.MOT is
created within the folder. This is the executable file. At the same time, a map file named
debugger.MAP and a log file named log.txt are created. The map file indicates the program si.
and variable addresses. The compile results (whether there are any errors etc.) are recorded
log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BildOfHew.bat, as well a
the library settings in InkSet1.sub, must be changed. Here the compiler path setting

Rev. 1.0, 04/02, page 41 of 80
RENESAS

should be changed to the path of shc.exe, and the setting for the environment variab
shc_lib used by the compiler should be set to the folder of shc.exe; the shc_inc settir
should be changed to the folder of machine.h, and the setting of shc_tmp should

specify the work folder for the compiler. The library setting should specify the path of

shcpic.lib.
/I SH7727 I \
Batch file Execution results
BildOfHew.bat , debugger.ABS
Execusion debugger.MOT
debugger.MAP
log.txt

Figure 4.4 Compile Results

Rev. 1.0, 04/02, page 42 of 80
RENESAS

4.3 Loading and Executing the Program

Figure 4.5 shows the memory map for the sample program.

_SH7727SE
AC00 0000
PResetException area 136 byte
ACO00 0087
ACO00 0100
PGeneralExceptions area 64 byte
ACO00 013F
ACO00 0400
PTLBMissException area 94 byte
ACO00 045D
ACO00 0600
Plinterrupt area 76 byte
ACO00 064B
ACO00 1000
PNonCash area 876 byte
ACO00 136B
CCO00 1400
P, C, D, DNonCash areas* 3653 byte
CCO00 2244
ACO00 3000
Control transfer data area 72 byte
ACO00 3047
ACO00 4000
Bulk transfer data area 31.9 Mbyte
ADFF EBFF
A500 7000
R, B areas 522 byte
A500 7209
A501 7000
Stack area approx. 8 kbyte
A501 8FFC

Notes: The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.
* Placed in the P3 cache write-through space. Consequently the address bits A31-29
are 110.

Figure 4.5 Memory Map

Rev. 1.0, 04/02, page 43 of 80
RENESAS

As shown in figure 4.5, this sample program allocates the PResetException, PGeneralExceptic
PTLBMissException, PInterrupt, PNonCash, P, C, and D areas in SDRAM, and the R and B ar:
in the internal memory. In order to use the E10A for break and other functions, the program mu
be placed in RAM in this way. These memory allocations are specified by the InkSet1.sub file i
the SH7727 folder. When incorporating the program in ROM by writing it to flash memory or
some other media, this file must be modified.

4.3.1 Loading the Program

In order to load the sample program into the SDRAM of the SH7727SE, the following procedur
is used.

* Insert the E10A into the PC for use with the E10A, in which the HDI has been installed, and
connect the E10A to the SH7727SE via a user cable.

» Turn on the power to the E10A PC, to start up the machine.
* The HDI is started.
e Turn on the power to the SH7727SE.

« Adialog (figure 4.6) is displayed on the PC screen; turn the SH7727SE reset switch (SW1)
and after resetting the CPU, click the OK button, or press the Enter key.

» Select CommandLine in the View menu to open a window (figure 4.7), click the BatchFile
button on the upper left, and specify the 7727E10A.hdc file in the SH7727 folder. As a resul
the BSC is set, and accessing of the SDRAM is made possible.

» Select LoadProgram... from the File menu; in the Load Program dialog box, specify
debugger.ABS in the SH7727 folder.

Through the above procedure, the sample program can be loaded into the SH7727SE SDRAM

HO I

& Pleasa, reset the user system and press <{Enter’ key.

Figure 4.6 Reset Request Dialog

Rev. 1.0, 04/02, page 44 of 80
RENESAS

BR Command Linesno batch fileno log fills I =] B3

Batch file

Figure 4.7 Command Line Input

4.3.2 Executing the Program

In order to execute the program which was loaded in section 4.3.1, Loading the Program, abo
the program counter (PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clickin
the numerical area of the register (PC) in the window, a dialog box appears, and the register \
can be changed. Use this dialog box to set the PC to H'AC00 0000.

After making the above settings, select Go from the Run menu to execute the program.

4.4 Printing Procedure

With the program executed, insert the USB cable series B connected into the SH7727SE, anc
connect the series A connected at the opposite end to the USB host PC. After control transfer
completed, USB printing support is displayed below USB host controller in the device manage
and the host PC recognizes the SH7727SE as a printer device.

Next, the printer drivétis installed. Open the printer from the Start menu Settings item, and
double-click on the Add a printer icon. A setup wizard is started; in port selection, check USBC(
Virtual Printer Port for USB. Specify the printer to be used (the manufacturer name and printer
model). When the wizard processing is completed, a test print should be performed; if the driv
correctly installed, the printer will output a print test.

Notes: *1 In this sample program, bidirectional communication with the printer is not supporte
please be sure to use a printer driver included as standard with Windows 2000.

*2 If a printer-class device has previously been connected to the host PC, the number

be different (USB002, USBO003, etc.). In this case, select the highest-numbered por

Rev. 1.0, 04/02, page 45 of 80
RENESAS

Rev. 1.0, 04/02, page 46 of 80
RENESAS

Section 5 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample

program runs on the SH7727SE, and initiates USB transfers by means of interrupts from the U
function module. Of the interrupts from modules in the SH7727, there are two interrupts relate

the USB function module: USBFIO and USBFI1, but in this sample program, only USBFIO is
used.

Features of this program are as follows.

» Control transfer can be performed.

« Bulk-out transfer can be used to receive data from the host controller.

» Bulk-in transfer can be used to send data to the host controller.

e The Ultra I/0O mounted on the SH7727SE can be used to output data to a printer.

5.1 State Transition Diagram

Figure 5.1 shows a state transition diagram for this sample program. In this sample program,

shown in figure 5.1, there are transitions between four states.

Immediately after power is applied, the reset
state is entered.After completion of initial
settings, execution enters the main loop and
the system is in a stationary state. The names
of files which can make transitions to each
state are also shown.

Startup.c
Reset state

Completion of initial settings

Startup.c

out.c
Ppou Stationary

Manual reset

tartuplc
Error generationj

Parallel output state
When there is data
to print

Interrupt generation (USBFI0) USB communication ends

%

UsB
communication
state
UsbMain.c
DoRequest.c
DoControl.c
DoBulk.c

Figure 5.1 State Transition Diagram

Rev. 1.0, 04/02, page 47 of 80
RENESAS

* Reset State
Upon power-on reset and manual reset, this state is entered. In the reset state, the SH7727
mainly performs initial settings.

» Stationary State
When initial settings are completed, a stationary state is entered in the main loop. Here, the
presence of printing data from the host is constantly monitored; if there is data, the parallel
output state is entered, and data is output to the printer.

e USB Communication State
In the stationary state, when an interrupt from the USB module occurs, this state is entered.
the USB communication state, data transfer is performed by a transfer method according to
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
register 0 (USBIFRO), and there are eight interrupt types in all. When an interrupt factor
occurs, the corresponding bits in USBIFRO are set.

» Error State
When an error occurs while in the USB communication state, this state is entered. In the ca
of a transition to the error state, there is a problem with the USB communication contents.
When communication is performed normally, there are no transitions to the error state. If the
error state is entered, the firmware should be reexamined. In order to recover from the error
state, perform a power-on reset or a manual reset.

