

SH7670 Group

Example of Cache Memory Setting

R01AN0300EJ0101 Rev. 1.01 Oct. 15, 2010

Summary

This application note describes an example of cache-function settings for the SH7670/SH7671/SH7672/SH7673.

Target Device

SH7670 MCU

Contents

1.	Introduction	2
2.	Description of the Sample Application	3
3.	Sample Program Listing	8
4.	References	. 11

1. Introduction

1.1 Specifications

• The instruction cache and the operand cache are enabled and placed in the write-back mode.

1.2 Module Used

- Bus state controller (BSC)
- Cache

1.3 Applicable Conditions

3.00
ly
led Workshop
bal_volatile=0 -opt_range=all c=1)
ly led Workshop bbal_volatile=0 -opt_range=

1.4 Related Application Notes

For more information, refer to the following application notes:

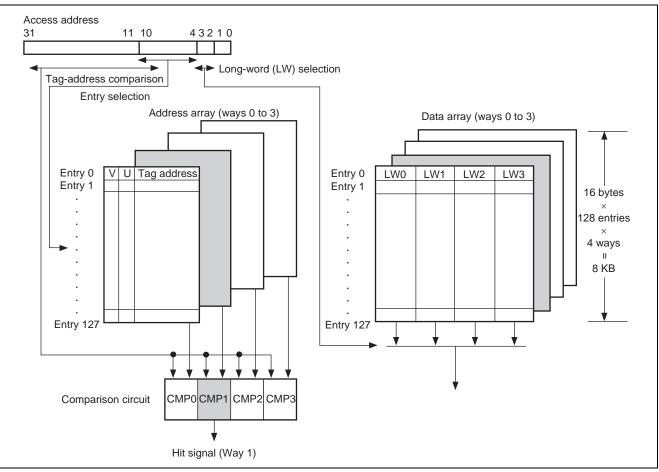
• SH7670 Group Example of Initialization

2. Description of the Sample Application

This sample application employs the instruction cache and operand cache.

2.1 Summary of MCU Functions Used

If the instruction cache and operand cache are enabled (respectively, when the ICE and OCE bits in register CCR1 are set to 1), whenever an instruction or data in a cacheable area is accessed, the cache is searched to see if it contains the desired instruction or data. The cache is searched according to the following procedure.


- 1. A single entry is selected by using bits 10 to 4 of the address used to access memory from CPU and the tag addresses at the corresponding entry number in all four ways are read out. At this time, the highest-order three bits of the tag addresses are always cleared to 0.
- 2. Bits 31 to 11 of the address used to access memory are compared with the tag addresses that have been read out. Address comparison is with the tag addresses read out from the entries in all four ways.
- 3. When the result of comparison is a match with a tag address and the selected entry is valid (V = 1), a cache hit is said to have occurred. When the comparison does not show a match or the selected entry is not valid (V = 0), a cache miss is said to have occurred.
- 4. In the case of a cache hit, the long-word (LW) of data at the position in the data array defined by bits 3 and 2 of the accessed address is read or written.

Description			
Instruction cache: 8 KB			
Operand cache: 8 KB			
Instructions and data are separated; each cache is 4-way set associative			
Ways 2 and 3 can be locked (only in the operand cache)			
16 bytes			
128			
Write-back and write-through methods are selectable			
Least-recently-used (LRU) algorithm			

Table 1 Overview of Caches

SH7670 Group

2.2 Procedure for Setting the Module Used

The procedure for setting up the caches is described below.

Cache control register 1 (CCR1) is used to set up the cache. Program code that manipulates the cache control registers must be executed from an area for which caching is disabled. Also, access to areas for which caching has been enabled must only proceed after the CCR1 register has been read.

This sample application also changes the interrupt mask to prevent the acceptance of interrupt processing that might include access to the cache-enabled spaces while the cache mode is being updated.

Figure 2 is a flow chart showing an example of the procedure used to enable both the instruction cache and operand cache.