Rev. 1.0, 04/02, page 48 of 80
RENESAS

5.2 USB Communication State

The USB communication state can be further divided into three states according to the transfe
type (see figure 5.2). When an interrupt occurs, first there is a transition to the USB
communication state, and then there is further branching to a transfer state according to the
interrupt type. The branching method is explained in section 6, Sample Program Operation.

USB communication state

Jajsuel) [01U0D
Jajsuen u-ying
lajsuel) INo-ying

DoRequest.c DoBulk.c

oControl.c

UsbMain.c

Figure 5.2 USB Communication State

53 File Structure

This sample program consists of eight source files and nine header files. The overall file struc
is shown in table 5.1. Each function is arranged in one file by transfer method or function type

Table 5.1 File Structure

Filename Main purpose
Makes microcomputer initial settings
StartUp.c)
Clears ring buffer
. Discriminates interrupt factors
UsbMain.c

Sends/receives packets

Rev. 1.0, 04/02, page 49 of 80
RENESAS

Filename

Main purpose

DoRequest.c

Processes setup commands issued by host

DoControl.c

Executes control transfer

DoBulk.c

Executes bulk transfer

DoRequestPrinter Class.c

Processes printer-class commands

ppout.c

Controls ring buffer
Initializes printer
Outputs data to printer

ASMFunction.src

Makes stack settings

CatProType.h

Declares prototypes

CatTypedef.h

Defines basic structures used in the USB firmware

SysMemMap.h

Defines SH7727SE memory map addresses

SetPrinterinfo.h

Makes initial settings of variables and definition of constants
needed to support printer class

SetUsblInfo.h

Makes initial settings of variables needed to support USB

SetSystemSwitch.h

Sets system operation

SetMacro.h Defines macros
SH7727.h Defines SH7727 registers
ioaddr.h Defines Ultra I/O registers

5.4 Purposes of Functions

Table 5.2 shows functions contained in each file and their purposes.

Rev. 1.0, 04/02, page 50 of 80

RENESAS

Table 5.2-1 UsbMain.c

File in Which Stored

Function Name

Purpose

UsbMain.c

BranchOfint

Discriminates interrupt factors, and calls
function according to interrupt

Writes data transferred from the host

GetPacket controller to RAM
Writes data transferred from the host
GetPacket4 controller to RAM in longwords
PutPacket Writes data for transfer to the host controller
to the USB module
PutPacketd Writes data for transfer to the host controller
to the USB module in longwords
SetControlOutContents Overwrites data with that sent from the host
SetUsbModule Makes USB module initial settings
ActBusReset Clears FIFO on receiving bus reset
ConvRealn Reaql; data of a specified byte length from a
specified address
ConvReflexn Reads data of a specified byte length from

specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functic
are called according to the interrupt type. Also, packets are sent and received between the ho
controller and function modules.

Table 5.2-2 StartUp.c

File in Which Stored Function Name Purpose

CallResetException

Performs the operation for the reset
exception and calls the following function

CallGeneralExceptions

Calls the function for the general exception
except for the TLB miss

CallTLBMissException

Calls the function for the TLB miss

Callinterrupt

Calls the function for the interrupt request

StartUp.c . Initializes modules and memory and

SetPowerOnSection .)
transfers execution to main loop

INITSCT Copies variables with initial values to RAM
work area

. Clears RAM area used in bulk

InitMemory L
communication

InitSystem Pull-up control of USB bus

Rev. 1.0, 04/02, page 51 of 80

RENESAS

Upon power-on reset or manual reset, the CallResetException is called. Here the SH7727 initie
values are set. Then, SetPowerOnSection clears RAM areas used in control transfer and bulk
transfer.

Table 5.2-3 ppout.c

File in Which Stored Function Name Purpose

Monitors the empty space in the buffer and
temporarily stops bulk-out transfer if

ActPrintOut necessary
Calls bulk-out functions
Monitors the empty space in the buffer and
) restarts bulk-out transfer if necessary
LptMain .
Passes the read pointer as argument to
ppout.c LptPortWrite
LptPortOpen Initializes printer
LptPortWrite Outputs data from parallel port
parallel_conf Initializes Ultra 1/O parallel port
read w Reads data from Ultra 1/0O configuration
- register
write_w Writes data to Ultra I/O configuration register

In ppout.c, print data stored in RAM is written to the Ultra I/O register, and strobe and other
signals are controlled to output data to the printer.

Table 5.2-4 DoRequest.c

File in Which Stored Function Name Purpose
DecStandardCommands Decodes command issued by host
DoRequest.c controller, processes standard commands
DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded, and commands &
processed. In this sample program, a vendor ID of 045B (vendor: Hitachi) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implementer
Forum. Because vendor commands are not used, DecVenderCommands does not perform any
action. In order to use a vendor command, the customer should develop a program.

Rev. 1.0, 04/02, page 52 of 80
RENESAS

Table 5.2-5 DoControl.c

File in Which Stored Function Name Purpose
ActControl Performs setup stage for control transfer
Performs data stage, status stage for control
ActControlin transfer (data stage transferred in in
DoControl.c direction)
Performs data stage, status stage for control
ActControlOut transfer (data stage transferred in out
direction)

When a control transfer interrupt (EPOo0TS) is input, ActControl acquires the command, and
decoding is performed by DecStandardCommands. Next, the data stage and status stage are
performed by ActControlin and ActControl IQut, according to the command type.

Table 5.2-6 DoBulk.c

File in Which Stored Function Name Purpose
ActBulkOut Performs bulk-out transfer

DoBulk.c ActBulkin Performs bulk-in transfer
ActBulkinReady Performs preparations for bulk-in transfer

Processing related to bulk transfer is performed. ActBulkinReady is used only in bulk-in transf

Table 5.2-7 DoRequestPrinterClass.c

File in Which Stored Function Name Purpose

DoRequestPrinterClass.c DecPrinterClassCommands Processes printer-class command

Processing for printer class commands is performed. In this sample program, an IEEE 1284
database ID is not used, and so 0 is output. When using an IEEE 1284 device ID, the output \
should be set by the customer.

Figure 5.3 shows the interrelationship between the functions explained in table 5.2. The uppel
functions can call the lower-side functions. Also, multiple functions can call the same function.
the stationary state, interrupt function Callinterrupt calls BranchOfint, and BranchOfInt calls ot
functions. Figure 5.3 shows the hierarchical relation of functions; there is no order for function
calling. For information on the order in which functions are called, please refer to the flow chat
of section 6, Sample Program Operation.

Rev. 1.0, 04/02, page 53 of 80
RENESAS

SetPowerOnSection

LptMain LptPortOpen InitSystem InitMemory INITSCT
LptPortWrite WaiteTimeNs
io_write Parallel_conf
write_w read_w
io_bit_set io_read io_bit_clear
BranchOfint
ActControl ActBulkOut ActControlOut ActControlin ActBulkin ActBulkinReady
I I |
GetPacket PutPacket
DecStandardCommands
LE2ByteRead DecPrinterClassCommands
DecVenderCommands

error

Figure 5.3

Rev. 1.0, 04/02, page 54 of 80

Interrelationship between Functions

RENESAS

Section 6 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of
USB function module.

6.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers c
internal peripheral modules are initialized. Next, reset interrupt function CallResetException is
called to process the reset exception and to call function SetPowerOnSection. Figure 6.1 is a
chart for the operation from the reset interrupt to the stationary state.

Microcomputer reset
CallResetException
SetPowerOnSection

— |Microcomputer initial settingsl
\ | RAM is cleared to 0 |

After initial values have been set,

| Variables are initializedl

this program enters the main loop. <
Y

RAM areas are constantly monitored
for the presence of pint data. If print

data is present, the data is output to

the printer as it appears.

rint data present?

| Output to printer? |

L

Figure 6.1 Main Loop

6.2 Types of Interrupts

As explained in section 5.1, State Transition Diagram, the interrupts used in this sample progr
are indicated by the interrupt flag register 0 (USBIFRO); there are a total of eight types of
interrupts. When an interrupt factor occurs, the corresponding bits in the interrupt flag register
set to 1, and a USBFIO interrupt request is sent to the CPU. In the sample program, the interrt
flag registers are read as a result of this interrupt request, and the corresponding USB
communication is performed. Figure 6.2 shows the interrupt flag registers and their relation to
USB communication.

Rev. 1.0, 04/02, page 55 of 80
RENESAS

USB interrupt flag register 0 (USBIFRO)

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

BitName:| BRST| ey [7R |empry| 15 | 7s | TR | TS

Cable connection Bulk-out transfer Bulk-in transfer Control transfer

USB interrupt flag register 1 (USBIFR1)

Bit: 7 6 5 4 3 2 1 0
. EP3 EP3
g = _ _ — BUSMN
Bit Name: TR TS VBUSF
Not used Not usedx Not used

Note: Because this sample program does not support interrupt transfers, the interrupt associated with
EP3 is not used.

Figure 6.2 Types of Interrupt Flags

Rev. 1.0, 04/02, page 56 of 80
RENESAS

6.2.1 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the US
module as describe in section 5, Overview of the Sample Program. Branching to the different
transfer methods is executed by BranchOfint in UsbMain.c. Table 6.1 shows the relations bet\
the types of interrupts and the functions called by BranchOfint.

USB interrupt flag register 0 (USBIFRO)

Bit: 7 6 5 4 3 2 1 0

EP1 EP2 EP2 |SETUP| EPOo | EPOI EPOI

Bitname: | BRST| iy | 7R |empry| Ts s | TR TS

USB interrupt flag register 1 (USBIFR1)

Bit: 7 6 5 4 3 2 1 0
. EP3 EP3
Bit name: — —_ — — VBUSMN
R Ts VBUSF

Table 6.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called

0 EPOI TS ActControlin ActControlOut

1 EPOi TR ActControlOut

2 EPOO TS ActControlln ActControlOut
USBIFRO 3 SETUP TS ActControl

4 EP2 EMPTY ActBulkin

5 EP2 TR ActBulkinReady

6 EP1 FULL ActPrintOut

7 BRST ActBusReset

The EPOITS and EPOOTS interrupts are used both for control-in and control-out transfer. Henc
order to manage the direction and stage of control transfer, the sample program has three sta
TRANS _IN, TRANS_OUT, and WAIT. For details, refer to section 6.4, Control Transfers.

In the SH7727 hardware manual, operation of the USB function module when an interrupt occ
and a summary of operation on the application side, are described. From the next section, det
of application-side firmware are explained for each USB transfer method.

Rev. 1.0, 04/02, page 57 of 80
RENESAS

6.3

Interrupt on Cable Connection (VBUS, BRST)

This interrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a

specialized port is employed to pull-up the USB data bus D+. By means of this pull-up, the hos

controller recognizes that the device has been connected. (figure 6.3)

USB function module

Cable disconnected
VBUS=0
UDC core reset

| USB cable connected |

USB1_pwr_en pin
D+ pull-up enabled?

UDC core reset

canceled

Bus reset signal received

Cable connected

USBFIO interrupt

Sample program

—| | SetPowerOnSection

Microcomputer initial
settings

v

0 written to the pull-up
enable bit in the USBDMA|
setting register and the
USB1_pwr_en pinis

driven low

Main loop

The output level of the
USB1_pwr_en pin set to high with
the USBDMA setting register

v

The port D6 function set to the
USB clock input pin

v

The port E2 function set to the
USB1_pwr_en pin

v

USBF clock stopped
by standby control register 3

[rcbusresa]|

v

The USB interrupt level
selected with interrupt
priority register G

v

48-MHz clock selected for the
USB clock with EXCPG control

register
v

USB transceiver 1 enabled by
the extra pin function controller

USBIFR/BRST=1 generated)
Bus reset interrupt * P Al FIFOs cleared register
¢ . USBF clock restarted

Wait for setup command E by standby control register 3

receive complete interrupt} ! *
E Necessary interrupt requests
' enabled with the USB interrupt
, enable registers
, The vector numbers for interrupt
, requests selected with the
: USB interrupt select registers

Figure 6.3 Interrupt on Cable Connection

Rev. 1.0, 04/02, page 58 of 80

RENESAS

6.4 Control Transfers

In control transfers, bits 0 to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage. (figure 6.4) In the de
stage, data transfers from the host controller to the USB function module are control-out trans
and transfers in the opposite direction are control-in transfers.

Control-out transfers

Host controller ———>| uSB function module

| Data I(Data stage)

Control-in transfers

Host controller <::| USB function module

M (Data stage)

Figure 6.4 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure €
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. |
the same interrupt flag is used to call a function to perform control-in or control-out transfers («
Table 6.1). For this reason, the firmware must use states to manage the type of control transfe
currently being performed, whether control-in or control-out, (figure 6.5) and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined
commands received in the setup stage.

Rev. 1.0, 04/02, page 59 of 80
RENESAS

. Setup stage , Data stage , Status stage

'l SETUP(0) |§| IN(1) || IN(0) | | IN(0/1) |

Control-in | OuUT(1) |

5 DATAO 5 DATAL DATAO DATAO/1 5 DATAL
Firmware state {[WAIT [} TRANS_IN ' WAIT +
Control-out :| SETUP(0) || OouT(1) | | OUT(0) | | OouT(0/1) || IN(L) |

: DATAO : DATA1 DATAO DATAO/L | DATA1

Firmware state !l WAIT |E| TRANS_OUT E WAIT E

wan | (o | oo]

! DATAO ! ! DATAl

[warr || TRANS_OUT " WA

Firmware state

Figure 6.5 Status in Control Transfers

6.4.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in an
control-out transfer, the firmware goes into the WAIT state. Depending on the type of commanc
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

» Commands for control-in transfers: GetDescriptor (TRANS _IN) Standard command
GetDevicelD (TRANS _IN) Class command
GetPortStatus (TRANS_IN) Class command

» Commands for control-out transfers: SoftReset (TRANS_OUT) Class command

Figure 6.6 shows operation of the sample program in the setup stage. The figure on the left shc
operation of the USB function module.