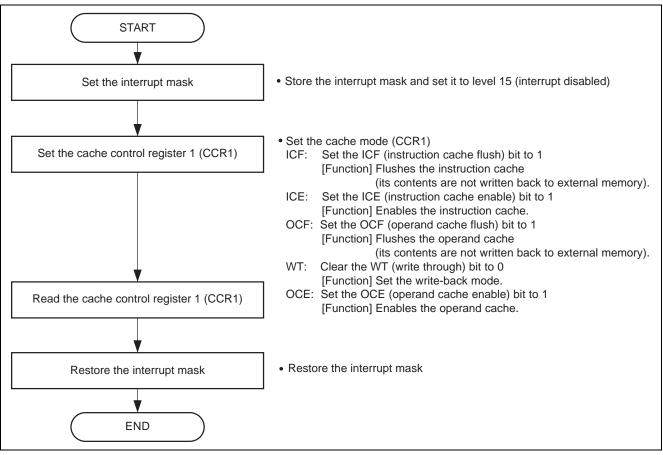


Figure 2 Example Flow for Settings Up the Cache

2.3 Description of the Sample Program

In the sample program, the instruction cache and operand cache are enabled, and then data equivalent to a single cache line (16 bytes) are written to external memory (SDRAM) in write-back mode. In this case, the data are actually written to the cache and not reflected in external memory (SDRAM) until the cache entry (line) is replaced. Contents of external memory (SDRAM) are read out from a cache-disabled space after the fill operation, and compared with the contents of the cache.

The section name for the cache manipulation function is adjusted so that the function is placed in a cache-disabled space.

2.4 **Procedure for Processing by the Sample Program**

Table 2 describes how the cache is set up by the sample program. Figure 3 shows a flow of processing by the sample program.

Table 2 Cache Settings

Register Name	Address	Setting	Description	
Cache control register1	H'FFFC 1000	H'0000 0109	ICE = "1":	Enables the instruction cache
(CCR1)			OCF = "1":	Flushes the operand cache
			WT = "0":	Write-back mode
			OCE = "1":	Enables the operand cache

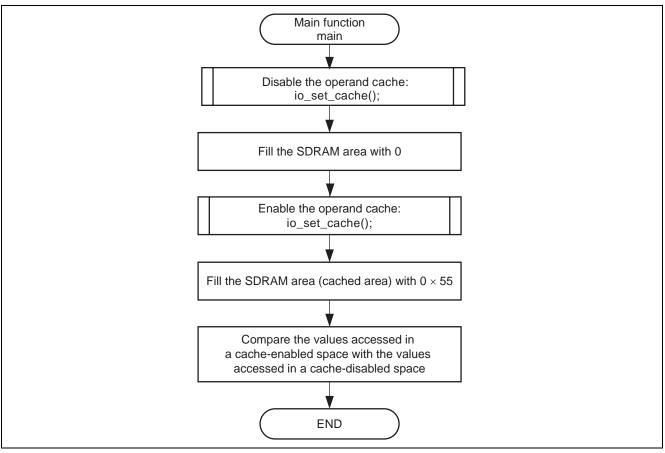


Figure 3 Flow of Processing of the Main Function

2.5 Allocation of Sections in the Sample Program

The cache manipulation function must be placed in a cache-disabled space.

In this sample program, an extended compiler function (the #pragma section directive) is used to place the function that manipulates the cache control registers (io_set_cache) in a specific section (the PCACHE section) separately from the rest of the program. Linkage editor options are then specified so that only this PCACHE section is allocated to a cache-disabled space. That is, the rest of the program is allocated to a cache-enabled space (the P section).

Figure 4 is a memory map for the sample program.