Rev. 1.0, 04/02, page 60 of 80
RENESAS

USB function module

Setup token received

y

8-byte command data
received at EPOs

- X Autmatic
Application processin :
PP colmm';nd’) g processing by
) USB module

Setup command receive

complete flag set USBFIO0 interrupt genarated

(USBIFR/SETUP TS=1)

To control-in data stage|

Sample program

[ermeron |
v

SETUP TS flag cleared
EPOo FIFO cleared
EPOI FIFO cleared

’

Firmware state changed to
WAIT

'

Read pointer and write pointer to the
command buffer initialized

[ceraaer ||

I DecStandardCommandsI I—

YES

Printer class command?,

I IDecPrimerCIassCommandsI I

Data direction determined

Control-out transfer
from host to device

the command type,

Control-in transfer
from device to host

Firmware state changed to
TANS_IN

EPOIi TR interrupt disabled

Data written to FIFO

PutPacket

A

Firmware state changed to
TANS_OUT

'

EPO transfer request interrupt
enabled (USBIFRO/EPO TR=1)

!

EPOs read complete flag set to 1
(USBTRG/EPOs RDFN=1)

EPOs read complete flag set to 1
(USBTRG/EPOs RDFN=1)

v

I To contro-in data stage

To contro-out data stage

Figure 6.6 Setup Stage

Rev. 1.0, 04/02, page 61 of 80

RENESAS

6.4.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS _IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 6.7 and 6.8 show the operation «
the sample program in the data stage of control transfer

USB function module

In-token received

Sample program

BranchOfint

When firmware state is TRANS_IN

ActControl In I
v

When data direction changes,
data stage is completed and
status stage is entered.

YES

A
| Status stage I

USBTRG/EPOs RDFN
setto 1?

Receive complete interrupt?
(USBIFRO/EPO0 TS

Valid data in
EPOi FIFO?

USBIFRO/EPOI TS
interrupt flag cleared

PutPacket I

v

Data written to USBEPOI
data register

v

EPOi packet cnable bit set to 1
(USBTRG/EPOi PKTE=1)

USBFIO0 interrupt generated

EPOi transmit flag set
(USBIFRO/EPOITS=1)

Figure 6.7 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 62 of 80
RENESAS

USB function module

Out-token received

Sample program

BranchOfint

When firmware state is TRANS_OUT

ActControlOut I

When data direction changes,
data stage is completed and
status stage is entered.

1 is written to
USBTRG/EPOs RDFN?

Receive complete’
interrupt?
USBIFRO/EPO0 TS

|Data received from hostl Status stage

!
USBFIO

[EPOO receive complete flag set| _interrupt genarated
(USBIFRO/EPO0 TS=1)

EPOo receive complete
flag cleared
(USBIFRO/EP0O0 TS=0)

oo ||

v

Data read from USBEPOo receive
data size register (USBEPSZ00)

v

Data read from USBEPOo
data register (USBEPDRO0O)

v

EPOo read complete bit set to 1
(USBTRG/EP0O0 RDFN=1)

Out-token received

USBTRG/EPOs RDFN
setto 1?

Figure 6.8 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 63 of 80
RENESAS

6.4.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module Sample program

| Out-token received |

A
IO byte received from hostl

<>

EPOo receive complete flag set] USBFIO interrupt generated |
(USBIFRO/EPOo0 TS=1) 'i | BranchOfint | |

When firmware state is TRANS_IN

3 I ActControl IN | I—

v
Control transfer end

Receive complete interrupt?
USBIFRO/EPO0 TS)

YES

y
EPOo-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

v

EPOo receive complete flag set to 1
(USBTRG/EP0O0 RDFN=1)

v

| Control-in transfer end

Data stage

Figure 6.9 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 64 of 80
RENESAS

USB function module Sample program

In-token received

NO i
USBFIOlnterruptgeE?rated =” Branchofint ”
<y '
When firmware state is TRANS_OUT

¥ [rccomoou [l

< EPOo receive complete interrupt?,

Valid data in
EPOi FIFO?

USBIFRO/EPO0 TS,

EPOi transmit complete flag
set (USBIFRO/EPOo TS=1) [USBFIO interrupt generated

Data stage

EPOi transmit request interrupt?.

Control transfer end

YES EPOo transmit complete flag

cleared (USBIFRO/EPOQi TS=0)

EPOi transfer request flag cleared l
(USBIFRO/EPOi TR=0)

Firmware state
changed to WAIT

I SetControlOutContents I

EPOi packet enable bit set to 1
(USBTRG/EPOi PKTE=1)

Figure 6.10 Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 65 of 80
RENESAS

6.5 Bulk Transfers

In bulk transfers, bits 4 to 6 of the interrupt flag register are used. Bulk transfers can also be
divided into two types according to the direction of data transmission. (figure 6.11)

When data is transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when data is transferred in the opposite direction, it is a bulk-in trans

Bulk-out transfers

Host controller |:'l> USB function module

Data

Bulk-in transfers

Host controller :ll USB function module

Data

Figure 6.11 Bulk Transfers

Rev. 1.0, 04/02, page 66 of 80
RENESAS

6.5.1 Bulk-Out Transfers

The operation of the sample program in bulk-out transfers is shown in figure 6.12.

USB function module

Out-token received

Sample program

USBFIO0 interrupt
generated

BranchOfint
USBIFRO/EP1FULL

ormon ||

v
s empty space in bulk YES
EP1 FIFO empty? transmit data area smaller' EP1 FIFO full status interrupt |
than maximum packet disabled
ize x 82
NO

ActBulkOut I
y

Memory area for copying
data checked

USBFIO interrupt
EP1 FIFO full status set generated
(USBIFRO/EP1 FULL=1) o

GetPacket I

v

Data read from USBEP1 receive
data size register (USBEPSZ1)

v

Data read from USBEP1 data register
(USBEPDR1) and stored is buffer

v

EP1 read complete bit set to 1
(USBTRG/EP1 RDFN=1)

EP1 FIFO full status cleared
(USBIFRO/EP1 FULL=0)

A

Figure 6.12 Bulk-Out Transfers

Rev. 1.0, 04/02, page 67 of 80
RENESAS

6.5.2 Bulk-in Transfers

Figure 6.13 shows the operation of the sample program in bulk-in transfers.

Rev. 1.0, 04/02, page 68 of 80
RENESAS

USB function module

In-token received

Sample program

USBFIO interrupt
generated

?I | BranchOfint | I

USBIFRO/EP2 TR interrupt

ActBulkinReady I

N

Valid data in EP2 FIFO?,

EP2 transfer request flag cleared
(USBIFRO/EP2 TR=0)

v

EP2 FIFO empty interrupt enabled
(USBIERO/EP2 EMPTY)

On enabling empty interrupt,
ol interrupts are generated

YES EP2 empty status set USBFIO0 interrupt generated

?
EP2 FIFO empty? (USBIFRO/EP2 EMPTY=1)

YES

Is transmit data a

EP2 empty status cleared short packet?
(USBIFRO/EP2 EMPTY=0)
NO v
& EP2 FIFO empty interrupt
h disabled
(USBIERO/EP2 EMPTY=0)
<
ruracee ||
v
Write data

v

EP2 packet enable bit set to 1
(USBTRG/EP2 PKTE=1)

.
.
.
.
.
}
:
|
,
.
.
.
1
.
|
.
.
.
1
.
:
.
.
.
1
.
. ActBulkin I
.
.
|
.
.
.
.
1
:
|
,
.
.
.
1
.
|
.
.
.
1
.
.
.
.

Figure 6.13 Bulk-In Transfers

Rev. 1.0, 04/02, page 69 of 80
RENESAS

Rev. 1.0, 04/02, page 70 of 80
RENESAS

Section 7 Analyzer Data

In this chapter, we look at how measurement is carried out with the USB Inspector, a USB
protocol analyzer made by CATC (http://www.catc.com), using the USB function module in the
SH7727, and at what happens to the data as it actually flows along the bus. The following give
the description for control transfer when a device is connected and bulk-out transport in printir
out as examples. For more detailed information on packets, see section 2.6.1.

Note: The Packet # found in front of each packet is the packet number used when measu

The Idle found at the end of each packet indicates the idle between packets (see
sections 2.2 and 2.6).

7.1 Control Transfer When a Device Is Connected

Figure 7.1 shows the measurement made, with a device connected to the host controller, whil
shifting from the power-on state (the power is supplied to Vbus) until the configuration state (tl
device is ready for being used (configuration state). For details on the state transitions, see Sse
2.7.1.

Though the packet scheduling may differ depending on the host controller, the command flow
the configuration state is always the same.

Rev. 1.0, 04/02, page 71 of 80

RENESAS

((@21n0@)101dLIDSB@ 199) J8jsuel] [0JU0D

(ssalppy 19S) Jajsuel] [0U0D

“ﬂ — Reset signal. A transition is made from power-on state to default state.
19,21 milzzcands 5503

Frome « _ [REEg
00000001 | OrAS 05146 axos || 119a5 | ¢ SOF packet Frame
(Ims).
Frame & g
00300001 Dad 5 0x14C Oxld 119635
* Only SOF packets continue in this period
Sync S0OF Frama & CRSS
Q2330 | LY QaiFd TR =}
~ Setup token packet (default address used)
Frame
[Fe==l¥ | 5750) RIS Setup (Ims)
[188 || 2ooooaai =] a0 06 00 81 00 00 40 90 OrEEZD] ~ Data packet (8 bytes) stage
[Fackelr® Sync [Get_Descriptor (Device) command
783 || 00000041 | 4w || 11801 | < ACK handshake packet
I Packel ¥ ” Syne I S0OF CROE
I 170 | I Q00000 1 I Oxd5 ax1F1 Q02 5
Sync IM ADDR ENDF el die |
H | — s - ~ In token packet (default address used)
Frame
— Data (1ms)
~ Dat ket t X
ol a ata packet (8 bytes) stage (in)
Fackal 8 Syne TR device descriptor information
p!
| 173 ” Q00000 1 I Qad B | 11797
I Packal & ” Sync I S0OF TR
I 174 | I Q00000 1 I Duhl as1F2 Dxdd 11985
I Packel ¥ ” Syne I S0OF CROE
I 175 ” Q00000 1 I Oihd Qs1F3 Qs 1F 5
[Fecreld | oo ENDP‘“I CRCE ~ §
R I Tl I I T | Out-token padket (default address used) Frame
AT) Status @
[FachalA | CATAT CATA ms)
7T) ~ Data packet (OByte) stage
I Packal ¥ ” Syns I ACK
[778 || —coooar | 0wdE || 1148e
I Fackal & || Sync I S0F CRCS I
| 172 || Q2001 I LT Ox1F4 Jwd i | FEE]
180 Slarl al Pa=al
Reset signal is input again
1481 10.59 millisecands 2432
[Fackal® Eync Frama §
I 142 ” Qa00000 1 I Dahs ax1FF [aPTa] =) 11984
* Only SOF packets continue in this period
| Packal & || Syne | SOF SRR
I 293 | I Q00000 1 I Oxd5 QE2EE Qx0E 5
Fackal & |
/ - ~ Setup token packet (default address used)
Frame
Fachel & Syne Setup
I FES H AAAaaaa 1 I ﬁ « Data packet (8 bytes) stage (ams)
[Fe==l¥ | =F | (Set_Address (address: 2) command
| 298 ” Q00000 1 I Qad B I 11801
[Fackal® || Eync [s5F TRES
I 297 | I Q00000 1 I [Py Qx2EF Q19 £
[Packeld | =R
FED] 5 ~ In-token packet (default address used)
Frame
Status
bEE] ~ Data packet (OByte) (1ms)
stage
I Packel & ” Syne I EX=3
\ |00 |[00000001 | owe || 11&ei ~ ACK handshake packet
[Fackal® || Eync [SoF TRLS o)
A | P e T Note: A transition is made to address state.

* Only SOF packets continue in this period
Rev. 1.0, 04/02, page 72 of 80

RENESAS

((@21n8@)101dIosad 199) Jajsuel) |01IU0D

((Byuop)ioiduosag 199) Jajsuel) |01UOD

Fachal§ = EOF TRCE i
S09 Q00000 1 Oxd5 Q278 Q00 5

Packﬂl [}
/ 310 3 ~ Setup token packet (address: 2) T
Frame
| Fackel#_| [oA 150 Cv T Setup
ITT || 00000001 | owe3 B0 06 00 01 00 00 12 00 Or07ZE & — Data packet (8 bytes) stage (1ms)
| Fackal® | [% | (Get_Descriptor (Device) command)
| G1z ” [liTalaTaTalu R} I Oad B | 11801
| Fackal & | | Sync S0OF CRSS
| 313 ” Q00000 1 Duhl Dx279 Dx1F
H n o acch IR R .
e a0a00aa1 | 096 | 0wz | G0 | 0%15 7 « In-token packet (address: 2) Frame
- - Data stage
EXEUE] D "
S15 Q00000 1 1201 10010000 00048 Qx889EE El ~ Data paCKEt (8 bytes) (In) 1/3 (lmS)
[Fackelr |] %% | . (device descriptor information)
| S18 ” 000000 1 I Oxd B | 11797 PID:DATAL
| Packel ¥ | | Syne S0OF CROE
| G117 ” Q00000 1 Oihd D278 PR
i acch I m < In-token packet (address: 2)
ERE] LTl R | Owdé Dwd2 asd D18 £
Frame
[Ferel? | ©oTe0 T Data'stage
[=77 |[00005eat | owa SE 04 01 00 00 01 00 00 o755 || = | - Data packet (2 bytes) (in) 2/3 (Ims)
[Fackal¥ | 55K PID:DATAO (device descriptor information)
| G20 | | __Q000d1 I Qad B | 11794
| Packel ¥ | | Syne SOF CRCE
| Gz ” [liTalaTaTala R} Dah3 0#2TE Qw02
H EIELELN =t [oF= | .
S22 2000000 1 DwdE Qw02 Dsd Dx15 5 - In_tOken paCKEt (address' 2) Frame
Data stage
Fachal - (1ms)
_ ~ Data packet (2 bytes) (in) 3/13
[Fe=lF | PID:DATAL device descriptor information)
I zd ” Q20001 I Dud B | 11845
[Fashals | [0 [==F TRoE
| S25 ” Qa00000 1 I Dahs 0x2TC Qxl1s £
| Packal ¥ | | Syns I auT ENDF CRCS
[52 |[900000ai [gwd7 | <oz | owd | Tl | ~ Out-token packet (address: 2) T Frame
- Status (1ms)
327 & — Data packet (OByte) stage
| Packel ¥ | | Syne I ACK |
| G248 | | [liTalaTaTala R} I Dad B | 11865
| Fackal & | | Sync SOF CRCS
| 429 ” 2000000 1 Dubhs Q=270 [APTak] 11985
I Packal & ” Syne I S0F SRR
| G330 ” Qa00000 1 I Dad5 0x2TE Qx01 5
Packal ¥
= ~ Setup token packet (address: 2) !
[Facrete |] 7o Setup Frame
[552 || o000l | owcs & ~ Data packet (8 bytes) stage (Ims)
[Fe=r=l® | % | (Get_Descriptor (config) command)
|] | | Q00000 1 I Dad B | 11800