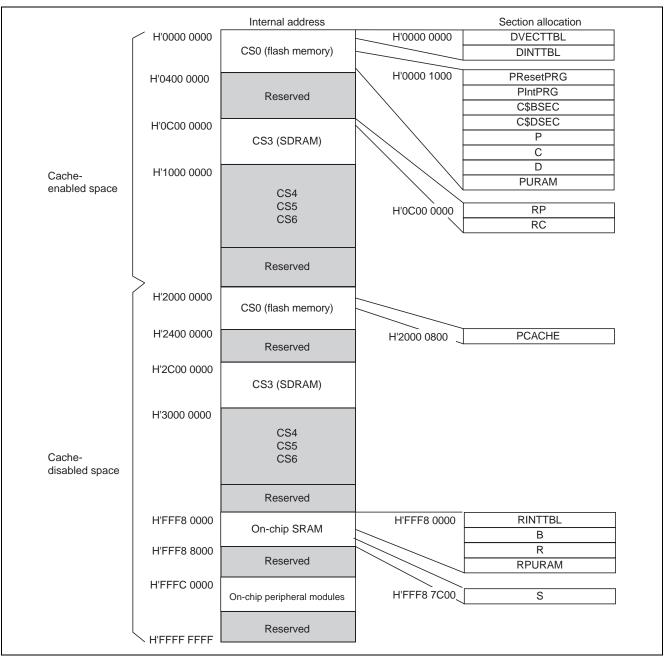


Figure 4 Memory Map of the Sample Program

3. Sample Program Listing

3.1 Sample program list "main.c" (1)

```
1
2
        DISCLAIMER
3
       This software is supplied by Renesas Electronics Corporation and is only
4
       intended for use with Renesas products. No other uses are authorized.
5
6
7
       This software is owned by Renesas Electronics Corporation and is protected under
       all applicable laws, including copyright laws.
8
9
10
     *
       THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES
       REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
11
       INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
12
13
        PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
14
        DISCLAIMED.
15
16
       TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
     * ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
17
18
       FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
       FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
19
20
       AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
     *
22
       Renesas reserves the right, without notice, to make changes to this
23
       software and to discontinue the availability of this software.
24
     * By using this software, you agree to the additional terms and
25
     * conditions found by accessing the following link:
     * http://www.renesas.com/disclaimer
26
     *****
27
28
     * Copyright (C) 2007(2010) Renesas Electronics Corporation. All rights reserved.
29
     30
       System Name : SH7671 Sample Program
31
       File Name : main.c
32
     * Abstract : sample of cache memory setting
     * Version
                : 1.01.03
33
     * Device
                : SH7671
34
        Tool-Chain : High-performance Embedded Workshop (Ver.4.03.00).
35
36
                  : C/C++ compiler package for the SuperH RISC engine family
     *
37
                  :
                                           (Ver.9.01 Release01).
     * OS
38
                  : None
39
       H/W Platform: M3A-HS71(CPU board)
40
       Description :
     41
        History
42
                  : Jul.05,2007 ver.1.00.00
43
                  : Jul.09,2007 ver.1.01.00 Revision of the section allocation
44
                  : Jan.17,2008 ver.1.01.01 Revision of comment
45
                  : Feb.28,2008 ver.1.01.02 Revision of a macro name
                  : May 10,2010 ver.1.01.03 Changed the company name and device name
46
     47
     #include <machine.h>
48
     #include "iodefine.h" /* iodefine.h is a file automatically generated by the
49
50
                          High-performance Embedded Workshop */
51
    #include "defs.h"
```



```
3.2 Sample program list "main.c" (2)
```

```
52
53
     /* ==== Prototype declaration ==== */
54
    void main(void);
55
    /* ==== Macro definition ==== */
56
                           (volatile unsigned char *)(0x0C100000)
57
     #define SDRAM_ADDR_CACHABLE
     #define SDRAM_ADDR_NON_CACHABLE (volatile unsigned char *)(0x2C100000)
58
59
    60
     * ID :
61
62
    * Outline : Sample Program main
     *_____
63
     * Include
              : #include "iodefine.h"
64
65
      _____
66
     * Declaration : void main(void)
67
     *_____
     * Function : Example of enabling / disabling cache memory.
68
69
              : After the SDRAM area has been initialized with the operand cache OFF,
70
               : a fill operation is performed with the operand cache ON,
     *
71
               : and the cached area is compared with its shadow in the cache-disabled
     space.
72
               : The operand cache is to be controlled.
     *_____
73
     * Argument : void
74
75
     *_____
76
     * ReturnValue : void
77
     *_____
78
     * Notice
               : In this sample program, the cache is flushed. Therefore,
79
               : a program for initialization that enables the cache will invalidate
80
               : the contents of the cache.
     81
82
    void main(void)
83
    {
84
      int i;
85
      unsigned char *ptr1, *ptr2;
86
      /* ==== Disabling operand cache ==== */
87
88
      io_set_cache( 0x00000108 );
                               /* Instruction cache enable
                              * Operand cache flush *
89
                              * Write-back mode
90
                              * Operand cache disable
                                                  * /
91
92
      /* ---- Initializing SDRAM ---- */
93
      ptr1 = SDRAM_ADDR_CACHABLE;
                              /* Cache-enabled space
                                                         */
                             /* Written to actual memory */
      for(i=0; i<16; i++){
94
95
       *ptr1++ = 0;
                            /* as caching is disabled
                                                           * /
96
      }
97
      /* ==== Enabling operand cache ==== */
                               /* Instruction cache enable
      io_set_cache( 0x00000109 );
98
99
                              * Operand cache flush *
100
                              * Write-back mode
101
                              * Operand cache enable
                                                  */
```