Rev. 1.0, 04/02, page 73 of 80

RENESAS

((Byuon)ioidudsa@ 199) Jajsuel) |01UOD

((Byuon)ioidursa@ 199) Jajsuel) |01U0D

| Fackel & ” Syne | SOF SRS
Sdd Q000000 1 LEEN O&2TF Jx1E 5
[Il |

S35 Q02330 | QwdE Dwd2 sl dull 5 In-token paCKEt (address' 2)

f

Frame
Datastage (ims)

==& 3 ~ Data packet (8 bytes) (in) 1/2
I Packal K H Syne I ATK I QD:DA@ (configuration descriptor information) +

G337 [liTalaTaTalu R} Oad B 11796

Fackal & Sync S0OF CRSS

S38 Q00000 1 Duhl Q5280 Qx0F £
H G 5 [== | BECE)

Sa9 Q00000 1 096 Dl axd Q15 7 h In_t0ke paCkEt (addreSS. 2) Frame
[Feshals | [o5180 TRETE | Data stage (1ms)
[598 || _coodddi | awis 10 OnfZCE || @ ~ Data packet (1 bytes) (in) 2/2
I Pa;:lﬁ H aﬁé'SZm I :iKB I = PID:DA@ (configuration descriptor information) +

o W
| Packel ¥ ” Syne I S0OF CROE
| a4z ” [liTalaTaTalu R} I Oih3 Qw281 Qw10 5
| Packal & ” Sync I auT ENCF ores | ET
[F#= |[[00000971 | 0+87 | 0w02 | Gs0 | 815 || = ~ Ou-token packet (address: 2)
Status Frame
(ims)

344 & — Data packet (0 byte) stage
| Fackal & ” Sync I ACK |
| 345 ” LTl R | I Oud B | 11885
[Fackald || Eyne [S5F TR “
| S4E ” Q00000 1 I [Py Dx282 Qw12 11965 Frame

(1ms)

I Packal & ” Syns I SOF Frama &
| 547 ” QD0 1 I RN Qw283 QwdCr

~ Setup token packet (address: 2) *
Setup
Packal & Synec CATAQ
I 330 || 00000001 | OwC3 W ~ Data packet (8 bytes) stage
[Fe=l? | 55 | (Get_Descriptor (config) command) +
| S50 ” Q0300001 I Dad B | 11800

f

Frame
(1ms)

Fachal & Syne SaF Frame &
EET 0000001 | OwAE Q5284 i3

G52 00300001 GFEE [AFTaF] asd Q615 3 < 1n tOken paCket (address' 2)

Frame
1 CATA Da_ta stage
353 7 — Data packet (8 bytes) (in) 1/5 (1ms)
I Fackal § H Ty I | PID:DATAL (configuration descriptor information) +
354 00300001 Dad B 11797 .
Packal ¥ Syns SOF CRCS
S55 [liTalalalaR] Py [T [aFTaZ=] g
i scoR I R m < In token packet (address: 2)
58 00300001 DI Qw02 asd ax15 g
Frame
[Fackal® Tyne CATAD [I] Data stage
[357 || 9ooocaoat | dwss 10009 ad A0 00 02 0F 01 OnZzaz] ~ Data packet (8 bytes) (in) 2/5 (Ims)
S| T % QD'D AD (configuration descriptor information) +
l—{ . :
Packel & Syne SOF LRSS
359 00300001 Dad 5 D286 Qw0E 3
CIECEGN =TT T SRCS < In-token packet (address: 2)
SED [liTalalalaR] DyDE [aFTi] Qud axig 7 : .
Frame
Packal &
== MW opaceibvey |

(configuration descriptor information)
PID:DATA1

RENESAS

Rev. 1.0, 04/02, page 74 of 80

Data stage
(in) 3/5

((Byuon)ioiduasa@ 199) Jajsuel) |01UOD

((@21n0@)101dLIDSB@ 199) J8jsuel] [0JU0D

| Fackal & || Syne | ATHE |
| SEZ || Q0000001 I Oxd B | 11797

vy

|Pack:=l§‘ || Syns I S0F CRCE
| 6 || [l I QsdE Dy2ET asid 5

S84 Q000001 QrIE Q02 [LF%] ax1s5 g < In tOken paCkEt (address' 2)

* Frame

[Feralv | (EE] 5750 LA T TACIE Data stage (1ms)
[385 || 00o0adal | owca a0 07 05 &2 02 40 00 00 CPE =] a ~ Data packet (8 bytes) (in) 4/5
[Fackel® | e #e% | PID:DATAO (configuration descriptor information) +
[588 || Ooooooot [0waE || 11799
[Fe==17 | = =REE
a7 —ooooaal | Osbs | Owz8@ | owdi 5
[| |
L = CF | cRos .
368 00000001 | OxDe | Ow02 | Cad | @wib 5 « In-token packet (address: 2)
oatAl oaTs [EEREICE - Data packet (0 byte) Datastage Frame
89 7 (in) 5/5 (1ms)

(when all descriptor information has been
[FackalF || Bync

BTH .]
[570 |[oodoaoai Ioma l 11862 PIDDA-'D transmitted)

v

[Feoe 7 | oo TR Frame
W i W
A 04289 Ga1E || 11985
(Ims)
[Feral7 | =T TREE
[57z |[ooooooal | owas | oszes TRIC 5
[Fachalv | EE aoT B = -
[573 |[00950091 | Os8F | o0z | 8w | 8s15 || 3 ~ Out-token packet (address: 2) * Frame
M saca packe Status (1ms)
7 6 ~ Data packet (0 byte) stage
[Facralr | ETE |
[575 |[00090001 | owaB || 11885

| Packel ¥ | | Syne I SOF CRIE
ST Q000000 1 ErY) [EFF=1=] [aFTil 11965
| Il I

* Only SOF packets continue in this period

| Fackal | | Syne | SOF LTRSS
d25 Q000000 1 LT 188 Q%02 5
[I I

~ Setup token packet (address: 2)

426

3
[Fechels | G580 T TRCIE
[=7 || 00000001 | owts B0 OB 0001 00 00 12 00 Tw073F & ~ Data packet (8 bytes)
IF":;:” H 002‘;‘;301 I é“:"; I o= (Get_Descriptor (Device) command)

* Frame

Setup (1ms)
stage

v

I FPackel & || Syno I SOF SRS
429 Q000300 1 dzhS Dz 186 a1l 5
[Il I

=T L T | o - :
430 Q00000 1 e Ol [AFa] D15 5 « In-token paCKEt (address. 2)
a ~ Data packet (8 bytes)

51
Packel & S REH] m device descriptor information
I a3z H DO00000 1 I T E I 11757 PID:DATAL (P)

f Frame

Data stage (Ims)
(in) 1/3

v

[Feereld | =0
[355 |[0909401 | dwas [T] 5

434 Q00000 1 FEr Oxd2 [AP%] D15 £ - ln-tOken paCket (address'z)

Dat . Frame
—_— ata stage
[Fe=t=l |] &5 720 GATA ! 1ms
[#3F _|[00003001 | owta 5E 04010000 010000 07755 a — Data packet (8 bytes) (in) 2/3 ()
[Fecheld | 7o | . (device descriptor information)
[%58 |[ooooooat [awas || 11397 PID:DATAO
(=7 | X ’
[5= |[ooooooo1 [owes 05180 1T 5 «~ In token packet (address:2)
oo e R
358 B00000A1 | 0496 | 002 | OO | 9wiE 7
Frame
(1ms)

Rev. 1.0, 04/02, page 75 of 80

RENESAS

((Byuon)ioidiosa@ 199) Jajsuel) |01UOD

((a:)!/\aq)mldu:)saq_la%a;suen j0Ju0D

/[P

EEE]

(device descriptor information)
| Fackal & || Syne ACHK PID:DATA1
0sd B | 114844

[440][oadodaoi

~ Data packet (2 btes)

Data stage
(in) 3/3

v

[Fackal® || Eync E0F CRES
[@47 | [@oooaoat |ams az18E aulE

[Fackel® | ST oUT BR[| ©RE5T] — Out-token packet (address: 2) *
| 442 || AT | I Q87T Qw02 awd I au 15 | 3
Status
443 4 ~ Data packet (0 byte) stage
[P==F=lF | e X
_[## |[900001 | awaE |[118as

Frame
(Ims)

[Fackal® || Syne [S9F CRECE
[aas || 009001 | 0sAS Qn18F aed 1 11985

[Fackal® || Hync [s9F Fram= &
[838 || oooooodt | 0sAE 190 ax 18 5

FPackal & SETUPR

*

437 00000001 | OsEd | Os02 | OO0 | 0815 3 «— Setup token packet (address: 2) Frame
[F===17 | I T TE0 GATA TRETE Setup (1ms)
EEEE| [900080071 | 0wC3 B0 08 90 02 A0 00 a9 a1 OnF&23 & . Data packet (8 bytes) stage
[F==f=lF | I =~ i]

[=25 | [oooooa | i A (Get_Descriptor (config) command)
[Fackal® || Hync FOF Frama i IR

I | | [T ax131 o;;og

[N =CF [SFES ~ In-token packet (address: 2)

AET 00000001 | 0«38 | 0x02 | @a0 | 0s15 s Erame
Datastage (1ms)

i r ~ Data packet (8 bytes) (in) 1/5
[Fackeld | I =5 | . (configuration descriptor information)

[355 [eoooooot | awdE || 11797 PID:DATAL
| Fachal & || Sync [59F CRCS
454 |[T 00000001 | 0wA5 Q%192 006 s
[Fackal® ([T I e [o7 ~In-token packet (address: 2)
oaaoooo T | 0w | Ow02 | Os0 | OalS 5 Frame
Fachel® s TATET CATE Datastage (g
458 0000000 1 T 1009 04 00 00 02 07 01 DwDZ3T 7 | — Data packet (8 bytes) (in) 2/5
Fachel ¥ Syne AER m Q:DA@ (configuration descriptor information) +
|' a5y 00000001 | OB || 11794
[Fe=r=lF | =oF TRCS
[355 |[[90a00dat | dwa% 04183 Tnld 5

453 00000001 | Ox9& | Ox02 | Osd | 0x15 7 « In-token packet (address: 2) Frame
DaTA 1 - [o] Datastage (g

EEG __ooo001 | Osb2 010007 05 01 02 40 a0 OwddCE — Data packet (8 bytes) (in) 3/5 (ams)
[Fackele |0 ETR | (configuration descriptor information)

[%87 |[00000001 | owdE || 11797 PID:DATAL
| Packel ¥ | [E0E | SOF TRCS
462 |[[o0000001 | 0w 04194 w0 5
[Fechalr | S T [= | i .
aaaooom 0x98 | Ow02 | 0x0 [Os18 7 « In-token packet (address: 2) .
[Fackel | e CATAD) TRC1E Frame
[% |[[—ooooot | oscs 0007 05 &2 02 40 00 00 [EEw] E] ~ Data packet (8 bytes) (1ms)

PID:DATAO (configuration descriptor information)

Rev. 1.0, 04/02, page 76 of 80
RENESAS

Data stage
(in) 4/5

((Byuon)ioiduosa@ 199) Jajsuel) |01UOD

N

(uoneinbyuoD 199) Jajsuel] |[0JUOD

* Only SOF packets continue in this period

/| Fackel 4 | [E0E [25K
[985 || 000001 | owaB |[11797 + ¢
[Fechal® | e EOF TASE
[288 || 00000901 | 0sAE Q5135 i £
[Fackald |
A&7 5 ~ In token packet (address: 2) f
Frame
DATA1 DATA — Data packet (0 byte) Data stage (1ms)
458 0000004 1 Qa2 ORO000 7 (in) 5/5
Fackal X Syne AT X . . .
I EEE] | 0000000 1 I] I“ﬂae: QD-DATAO (when all descriptor information has been +
| Fackal & || Syne | SaF Frama & [a=raty transm|tted)
[%50 |[00000001 | owss Q5 196 T l7 11985
[Feckald | =oF, TRes
[#51_|[90000801 | awsb Q197 P £
[Fackel4 | 0T ERNEF [©F== |
[#72 |[00050aa1 | owar | ooz | owd | @wis || 3 ~ Out token packet (address: 2) $
Frame
Status
~ Data packet (OByte
Ev 3 p (OByte) stage (1ms)
[Fachals | 7oK
[@78 || 90000001 | owaB |[11&&5 +
[Faskal® Tyne N Frame &
475 || 20000001 | dwaS [TIEE] -TRE] 11985
[Fackeld | Syne [S5F SRS
476 || 00000001 | 0wAS Q193 ara7 5
Fackal §
/ o ~ Setup token packet (address: 2) f
Frame
[Fackel#] Syne CHTAD LT TRCIE Setup (1ms)
[#75__|[oo00aaa1 | owc= 00090100 00 00 00 00 OREAE & ~ Data packet (8 bytes) stage
[Fectels | e #eF
[479 || ooodoooi [TadE || 1180z
[Fackeld] Hync [S5F CRCE
[F@0 || 009001 | awsb D194 w05 5
Eyne L] ECECW EREE [SRS .
H‘“" oo T e — =oTE - ~ In-token packet (address: 2) Frame
Staws (1M9)
EEF] 4 ~ Data packet (OByte) stage
I Fackal § || Syne I BCH
485 || 00000001 | owaB |[11861
[Fackal® || Syne E0F
[#8% || 90000001 | auas Note: A transition is made to configuration state