3.3 Sample program list "main.c" (3)

```
/* ---- Filling SDRAM area ---- */
102
103
      ptr1 = SDRAM_ADDR_CACHABLE;
                               /* Cache-enabled space
                                                         */
                            /* Only written to the cache */
104
      for(i=0; i<16; i++){
                            /* in write-back mode */
       *ptr1++ = 0x55;
105
106
      }
107
      /* ==== Comparing cache-enabled and cache-disabled spaces ==== */
108
     ptr1 = SDRAM_ADDR_CACHABLE; /* Cache-enabled space
                                                      */
      ptr2 = SDRAM_ADDR_NON_CACHABLE; /* Cache-disabled space
                                                     */
109
110
     for(i=0; i<16; i++){
111
112
      if(*ptrl++ == *ptr2++ ){
113
          while(1){
114
            /* Error in cache setting */
115
          }
116
      }
117
      }
     while(1){
118
119
       /* Program end */
120
      }
121
     }
122
                               /* Allocated to a non-cacheable area */
123
     #pragma section CACHE
     124
125
     * ID :
126
      * Outline : Cache setting
127
     *_____
      * Include
128
              : #include <machine.h>
129
     *
               : #include "iodefine.h"
130
      *_____
131
      * Declaration : int io_set_cache(unsigned int mode)
132
     *_____
133
      * Function : Cache is placed in the mode specified by the argument "mode".
     *_____
134
      * Argument : unsigned int mode : I : Set the value of cache control register 1
135
136
      *_____
137
      * ReturnValue : 0 : Normally finished
138
      *_____
139
     * Notice
              : This function must be allocated in the CSO non-cacheable area.
      *
140
               : Interrupts are disabled during cache operation.
141
     int io_set_cache(unsigned int mode)
142
143
     {
144
      int mask;
145
146
     mask = get_imask();
                               /* \downarrow \downarrow \downarrow interrupts disabled \downarrow \downarrow \downarrow  */
147
     set_imask(15);
148
      /* ==== Setting cache register ==== */
149
150
      CCNT.CCR1.LONG = mode;
151
                            /* \uparrow \uparrow \uparrow interrupts disabled \uparrow \uparrow */
     set_imask(mask);
152
153
154
     return 0;
155
     }
     /* End of file */
156
```


4. References

 Software Manual SH-2A/SH2A-FPU Software Manual Rev. 3.00 The latest version of the software manual can be downloaded from the Renesas Electronics website.

Hardware Manual

SH7670 Group Hardware Manual Rev. 2.00 The latest version of the hardware user's manual can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Descript	ion
Rev.	Date	Page	Summary
1.00	Oct.31.08	_	First edition issued
1.01	Oct.15.10		Changed the sample program (AC Switching Characteristics are removed)

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

 Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" or for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics graduat" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronics appliances; machine tools;
 - personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkeit, Ontario L3Y 9C3, Canada Tel: +1-905-989-5441, Fax: +1-905-989-3220 Renesas Electronics Europe Limited Dukes Meadow, Millozard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +44-1528-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Dusseldorf, Germany Tel: +49-211-6503-0, Fax: +44-1528-585-900 Renesas Electronics Curope Chinal Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-55, Fax: +86-10-8235-7679 Renesas Electronics (Shanghal) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazul Ring Fd., Pudong District, Shanghai 200120, China Tel: +86-27-587-1818, Fax: +86-22-6887-7889 Renesas Electronics Hong Kong Limited Unit 1201-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-24-175-9800, Fax: +885-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. Tr, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C. Tel: +882-28175-9800, Fax: +885-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +885-28175-9870 Renesas Electronics Taiwan Co., Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +65-2678-8001 Renesas Electronics Kong Arc Hod. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-213-0200, Fax: +65-2678-8001 Renesas Electronics Kong Arc Hod. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +60-37955-9390, Fax: +85-2678-8001 Renesas Electronics Kong Arc Hod. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +60-37955-9390, Fax: +65-2678-8001 Renesas Electronics Kong Co., Ltd. 1 HarbourFront Avenue, #06-10, keppel Bay Tower,