Rev. 1.0, 04/02, page 77 of 80

RENESAS

(QI™@91ne@ 199) Jajsuel) |01ju0D

[Fackeld [Eync [9% RS
| 520 || Q000001 I AP Ox1EF 0x17 5

— Setup token packet (address:2
£21 p p
s Frame
[(Fe=t=17 | =T Crao GATA etup 1ms
[F==][ooooooa1 | owes A1 00 0000 00 00 F1 03 O#BLOG & — Data packet (8 bytes) stage ()
[Feckals | S %5 | +
| 525 || Q00001 I Dsd B | 11799
[Fachels® || Hync [S9F CRCE
| 524 || Q0000031 I DS ERE=1] DxdE £
P W acoR S Rl s
525 00000001 | Ox96 | 0s0z | Oxd | 0415 5 ~ Setup token packet (address: 2) F
rame
; ~ Data packet (0 byte) .) Data (1ms)
524 il Note: IEEE1284 device ID data is returned in 0 byte stage (in)
[F==l7 |] o=~ | for evaluation. When the device is incorporated in
[527 |[[00990001 | owam || 118ez the system, return the device ID the user got.
[Feckals | S =oF, TRCE
| 524 || Q00001 I DidS Qw151 Oald 11365
[Packel ® || Sync [=9F TRCE
| 529 || Q0000031 I DS ey =] PEE] £
| Fackal & || Sync auT ENCF SRLE |
[530 |[09090001 | Gwar | a2 | Gwd [Oai5 || = ~ Out-token packet (address: 2) E
rame
S ms)
531 % | — Data packet (0 byte) stage
[Fackal® || Hyne [A=K]
¥ || [N I Dxd B | 11865
Packa ¥ | S| =98 CRCE] Frame
533 | Q0000001 I [LErN Q1S3 EGE] 11985 (lms)

|
Facka[7 | [00e [S9F TRCE Frame
34 |[00000001 | 0sAE Q104 auiy 11985 (1ms)
ms
[FackelF || Syne [S5F =t M
[555 |[000000071 | 0xa% ax 155 [{Far] 11965

Note : The stationary state contimues until a bulk transfer is performed.

Figure 7.1 Control Transfer When a Device is Connected

Rev. 1.0, 04/02, page 78 of 80
RENESAS

7.2 Bulk-Out Transport for Printing Out (For the bulk-out transport,
refer to section 2.6.3.)

Figure 7.2 shows the measurement results when the bulk-out transport (printing out) is perfor
from the host controller to this device.

For each transfer, the PID of data packets is toggled like DATADATAL - DATAO.

[alalalaTalaTa R} R [P =x1 Quls 5

(F===t% | I ©° % S| — Out token packet (Address: 2)
"

| FF] || Q000000 1 I DadT Dl IO:H& |]

Fachal § Syne TETAD Dat vt (64
73 00000001 | 0%C3 PID:DATA a'a packet (64 bytes)
Print-out data
TB 40 16 40 16 20 52 08 00 00 52 45 4D 4F 54 45 31 50 4D 02 00 00 00 53 4E 03 00 00 00 01 16 00 00 00 16 28

[47010001 1G285501000A IEE500 162083010000 16 1951 G2A65 020000 |
TREIE Ik
TR][5
Fackel & Tyric BT
=4 Q0000001 | OB &1 ~ACK handshake packet

Fackal & e Ul -oor I)
F 00000001 | OREF | Oad2 | ot GE3E] 3 ~Out token packet (Address: 2)

A

J19jsuel) Ino yng

w | = Data packet (64 bytes)
2= PID:DATA £ (Print-out data)
o
E< 05 162843020071 10 16 28 &3 04 00 24 00 AB OF 16 28 76 02 00 BG 00 1B 72 00 16 55 FO 00 16 2E 00 04 04
=
3 [01 180000 1F FCOG 1B 28 76 02 00 01 00 16 7200 1B 5 F0 00 16 2E 00 04 05 071 18|
5
% TRCIE Idka
- e | R
[Packel® Tone B
\[= |[oooccasi | geaE || ez ~ACK handshake
([Feciel® | TS falig ERGE | SRes

| z4 || QDD | I QadT Qw02 dul I Qw18 | &5 ~Out token pa(;ket (AddreSS: 2)

Fachal & Eyre TETE0
}T{ O000008 1 FiFTes] PID:DATAO K (Dpa'FatpaCtkgt t(6)4 bytes)
rint-out adata,

Q000 SFFIOCIE 28702 0001 QO HE 7200 1B SC RO 00 1E2E 00 0A 04 01 18 00 00 SF FA 00 1B 28 76 02 00
| Q100 1E72O0MESCFO Q0 1ESE DD QA 04 01 1800 Q0 FF FO AL 1E 28 78 02 00 01 20 |

EE

[5 |

dﬂ{ Syne Gk ﬂ ~ACK handshake packet
S [aaTafaTaluTa K] Qrd B &1

qﬂ{ s ouT LTl EVEF [SRES | m —Out token packet (Address: 2)
31 [aaTafaTaluTa K] [Pr-rd [AFF] axi ax18 3

CERER Data packet (64 bytes)
= coooene’ | 22 PID:DATAL e (Print-out data)

TE7200 TESCFOO0 TEZEQO QA OA O 14000 TR FO AL 1E28 76 0200 01 00 1E 72 00 16 55 FO 00 16 2E O
| 0ACA T 100 O FFFOOD 1B 28760200 01 00 1E 72 00 1B 5SS FO 00 1E ZE 00 04 J4 |

s
.
Fackal A = HTR
JT{ 00000001 | OwAE % ~ACK handshake packet

Figure 7.2 Bulk-Out Transport for Printing Out

Jajsuel) N0 Ying
A

A

J8ysuel) N0 ynyg

Rev. 1.0, 04/02, page 79 of 80
RENESAS

Rev. 1.0, 04/02, page 80 of 80
RENESAS

SH7727 USB Function Module Application Note

Publication Date: 1st Edition, April 2002
Published by: Business Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB
	2.1	USB Connection Topology
	2.2	USB Signal Transfer Method
	2.3	Recognizing a Connection vs. Non-Connection
	2.4	USB Connector
	2.5	Endpoint
	2.6	USB Packets and Data Transfer
	2.6.1	Overview of Packets
	2.6.2	Control Transfer
	2.6.3	Bulk Transfer
	2.6.4	Isochronous Transfer
	2.6.5	Interrupt Transfer

	2.7	USB Device Framework
	2.7.1	Device States
	2.7.2	Device Request

	2.8	Descriptor

	Section 3 Overview of the USB Module
	3.1	Operation of the Module
	3.2	Organization of an Endpoint
	3.3	Register Configuration
	3.4	USB Command Processing

	Section 4 Development Environment
	4.1	Hardware Environment
	4.2	Software Environment
	4.2.1	Sample Program
	4.2.2	Compiling and Linking

	4.3	Loading and Executing the Program
	4.3.1	Loading the Program
	4.3.2	Executing the Program

	4.4	Printing Procedure

	Section 5 Overview of the Sample Program
	5.1	State Transition Diagram
	5.2	USB Communication State
	5.3	File Structure
	5.4	Purposes of Functions

	Section 6 Sample Program Operation
	6.1	Main Loop
	6.2	Types of Interrupts
	6.2.1	Method of Branching to Different Transfer Processes

	6.3	Interrupt on Cable Connection (VBUS, BRST)
	6.4	Control Transfers
	6.4.1	Setup Stage
	6.4.2	Data Stage
	6.4.3	Status Stage

	6.5	Bulk Transfers
	6.5.1	Bulk-Out Transfers
	6.5.2	Bulk-in Transfers

	Section 7 Analyzer Data
	7.1	Control Transfer When a Device Is Connected
	7.2 Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.)

	Colophon

